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Abstract

Molecular interactions fundamentally influence all aspects of chemistry and biol-1

ogy. Prevailing machine learning approaches emphasize the modeling of molecules2

in isolation or at best provide limited modeling of molecular interactions, typically3

restricted to protein-ligand and protein-protein interactions. Here, we present how4

to use molecular crystals to define the MOLINTERACTDB dataset that contains5

valuable biochemical knowledge, which can be captured by large self-supervised6

pre-trained models. MOLINTERACTDB incorporates 344,858 molecular crystal7

structure entries from the Cambridge Structural Database. We formulate entries8

in the MOLINTERACTDB dataset as radial patches of flexible size and at varying9

positions in the crystal to represent intermolecular interactions across crystal struc-10

tures. We characterize a variety of interactions highlighted across 6 million patches.11

Leveraging MOLINTERACTDB, we develop INTERACTNN, a self-supervised12

SE(3)-equivariant 3D message passing network. We show that INTERACTNN13

captures the latent knowledge of chemical elements as well as intermolecular inter-14

action types at a scale not directly accessible to human scientists. To demonstrate15

its potential, we fine-tuned INTERACTNN to predict the binding affinity between16

proteins and ligands, producing results comparable with state-of-the-art models.17

1 Introduction18

Intermolecular interactions between molecules play a central role in understanding and predicting19

chemical phenomena [7, 17, 27, 65]. In drug discovery, intermolecular interactions between the ligand20

and target are key factors for the selectivity and specificity of the drug [52, 68, 3, 46, 34, 19, 71].21

While these interactions are important for chemists, the exploration of intermolecular interactions in22

machine learning is limited. Many state-of-the-art models in molecular property prediction train on23

molecular datasets featuring molecules in isolation, for PCQM4Mv2 [39], QM9 [43], and ZINC [18].24

In contrast, ML models for molecular interactions are restricted to protein-ligand and protein-protein25

interaction (PPI) structures, leaving the broader field of intermolecular interactions largely untouched.26

Given the fundamental role of intermolecular interactions, it is important to consider a broader variety27

of these interactions to improve the generalizability of ML models.28

An experimental data modality that captures intermolecular interactions is a crystal structure [40],29

which records the 3D coordinates of the atoms in the crystal. In molecular crystals, molecules are30

bound together by intermolecular interactions in an infinitely repeating lattice. To represent this31

periodic structure, crystal structures are expressed as a unit cell—the smallest repeating unit of the32

crystal. There are large datasets of crystal structures including the Cambridge Structural Database33
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[13] (CSD) featuring 1,222,711 entries of which 344,858 are of organic molecular crystals that34

satisfied our search criteria. Unlike the discrete molecules found in many molecular property datasets,35

representing unit cells to capture intermolecular interactions for ML presents unique challenges.36

Present work. We present MOLINTERACTDB, a dataset created from the CSD that captures inter-37

molecular interactions from unit cells of entries in the CSD. Each entry in the MOLINTERACTDB is38

a radial patch which includes the 3D coordinates and atomic identities of intermolecular interacting39

molecular fragments. A key contribution of MOLINTERACTDB is the expansion of intermolecular40

examples available for ML models. By leveraging the CSD, we extend beyond molecular interactions41

limited to protein-ligand and protein-protein complexes, and present more intermolecular interactions42

that are chemically relevant for ML. In addition to dataset creation, we also developed the INTER-43

ACTNN model which is trained with self-supervised objectives to learn an informative latent space of44

patches. Probing the latent representation space reveals its ability to learn chemical types of interac-45

tions, and elemental differences. Finally, we show that INTERACTNN can be fine-tuned to predict46

binding affinity of protein-ligand interactions and achieves comparable results to state-of-the-art.47

2 Related work48

Machine learning for molecules. In the field of molecular machine learning, there are various studies49

ranging from property prediction to generation. Molecules can be represented either as 1D strings,50

such as SMILES [61] and SELFIES [25], and are typically trained using language models [72, 60].51

Alternatively, 2D and 3D molecular structures can be represented as graphs [44, 67, 69, 11, 48, 64, 32]52

and trained using graph neural networks (GNNs). These models can predict molecular properties53

[29, 41, 32] and help design new molecules [34, 42, 70, 28, 21, 35, 62].54

Geometric deep learning for molecular prediction and design. Molecules can adopt multiple55

3D configurations, known as conformers, which are not represented in 1D or 2D forms. Addition-56

ally, 3D geometric information significantly influences the properties and functions of a molecule.57

