
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE PRICE OF A SECOND THOUGHT: ON THE EVAL-
UATION OF REASONING EFFICIENCY IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent thinking models trained with reinforcement learning and backward-
checking CoT often suffer from overthinking: they produce excessively long
outputs even on simple problems, wasting computation. Existing evaluations,
based on token efficiency, give an incomplete view as they neglect problem diffi-
culty and intermediate computation costs. We formalize reasoning efficiency as a
relative measure between thinking and instruct models, treating instruct models as
the minimal-effort baseline. A systematic study across four thinking models and
multiple benchmarks reveals two consistent patterns: (i) instruct models achieve
higher efficiency overall, and (ii) problem difficulty affects efficiency, with thinking
models wasting computation on easy problems but providing value on harder ones.
Building on this insight, we propose COTHINK, a simple two-stage pipeline: an
instruct model drafts a brief outline, and a thinking model expands it. On GSM8K,
MATH500, and AIME24, COTHINK cuts token usage by 21.1% while keeping
accuracy on four thinking models, and remains competitive with strong efficiency
baselines.

… First, we simplify 𝑙𝑜𝑔!(𝑦!), ...Next, we 
simplify 𝑙𝑜𝑔"(𝑥#"),	...Using the change of base 
formula…Thus, the value of 𝑥𝑦 is: 25

Response # tokens=822

Let me recall the change of base formula,...
So, starting with the first equation 𝑙𝑜𝑔!(𝑦!), ...
Now, the second equation: 𝑙𝑜𝑔"(𝑥#"),	...
Hmm, approximately 25.

Episode 1 # tokens=1580

But let me check if this is exact....
Wait, maybe I'm overcomplicating.
So, perhaps the answer is 25, I'll go with that.

Episode 43 # tokens=559

In
st

ru
ct

 L
LM

 
Th

in
ki

ng
 L

LM
’s

 R
es

po
ns

e

…

(a) Example output for question Q67

770 
(Instruct)

3610 (Zero RL)

4774 (Distill)

6067 (RL+ SFT)

(b) #tokens for 5 questions; dotted lines indicate average

Figure 1: Illustration of token lengths for example questions from AIME 2024, where all models
successfully answer all these questions: (a) shows answers by Qwen2.5-32B-Instruct (Instruct LLM)
and DeepSeek-R1-distill-Qwen-32B (Thinking LLM) on Q67, (b) plots the total number of tokens in
their solutions for 5 questions. Note: Question ID follows the Qwen2.5-Math evaluation format (Yang
et al., 2024), ranging from Q60 to Q89.

1 INTRODUCTION

Recent thinking models (Jaech et al., 2024; Guo et al., 2025), trained with reinforcement learning
(RL) and long chain of thought (CoT) data, outperform non-thinking models on math problem
solving (Cao et al., 2025). Unlike general instruction-tuned models, thinking models generate

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

extended reasoning traces that include multiple rounds of backward-checking CoT wrapped with
think tags. Following (Qu et al., 2025b), we denote each round of verification as an Episode.1

Language models trained for complex reasoning often exhibit overthinking problem (Chen et al.,
2024; Sui et al., 2025), a tendency to generate excessively long outputs that impairs readability and
wastes computational resources. On the AIME2024 (university-level mathematics benchmark), for
instance, these models produce outputs 5–10 times longer than standard instruction-tuned models
of comparable size, even when both solve problems correctly (Figure 1a). This trend is clear in
the progressive increase of average output lengths: from 770 tokens for Qwen2.5-32B-Instruct to
3,610 for DAPO (Yu et al., 2025), 4,774 for DeepSeek-R1-Distill (Guo et al., 2025), and 6,067 for
QwQ (Qwen Team, 2025b) (Figure 1b).

