Under review as a conference paper at ICLR 2026

THE PRICE OF A SECOND THOUGHT: ON THE EVAL-
UATION OF REASONING EFFICIENCY IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent thinking models trained with reinforcement learning and backward-
checking CoT often suffer from overthinking: they produce excessively long
outputs even on simple problems, wasting computation. Existing evaluations,
based on token efficiency, give an incomplete view as they neglect problem diffi-
culty and intermediate computation costs. We formalize reasoning efficiency as a
relative measure between thinking and instruct models, treating instruct models as
the minimal-effort baseline. A systematic study across four thinking models and
multiple benchmarks reveals two consistent patterns: (i) instruct models achieve
higher efficiency overall, and (ii) problem difficulty affects efficiency, with thinking
models wasting computation on easy problems but providing value on harder ones.
Building on this insight, we propose COTHINK, a simple two-stage pipeline: an
instruct model drafts a brief outline, and a thinking model expands it. On GSMS8K,
MATHS500, and AIME24, COTHINK cuts token usage by 21.1% while keeping
accuracy on four thinking models, and remains competitive with strong efficiency
baselines.

Response # tokens=822 w#5 Quen2.5-32B-Instruct

. B . x) 8000 NN DAPO-Qwen-32B
- Fll‘.Sl, we snn]zhfy log,f(y), ...Next, \\e. H B DeepSeek-R1-Distil-Qwen-328
simplify log, (x*), ...Using the change of base
formula... Thus, the value of (xy) is: 25 v

tokens=1580

Let me recall the change of base formula,...
So, starting with the first equation log, (¥*), ...
Now, the second equation: logy(x"y),

= QwQ-328

Instruct LLM

E 6067 (RL+ SFT)
6000 5

= 4774 (Distill)

= 3610 (Zego R

2000 H ’

Hmm, approximately 25. v
770

tokens=559
Instru

But let me check if this is exact.... - SEIENN, . 552 .
Wait, maybe I'm overcomplicating.

So, perhaps the answer is 25, I'll go with that. /| Q60 Q67 Q69 Q72 Q86

»
1=
S
=)

Response Length (tokens)

Thinking LLM’s Response

(a) Example output for question Q67 (b) #tokens for 5 questions; dotted lines indicate average

Figure 1: Illustration of token lengths for example questions from AIME 2024, where all models
successfully answer all these questions: (a) shows answers by Qwen2.5-32B-Instruct (Instruct LLM)
and DeepSeek-R1-distill-Qwen-32B (Thinking LLM) on Q67, (b) plots the total number of tokens in
their solutions for 5 questions. Note: Question ID follows the Qwen2.5-Math evaluation format

2024)), ranging from Q60 to Q89.

1 INTRODUCTION

Recent thinking models (Jaech et al, 2024} (Guo et al}, 2025)), trained with reinforcement learning
(RL) and long chain of thought (CoT) data, outperform non-thinking models on math problem
solving (Cao et al| |2025). Unlike general instruction-tuned models, thinking models generate

Under review as a conference paper at ICLR 2026

extended reasoning traces that include multiple rounds of backward-checking CoT wrapped with
think tags. Following (Qu et al.,[2025b)), we denote each round of verification as an Episodeﬂ

Language models trained for complex reasoning often exhibit overthinking problem (Chen et al.|
2024; Sui et al.| |2025), a tendency to generate excessively long outputs that impairs readability and
wastes computational resources. On the AIME2024 (university-level mathematics benchmark), for
instance, these models produce outputs 5—10 times longer than standard instruction-tuned models
of comparable size, even when both solve problems correctly (Figure [Ta). This trend is clear in
the progressive increase of average output lengths: from 770 tokens for Qwen2.5-32B-Instruct to
3,610 for DAPO (Yu et al., [2025), 4,774 for DeepSeek-R1-Distill (Guo et al., 2025}, and 6,067 for
QwQ (Qwen Team, 2025b) (Figure[Tb).