Consequently, several geometric deep learning models incorporate 3D coordinates for molecular58

property prediction [47, 9, 31, 58]. Given the scarcity of labeled 3D molecular data, self-supervised59

formulations for pre-training on 3D molecular structures have been developed. Notable models60

include GraphMVP [30], GNS-TAT [66], and 3D InfoMax [51]. Among them, GNS-TAT [66]61

demonstrates that pre-training by denoising 3D structures towards equilibrium can enhance perfor-62

mance in downstream tasks. Subsequently, these models are fine-tuned on smaller 3D molecular63

datasets with labeled molecular properties. Progress has also been made in constructing equivariant64

models. These ensure that when certain symmetry operations or transformations are applied to the65

input, equivalent transformations are reflected in the output. This is crucial for maintaining the66

consistency of output predictions with SE(3)-symmetry operations, which include translations and67

rotations [45, 14].68

Machine learning for molecular interactions. Molecular interactions underpin virtually all pro-69

cesses within living organisms. Several models have been developed to predict molecular interactions,70

including binding affinity prediction [37, 63, 38, 26, 37], binding site prediction [36, 24, 20, 22], and71

PPI prediction [7, 54, 8]. The field of molecular interactions is expanding with emerging areas of72

interest such as the design of molecular glues to stabilize PPIs [4] and the modulation of PPIs to73

target the undruggable proteome [33]. However, the scarcity of data, primarily due to the challenges74

in capturing 3D molecular data of interacting biological compounds, has curtailed the widespread75

application of ML in these nascent fields. Recognizing the need to understand intermolecular interac-76

tions across stages of drug design and development and across therapeutic modalities, we harness77

large datasets of molecular crystals to advance the modeling of intermolecular interactions.78

3 Creating MOLINTERACTDB dataset79

In this section we outline how we curate the CSD to capture examples of intermolecular interactions80

from molecular crystals. We start by defining intermolecular patches (Sec. 3.1) and proceed by81

outlining the curation of MOLINTERACTDB (Sec. 3.2).82
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3.1 Overview of Cambridge Structural Database (CSD)83

The CSD [13] contains all known crystal structures of small-molecule organic and metal-organic84

crystal structures. These structures are experimentally determined with X-ray or neutron crystal-85

lography. As of 2023 there are over 1.25 million crystal structures in the CSD, of which under86

half of these structures are classified as organic. A review from Taylor and Wood highlights the87

contributions of the CSD in researching molecular geometries, interactions, and assemblies [55].88

Figure 1: Illustrative example of the
CSD entry for ABOSAN.

89

Curating molecular cystals from the CSD. Querying and ac-90

cessing of crystal structure data was done with the CSD Python91

API. Each entry of the CSD describes a crystal structure stored92

as a unit cell, the smallest component that represents the repeat-93

ing crystal structure, and the metadata including publications94

associated with the entry, experimental details, and the chemical95

formula. Additionally, the CSD computationally assigns bonds96

and bond types between atoms to every entry. An example of97

data available for an entry in the CSD is shown in Figure 1. We98

filtered CSD v2022.3.0 for all entries that satisfied all of the99

following criteria: organic, not polymeric, has 3D coordinates,100

no disorder, no errors, no metals, had only one SMILES string101

describing the crystal entry (in other words, each crystal is102

comprised of only one chemical compound). This filtered the103

CSD dataset from 1,222,711 entries to 344,858.104

3.2 Creating intermolecular patches in MOLINTERACTDB using molecular crystals105

To represent intermolecular interactions we define intermolecular patches as entries in MOLINTER-106

ACTDB. Each radial patch is centered between two molecules to capture the geometric orientations of107

non-bonding interactions between two molecules. This approach captures diverse types of intermolec-108

ular interactions, including hydrogen bonding, Van der Waals interactions, aromatic interactions.109

Here we do not directly model the periodic unit cell, as we focus on recording intermolecular inter-110

actions. Radial patches have been shown to be useful in related fields of modeling protein surfaces111

[7, 54, 8, 53, 2], where patches are defined on the surface of a protein to reduce large protein surfaces112

to a fingerprint. Our approach differs to the use of patches for modeling of protein surfaces—which113

only feature one molecule—instead our patches capture interactions between molecules.114

Definition 3.1 (Intermolecular Patch). An intermolecular patch G(ij) is a graph with geometric115

