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Abstract

In data-scarce situations, causal discovery (CD) algorithms often produce unreli-
able causal relationships that may conflict with expert knowledge, especially in the
presence of latent confounders. Additionally, most CD methods lack adequate un-
certainty quantification, hindering users’ ability to evaluate and refine results. To ad-
dress these issues, we present a fully probabilistic CD method referred to as Ances-
tral GFlowNets (AGFNs). In a nutshell, AGFNs sample ancestral graphs (AGs) pro-
portionally to a score-based belief distribution, allowing users to assess the uncer-
tainty of the discovered causal relationships. On top of that, we design an elicitation
framework that enables the incorporation of human knowledge into the inference
process via importance sampling. Notably, our approach naturally accommodates
CD on data sets with latent confounding and potentially heterogeneous data types,
a setting that has received little attention from the literature. Finally, experimental
results with observational data show that our method effectively samples from dis-
tributions over AGs and significantly enhances inference quality with human aid.

1 Introduction
Causal discovery (CD) algorithms are essential to uncover complex cause-and-effect relationships
in observational studies. When latent confounders are present, causal discovery is facilitated by
encoding causal models as Ancestral Graphs (AGs). AGs effectively encode ancestral (causal)
relationships without explicitly representing unobserved variables [Richardson and Spirtes, 2002].
CD algorithms typically rely on observational data to infer the models most likely to have generated
it, known as the Markov Equivalence Class (MEC). However, their reliability significantly decreases
when data is scarce, as the inferred statistical relationships may not correspond to the true causal
model. This discrepancy constitutes a violation of the faithfulness assumption [Zhang and Spirtes,
2016], which is especially pronounced in the presence of latent confounding. For example, constraint-
based CD algorithms may rely on falsely identify independencies arising from insufficient statistical
power, resulting in erroneous edge orientations [Zhang and Spirtes’, 2008, Zhalama et al., 2017, Ng
et al., 2021]. Similarly, score-based algorithms may identify optimal structures for the observed data
but still misrepresent the true ground-truth MEC [Ogarrio et al., 2016].

This extended abstract presents a pragmatic approach to enhancing robustness, trustworthiness,
and transparency in CD by incorporating uncertainty quantification and mechanisms for iterative
improvement through human feedback. Further details of the method are available in the full paper.

Method. We propose a fully probabilistic CD framework called Ancestral GFlowNet (AGFN) that
generates a data-driven distribution over AGs and iteratively updates it by actively engaging with a
human expert. AGFN initially samples AGs based on a score function that measures goodness-of-fit
on observational data, thereby encapsulating the epistemic uncertainty around the inference process.
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Figure 1: Human-in-the-loop probabilistic CD. We fit an AGFN using data-driven scores that
quantify AGs fitness to the data. Then, refine it iteratively by i) querying (Q) experts on informative
variable pairs and ii) updating the belief with potentially noisy feedback. Histograms on edges show
marginals, with ground truth in green. The belief increasingly focuses on the true AG, 1→ 2↔ 3.

This approach ensures that the highest-scoring AGs are sampled more often while also allowing for
the sampling of AGs that are less compliant with the (potentially unfaithful) data. Then, we leverage
the AG samples to devise an active elicitation framework and a procedure for updating the AGFN
distribution based on feedback from external experts.

While most probabilistic CD relies on Markov Chain Monte Carlo (MCMC) methods [e.g., Silva
and Ghahramanir, 2009, Silva, 2013], AGFNs samples AGs using the formalism of Generative Flow
Networks [GFlowNets; Bengio et al., 2021a,b], which are generative models that learn to sample
from a distribution in proportion to a specified reward – in this case, defined by the score function.
Notably, the score function is a hyperparameter of AGFN, enabling users to choose different functions
without changing the overall method. Our human-in-the-loop elicitation framework allows AGFN to
probe the user regarding the existence and nature (confounding/ancestral) of a maximally informative
causal relation — subsequently updating our beliefs to incorporate the (potentially noisy) feedback in
the process. Furthermore, we use importance sampling to update our initial beliefs with the human
feedback, avoiding retraining GFlowNets repeatedly.

We conduct experiments using the BIC score for linear Gaussian causal models to validate our
approach. Specifically, we evaluate: i) our ability to accurately sample from score-based beliefs
over AGs; ii) how our samples compare to those from bootstrapped versions of state-of-the-art
(SOTA) CD methods; and iii) the effectiveness of our active knowledge elicitation framework with
simulated human input. Our results show that AGFN: i) accurately samples from our beliefs over
AGs; ii) consistently includes AGs with low structural error among its top-scored samples; and iii)
significantly enhances performance metrics (i.e., SHD and BIC) when incorporating human feedback.