Evaluation Limitations. Prior work has proposed strategies to mitigate overthinking, such as
controlling token budgets (Han et al.| 2024; |Xu et al., [2025)), penalizing lengthy responses (Yang
et al., 2025b; [Luo et al,[2025b)), and best-of-N sampling (Fu et al.,|2025). Typically, evaluation of
reasoning efficiency for a single model is measured by token efficiency (Qu et al., 2025aj; |Aggarwal
et al.l [2025)), defined as

Q(D)

1) = Cu(D)

where Q(D) is the quality on dataset D and Cj;(D) is the computational cost of model M on
dataset D. However, this metric often give an incomplete picture. Firstly, current benchmarks, with
their narrow focus on token efficiency in isolated task evaluations, provide a limited and sometimes
misleading perspective on model performance. They overlook the critical concepts of overthinking
and underthinking which are relational phenomena observable only through comparative analysis. In
complex tasks, for example, a short response that appears efficient may instead indicate underthinking
and insufficient computational reasoning |Aggarwal et al.| (2025). Secondly, current benchmarks
neglect the costs of intermediate computation, such as ignoring the cost of generating multiple
candidate solutions in best-of-N sampling. This focus yields incomplete and biased comparisons,
obscuring the principle that total computation should scale with problem difficulty rather than output
length alone (Snell et al., [2024; |Singhi et al., 2025)).

ey

Relative Efficiency Analysis. Thus, we consider a more fair evaluation from a relative perspective.
By treating the instruction-tuned model as a baseline that reflects minimal reasoning effort, we define
the reasoning efficiency of a thinking model relative to this baseline as

T(Mr,D)

@

N(Mpg,M;) =)
T(M;,D)
1 = 1 indicates that the reasoning model M achieves the same level of efficiency as the instruction-
tuned model M;. Values n > 1 reflect relative gains in reasoning efficiency, while n < 1 capture
efficiency losses. This formulation allows us to quantify not just absolute task performance, but how
effectively a model converts additional reasoning into measurable improvements over the baseline.

Under this relative efficiency metric, we evaluate four thinking models with different training
algorithms and data distributions against their instruct counterpart across benchmarks of varying
difficulty. Our analysis reveals two different patterns. First, instruction-tuned models show higher
token efficiency, with most thinking models falling below the baseline. Second, efficiency is strongly
difficulty-dependent. Thinking models tend to over-compute and waste computation on simple
problems due to long-CoT data patterns, but deliver clear gains on hard problems where instruction-
tuned models often falter.

A Simple Pipeline. Instruction and thinking language models exhibit complementary strengths. A
straightforward strategy is to allocate easy problems to instruct models while engaging deliberate
reasoning only for hard cases. In practice, however, even with interfaces like Qwen3 hybrid think
modeﬂ neither users nor models can reliably assess difficulty in advance. We therefore ask: under

"No standard criterion exists for segmenting episodes; we use regex patterns like “let me verify” or “on
second thought”.
This mode allows users to control how much thinking the model performs based on the task at hand.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of general instruct and thinking models in terms of post-training algorithms and
Chain-of-Thought (CoT) data strategies (all models use the 32B version).

| Post-train Alg. | Post-train CoT Data | Focus

Model

| SFT RL | Forward Backward Short Long |
Qwen2.5-Instruct (Yang et al.|2024) | v x| v X v X | General instruct model
DAPO (Yu et al.|[2025) X v X v X v RL-only thinking model
DPSK-RI-Distill (Guo et al.|[2025) v X X v X v Distillation-based thinking model
QwQ|Qwen Team|(2025b) v v X v X v SFT+RL thinking model
Qwen3 (Qwen Team|[2025a) v v v v v v Hybrid thinking model

]
1.2
® GSMS8K e MATH500 e AIME24
S10f T —
s 4 T(MR) - T(MI) A DeepSeek-R1-Distill
= 08 ® DAPO
o * QwQ
% & Qwen3 (Enable thinking mode)
E 0.6 @ ® Qwen3 (Disable thinking mode)
o
£
§ 0.4 .~ A ¢ *
9] A [l .
3
m E e R
02 PO W= A N O Mo
@ 'Y
L 4
0.0 255 5.0 7.5 10.0 12.5 15.0 17.5 20.0

R.elative Cost Ratio (Cr/C))

Figure 2: Reasoning efficiency comparison between different model. Each model is represented
by a specific marker shape, and each dataset by a distinct color. The dashed gray lines correspond
to hypothesized efficiency scaling law with assumed scaling exponents 8 = 0.3 and 8 = 0.5 for
reference.

what conditions do instruct models mitigate overthinking and achieving comparable accuracy with
less test-time compute?

Drawing inspiration from sketch prompting (Ning et al.l 2023 Beurer-Kellner et al.| [2023)), we
propose COTHINK, a simple yet effective two-stage pipeline for efficient reasoning. In the first
stage, an instruct model generates a concise solution outline. In the second stage, a reasoning model
expands this outline into a complete derivation when necessary. For straightforward problems, the
outline itself often suffices, requiring only minimal elaboration. For more challenging problems, the
reasoning model naturally produces full derivations.

