
Adaptive Precision Training (AdaPT):
A dynamic quantized training approach for DNNs

Lorenz Kummer∗†‡ Kevin Sidak∗§ Tabea Reichmann∗¶ Wilfried Gansterer ∗‖

Abstract
Quantizing deep neural networks (DNNs) is an important
strategy for training or inference in time critical applica-
tions. State-of-the-art quantization approaches focus on
post-training quantization. While some work on quantization
during training exists, most approaches require refinement in
full precision (usually single precision) in the final training
phase, use a rather coarse quantization, that leads to a loss
in accuracy, or enforce a global bit-width across the entire
DNN. This leads to suboptimal assignments of bit-widths
to layers and, consequently, suboptimal resource usage. To
overcome such limitations, we introduce AdaPT, a new fixed-
point quantized sparsifying training strategy for deep neural
networks. AdaPT decides about precision switches between
training epochs based on an information theory motivated
heuristic. On a per-layer basis, AdaPT chooses the lowest
precision that causes no quantization-induced information
loss, while keeping the precision high enough such that future
learning steps do not suffer from vanishing gradients. The
benefits of this quantization are evaluated based on an ana-
lytical performance model. We illustrate an average 1.31×
(or 4.76× adjusted for iso-accuracy) speedup compared to
standard training in float32 at iso-accuracy, even achieving
an average accuracy increase of 0.74 percentage points for
AlexNet/ResNet-20 on CIFAR10/CIFAR100/EMNIST and
LeNet-5/MNIST. We demonstrate that these trained models
reach an average inference 2.28× speedup with a model size
reduction up to 51% of the corresponding unquantized model.

1 Introduction

As machine learning models become increasingly com-
plex, inference in time-critical applications or training
under resource constraints becomes challenging. Applica-
tions such as robotics, augmented reality, self-driving ve-
hicles, mobile applications and scientific research often re-
quire high number of trained models for hyperparameter
optimization. Accompanied by this, already some of the
most common DNN architectures, such as AlexNet [1]
or ResNet [2], suffer from over-parameterization and
overfitting [3, 4].

Possible solutions to the aforementioned problems
include pruning (see, for example, [5, 6]), or quantization.
Network pruning reduces a DNN’s model size (e.g. by

∗University of Vienna, Faculty of Computer Science,
Vienna, Austria

†University of Vienna, Doctoral School Computer Science,
Vienna, Austria

‡lorenz.kummer@univie.ac.at
§kevin.sidak@univie.ac.at
¶tabea.reichmann@univie.ac.at
‖wilfried.gansterer@univie.ac.at

sparsification of weights tensors and using a sparse
tensor format), and therefore also improves the runtime.
However, pruning methods do not typically exploit
the advantages of low-bitwidth arithmetic to reduce
computational resource consumption. We propose
an approach that combines pruning in the form of
sparsification with quantization to improve resource
efficiency while maintaining accuracy. Quantization
must be used with caution to avoid negative impact
on accuracy and convergence during training.

AdaPT, a new approach to quantization during
training, has been introduced to improve upon existing
methods. The approach utilizes a per-layer precision
switching mechanism based on the Kullback-Leibler
Divergence (KL) [7], and a novel memory efficient layer-
wise formulation of Gradient Diversity (GD) [8] to
dynamically adjust precision as needed. This addresses
the limitations of current quantization methods that
do not consider the impact on different layers and lack
dynamic precision control. After quantized training,
our approach does not need a refinement phase in
full precision. That is, AdaPT does not dequantize
the model after quantized training for additional full-
precision refinement epochs in contrast to, e.g., [9].
Instead, it produces an already fixed-point quantized
network to be directly deployed on high-performance
application-specific integrated circuits (ASICs) or field-
programmable gate array (FPGA) hardware.

1.1 Related Work For exploring the accuracy degra-
dation induced by quantizations of weights, activation
functions and gradients, [10] introduced QPyTorch, ca-
pable of simulating the most common quantizations for
training and inference tasks on a float32 basis. Since
quantization is only simulated in QPyTorch, no runtime
speedup can be achieved on this basis.

Quantized Inference Several approaches have
tried to minimize inference accuracy degradation induced
by quantizing weights or activation functions while lever-
aging associated performance increases. [11] and [12] in-
corporate simulated quantization into model training and
train the model itself to compensate the introduced er-
rors. A similar approach is taken by [13], which emulates
a non-uniform quantizer to inject noise at training time

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited559

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

to obtain a model suitable for quantized inference. [14]’s
approach learns optimal quantization schemes through
jointly training DNNs and associated quantizers. [15]
use a reinforcement learning agent to learn the final
classification accuracy w.r.t. the bit-width of each of
the DNNs’ layers to find optimal layer to bit-width as-
signments for inference. Dedicated quantization friendly
operations are used by [16]. A different approach is
taken by [17] which uses variational dropout training-
with a structured sparsity inducing prior to formulate
post-training quantization as the variational inference
problem looking for the posterior optimizing the KL. [18]
introduce an entropy coding-based regularizer minimiz-
ing the quantized parameters entropy in gradient-based
learning and pairs it with a separate pruning scheme [19]
to reach a high degree of model compression after train-
ing. Using reinforcement learning and the hardware
accelerator’s feedback, [20] automatically determines the
quantization policy optimal for inference on a specific
target hardware.