Evaluation Limitations. Prior work has proposed strategies to mitigate overthinking, such as
controlling token budgets (Han et al., 2024; Xu et al., 2025), penalizing lengthy responses (Yang
et al., 2025b; Luo et al., 2025b), and best-of-N sampling (Fu et al., 2025). Typically, evaluation of
reasoning efficiency for a single model is measured by token efficiency (Qu et al., 2025a; Aggarwal
et al., 2025), defined as

τ(M,D) =
Q(D)

CM(D)
(1)

where Q(D) is the quality on dataset D and CM(D) is the computational cost of model M on
dataset D. However, this metric often give an incomplete picture. Firstly, current benchmarks, with
their narrow focus on token efficiency in isolated task evaluations, provide a limited and sometimes
misleading perspective on model performance. They overlook the critical concepts of overthinking
and underthinking which are relational phenomena observable only through comparative analysis. In
complex tasks, for example, a short response that appears efficient may instead indicate underthinking
and insufficient computational reasoning Aggarwal et al. (2025). Secondly, current benchmarks
neglect the costs of intermediate computation, such as ignoring the cost of generating multiple
candidate solutions in best-of-N sampling. This focus yields incomplete and biased comparisons,
obscuring the principle that total computation should scale with problem difficulty rather than output
length alone (Snell et al., 2024; Singhi et al., 2025).

Relative Efficiency Analysis. Thus, we consider a more fair evaluation from a relative perspective.
By treating the instruction-tuned model as a baseline that reflects minimal reasoning effort, we define
the reasoning efficiency of a thinking model relative to this baseline as

η(MR,MI) =
τ(MR,D)
τ(MI ,D)

, (2)

η = 1 indicates that the reasoning model MR achieves the same level of efficiency as the instruction-
tuned model MI . Values η > 1 reflect relative gains in reasoning efficiency, while η < 1 capture
efficiency losses. This formulation allows us to quantify not just absolute task performance, but how
effectively a model converts additional reasoning into measurable improvements over the baseline.

Under this relative efficiency metric, we evaluate four thinking models with different training
algorithms and data distributions against their instruct counterpart across benchmarks of varying
difficulty. Our analysis reveals two different patterns. First, instruction-tuned models show higher
token efficiency, with most thinking models falling below the baseline. Second, efficiency is strongly
difficulty-dependent. Thinking models tend to over-compute and waste computation on simple
problems due to long-CoT data patterns, but deliver clear gains on hard problems where instruction-
tuned models often falter.

A Simple Pipeline. Instruction and thinking language models exhibit complementary strengths. A
straightforward strategy is to allocate easy problems to instruct models while engaging deliberate
reasoning only for hard cases. In practice, however, even with interfaces like Qwen3 hybrid think
mode2, neither users nor models can reliably assess difficulty in advance. We therefore ask: under

1No standard criterion exists for segmenting episodes; we use regex patterns like “let me verify” or “on
second thought”.

2This mode allows users to control how much thinking the model performs based on the task at hand.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of general instruct and thinking models in terms of post-training algorithms and
Chain-of-Thought (CoT) data strategies (all models use the 32B version).

Model Post-train Alg. Post-train CoT Data Focus
SFT RL Forward Backward Short Long

Qwen2.5-Instruct (Yang et al., 2024) ✓ ✗ ✓ ✗ ✓ ✗ General instruct model

DAPO (Yu et al., 2025) ✗ ✓ ✗ ✓ ✗ ✓ RL-only thinking model
DPSK-R1-Distill (Guo et al., 2025) ✓ ✗ ✗ ✓ ✗ ✓ Distillation-based thinking model
QwQ Qwen Team (2025b) ✓ ✓ ✗ ✓ ✗ ✓ SFT+RL thinking model
Qwen3 (Qwen Team, 2025a) ✓ ✓ ✓ ✓ ✓ ✓ Hybrid thinking model

𝜏 𝑀! = 𝜏 𝑀"

Figure 2: Reasoning efficiency comparison between different model. Each model is represented
by a specific marker shape, and each dataset by a distinct color. The dashed gray lines correspond
to hypothesized efficiency scaling law with assumed scaling exponents β = 0.3 and β = 0.5 for
reference.

what conditions do instruct models mitigate overthinking and achieving comparable accuracy with
less test-time compute?