Concretely, we employ Qwen2.5-32B-Instruct as the outline generator and pair it with four reasoning-
oriented models of the same scale: DAPO, DeepSeek-R1-Distill, QwQ, and Qwen3. Across three
benchmarks of increasing difficulty: GSM8K (Cobbe et al.,[2021b), MATHS500 (Hendrycks et al.,
2021)), and AIME24. COTHINK reduces average computation budget by 21.1% while improving
average accuracy by 1.66%.

2 REASONING EFFICIENCY: A RELATIVE PERSPECTIVE

We define relative reasoning efficiency in Equation[2]to compare thinking models with their instruct
counterparts. In this section, we propose a hypothesized efficiency scaling law, validate it empirically,
and analyze how post-training strategies shape inference patterns and their broader implications.

2.1 HYPOTHESIZED SCALING LAW FOR REASONING EFFICIENCY

Experiment Setup. We evaluate five representative 32B models on three math benchmarks with
increasing release time and difficulty (GSM8K, MATHS500, and AIME24): one general-purpose

Under review as a conference paper at ICLR 2026

instruct model (Qwen2.5-32B-Instruct) and four thinking models post-trained with distinct algorithms
and CoT data Table[I] Together, these models cover various distinct supervision strategies, enabling
us to isolate the effects of different training data and algorithms on performance. Notably, Qwen3
is a hybrid thinking model supporting both direct or thinking reasoning, with switchable “thinking”
and “non-thinking” modes. Thus, we report Qwen3 results for both settings. To ensure fairness and
reproducibility, we use HuggingFace’s official Math-Verify E] to validate all generated answers.

Connection to Test-Time Scaling Law. Language model performance typically follows a test-time
scaling law (Snell et al., 2024} OpenAlL 2024), where response quality improves sub-linearly with in-
creased cost: Q(C) o CP, with B < 1. This reflects a phenomenon of diminishing returns—achieving
linear gains in quality requires exponential increases in cost. Under this assumption, our reasoning
efficiency metric can be approximated as:
B
1= ())

Cr

This formulation predicts that as thinking models consume more tokens relative to instruct models,
their efficiency advantage should follow a predictable scaling pattern governed by the underlying
scaling law exponent. Based on above reasoning efficiency framework, we plot the efficiency
metrics for four thinking models across three benchmarks (Figure [2)) and derive the following key
observations.

Observation 1 (Instruct Model Shows High Token Efficiency) Instruct models produce signifi-
cantly shorter responses than thinking models, especially on correctly solved questions.

In Figure 2] the line n = 1 represents equal reasoning efficiency between thinking and instruct
models. Points above indicate superior efficiency over the instruct baseline. Only Qwen3 with
thinking mode disabled exceeds the instruct model on GSM8K. All other thinking models fall below
1 = 1, showing weaker token efficiency than instruct models. Token efficiency ranking: DAPO >
DeepSeek-R1-Distill > QwQ > Qwen3 (Enable thinking mode).

Observation 2 (Problem Difficulty Affects Reasoning Efficiency) Thinking models are more effi-
cient on complex tasks, showing wasted computation on simpler ones.

Except on the harder benchmark (AIME24), most thinking models remain below the hypothesized
efficiency scaling law line, indicating their computational overhead does not yield proportional quality
gains. Simple problems trigger overthinking, consuming excessive tokens relative to instruct models.
Complex tasks better utilize thinking models’ backward checking capabilities, particularly when
instruct models struggle or fail entirely.

2.2 MECHANISTIC ANALYSIS: SOURCES OF INEFFICIENCY.

For the above two observations, based on the data in Table [I, we identify two key sources of
inefficiency in thinking models:

Algorithmic-level inefficiency. RL training may unintentionally reduce per-step information den-
sity in an episode, encouraging more verbose generation. As Figure [Ta] shows, thinking models
use nearly twice the tokens (1580 vs 822) despite following similar logical steps. This observation
aligns with prior work [Yue et al.| (2025)), suggesting that RL can promote verbosity. Distillation
on data generated by RL models may further amplify this tendency, as seen in models such as
DeepSeek-R1-Distill and QwQ.

Data distribution inefficiency. Backward CoT training produces multi-episode verification pat-
terns that persist during inference. As Table|l|shows, post-training CoT data include forward-only,
backward, long, and short types, reflecting this distribution. Following pattern-matching princi-
ples (Vapnikl, [2013;; |[Bishop & Nasrabadi, 2006), thinking models tend to repeat checks across
episodes even on simple problems, contributing to systematic overthinking.