Quantization in machine learning frameworks like
PyTorch and Tensorflow is typically performed via post-
training quantization or quantization-aware training
(QAT, which only simulates quantization). However,
these methods offer no efficiency gain during training
and require additional computational overhead.

Quantized Training (Distributed) For dis-
tributed training on multi-node environments, [21] incor-
porates a family of gradient compression schemes aimed
at reducing inter-node communication occurring during
stochastic gradient descent’s (SGD) gradient updates.
Conceptionally similar, [22] also seeks to reduce com-
munications overhead in distributed training through
quantization.

Quantized Training (Local) Very low bit width
single-node training (binary, ternary or similarly quan-
tized weights and/or activations), usually in combination
with straight-through estimator (STE) [23], has been
shown to yield non-trivial reductions in runtime and
model size as well, but often either at comparably high
costs to model accuracy, decreased convergence speed or
not fully quantizing the network [24, 25, 26, 27, 28, 29].
Its most capable representative [30], which combines
tensor decomposition and full low bit-width quantiza-
tion during training to reduce runtime and memory
requirements significantly, still suffers up to 2.5 per-
centage points of accuracy degradation compared to its
respective baseline. A low bit-width integer quantized
(re-)training approach reporting accuracy drops of 1 per-
centage point or less compared to a float32 baseline was
introduced by [31], but it requires networks pre-trained
in full precision as starting points and its explicitly stated
goal is reducing computational cost and model size dur-
ing inference. Documenting at energy savings but not

speedups, a simple but effective integer quantized train-
ing approach assigning each layer an individual bit-width
was presented by [32]. Similarly, [33, 34] quantize train-
ing for the purpose of reducing energy consumption
during training. For speeding up training on FPGAs
or ASICs via block-floating point quantization, [9] intro-
duced a dynamic training quantization scheme (Multi
Precision Policy Enforced Training , MuPPET). The al-
gorithm stores two copies of the network’s weights: a
float32 master copy of the weights that is updated dur-
ing the weight update step and a block-floating point
quantized copy used for forward passes and gradient
computation. MuPPET uses a global bit-width that
starts at 8 bit and increases at the end of an epoch by a
certain step size if an empirically determined threshold
is violated more than a certain number of times by a
GD- based metric whereby both the step size and the
available bit-widths are empirically determined before
the actual training of the DNN. Speedups claimed by
MuPPET are estimated based on a performance model
simulating fixed-point arithmetic on GPUs which sup-
port floating and integer arithmetic. We chose MuPPET
as baseline to compare AdaPT’s training performance
against because of the examined related work for the
quantized training task, MuPPET comes closest to the
goal of iso-accuracy. By iso-accuracy, we refer to the
concept that at least the same accuracy can be reached
with the quantized network compared to the unquantized
network (i.e. no accuracy is lost).

Open Questions Existing quantized training and
inference solutions leave room for improvements in sev-
eral aspects. Approaches proposed in [11, 12, 14, 15, 13,
18, 20] and [17] produce networks where quantization
during inference leads to only small accuracy degra-
dation relative to some baselines. Unfortunately, the
baselines are not comparable and it is unclear how well
they are optimized. Moreover, these approaches require
computationally expensive float32 training and the al-
gorithms themselves incur a certain overhead as well.
The training method in [21] only quantizes gradients
and focuses on reducing communication overhead in
multi-node environments, a goal shared with [22]. Bi-
nary, ternary or similarly quantized training has been
shown to commonly lead to reduced accuracy, reduced
convergence speed or only quantizing weights and not
activations [24, 25, 26, 27, 28, 29]. Even the most ca-
pable representative introduced in [30] does not achieve
iso-accuracy. Assigning different bit-widths to differ-
ent layers at training time as discussed in [32] can lead
to limited loss in accuracy. While the authors do not
claim any speedup during training, they show that their
approach reduces energy consumption, like in [33, 34].

MuPPET [9] requires at least N epochs for N
quantization levels because the algorithm needs to go

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited560

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

through all precision levels. Potential advantages from
having different precision levels at different layers of the
network are not exploited. No metric is used to measure
the amount of information lost by applying a certain
quantization to the weights. Precision levels can only
increase during training and never decrease. MuPPET
outputs a float32 network such that inference has to be
done in expensive full precision and no measures are
taken to mitigate GD’s memory overhead.

1.2 Problem Definition Based on this assessment of
the state-of-the-art, we address the problems of efficient
heuristics for accelerating (in terms of computational
cost) single node training through layer-wise quantiza-
tion without sacrificing accuracy in the sense of the frac-
tion of predictions the model indicated correctly. That
is, the same or better accuracy than the float32 baseline
model shall be achieved by the quantized model (i.e iso-
accuracy). This is to be achieved through assigning an
individual quantization dynamically to each layer during
training and without relying on expensive full precision
refinement after quantized training. Per-layer bit-width
assignment is motivated by the common observation
that different layers of a network extract different levels
of features, e.g., [35, 36], which suggests that different
layers may have different precision requirements, which
can be addressed by per-layer bit-width assignment.