Drawing inspiration from sketch prompting (Ning et al., 2023; Beurer-Kellner et al., 2023), we
propose COTHINK, a simple yet effective two-stage pipeline for efficient reasoning. In the first
stage, an instruct model generates a concise solution outline. In the second stage, a reasoning model
expands this outline into a complete derivation when necessary. For straightforward problems, the
outline itself often suffices, requiring only minimal elaboration. For more challenging problems, the
reasoning model naturally produces full derivations.

Concretely, we employ Qwen2.5-32B-Instruct as the outline generator and pair it with four reasoning-
oriented models of the same scale: DAPO, DeepSeek-R1-Distill, QwQ, and Qwen3. Across three
benchmarks of increasing difficulty: GSM8K (Cobbe et al., 2021b), MATH500 (Hendrycks et al.,
2021), and AIME24. COTHINK reduces average computation budget by 21.1% while improving
average accuracy by 1.66%.

2 REASONING EFFICIENCY: A RELATIVE PERSPECTIVE

We define relative reasoning efficiency in Equation 2 to compare thinking models with their instruct
counterparts. In this section, we propose a hypothesized efficiency scaling law, validate it empirically,
and analyze how post-training strategies shape inference patterns and their broader implications.

2.1 HYPOTHESIZED SCALING LAW FOR REASONING EFFICIENCY

Experiment Setup. We evaluate five representative 32B models on three math benchmarks with
increasing release time and difficulty (GSM8K, MATH500, and AIME24): one general-purpose

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

instruct model (Qwen2.5-32B-Instruct) and four thinking models post-trained with distinct algorithms
and CoT data Table 1. Together, these models cover various distinct supervision strategies, enabling
us to isolate the effects of different training data and algorithms on performance. Notably, Qwen3
is a hybrid thinking model supporting both direct or thinking reasoning, with switchable “thinking”
and “non-thinking” modes. Thus, we report Qwen3 results for both settings. To ensure fairness and
reproducibility, we use HuggingFace’s official Math-Verify 3 to validate all generated answers.

Connection to Test-Time Scaling Law. Language model performance typically follows a test-time
scaling law (Snell et al., 2024; OpenAI, 2024), where response quality improves sub-linearly with in-
creased cost: Q(C) ∝ Cβ , with β < 1. This reflects a phenomenon of diminishing returns—achieving
linear gains in quality requires exponential increases in cost. Under this assumption, our reasoning
efficiency metric can be approximated as:

η ≈ (
CR

CI
)

β

(3)

This formulation predicts that as thinking models consume more tokens relative to instruct models,
their efficiency advantage should follow a predictable scaling pattern governed by the underlying
scaling law exponent. Based on above reasoning efficiency framework, we plot the efficiency
metrics for four thinking models across three benchmarks (Figure 2) and derive the following key
observations.

Observation 1 (Instruct Model Shows High Token Efficiency) Instruct models produce signifi-
cantly shorter responses than thinking models, especially on correctly solved questions.

In Figure 2, the line η = 1 represents equal reasoning efficiency between thinking and instruct
models. Points above indicate superior efficiency over the instruct baseline. Only Qwen3 with
thinking mode disabled exceeds the instruct model on GSM8K. All other thinking models fall below
η = 1, showing weaker token efficiency than instruct models. Token efficiency ranking: DAPO >
DeepSeek-R1-Distill > QwQ > Qwen3 (Enable thinking mode).

Observation 2 (Problem Difficulty Affects Reasoning Efficiency) Thinking models are more effi-
cient on complex tasks, showing wasted computation on simpler ones.

Except on the harder benchmark (AIME24), most thinking models remain below the hypothesized
efficiency scaling law line, indicating their computational overhead does not yield proportional quality
gains. Simple problems trigger overthinking, consuming excessive tokens relative to instruct models.
Complex tasks better utilize thinking models’ backward checking capabilities, particularly when
instruct models struggle or fail entirely.

2.2 MECHANISTIC ANALYSIS: SOURCES OF INEFFICIENCY.

For the above two observations, based on the data in Table 1, we identify two key sources of
inefficiency in thinking models:

Algorithmic-level inefficiency. RL training may unintentionally reduce per-step information den-
sity in an episode, encouraging more verbose generation. As Figure 1a shows, thinking models
use nearly twice the tokens (1580 vs 822) despite following similar logical steps. This observation
aligns with prior work Yue et al. (2025), suggesting that RL can promote verbosity. Distillation
on data generated by RL models may further amplify this tendency, as seen in models such as
DeepSeek-R1-Distill and QwQ.