*https://github.com/huggingface/Math-Verify

https://github.com/huggingface/Math-Verify

Under review as a conference paper at ICLR 2026

¥ Instruct Model:own output tokens (failed)
v | Thinking Model:reasoning output tokens
B&& (Reasoning tokens:used as prefix for Instruct
B Instruct Model:completion tokens (final answer)

Total thinking
episodes generated
Minimum episodes
needed for success

Q68 Q68

Q66 Q66

Instruct completes efficiently using only

Q65 43/25 Q65 Y '
a few Thinking Model episodes as prefix

Q64 79/79 Q64

333/113

Q61 Q61

0 100 200 300 400 0 5000 10000 15000 20000 25000

#Episode #Tokens

Figure 3: We present five AIME24 questions that the instruct model (Qwen2.5-32B-Instruct) fails
to answer on its own. For each question, we prepend thinking episodes generated by the DeepSeek-
R1-Distill-Qwen-32B model as context, and test whether this helps the instruct model arrive at the
correct answer.

In summary, thinking models overcompute on simple tasks, reducing token efficiency, but provide
benefits on complex problems where backward checking is useful. This pattern roughly follows
a hypothesized scaling law, with diminishing returns as computation increases. Key sources of
inefficiency include RL-induced verbosity and backward CoT data, which together encourage repeated
verification even when unnecessary.

3 COTHINK

Through reasoning efficiency analysis, instruct and thinking models have complementary strengths.
At first glance, a natural solution is to delegate easy tasks to instruct models and reserve harder ones

for thinking models. Recent efforts such as hybrid reasoning 2025a; Ma et al.| 2025}

Jiang et al.,[2025D};[Liu et al, 2025} 20254; [Zhang et al.,[2025b) aim to solve this adaptively.
For example, Qwen3 (Qwen Teaml 2025a) and NoThinking (Ma et al.| 2025) implement hard-coded

strategies that switch model behavior based on perceived input difficulty.

The fundamental difficulty lies in identifying problem difficulty before solving. Users, and models
alike, typically cannot tell how hard a question is until they begin working on it. During the prefill
phase, LLMs treat all inputs equally, lacking the means to adapt their reasoning strategy. In practice,
difficulty is not a static property of the input—it emerges dynamically during generation. Some
problems are solved in a few steps; others require extended reasoning and self-correction. This
makes preemptive difficulty assessment inherently unreliable. Prior work often resorts to handcrafted
difficulty labels or controlled settings.

3.1 CASE STUDY ON AIME24

We compare Qwen2.5-Instruct and DeepSeek-R1-Distill results on AIME24. Outputs fall into three
categories: (i) both models solve 5 questions, with the instruct model concise while the thinking model
adds verbose steps and backward checks; (ii) on 16 questions, only the thinking model succeeds by
correcting errors through verification, which the instruct model cannot perform; (iii) on 9 questions,
both fail, with the thinking model attempting longer but still unsuccessful reasoning. Notably, there
are no cases where the instruct model succeeds but the thinking model fails.

Efficient Forward Completion in Instruct Models. We investigate whether the multiple episodes
generated by thinking models are truly necessary. Using the first five AIME24 questions the instruct
model fails (Q61, Q64, Q65, Q66, Q68), we prepend DeepSeek-R1-Distill’s reasoning episodes as
context. Results (Figure[3) show the instruct model solves them with only 27.5% of the episodes and

Under review as a conference paper at ICLR 2026

SoloThink

Instruct LLM Question —>{;§
Thinking LLM Question —>(¥" Episode / ¥l Episode N

CoThink
Question ﬁﬁm& —PM Episode M

Figure 4: An illustration of the COTHINK two-stage framework compared with its SoloThink
counterparts using either an instruct model or a thinking model.

11.9% of the tokens compared to the thinking model. This suggests instruct models already possess
the necessary knowledge but lack a verification mechanism; when given minimal reflective context,
they solve problems more efficiently than thinking models.

Implications for Reverse Design. While instruct models efficiently complete reasoning given
appropriate episode as prefix, the challenge is predicting the correct number of thinking episodes. This
motivates a reverse design: instead of thinking model first, what if the instruct model provides initial
guidance? This eliminates episode prediction while leveraging each model’s strengths optimally. We
propose COTHINK, a collaborative pipeline implementing this reverse approach.

3.2 PIPELINE

In this context, we propose COTHINK, a dynamic two-stage solution process, as illustrated in Figure[d]

Stage 1: Outline Generation by Instruct Model The instruct model generates a concise outline
without solving the problem, leveraging its high token efficiency in straightforward reasoning to
assist the thinking model. The prompts are detailed below:

System Prompt: User Prompt:

You are a reasoning strategist. Please break down the
Your job is to break down a complex problem into 2—4 high-level reasoning steps. following problem.
Focus only on outlining the general approach or strategy.