1.3 Contributions AdaPT is a state-of-the-art solu-
tion for quantized DNN training using an information-
theoretical intra-epoch precision switching mechanism
for dynamic precision adjustment on a per-layer basis,
and introducing a novel memory efficient layer-wise for-
mulation of GD. It quantizes weights and activations to
the lowest bit-width without information loss while induc-
ing sparsity, and reaches or surpasses iso-accuracy while
reducing computational cost and model size. AdaPT
demonstrates advantages over float32-baseline and MuP-
PET by training representative model-dataset combina-
tions and developing an analytical model for computa-
tional cost, and also carries over its advantages to the
inference phase unlike MuPPET which outputs a dense
float32 model.

To the best of our knowledge, currently no work
exists on accelerating training through dynamically
determined fixed-point quantization on a per-layer level
while achieving iso-accuracy. Existing work either
focusses on other types of quantization or on different
scenarios (e.g. inference, distributed computing, energy
savings) or does not achieve iso-accuracy in quantized
training. This underlines our work’s relevancy as it shows
that information theory-based heuristics can select the
optimal fixed-point precision for each layer dynamically
during training while achieving iso-accuracy.

2 Background

Quantization reduces computational costs and memory
consumption by performing computation at reduced
numerical precision or representation. Fixed-point
or block-floating-point representations are commonly
used in high-performance ASICs or FPGAs, while
floating-point and integer representations are available
on consumer hardware. However, quantized execution
may introduce errors through large machine epsilon
ϵmach or small representable range of the quantized
representation.

Fixed-Point Quantization Fixed-point numbers
have a fixed number of decimal digits assigned, and
hence every computation must be framed s.t. the results
lies within the given boundaries of the representation.A
signed fixed-point numbers of bit-width BW = i+ s+ 1
can be represented by a 3-tuple ⟨s, i, p⟩ where s denotes
whether the number is signed, i denotes the number of
integer bits and p denotes the number of fractional bits.

Figure 1: of Example of a possible fixed-point represen-
tation. Sign (S), Exponent (E), Mantissa (M) bits.

3 Adaptive Precision Training

3.1 Precision Levels AdaPT uses fixed-point quan-
tization (defined in Section 2), as it provides superior
control over numerical precision and is supported by high-
performance ASICs, our target platform. This method
allows for optimal bit-width and fractional length which
are local properties of each layer, as different layers con-
tain different amounts of information during different
points of time in training. Floating-point and extreme
forms of integer quantization such as binarization and
ternarization were rejected as they are not appropriate
for our goal of iso-accuracy. However, the AdaPT con-
cept can be extended to other representations. AdaPT
employs stochastic rounding, which in combination with
a fixed-point representation has been shown to consis-
tently outperform nearest-rounding by [37], for quan-
tizing float32 numbers. Given that AdaPT is agnostic
towards whether a number is signed or not, we represent
the precision level of each l ∈ L simply as

〈
BW l, FLl

〉
whereby the fractional length FLl denotes the number
of fractional bits and BW l denotes the total number of
bits. For a random number P ∈ [0, 1], x is stochastically
rounded by

SR(x) =

{
⌊x⌋ , if P ≥ x−⌊x⌋

ϵmach

⌊x⌋+ 1, if P < x−⌊x⌋
ϵmach

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited561

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

3.2 AdaPT-SGD (ASGD) Although AdaPT can
algorithmically be combined with any iterative gradient-
based optimizer (e.g., Adam), we chose to implement
AdaPT with Stochastic Gradient Descent (SGD) because
it generalizes better than adaptive gradient algorithms
in computer vision tasks as shown by [38] for float32
training. Our preliminary observations suggest this
holds for quantized SGD as well, however an in-depth
investigation of the ability of different optimizers to
generalize well in a quanzized setting is considered
beyond the scope of this work. The integration of AdaPT
into SGDs training loop is accomplished by executing
AdaPTs precision seeking heuristic described in Section 3
after gradient computation and then, after the weights
update step, applying the quantization found by AdaPT
to each layer, see Figure 2. Similar to MuPPET, ASGD

Figure 2: Schematic illustration of AdaPT’s integration
into SGD training, float32 (FL32), fixed point (FP)

stores two copies of the network’s weights: a float32
master copy of the weights that is updated in the weights
update step and a fixed-point point quantized copy
used for forward passes and gradient computation. The
activations of a layer are quantized to the same level
the layers’ weights, gradients are dequantized before the
update of the float32 mastercopy.

3.3 Precision Switching Mechanism Precision
switching in quantized DNN training is the task of care-
fully balancing the need to keep precision as low as
possible to improve runtime and model size, yet still
maintain enough precision for the network to keep learn-
ing. In AdaPT’s precision switching mechanism, we
have encoded these opposing goals in two operations,
the Push-Down Operation (PD) and the Push-Up Oper-
ation (PU), which separatly track heuristics associated
with each of these two goals. The PD and PU operations
are executed for each layer l ∈ L indiviudally every lbl

batches, which allows fine-granular control of layer-wise
precision levels as well as the frequency of the precision
switches, reducing the overhead of the associated heuris-
tics compared to execution at every batch. The variable
lbl iteself, which subsequently will also be referred to as
lookback, is dynamically inferred at runtime based on
each layer l’s GD metric (details see below).