3D coordinate attributes that is comprised of molecular fragments of intermolecularly interacting116

molecules i and j, here denoted as M (i) and M (j), respectively. Intermolecular interactions are all117

non-bonding interactions between M (i) and M (j); this includes hydrogen bonding, dipole-dipole118

interactions, Van der Waals interactions, and aromatic-aromatic interactions. Molecular fragments119

in the patch are all atoms in the molecules that are within a radius r from the weighted center,120

c(ij) = 1/(2|M (i)||M (j)|)
(
|M (j)|

∑
k∈M(i) pk + |M (i)|

∑
k∈M(j) pk

)
, where pk is the atomic121

coordinates of the molecules. The nodes and edges of the G(ij) = (VG(ij) , EG(ij)) are:122

• Nodes: VG(ij) =
(
V (i), V (j)

)
, where V (i), V (j) are atoms in M (i) and M (j) that are within radius123

r to the center c(ij). We denote arbitrary nodes in VG(ij) with a and b.124

• Edges: EG(ij) =
(
E(ij), E(i), E(j)

)
are comprised of:125

– Intermolecular edges: E(ij) connect atoms in V (i) with atoms in V (j) that are positioned126

within distance dinter of each other.127

– Intramolecular edges: E(i) are edges between atoms in V (i), and E(j) are edges between128

nodes in V (j) that are within distance dintra.129

We also refer to neighbouring nodes b ∈ N (t)
a of node a in a patch, where t ∈ {inter, intra} are the130

intermolecular and intramolecular edge neighbours. For intermolecular neighbours, we refer to the131
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edges E(ij). For intramolecular neighbours, if a ∈ V (i) we refer to the edges E(i), otherwise if132

a ∈ V (j) we refer to the edges E(j).133

The MOLINTERACTDB dataset, D = {G(ikjk) | k = 1, . . . , N}, is comprised of patches G(ij)134

constructed from CSD entries. For our purposes of learning intermolecular interactions we sampled135

many patches to represent all examples of intermolecular interactions in a unit cell (Figure 2). Given136

an entry of the CSD, we iterate through each unique, valid conformer M (i) in the unit cell using the137

CSD Python API. For each conformerM (i) we iterate through all neighbouring peripheral conformers138

M (j) of this molecule given by the unit cell that are within dinter to an atom in M (i). A patch G(ij)139

is constructed from all atoms in M (i) and M (j) that are within radius r to the weighted center c(ij).140

This extraction of patches from a unit cell will yield some patches that are equal up to permutation.

Figure 2: Intermolecular molecular patches from MOLINTERACTDB. CSD entry ABIGAV is shown.

141

We set r = 8 Å dinter = 4 Å and dintra = 2 Å. After iterating through all 344,858 CSD entries that142

satisfied our CSD filters, this constructs 6,059,368 patches in D. The choice of radius, intermolecular143

and intramolecular edge distance cutoff for the patch will influence the number of patches created.144

A radius r that is too small would break basic chemical motifs, which would lead to insufficient145

chemical context for interactions in the patch. Intramolecular edge cutoffs dintra that are too short146

would also disregard longer chemical bonds, and intermolecular edge cutoffs dinter that are too short147

would limit the number of patch examples. Our choice of cutoffs aim to provide sufficient chemical148

context. We summarise statistics of the patches in MOLINTERACTDB in Table 1.149

Table 1: Properties of 6,059,368 patches in MOLINTERACTDB with r = 8 Å, dinter = 4 Å, and
dintra = 2 Å.

Graph features Chemical features
Feature Mean SD Min Max Element % Distribution

# Nodes 67.8 24.3 4 424 Carbon 44.6
# Intermolecular edges 34.1 34.5 1 8,547 Hydrogen 42.4
# Intramolecular edges 89.5 36.6 2 2,859 Oxygen 6.1
Intermolecular node degree 1.3 0.2 0.0 22.9 Nitrogen 3.9
Intramolecular node degree 0.5 0.4 0.1 11.45 Fluorine 0.8

4 INTERACTNN model and its compelling use cases150

Next we outline the INTERACTNN model that uses MOLINTERACTDB for self-supervised pre-151

training. We provide details for how we probe the learned latent space of the INTERACTNN to152

explore the space of chemical interactions (Sec. 4.1) and show how INTERACTNN can be fine-tuned153

for protein-ligand binding prediction (Sec. 4.2).154
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4.1 Overview of INTERACTNN model155

INTERACTNN uses a SE(3)-equivariant 3D message passing network on intermolecular patches to156

learn representations that are informative of the intermolecular interaction between molecules.157