Do not include any numbers, formulas, or final answers. Problem: {problem}
Avoid specific calculations or details—only describe the logic behind solving the problem.

Stage 2: Backward Verification by Thinking Model By following the high-density outline from
the instruct model, the thinking model efficiently verifies and completes it using fewer tokens.

User Prompt:

Use only the following steps to solve the problem. Do not change or add steps. Show the work for each step briefly,
and place the final answer in \\boxed{}.

Problem: {problem}

Steps: {outline generated by instruct model}

Interestingly, COTHINK is a more intuitive setup. For simple tasks, the instruct model’s outline is
often correct or nearly correct, allowing the thinking model to converge quickly with minimal effort.
For harder tasks, the outline provides a structured starting point, enabling the thinking model to apply
backward checking and ensure correctness, avoiding unstructured trial-and-error from scratch. This
design fundamentally addresses the difficulty assessment challenge: instead of requiring upfront
difficulty prediction, the thinking model can dynamically adjust its verification effort based on the
outline’s quality and correctness.

Under review as a conference paper at ICLR 2026

Table 2: Evaluation benchmarks and average outline tokens produced by the instruct model.

Dataset | Level #Samples #Tokens in ground truth solutions | #Avg outline tokens
GSM8K Primary 1,319 [48, 1,070] 78
MATHS50 | High school 500 [45, 3,360] 154
AIME24 | University 30 [284, 4,010] 264

4 EXPERIMENTAL VALIDATION OF COTHINK

We evaluate COTHINK using the same set of LLMs as in section 2] see Table[I] They include one
instruct model Qwen2.5-32B-Instruct and four thinking models trained with different algorithms and
CoT data. These models cover diverse supervision strategies, allowing a comprehensive evaluation of
COTHINK’s performance.

4.1 EXPERIMENTAL SETUP

We evaluate on three math benchmarks, GSM8K, MATH500, and AIME24, covering increasing
difficulty and chronological release (Cao et al.,[2025)), as in Table @ GSMBSK consists of relatively
simple grade-school level problems with short solutions, while MATHS500 includes more complex
high school competition problems. AIME24 is the most challenging, featuring problems from
prestigious high school mathematics competitions with significantly longer solutions. This setup
helps us validate the insight from the case study, that is whether the instruct model can effectively
guide the thinking model to perform token-efficient inference when handling different kinds of
questions.

Baseline. 'We compare COTHINK against three methods where models solve problems indepen-
dently, without external outline guidance: (1) Solo-Thinking: A single model solves the problem step
by step; this reflects typical usage in practical settings. We evaluate both instruct and thinking models
in this context. (2) No-Thinking (Ma et al.|[2025)): The thinking model assistant side is prompted with
“Okay, I think I have finished thinking.” to skip the thinking process and generate the answer directly.
(3) Best-of-N Sampling: The model generates multiple candidate solutions (N = 5), and the shortest
one is selected as the final solution.

Evaluation Metrics. We evaluate models on both accuracy and computational efficiency. For
accuracy, we use Pass@1, the percentage of problems solved correctly on the first attempt. For
efficiency, we measure #Tokens, the total tokens generated per problem, including intermediate
generations (e.g., multiple candidates in best-of-N sampling, outline tokens in COTHINK). We then
compute Token Efficiency 7 and Reasoning Efficiency 7, as defined in Equation [I|and Equation
Win Rate is defined as the proportion of evaluation points (across datasets x metrics) where a method
demonstrates superiority. A strict win is assigned a score of 1, while a tie is assigned 0.5. The final
win rate is computed as the sum of these scores divided by the total number of evaluation points (x
Pass@1 x #Tokens x 7 x).

4.2 COTHINK AGAINST BASELINES

We evaluate COTHINK against three baselines: Solo-Thinking, Best-of-N sampling, and No-Thinking,
across five thinking models and three math reasoning benchmarks: GSM8K, MATHS500, AIME24.
The Win Rate analysis in Table [3] provides a comprehensive view of our method’s effectiveness
across different problem complexities. Our approach demonstrates particularly strong performance
on MATHS00 (87.5% win rate), indicating high effectiveness on high-school level mathematical
reasoning tasks. The method achieves moderate success on university-level problems (AIME24:
60%) and shows room for improvement on elementary problems (GSM8K: 37.5%). Overall, our
method attains the best performance in 37 out of 60 evaluation points, resulting in a 61.7% win rate
across all model-dataset combinations.