PD Operation Determining the amount of infor-
mation lost if the precision of the fixed-point repre-
sentation of a layer’s weight tensor is lowered, can be
heuristically accomplished by interpreting the precision
switch as a change of encoding. Assume a weights tensor

W l ∼ Ql of layer l ∈ L with its quantized counterpart

Ŵ
l
∼ P l, where P l, Ql are the respective distributions.

Then the continuous Kullback-Leibler-Divergence intro-
duced by [7] represents the average number of bits lost
through changing the encoding of l from Ql to P l, with
p and q denoting probabilities, and w the elements of
the weights tensor:

D(P l∥Ql) =

∫ ∞

−∞
pl(w) · log p

l(w)

ql(w)
dw

Although KL is not a metric, KL is very common in
machine learning because it is easily optimizable, related
to maximum likelihood estimation, and is able to sample
gradients in an unbiased way, unlike e.g. the Wasserstein
metric. Using discretization via binning, we obtain P l

andQl at resolution rl through the empirical distribution
function

(3.1) F̂rl(w) =
1

rl + 1

rl∑
i=1

1W l
i≤w

where 1W l
i≤w denotes the indicator function. P l and

Ql can then be used in the discrete Kullback-Leibler-
Divergence (3.2).

(3.2) KL(P l∥Ql) =
∑

w∈W l

P l(w) · logP
l(w)

Ql(w)

Using a bisection approach, AdaPT efficiently finds
the smallest quantization

〈
BW l

min, FLl
min

〉
of W l s.t.

KL(P l∥Ql) = 0 ∀l ∈ L. By first applying the empirical
distribution function and discretizing via binning before
computing the KL, the value 0 can be achieved.

PU Operation However, determining the precision
of the fixed-point representation of W l at batch j, s.t.
the information lost through quantization is minimal, but
there is still sufficient precision for subsequent batches
to keep learning, is a non-trivial task. Solely quantizing
W l at the beginning of the training to a low precision
fixed-point representation (e.g.

〈
BW l, FLl

〉
= ⟨8, 4⟩)

would result in the network failing to learn because at
such low precision levels, gradients would vanish very
early in the backwards pass. Hence, AdaPT tracks for
each layer a novel layer-wise GD heuristic over the last
lbl batches to determine how much precision is required
for the network to keep learning:

(3.3) ∆s(W l)j =

∑j
k=j−lbl∥∇fk(W

l)∥2
∥
∑j

k=j−lbl ∇fk(W
l)∥2

If gradients are normalized as in (3.4), which is a common
technique for coping with the problem of vanishing and

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited562

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

exploding gradients [39, p. 142], GD as defined in (3.3)
becomes (3.5) and can be computed without having to
allocate memory for collecting the last lbl gradients of l.
Only l’s accumulated gradient has to be stored.

(3.4) ∇f(W l) =
∇f(W l)

∥∇f(W l)∥2

(3.5) ∆s(W l)j =
lbl

∥
∑j

k=j−lbl ∇fk(W
l)∥2

This reduces the memory complexity of computing l’s
GD from O(lbl ·ml) to O(ml) where ml is the memory
required to store l’s accumulated gradients. This is equal
to the storage requirements of l’s trainable weights. We
apply this technique to compute GD without the memory
overhead incurred by originally proposed GD used in
MuPPET.

Next, two suggestions for an increase in precision
are computed, sl1 = max(⌈ 1

log2∆s(W l
)j−1

⌉, 1) and sl2 =

max(min(32 · log2∆s(W l)j − 1, 32) − FLl
min, 1). We

chose the two sln as functions which we empirically
evaluated to be suitable bounds, other functions of
∆s(W l)j providing suitable bounds might exist as well.
The final suggestion is computed dependent on a global
strategy st via

(3.6) sl =

min(sl1, s

l
2) if st = ’min’

⌈0.5 · (sl1 + sl2)⌉ if st = ’mean’

max(sl1, s
l
2) if st = ’max’

The new fixed-point quantization of layer l is then
obtained by FLl = (min(FLl

min + sl, 32), BW l =
min(max(BW l

min, FLl
min) + 1, 32)).