In summary, our contributions are:
1. We introduce AGFN, the first score-based CD algorithm that integrates observational data

with potentially noisy human feedback while offering uncertainty quantification and handling
latent confounding.

2. We develop an active elicitation framework that enables AGFN to optimally interact with
experts by sequentially selecting the most informative questions and effectively incorporating
human feedback.

3. We devise an importance sampling scheme to update AGFN samples following expert
feedback, eliminating the need to retrain AGFN for sampling from the updated belief;

4. We evaluate our method on various CD tasks, achieving competitive results with state-of-
the-art (SOTA) methods while effectively refining quality through iterative human feedback.

2 Ancestral GFlowNets
AGFNs sample AGs using the formalism of Generative Flow Networks (GFlowNets). AGFN
generates a distribution over AGs proportionally to a reward function, defined by a score-based
measure such as the Bayesian Information Criterion (BIC) [Foygel and Drton, 2010].

Generative Flow Networks. GFlowNets sample structured objects by defining a trajectory of states
s ∈ S guided by transition probabilities πF (s

′|s). The forward transition probability, assigned to
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each terminating state (an AG in our case), is proportional to the reward R(s′). The goal is to sample
AGs proportionally to their reward. The flow-matching condition ensures that the flow entering any
state equals the flow leaving it, allowing AGFNs to generate valid AGs efficiently. For AGs, the
reward is based on a score function such as BIC:

R(G) = exp

(
µ− U(G)

σ

)
,

where µ and σ are constants ensuring numerical stability, and U(G) is the BIC score of graph G.

Score-Based Belief. AGFN samples graphs proportionally to the reward based on the chosen score
function, allowing flexibility in handling different data types. We use the extended BIC score for
linear Gaussian models:

U(G) = −2 logL(G) + |E| logN,

where L(G) is the likelihood and |E| is the number of edges in the graph.

3 Human-in-the-Loop Causal Discovery
AGFNs integrate human expertise through a human-in-the-loop (HITL) framework that refines the
belief distribution over AGs by querying experts about specific relationships between pairs of variables.
As probing these experts might be a potentially costly operation that may require human intervention,
we sensibly select a relationship r that maximally reduces our uncertainty over the structure of the
true causal diagram at each iteration of the HITL pipeline. More specifically, let pθ(G) be AGFN’s
sampling distribution and fK = (frk)

K
k=1 be the received feedbacks regarding the relations {rk}Kk=1.

In this context, we select a relation r that maximizes the cross-entropy-based acquisition function

aK+1(r) = −Efr∼q(·|fK) [H(q(G|fK ∪ {fr}), q(G|fK))]

in which q(G|fK∪{fr}) (see below) is the posterior belief and H is the cross-entropy. Intuitively, max-
imizing aK+1 corresponds to minimizing an upper bound of the entropy (uncertainty) of q(G|fK∪fr).
Knowledge elicitation. To allow for the incorporation of potentially noisy feedback into AGFN, we
define a probabilistic model over the expert’s responses to our queries. For this, we model a noisy
knowledge on a relation r = {Vi, Vj} between the variables Vi and Vj with i < j as a categorical
random variable ωr indexing the tuple (∅,→,←, L9999K), e.g., ωr = 2 indicates that Vi → Vj is the true
relationship. Then, the expert’s feedback fr on r is a noisy realization of ωr under the expert’s model,

ωr ∼ Cat(ρr), (1)

fr|ωr ∼ Cat
(
δωr
· π + (1− δωr

) ·
(
1− π

3

))
, (2)

p(ωrk |frk) = Cat
(
ρr

ηr
⊙

(
π · δfr +

(
1− π

3

)
· (1− δfr )

))
, (3)

in which ρr = (ρr,1, ρr,2, ρr,3, ρr,4) represents our prior beliefs about the relation, π ∈ [0, 1] reflects
the feedback’s reliability, and δk is the k-the line of the identity matrix in R4. Heuristically, fr
matches ωr with probability π and is otherwise uniformly distributed among the incorrect alternatives.