Problem (Self-Supervised Pre-Training For intermolecular Patches). Given is an unlabeled158

pre-training dataset of intermolecular patches, D = {G(ikjk) | k = 1, . . . , N}, and a target dataset159

of labeled intermolecular patches S = {(G(ikjk)
target, yk) | k = 1, . . . ,M}, where M << N . Our goal160

is to pre-train a model F on D such that it generates representations zk = F(G(ikjk)) for every161

intermolecular patch G(ikjk) that are chemically informative, and F can also be fine-tuned on S to162

predict yk for every G(ikjk)
target.163

Atom-level representation learning. Here we outline the SE(3)-equivariant 3D message passing164

network for INTERACTNN on the nodes of the intermolecular patch G(i,j). Several rotational165

equivariant neural networks have been introduced for modeling molecules [49, 23, 31, 1]. We build166

on the E(3)-equivariant neural network layers presented by Tensor-Field Networks implemented in167

e3nn [10] and DiffDock [3]. Message passing for the intermolecular edges and intramolecular edges168

are done separately, but the message passing framework for the two edge types is the same.169

The feature vectors ha of nodes a in G(i,j) are geometric objects that comprise a direct sum of170

irreducible representations of the O(3) symmetry group. The feature vectors h(λ,p)
a are indexed with171

λ, p, where λ = 0, 1, 2, . . . is a non-negative integer denoting the rotation order and p ∈ {o, e}172

indicates odd or even parity, which together index the irreducible representations (irreps) of O(3).173

There are also multiple features in ha which have the same irrep. In our model, we set λmax = 1 for174

ha, and we denote the number of scalar (0e) and pseudoscalar (0o) irrep features in ha with ns, and175

the number of vector (1o) and pseudovector (1e) irrep features in ha with nv.176

First, the element type of node a is embedded with a normal distribution and trainable weights to a177

vector with feature configuration ns× 0e. The edge length between the coordinates of node a and178

neighbouring node b is also embedded with Gaussian smearing to a vector comprised of ns× 0e, then179

the Gaussian embedding vector is passed through a 2-layer MLP projector to output a feature vector180

eab with feature configuration ns× 0e.181

There are L layers of message passing between nodes. At each layer l, the node updates for node a in182

the intermolecular patch G(i,j) are given by:183

ha ← ha ⊕
t∈{inter,intra}

BN(t)

 1∣∣∣N (t)
a

∣∣∣
∑

b∈N (t)
a

Y (λ) (r̂ab)⊗ψab
hb

 with ψab = Ψ(t)
(
eab,h

0e
a ,h

0e
b

)
, (1)

where node b are the neighbours of node a in G(i,j) given by intermolecular or intramolecular edges184

denoted with t. The message is computed with tensor products between the spherical harmonic185

projection with rotation order λ = 2 of the unit bond direction vector, Y (λ) (r̂ab), and the irreps of186

the feature vector of the neighbour hb. This is a weighted tensor product and the weights are given187

by a 2-layer MLP, Ψ(t), based on the 0e features of the nodes ha and hb and the edge features eab.188

After each layer l of message passing, ha is filtered down to irreps with λmax = 1. After L layers the189

final irreps configuration of ha is ns × 0e + nv × 1o + nv × 1e + ns × 0o and the embedding of190

node a, ha is a dnode-dimension vector.191

Intermolecular patch-level representation learning. For a patch-level embedding of the nodes192

a convolution is done between all nodes in a molecule and the unweighted center c(i) of the nodes193

V (i). This is repeated for nodes V (j) in the patch G(ij). The edge distance from node a to c(i) is also194

embedded with Gaussian smearing and passsed through a 2-layer MLP projector to output a feature195

vector eac(i) with feature configuration ns× 0e as:196

hc(i) = BN

 1∣∣V (i)
∣∣ ∑
a∈V (i)

Y (λ)
(
r̂a,c(i)

)
⊗γ

ac(i)
ha

 with γac(i) = Γ
(
eac(i) ,h

0e
a

)
. (2)