Strategy, Resolution and Lookback To let
AdaPT adjust to the important feedback provided by
the loss function regarding the progress of learning, we
introduce the concept of strategy, which controls how
our quantization heuristic finds the optimal bit widths
and fractional lengths for each layer. For adapting the
strategy st mentioned in (3.6), we employ a simple loss-
based heuristic. First we compute the average lookback

over all layers lbavg = |L|−1
∑|L|

l=0 lb
l and average loss

Lavg = |L|−1
∑lbavg

i=0 Li over the last lbavg batches. Then
the strategy is adapted:

st =

max if |Lavg|≤ |Li| and st = ’mean’

mean if |Lavg|≤ |Li| and st = ’min’

min if |Lavg|> |Lj |

Because the number of gradients used by GD for
each layer affects the result of the GD heuristic (3.5),

we use the above-mentioned lookback lbl bounded by
hyperparameters lblwr ≤ lbl ≤ lbupr which is estimated
at runtime. First, lbnew is computed:

lblnew = min(max(⌈ lbupr

∆s(W l)j
⌉, lblwr), lbupr)

Then, to prevent jitter, a simple momentum is applied
to obtain the updated lbl = ⌈lblnew · γ + (1 − γ) · lbl⌉
with γ ∈ [0, 1]. Similarly, the number of bins used in the
discretization step (3.1) affects the result of the discrete
KL (3.2). We control the number of bins via a parameter
referred to as resolution rl, which is derived at runtime
and bounded by hyperparameters rlwr ≤ rl ≤ rupr.

rl =

{
min(max(rl + 1, rlwr), rupr) if lbl = lbupr

min(max(rl − 1, rlwr), rupr) if lbl = lblwr

Dealing with Fixed-Points Limited Range
As outlined in Section 2, fixed-point computations
must be framed s.t. results fit within the given
boundaries. We approach this by adding a number
of buffer bits buff to every layer’s bit-width, i.e. at
the end of PU, FLl = (min(FLl

min, 32− buff), BW l =
max(min(FLl

min+buff, 32), BW l
min). Additionally, we

normalize gradients ((3.4)) to limit weight growth and
reduce chances of weights becoming unrepresentable in
the given precision after an update step.

Inducing Sparsity In addition to the AdaPT
precision switching mechanism, which as a by-product of
quantization already induces a certain degree of sparsity
through the rounding of near-zero weights [40] (see
Figure 3), we further leverage sparsity by using an L1
sparsifying regularizer (see e.g. [41]) to obtain sparse
and particularly quantization-friendly weight tensors,
combined linearly with L2 regularization for better
accuracy similarly as proposed by [42].

Figure 3: Schematic illustration how sparsity can be
increased through regularization and quantization [40]

3.4 ASGD Execution Details When ASGD is
started on an untrained float32 DNN, it initializes the
DNNs layers (denoted as L̂) weights with truncated
normal variance scaling [43]. Next the quantization

mapping Q is initialized, which assigns each l ∈ L̂ a
tuple

〈
BW l, FLl

〉
, a lookback lbl and a resolution rl.

Then a float32 master copy L of L̂ is created and L̂ is

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited563

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

quantized using Q. During training, for each quantized
forward pass using L̂ on batch i, quantized gradients
Ĝ and loss L are computed. The precision switching
mechanism is then called and after adapting the strategy,
it iterates over l ∈ L: if i mod. lbl = 0, first rl and
lbl are adapted and then PD and PU are executed
on layer l to update

〈
BW l, FLl

〉
∈ Q. When PD is

called on l, it decreases
〈
BW l, FLl

〉
using bisection

until KL indicates a more coarse quantization would
cause information loss at resolution rl. After computing
the most coarse quantization not causing information
loss in l, PU is called on l to increase

〈
BW l, FLl

〉
to the

point where the network is expected to keep learning,
based on the GD of the last lbl batches. After PU, the
precision switching mechanism returns an updated Q to
the training loop, and a regular SGD weights update is
applied to the float32 master copy L, using de-quantized
copies of gradients Ĝ. The now updated weights L are
quantized using the updated Q and written back to L̂
to be used in the next forward pass.

4 Experimental Evaluation

Our approach is not limited to a specific architectural
type or task, however, due to the numerous contemporary
architecture-dataset combinations [44, 45], an exhaustive
evaluation is unfeasible within a reasonable timeframe.
Therefore, we selected a subset of experiments that align
with our main competitor MuPPET’s focus on image
recognition tasks with convolutional neural networks,
particularly ResNet and AlexNet, and popularity in the
domain. [46, p. 62]

4.1 Setup For experimental evaluation of ASGD, we
trained AlexNet and ResNet20 on the CIFAR-10/100
datasets, with reduce on plateau learning rate (ROP)
scheduling, which will reduce the learning rate by a
given factor if loss has not decreased for a given number
of epochs for 100 epochs using 512 batch size. We
further trained AlexNet and ResNet20 on EMNIST
as well as LeNet-5 on MNIST for 15 epochs using a
fixed learning rate schedule and 256 batch size. For all
experiments, we used cross-entropy as loss function. Due
to unavailability of fixed-point hardware, experiments
were conducted on a DGX-1 GPU cluster, and we used
QPyTorch to simulate fixed point arithmetic and our own
performance model to estimate speed-ups, model size
reductions and memory consumption. Our performance
model, while assuming native hardware utilisation of
the used precision levels, describes the entire training
process (including e.g. precision switching heuristic
overheads). The performance model computes the
number of operations (MAdds) per layer, weighs them
with the layer’s word length and percentage of non-
zero elements at a specific iteration during training to

simulate quantization and a sparse tensor format, and
aggregates them over all iterations to obtain the total
computational cost of all forward passes and gradient
computations and weight updates in the backward
passes. Additionally, the performance model estimates
ASGD’s overhead for each layers PU and PD operations.
This model is used to estimate both AdaPT’s as
well as MuPPET’s performance, which ensures fair
comparison. It also substitutes for lack of information
about MuPPET’s original performance model, which was
not published by its authors. For reproducability, our
performance model is included in our code repository1.