Notably, compared to each model’s own Solo-Thinking, on average, COTHINK reduces total token
usage by 21.1%, reaching up to 41.8% in some cases, while achieving an overall average accuracy

Under review as a conference paper at ICLR 2026

Table 3: Accuracy and efficiency of different reasoning methods across three datasets. The instruct
model serves as the baseline reference for reasoning efficiency 7. For COTHINK in each setting,

improvements over Solo-Thinking of the thinking model are marked in green, declines in red.

Method GSMSK MATHS500 AIME24
Pass@1 (%)t #Tokens), 71 nt | Pass@1 (%)t #Tokens| 71 nt | Pass@1 (%)t #Tokens| 71 nt
Instruct model: Qwen2.5-32B-Instruct (as a reference)
- 96 309 31.07 100 ‘ 82 505 16.24 100 ‘ 16.7 1,077 156 100
Thinking model: DAPO-Qwen-32B (zero RL on Qwen2.5-32B)
Solo-Thinking 98 510 19.22 61.99 67 2,025 331 2038 46.7 6,639 0.70 45.36
Best-of-N 98 2,611 3.75 12.11 65 11,464 0.57 3.49 60 30,210 020 12.81
No-Thinking 98 516 1899 61.27 68 2,742 248 1527 46.7 6,965 0.67 43.24
COTHINK +0.0% 98 +6.3% 542 18.08 58.33 +358%91 -15.7% 1,707 5.33 32.83 -143%40 -29.4% 4,686 0.90 58.34
Thinking model: DeepSeek-R1-Distill-Qwen-32B (Distilled from Qwen2.5-32B)
Solo-Thinking 94.5 823 1148 37.04 94 3,199 294 18.10 70 10,208 0.69 44.22
Best-of-N 955 4295 222 7.17 97 15857 0.61 3.77 76.7 57,943 0.13 854
No-Thinking 955 449 21.27 68.61 89 2,809 3.17 19.51 63.3 11,070 0.57 36.88
COTHINK -2.1%92.5 -3577% 529 17.49 56.41 -2.1% 92 -36.6% 2,027 454 2794 -19.0% 56.7 -12.5% 8,937 0.63 40.92
Thinking model: QwQ (SFT + RL on Qwen2.5-32B)
Solo-Thinking 975 1,602 6.09 19.63 98 3,933 249 1535 80 13,977 0.57 3691
Best-of-N 97.5 8127 1.20 3.87 97 18,887 0.51 3.16 80 68,605 0.12 7.52
No-Thinking 95 1,679 5.66 1825 96 4,047 237 1461 80 14,590 0.55 3536
COTHINK -3.1%94.5 -41.8%933 10.13 32.67 -3.1%95 -19.1% 3,183 2.98 18.38 +4.1% 83.3 -16.2% 11,717 0.71 45.85
Hybrid thinking model: Qwen3 (Disable thinking mode, SFT + RL on Qwen2.5-32B with mixed long/short CoT)
Solo-Thinking 96 249 3855 124.10 62 1,258 493 3035 26.7 5,138 0.52 33.51
Best-of-N 96.5 1,351 7.14 2299 64 3,891 1.64 10.13 30 19,058 0.16 10.15
No-Thinking 97 266 3647 117.38 65 771 843 51.92 333 4,686 0.71 4583
COTHINK -1.6% 945 +25.7% 313 30.19 97.18 +4.8% 65 -41.2% 740 878 54.10 | +24.7% 33.3 -21% 4,060 0.82 52.90
Hybrid thinking model : Qwen3 (Enable thinking mode, SFT + RL on Qwen2.5-32B with mixed long/short CoT)
Solo-Thinking 96.5 1,696 5.69 1831 73 4,085 1.79 11.01 80 12,390 0.65 41.64
Best-of-N 97 8,669 1.12 3.60 74 21,454 0.34 2.12 90 63,389 0.14 9.16
No-Thinking 94.5 1,199 7.88 2537 73 3,688 1.98 12.19 73.3 12,814 0.57 36.89
COTHINK -2.1%94 -49.9% 850 11.06 35.60 0.0%73 -292%2,893 2.52 15.54 -84% 733 -4.1% 11,888 0.62 39.76
COTHINK Performance Summary
Win Rat GSMSK MATHS500 AIME24 Average
in Rate 7.5/20 (37.5%) 17.5/20 (87.5%) 12/20 (60%) 37/60 (61.7%)

improvement of 1.66% across all tasks. This efficiency gain is achieved without requiring prior
estimation of problem difficulty, making COTHINK a practical choice for many scenarios.