This is a weighted tensor product and the weights are given by a 2-layer MLP projector, Γ, based on197

the 0e features of the nodes ha and the edge features eac(i) . The embedding of the intermolecular198
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patch G(ikjk) is given by zk = [h0e
c(ik) ||h0ec(jk) ], the concatenation of the scalars from embedding199

molecule ik and jk, which is a dpatch-dimension vector.200

Self-supervised training with denoising. Node-level denoising as an objective function has been201

useful for pre-training on 3D coordinate molecular datasets from DFT generated molecules to prevent202

over-smoothing of GNNs [12], and it has proven that it is related to learning a force field of per-atom203

forces [66, 6]. In addition, denoising is linked to score-matching which has also been popular in204

training generative models [16, 3]. Thus, this motivates the application of denoising as an objective205

for self-supervised training on MOLINTERACTDB.206

Given a patch G(i,j) ∈ D, G̃(i,j) is a perturbed patch created by adding i.i.d. Gaussian noise to the207

atomic positions, pa of each node a ∈ VG(ij) . That is, for each node a ∈ VG̃(ij) the atomic position208

p′
a = pa + δa, where ϵa ∼ N (0, σI3) , σ = 0.5 and δa = min (ϵa,1). The objective is to predict209

{δ1, . . . , δ|V
G̃(ij) |} given G̃(i,j). The model Fdenoise is trained to minimise the loss L:210

L =

√
1

N

∑
G(i,j)∈D

∥Fdenoise(G̃(i,j))− (δ1, . . . , δ|V
G̃(ij) |)∥2 (3)

We add a denoising layer to F for Fdenoise to predict the noise applied for each node from G̃(i,j). This211

final layer of the message passing on G̃(i,j) takes as input the node-level embeddings ha and is the212

same message passing framework as outlined in Eq. (1). However, the output irreps are restricted to213

1× 1o + 1× 1e. To convert this to 3D coordinates, the 1× 1o and 1× 1e are summed element-wise214

to produce a vector in R3 and the prediction is clamped to the maximum noise applied which is 1 Å.215

4.2 Implementation and use cases216

Implementation. The model was trained with the denoising objective with a batch size of 64 on217

MOLINTERACTDB for 48 hours on 48GB RTX 8000 GPUs. The model hyper-parameters were set218

to ns = 32, nv = 16, L = 6, and lr = 1× 10−3.219

Probing latent representation space. We investigate whether the self-supervised training of the220

model resulted in a chemically meaningful latent space by characterizing the patch-level and node-221

level embedding spaces of MOLINTERACTDB. To determine the chemical labels of patches, we222

convert the molecular fragments within a patch into RDKit molecules and sourced labels from RDKit.223

Nodes are labeled based on their atomic elements and further categorized by examining the elements224

they were bonded to, as well as the bond types.225

Modeling protein-ligand binding. In this use case, we use the PDBbind v2020 dataset [59], which226

is a curated subset of the Protein DataBank (PDB) with the structure of bound ligands to proteins,227

and the associated binding affinity. The task is: given the protein-ligand structure, predict the binding228

affinity. We use the pocket-ligand substructures of the protein-ligand structure given by PDBbind,229

where amino acids in the pocket are all amino acids with any atom within 6 Å to the ligand. Given the230

pocket-ligand, we construct a graph with the same features as a patch where the two molecules in the231

patch are the pocket and the ligand, and intermolecular edges are defined as edges between the pocket232

and the ligand. Note that we do not restrict the size of the pocket-ligand patch to a radial cutoff.233

The pocket-ligand graph is passed through the pre-trained INTERACTNN which gives a patch-level234

embedding that is passed through a 3-layer MLP predictor to output a binding affinity prediction235

clamped to between 0 and 15. The INTERACTNN is fully fine-tuned on the pocket-ligand structures236

to minimize the root mean squared error between predicted and experimental binding affinity.237

5 Experiments238

5.1 Use case: Probing the latent space of chemical interactions239

Setup. Given the pre-trained INTERACTNN we embedded all the nodes and patches and visualized240

a 2D UMAP for each set of nodes and patches. For patches we label the types of intermolecular241

interactions at the interface between the two molecules in the patch. If any of the intermolecular242
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interactions are between two atoms in an aromatic system, the patch is labeled as aromatic. Otherwise,243

if any of the intermolecular interactions are between two atoms where one is a hydrogen bond donor244

and another is a hydrogen bond acceptor, the patch is labeled as hydrogen bonding. Other interactions,245

such as dipole-dipole, and Van der Waals interactions are not labeled. For node embeddings, we246

labelled each node with the atomic element. For the most common elements, carbon and hydrogen,247

we explored with further granularity by considering the elements the nodes are bonded to and bond248

types. To test the statistical significance of chemical clusters we use the Kolmogorov-Smirnov (KS)249

test to compare randomly sampled pairwise distances of d-dimensional embeddings compared to250

pairwise distances sampled within d-dimensional embeddings of the same chemical label.