Hyperparameters All layers l ∈ L were quantized
with

〈
BW l, FLl

〉
= ⟨8, 4⟩ at the beginning of ASGD

training. Other hyperparameters specific to ASGD
were set to rlwr = 50, rupr = 150, lblwr = 25,
lbupr = 100, lookback momentum γ = 0.33 for all
experiments, buffer bits was set to buff = 4 for
training AlexNet on CIFAR10 and buff = 8 for training
ResNet and AlexNet on CIFAR100. Hyperparameters
unspecific to ASGD (lr, L1decay, L2decay, ROPpatience,
ROPthreshold, accumulation steps) were selected using
grid search and 10-fold cross-validation, and we refer to
our code repository1for the exact configuration files of
each experiment.

4.2 Results

4.2.1 Training As can be seen in Table 1, ASGD
is capable of quantized training not only to an accu-
racy comparable to float32 training but even reaches
or surpasses iso-accuracy in all examined cases, which
is not true for MuPPET. Our experiments furthermore
illustrate ASGD delivers this performance independently
of the underlying DNN architecture or the dataset used.
We observe individual layers have different precision
preferences depending on progression of the training
(Figures 4 and 5), an effect that is particularly pro-
nounced in AlexNet. For ResNet20 bit-width interest-
ingly increased notably in the middle of training and
later decreased, which we conjecture is attributable to
regularization, see Section 3.2, leading to a reduction
of irrelevant weights as training progresses. As illus-
trated in Table 2, ASGD achieves speedups comparable
with state-of-the-art solutions on our own baseline (SU1)
and outperforms MuPPET on MuPPETs baseline (SU3)
in every scenario and on average by a factor of 4.26.
Speedup adjusted for iso-accuracy SU2 assumes training
terminates once iso-accuracy is reached, which displays
a particularly pronounced effect with (E)MNIST. Unfor-
tunately, MuPPETs code base could not be executed, so
we were unable to apply MuPPET to the more efficient

1https://github.com/lorenz0890/AdaPT

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited564

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/lorenz0890/AdaPT

Table 1: Top-1 accuracies, ASGD (A) vs MuPPET (M),
CIFAR10 (C10), CIFAR100 (C100) and (E)MNIST.∆
indicates difference to the respective 32-bit floating-point
training (FL32 baseline)

Data Network Top-1 ∆ Iso-accuracy

C10 AlexNetA 75.0 1.9
√

AlexNetM 74.5 -1.0 ×
ResNetA 90.0 0.5

√

ResNetM 90.9 0.8
√

C100 AlexNetA 42.4 1.1
√

AlexNetM 38.2 -1.0 ×
ResNetA 65.2 0.9

√

ResNetM 65.8 1.2
√

EMNIST AlexNetA 83.9 1.2
√

ResNetA 89.9 0.1
√

MNIST LeNet-5A 98.3 0.0
√

Figure 4: Bit-widths (Wordlength) of ASGD optimized
AlexNet on CIFAR100, 100 epochs, Convolutional (C)
and Linear (L) layers

ASGD baseline and were limited to comparing against
results provided by the original authors. Hence, we
used our performance model for simulating MuPPET’s
performance based on the precision switches stated in
the MuPPET paper. An overview of the reduction of
computational costs through ASGD relative to a float32
baseline is provided by Figure 6. The curves’ oscilations
in Figure 6 are caused by the dependency of computa-
tional costs on changes of the networks bit-widths, cf.
Figures 5 and 4. As can be seen in Table 3, ASGD in-
duces most sparsity in AlexNet, with a 44% final model
sparsity and an average intra-training sparsity of 35%
for training on CIFAR100. In ResNet, we observe that
ASGD introduces up to 7% sparsity in the final model
and 4% intra-training sparsity. A side effect of ASGD is
the increased intra-training memory consumption (Ta-
ble 2)caused by ASGD maintaining a float32 master-copy
of the weights, as wells as the tracking of the accumulated

Figure 5: Bit-widths (Wordlength) of ASGD optimized
ResNet on CIFAR100, 100 epochs, Convolutional (C)
and Linear (L) layers

Table 2: Memory Footprint (MEM), Speedup (SU,
including overhead), ASGD (A) vs MuPPET (M) on
respective float32 CIFAR10 (C10), CIFAR100 (C100),
(E)MNIST training baseline. SU1: FL32 baseline,
our performance model, SU2: FL32 baseline, our
performance model adjusted for iso-accuracy, SU3:
MuPPETs FL32 baseline, our performance model (note
a ”?” indicates information missing in literature)

Data Network MEM SU1 SU2 SU3

C10 AlexNetA 1.94 1.42 2.37 6.42
AlexNetM 3.64 ? ? 1.20
ResNetA 2.26 1.20 1.49 4.01
ResNetM 3.44 ? ? 1.25

C100 AlexNetA 1.82 1.32 1.57 5.23
ResNetA 1.66 1.26 1.62 3.36

EMNIST AlexNetA 1.68 1.49 8.24 ?
ResNetA 2.20 1.22 9.79 ?