Human-driven inference refinement. Given a set fK of expert-provided feedbacks, we define a
posterior belief q(·|fK) over the AGs as the product between AGFN’s sampling distribution pθ and
the expert’s model p in Equation (3) [Hinton, 2002]. To approximate the expectation of a test function
h on the space of AGs (e.g., an indicator of a causal relationship) under q, we utilize an importance
sampling estimator having pθ as proposal. More specifically, we sample i.i.d. {Gt}Tt=1 ∼ pθ(·) and let

q(G|fK) ∝ pθ(G)
∏

1≤k≤K
p(ωrk |frk) and Eq[h(G)] ≈

T∑
t=1

q(G(t)|fK)

pθ(G(t))
h(G(t)), (4)

4 Experiments

Our experiments evaluate AGFN’s ability to model distributions over AGs, compare its performance
against SOTA CD algorithms, and demonstrate the effectiveness of incorporating human feedback.
AGFN performs comparably to CD baselines. We generate 10 datasets with 500 independent
samples from randomly parametrized linear Gaussian SCMs for the causal diagrams, including:
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Figure 2: Human-aided AGFN outperforms CD baselines after a single feedback across the con-
sidered datasets. The HITL pipeline results (blue) show the SHD averaged over 30 HITL simulations.

(i) chain4 (W → X → Y → Z), (ii) IV (W → X → Y ;X ← Z → Y ), and (iii) collfork
(X → Z ←W → Y ;X L9999K W ;Z L9999K Y ), each representing increasingly complex structures with
latent confounding. AGFN is compared against the baselines FCI [Spirtes et al., 2001], GFCI [Ogarrio
et al., 2016], ACI [Magliacane et al., 2016], DCD [Bhattacharya et al., 2021], and N-ADMG [Ashman
et al., 2023], comprising constraint-based, score-based, and hybrid approaches to CD. Table 1 shows
the top-scoring samples sampled by AGFN achieve a SHD lower than or comparable to the baselines’.

chain4 IV collfork
FCI 2.07± 2.00 3.83± 2.90 5.43± 1.87

GFCI 1.50± 1.63 3.63± 3.16 5.53± 2.11
ACI 5.77± 2.66 8.58± 2.16 8.02± 2.18
DCD 2.27± 1.46 4.80± 2.17 5.60± 2.13

N-ADMG 4.38± 0.81 6.08± 1.77 6.87± 0.93
AGFN 2.00± 1.55 3.50± 3.29 4.90± 2.70

Table 1: Structural Hamming Distance (SHD, ↓) comparison across methods, with lower SHD
indicating better performance. Notably, AGFN performs comparably or better than the baselines.

Inference quality drastically improves with human knowledge. To assess the improvements
enacted by the incorporation of an expert’s feedback into the inference process, Figure 2 exhibits the
expected SHD of AGFN’s top-scoring samples during each step of the iterative refinement procedure.
Strikingly, AGFN outperforms all baselines after issuing a single feedback from the expert. This
highlights the effectiveness of our framework for HITL CD. Also, note that AGFN is the only method
that can be seamlessly integrated into a HITL pipeline among the considered baselines.

Comparison with DAG-GFlowNet. To illustrate the importance of accounting for latent
confounding in CD problems, we compare AGFN against DAG-GFlowNets [Deleu et al., 2022],
which assumes causal sufficiency. As expected, Table 2 shows AGFN is more accurate than
DAG-GFlowNet when applied to latently confounded datasets. Obviously, however, we can easily
constraint the search space of AGFN to DAGs (instead of AGs) by making out the addition of
bidirected edges from its generative process if we are confident that latent confounding is not an issue.

DAG-GFlowNet AGFN
Causal diagram 1 ( A→ B L9999K C ← D) 3.80 1.67
Causal diagram 2 (X → A→ Y and A L9999K B L9999K Y ) 6.40 5.27
Causal diagram 3 (A L9999K B L9999K C L9999K D and A L9999K D) 8.22 7.87

Table 2: SHD (↓) comparison: AGFN vs DAG-GFlowNet under latent confounding.

5 Conclusion
We introduced AGFN, a novel and robust framework for probabilistic CD in the presence of latent
confounding that effectively incorporates potentially noisy human feedback through an optimal elic-
itation strategy. In short, AGFN samples AGs based on a score function defining a belief distribution
that encapsulates our epistemic uncertainty around the inference process. Albeit our experiments
were constrained to Foygel and Drton [2010]’s extended BIC score, this is merely a design choice that
does not restrain AGFN’s applicability. For discrete data, for instance, Drton and Richardson [2008]’s
score could be considered. Importantly, we empirically demonstrated that AGFN outperforms
baseline methods in terms of SHD and BIC after receiving a single feedback from an expert. Overall,
this work underlines the potential of human-driven probabilistic methods for CD problems.
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