COTHINK improves efficiency across all three thinking models, with the overall trend being: QwQ >
DeepSeek-R1-Distill > DAPO. QwQ and DeepSeek-R1-Distill benefit from SFT training, making
them better at following the outline instructions in COTHINK. In contrast, DAPO, trained via RL from
a base model, follows less consistently. However, in tasks like MATH500, where DAPO performs
poorly but the instruct model does well, COTHINK shows strong guiding ability. These consistent
efficiency gains across diverse thinking models highlight the generality and robustness of COTHINK
in improving reasoning efficiency. In particular, on the most challenging dataset, AIME24, COTHINK
benefits from the strongest thinking model, QwQ, to achieve the highest pass@1 accuracy along
with the best token and reasoning efficiency, demonstrating its potential to complement models with
strong reasoning capabilities.

Figure [5] shows reasoning efficiency 7 changes from Solo-Thinking to COTHINK across three models
and datasets, with reference curves at 8 = 0.3 and 0.5. When 7 = 1, the reasoning model matches the
instruct model’s token efficiency; all reasoning models fall below this threshold.

Complex tasks show higher reasoning efficiency than simple ones, as simple problems often lead to
overthinking while complex tasks better utilize the reasoning model’s strengths. The hollow markers
representing COTHINK consistently show efficiency improvements, validating our approach.

5 RELATED WORK

Token efficiency refers to the problem-solving quality achieved per unit of computation (Qu et al.,
2025a), capturing the trade-off between performance and cost. Different models show opposite issues:
instruct models often underthink on hard tasks, while thinking models tend to overthink, generating
redundant steps even for simple ones (Feng et al.| 2025} [Sui et al.| 2025} |Chen et al., [2024} |Wang
et al.| 2025b). To mitigate overthinking, some works limit output length via prompts (Han et al.|
2024; | Xu et al.| 20255 |Aytes et al., 2025; |Yan et al., [2025), encourage early stopping (Zhang et al.,

Under review as a conference paper at ICLR 2026

1.2
e GSM8K e MATH500 e AIME24

[| OO MCEUSPIIIS SOSUIEDIIN SETIUTUUIINN NS SRS DN UUSSOUON R

s

= T(MR) T T(MI) A DeepSeek-R1-Distill

Sos ® DAPO

2 * QwQ

-% 4 Qwen3 (Enable thinking mode)
E 0.6 B Qwen3 (Disable thinking mode)
o

=

c

b

Q

-4

CoThink SoloThink

0.2

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Relative Cost Ratio (Cr/C))

Figure 5: Reasoning efficiency comparison between Solo-Thinking and COTHINK.

2025a; | Yang et al.| [2025a; Jiang et al., [2025a), RL with length penalty (Luo et al.,|2025b; |Aggarwal
& Welleckl, 2025} |Arora & Zanette, [2025)) or SFT on short-solution (Yang et al., 2025bj} [Xia et al.}
2025} |[Kang et al.| [2025)). However, these approaches tend to reduce token usage only superficially,
and on more challenging tasks, shorter outputs might compromise accuracy by limiting the necessary
“thinking time”. A more natural way is to assign easy tasks to instruct models and harder ones to
thinking models. Recent hybrid reasoning methods (Qwen Team, 2025a; |[Ma et al., [2025; Jiang et al.,
2025bj; [Liu et al., 20255 [Luo et al., 2025a; Zhang et al., [2025b) adaptively assign tasks based on
perceived difficulty, for example, Qwen3 (Qwen Teaml 2025a) and NoThinking (Ma et al., [2025)) use
hard-coded switching rules.

A key challenge lies in whether LLMs can perceive problem difficulty. As LLMs are often treated as
black boxes, prior work has explored this indirectly through interpretability methods. Some analyze
attention patterns show that CoT helps LLMs reason on harder problems (Schnabel et al., 2025}
Edelman et al., [2022; Roy et al.||2021). Others disrupt CoT via prompt perturbations (Turpin et al.|
2023} |Chen et al., [2025)), revealing a disconnect between what the model “knows” and what it “says”:
on simple problems, generation often lacks faithfulness, whereas complex tasks trigger more genuine
reasoning. We hypothesize that LLMs treat all inputs equally during the prefill phase, and difficulty
emerges dynamically during generation. For example, models may find the correct answer early
but keep generating redundant steps due to learned patterns. This dynamic assessment remains
underexplored and lacks accurate evidence.