MNIST LeNet-5A 1.94 1.42 8.22 ?

Table 3: Fraction of zero weights (sparsity) induced by
ASGD training, final model and intra-training average,
CIFAR10 (C10) and CIFAR100 (C100), (E)MNIST

Data Network Final Model Average

C10 AlexNet 0.26 0.27
ResNet 0.07 0.04

C100 AlexNet 0.44 0.35
ResNet 0.07 0.03

EMNIST AlexNet 0.21 0.22
ResNet 0.06 0.05

MNIST LeNet-5 0.08 0.08

gradients GD. However, this effect is only present during
training as master-copies are discarded for inference and
ASGD’s memory footprint is lower than MuPPET’s.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited565

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Figure 6: ASGD computational cost relative to float32
SGD according to our performance model on CIFAR
datsets

Table 4: Inference with ASGD trained models, Final
Model Size (SZ), Speedup (SU), CIFAR10 (C10) and
CIFAR100 (C100), (E)MNIST

Data Network SZ SU

C10 AlexNet 0.54 3.56
ResNet 0.60 1.63

C100 AlexNet 0.36 2.60
ResNet 0.57 1.52

EMNIST AlexNet 0.35 2.98
ResNet 0.62 1.46

MNIST LeNet-5 0.52 2.18

4.2.2 Inference ASGD trained networks are fully
quantized and sparsified. This advantage carries over
to the inference phase. Table 4 shows that inference
speed ups for ASGD trained networks range from 1.46
to 3.56. Inference speedup is higher than training,
as it eliminates the costly backwards pass and ASGD
overhead. While ASGD’s inference acceleration may
not be as competitive as low-precision approaches, it
provides a significant advantage over MuPPET which
does not offer post-training benefits in terms of speedup
or memory consumption as the resulting network is
float32.

5 Conclusion

We introduce AdaPT, a novel quantization method
for DNN training acceleration. It employs a fixed-
point representation for precision switching, and can be
integrated with iterative gradient-based training. AdaPT
balances efficient fixed-point operations for forward
passes and gradient computation with high-precision
float32 weight updates, to achieve optimal training speed
while maintaining accuracy.

AdaPT outperforms MuPPET in mixed-precision
training, but its inference acceleration is not competitive
with state-of-the-art low-precision approaches. AdaPT
still offers an advantage over MuPPET in inference
acceleration and the inference speed ups are reported for
completeness. Trade-offs between training and inference
acceleration, memory consumption, and model accuracy
are of interest, but considered as future work.

References

[1] A. Krizhevsky, I. Sutskever, and G.. E. Hinton.
Imagenet classification with deep convolutional
neural networks. NIPS, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. CVPR, 2016.

[3] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence
theory for deep learning via over-parameterization.
ICML, 2019.

[4] M. Li, M. Soltanolkotabi, and S. Oymak. Gradient
descent with early stopping is provably robust to
label noise for overparameterized neural networks.
AISTATS, 2020.

[5] M. Lis, M. Golub, and G. Lemieux. Full deep neural
network training on a pruned weight budget. MLSys,
2019.

[6] R. Stewart, A. Nowlan, P. Bacchus, Q. Ducasse,
and E. Komendantskaya. Optimising hardware
accelerated neural networks with quantisation and
a knowledge distillation evolutionary algorithm.
Electronics, 2021.

[7] S. Kullback and R. A. Leibler. On information and
sufficiency. The annals of mathematical statistics,
1951.

[8] D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos,
K. Ramchandran, and P. Bartlett. Gradient
diversity: a key ingredient for scalable distributed
learning. AISTATS, 2018.

[9] A. Rajagopal, D. Vink, S. Venieris, and C. S.
Bouganis. Multi-precision policy enforced training
(MuPPET) : A precision-switching strategy for
quantised fixed-point training of CNNs. ICML,
2020.

[10] T. Zhang, Z. Lin, G. Yang, and C. De Sa. QPyTorch:
A low-precision arithmetic simulation framework.
NIPS, 2019.

[11] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko. Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference. CVPR, 2018.

[12] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng,
J. Huang, and X. S. Hua. Quantization networks.
CVPR, 2019.

[13] C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii,
R. Giryes, A. M. Bronstein, and A. Mendelson.
UNIQ: Uniform noise injection for non-uniform
quantization of neural networks. ACM Trans.
Comput. Syst., 2021.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited566

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

[14] D. Zhang, J. Yang, D. Ye, and G. Hua. LQ-
Nets: Learned quantization for highly accurate and
compact deep neural networks. ECCV, 2018.