Figure 3: 2D UMAP plots of INTERACTNN embeddings of (a) 300,000 randomly sampled patches
from MOLINTERACTDB. Each dot is a patch and they are labeled by the type of intermolecular
interactions present in the patch. (b) 300,000 randomly sampled nodes from patches from MOLIN-
TERACTDB. Each dot is a node and they are labeled by element of the node.

251

Results. The INTERACTNN learns an overall embedding space for patches as well as nodes in every252

patch and we find that embeddings are meaningfully localized based on various chemical properties.253

In Figure 3, we use a 2D UMAP to visualize the embedding of 300,000 randomly sampled patches254

from MOLINTERACTDB. Labeling of the UMAP with the chemical type of intermolecular interaction255

as aromatic groups interacting with aromatic groups, or hydrogen bond donor and hydrogen bond256

acceptor shows INTERACTNN learns a chemically enriched latent space in a self-supervised manner.257

We also see statistically significant differences with p-value < 0.001 for the pairwise distance of258

embeddings labeled as hydrogen or aromatic against all patch-level embeddings.259

Visualization of the embedding space of 300,000 sampled nodes of patches from MOLINTERACTDB260

in Figure 4 highlights that INTERACTNN has learnt differences in atomic environments in a self-261

supervised manner. In Figure 4a, we see in the embedding space that the INTERACTNN has262

differentiated between the elements. Isolating the most common elements, hydrogen, and carbon,263

pairwise distance of node embeddings within these elements are statistically significantly different264

to pairwise distances of all node embeddings (p-value < 0.001). We also show that the embeddings265

of carbon and hydrogen nodes can be stratified further by the bonding environment. Remarkably,266

without any prior knowledge of bond types, Figure 4e shows that INTERACTNN embeds the aromatic267

carbons in a separate region to the aliphatic carbons (single bonded carbons).268

5.2 Use case: Protein-ligand binding affinity prediction269

A sequence-based split of 60% from Atom3D [56] is used to train and test the model. We compare270

our protein-ligand binding affinity prediction with state-of-the-art models trained and tested under271

the same dataset split. Performance is determined by minimizing the root mean squared error272

between predicted and actual binding affinity, and by maximizing Pearson and Spearman correlation273

coefficients between the predicted and actual binding affinity. Results in Table 2 show that the274

performance of INTERACTNN is comparable to state-of-the-art models across all metrics. We also275

show that the absence of pre-training for INTERACTNN results in a decay in performance.276
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Figure 4: 2D UMAP plots of INTERACTNN embeddings of 300,000 randomly sampled nodes from
patches in MOLINTERACTDB. (a) Highlighting the hydrogen nodes against other elements. (b)
Each dot is a hydrogen node and they are labeled by the element that hydrogen is bonded to. (c)
Highlighting the carbon nodes against other elements. (d) Each dot is a carbon node and they are
labeled by the type of bond, and element that carbon is bonded to. (e) Pairwise distance of node
embeddings with a given label. All distributions are statistically significantly different from each
other (two-sided non-parametric KS test; p-value < 0.001).

Table 2: Results on protein-ligand binding affinity task with 60% sequence identity split. The top two
results are highlighted as 1st and 2nd. We report the benchmark metrics provided by ProNet [57].

Method RMSE ↓ Pearson ↑ Spearman ↑
Atom3D [56] 1.408 0.743 0.743
ProtTrans [5] 1.641 0.595 0.588

MaSIF [7] 1.426 0.709 0.701
IEConv [15] 1.473 0.667 0.675

Holoprot [50] 1.365 0.749 0.742
ProNet [57] 1.343 0.765 0.761

INTERACTNN 1.355 0.748 0.746
INTERACTNN no pre-training 1.415 0.719 0.717

6 Conclusion277

Intermolecular interactions are essential to chemical properties and diverse functions of biological278

systems. In this work, we introduce a MOLINTERACTDB dataset that leverages large molecular279

crystal databases to extract examples of intermolecular interactions between molecular fragments in280

the form of intermolecular patches. We explore the diversity of this dataset and train a INTERACTNN281

model on MOLINTERACTDB in a self-supervised manner. We show that the learned latent space282

of INTERACTNN is informative for capturing nuances between hydrogen bonding and aromatic283

interactions. The model can also distinguish between chemical elements. Finally, we fine-tune the284

model for protein-ligand binding affinity prediction and achieve results comparable to state-of-the-art285

models. In the future, we will adapt INTERACTNN for fine-tuning on other molecular interaction286

tasks, including protein-protein interactions, and explore the model’s ability for few-shot prompting287

and zero-shot learning.288
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