We propose an extremely simple two-stage collaborative pipeline inspired by sketch prompting
engineering (Khot et al.,|2022; |Cobbe et al., 2021a; Beurer-Kellner et al., 2023)). Several concurrent
works explore related directions. Thought Manipulation (Liu et al., 2025)) inserts a pre-generated CoT
between the thinking model’s think tag, allowing the model to better leverage external reasoning.
Scot (Wang et al., 2025a) runs a lightweight model in parallel to draft multiple CoT sketches, from
which a thinking model selects. In contrast, our method transfers the dense forward reasoning of
instruction-tuned models into thinking models via a high-quality outline, requiring no architectural
changes and enabling low-cost, deployment-friendly reasoning gains.

6 CONCLUSION

In this study, we formalize reasoning efficiency as a relative metric comparing thinking models with
instruct counterparts and uncover two key patterns: thinking models are generally less token efficient,
and problem difficulty strongly affects computational efficiency. Our results reveal consistent trends
across model types and datasets, suggesting the existence of a potential reasoning efficiency scaling
law in LLMs. This metric may offer a unified basis for comparing reasoning capabilities across
models and datasets. While still speculative, it provides a useful perspective for examining future
trade-offs between reasoning accuracy and computational cost.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work proposes a method to improve computational efficiency in mathematical reasoning tasks.
We only use publicly available datasets (GSM8K, MATH, AIME) and open-source models, without
involving human subjects or creating new datasets. The method reduces computational costs in
Al reasoning systems, promoting broader access to Al capabilities. We identify no major ethical
concerns regarding harmful applications, bias amplification, or privacy violations. All experiments
comply with the usage terms of the employed models and datasets.

REPRODUCIBILITY STATEMENT

We provide detailed implementation to ensure reproducibility. Section [3|describes the pipeline, and
Section] specifies model configurations and hyperparameters. All datasets are publicly available with
standard evaluation protocols. Source code and evaluation scripts are included in the supplementary
materials.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms. arXiv
preprint arXiv:2508.13141, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Luca Beurer-Kellner, Mark Niklas Miiller, Marc Fischer, and Martin Vechev. Prompt sketching for
large language models. arXiv preprint arXiv:2311.04954, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Yixin Cao, Shibo Hong, Xinze Li, Jiahao Ying, Yubo Ma, Haiyuan Liang, Yantao Liu, Zijun Yao,
Xiaozhi Wang, Dan Huang, et al. Toward generalizable evaluation in the llm era: A survey beyond
benchmarks. arXiv preprint arXiv:2504.18838, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021a. URL
https://arxiv.org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021b.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793-5831. PMLR, 2022.

10

https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Guochao Jiang, Guofeng Quan, Zepeng Ding, Zigin Luo, Dixuan Wang, and Zheng Hu. Flashthink:
An early exit method for efficient reasoning. arXiv preprint arXiv:2505.13949, 2025a.

Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
models. arXiv preprint arXiv:2505.14631, 2025b.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought with-
out compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 24312-24320, 2025.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weigiang
Wang, and Xinlei He. Thought manipulation: External thought can be efficient for large reasoning
models. arXiv preprint arXiv:2504.13626, 2025.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naigiang Tan, Xiaochun Cao, Dacheng
Tao, and Li Shen. Adarl: From long-cot to hybrid-cot via bi-level adaptive reasoning optimization.
arXiv preprint arXiv:2504.21659, 2025a.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025b.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-
of-thought: Prompting 1lms for efficient parallel generation. arXiv preprint arXiv:2307.15337,
2023.

OpenAl. Learning to reason with language models, 2024. URL https://openai.com/index/
learning-to-reason—-with—-11ms/. Accessed: 2025-05-19.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025a.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025b.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwg-32b/.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53-68, 2021.

Tobias Schnabel, Kiran Tomlinson, Adith Swaminathan, and Jennifer Neville. Lost in transmission:
When and why 1lms fail to reason globally. arXiv preprint arXiv:2505.08140, 2025.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning. arXiv preprint arXiv:2504.01005, 2025.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952-74965, 2023.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for 1lms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025a.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
ol-like llms. arXiv preprint arXiv:2501.18585, 2025b.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

12

https://arxiv.org/abs/2505.09388
https://qwenlm.github.io/blog/qwq-32b/

Under review as a conference paper at ICLR 2026

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in 1lms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Angqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025b.

13

	Introduction
	Reasoning efficiency: A relative perspective
	Hypothesized Scaling Law for Reasoning Efficiency
	Mechanistic Analysis: Sources of Inefficiency.

	CoThink
	Case Study on AIME24
	Pipeline

	Experimental Validation of CoThink
	Experimental Setup
	CoThink against Baselines

	Related Work
	Conclusion