[15] A. T. Elthakeb, P. Pilligundla, F. Mireshghallah,
A. Yazdanbakhsh, and H. Esmaeilzadeh. ReLeQ :
A reinforcement learning approach for automatic
deep quantization of neural networks. IEEE Micro,
2020.

[16] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen,
and M. Aleksic. A quantization-friendly separable
convolution for mobilenets. EMC2, 2018.

[17] J. Achterhold, J .M. Köhler, A. Schmeink, and
T. Genewein. Variational network quantization.
ICLR, 2018.

[18] E. Tartaglione, S. Lathuilière, A. Fiandrotti,
M. Cagnazzo, and M. Grangetto. HEMP: High-
order entropy minimization for neural network com-
pression. Neurocomputing, 2021.

[19] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, and
M. Grangetto. Loss-based sensitivity regularization:
towards deep sparse neural networks. CoRR,
abs/2011.09905, 2020.

[20] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han.
HAQ: Hardware-aware automated quantization
with mixed precision. CVPR, 2019.

[21] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and
M. Vojnovic. QSGD: Communication-efficient sgd
via gradient quantization and encoding. NIPS, 2017.

[22] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,
and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. NIPS,
2017.

[23] Y. Bengio, N. Léonard, and A. C. Courville. Esti-
mating or propagating gradients through stochas-
tic neurons for conditional computation. CoRR,
abs/1308.3432, 2013.

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks. NIPS,
2016.

[25] I. Hubara, M. Courbariaux, D. Soudry, R. El-
Yaniv, and Y. Bengio. Quantized neural networks:
Training neural networks with low precision weights
and activations. Journal of Machine Learning
Research, 2017.

[26] F. Li, B. Zhang, and B. Liu. Ternary weight
networks. CoRR, abs/1605.04711, 2016.

[27] P. Yin, S. Zhang, Y. Qi, and J. Xin. Quantiza-
tion and training of low bit-width convolutional
neural networks for object detection. Journal of
Computational Mathematics, 2018.

[28] L. Hou and J. T. Kwok. Loss-aware weight
quantization of deep networks. ICLR, 2018.

[29] Tianshu C., Qin L., Jie Y., and Xiaolin H. Mixed-
precision quantized neural networks with progres-
sively decreasing bitwidth. Pattern Recognition,
2021.

[30] Donghyun L., Dingheng W., Yukuan Y., Lei D.,
Guangshe Z., and Guoqi L. QTTNet: Quantized
tensor train neural networks for 3d object and video
recognition. Neural Networks, 2021.

[31] P. Peng, Y. Mingyu, X. Weisheng, and L. Jiaxin.
Fully integer-based quantization for mobile convo-
lutional neural network inference. Neurocomputing,
2021.

[32] T. Huang, L. Tao, and J. T. Zhou. Adaptive
precision training for resource constrained devices.
ICDCS, 2020.

[33] S. Wu, G. Li, F. Chen, and L. Shi. Training and
inference with integers in deep neural networks.
CoRR, abs/1802.04680, 2018.

[34] Y. Wang, Z. Jiang, X. Chen, P. Xu, Y. Zhao, Y. Lin,
and Z. Wang. E2-train: Training state-of-the-art
CNNs with over 80% energy savings. NIPS, 2019.

[35] J. Liu, H. Shao, Y. Jiang, and X. Deng. Cnn-
based hidden-layer topological structure design
and optimization methods for image classification.
Neural Processing Letters, 2022.

[36] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. 2014.

[37] M. Hopkins, M. Mikaitis, D. R. Lester, and
S. Furber. Stochastic rounding and reduced-
precision fixed-point arithmetic for solving neural
ordinary differential equations. Philosophical Trans-
actions of the Royal Society A, 2020.

[38] P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi, and
E. Weinan. Towards theoretically understanding
why SGD generalizes better than adam in deep
learning. NIPS, 2020.

[39] C. C. Aggarwal. Neural Networks and Deep
Learning. Springer, 2018.

[40] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model
compression and hardware acceleration for neural
networks: A comprehensive survey. Proceedings of
the IEEE, 2020.

[41] A. Y. Ng. Feature selection, L1 vs. L2 regularization,
and rotational invariance. ICML, 2004.

[42] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the royal
statistical society: series B (statistical methodology),
2005.

[43] B. Hanin and D. Rolnick. How to start training:
The effect of initialization and architecture. NIPS,
2018.

[44] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi.
A survey of the recent architectures of deep con-
volutional neural networks. Artificial Intelligence
Review, 2019.

[45] L. Kummer. Dynamic neural network architectural
and topological adaptation and related methods–a
survey. CoRR, abs/2108.10066, 2021.

[46] L. Kummer. A multi-directional approach for
accelerating single-node image classification neural
network training via pruning. u:theses, 63874, 2022.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited567

D
ow

nl
oa

de
d

05
/1

2/
23

 to
 7

8.
10

4.
25

.6
0

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Related Work
	Problem Definition
	Contributions

	Background
	Adaptive Precision Training
	Precision Levels
	AdaPT-SGD (ASGD)
	Precision Switching Mechanism
	ASGD Execution Details

	Experimental Evaluation
	Setup
	Results
	Training
	Inference

	Conclusion