Data distribution inefficiency. Backward CoT training produces multi-episode verification pat-
terns that persist during inference. As Table 1 shows, post-training CoT data include forward-only,
backward, long, and short types, reflecting this distribution. Following pattern-matching princi-
ples (Vapnik, 2013; Bishop & Nasrabadi, 2006), thinking models tend to repeat checks across
episodes even on simple problems, contributing to systematic overthinking.

3https://github.com/huggingface/Math-Verify

4

https://github.com/huggingface/Math-Verify


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

333/113

43/25

63/1

37/6

79/79

Instruct completes efficiently using only 
a few Thinking Model episodes as prefix

Figure 3: We present five AIME24 questions that the instruct model (Qwen2.5-32B-Instruct) fails
to answer on its own. For each question, we prepend thinking episodes generated by the DeepSeek-
R1-Distill-Qwen-32B model as context, and test whether this helps the instruct model arrive at the
correct answer.

In summary, thinking models overcompute on simple tasks, reducing token efficiency, but provide
benefits on complex problems where backward checking is useful. This pattern roughly follows
a hypothesized scaling law, with diminishing returns as computation increases. Key sources of
inefficiency include RL-induced verbosity and backward CoT data, which together encourage repeated
verification even when unnecessary.

3 COTHINK

Through reasoning efficiency analysis, instruct and thinking models have complementary strengths.
At first glance, a natural solution is to delegate easy tasks to instruct models and reserve harder ones
for thinking models. Recent efforts such as hybrid reasoning (Qwen Team, 2025a; Ma et al., 2025;
Jiang et al., 2025b; Liu et al., 2025; Luo et al., 2025a; Zhang et al., 2025b) aim to solve this adaptively.
For example, Qwen3 (Qwen Team, 2025a) and NoThinking (Ma et al., 2025) implement hard-coded
strategies that switch model behavior based on perceived input difficulty.

The fundamental difficulty lies in identifying problem difficulty before solving. Users, and models
alike, typically cannot tell how hard a question is until they begin working on it. During the prefill
phase, LLMs treat all inputs equally, lacking the means to adapt their reasoning strategy. In practice,
difficulty is not a static property of the input—it emerges dynamically during generation. Some
problems are solved in a few steps; others require extended reasoning and self-correction. This
makes preemptive difficulty assessment inherently unreliable. Prior work often resorts to handcrafted
difficulty labels or controlled settings.

3.1 CASE STUDY ON AIME24

We compare Qwen2.5-Instruct and DeepSeek-R1-Distill results on AIME24. Outputs fall into three
categories: (i) both models solve 5 questions, with the instruct model concise while the thinking model
adds verbose steps and backward checks; (ii) on 16 questions, only the thinking model succeeds by
correcting errors through verification, which the instruct model cannot perform; (iii) on 9 questions,
both fail, with the thinking model attempting longer but still unsuccessful reasoning. Notably, there
are no cases where the instruct model succeeds but the thinking model fails.

Efficient Forward Completion in Instruct Models. We investigate whether the multiple episodes
generated by thinking models are truly necessary. Using the first five AIME24 questions the instruct
model fails (Q61, Q64, Q65, Q66, Q68), we prepend DeepSeek-R1-Distill’s reasoning episodes as
context. Results (Figure 3) show the instruct model solves them with only 27.5% of the episodes and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SoloThink

CoThink

Instruct LLM Question Response

Episode 1Question Episode NThinking LLM …

Question Outline Episode 1 Episode M…

Figure 4: An illustration of the COTHINK two-stage framework compared with its SoloThink
counterparts using either an instruct model or a thinking model.

11.9% of the tokens compared to the thinking model. This suggests instruct models already possess
the necessary knowledge but lack a verification mechanism; when given minimal reflective context,
they solve problems more efficiently than thinking models.

Implications for Reverse Design. While instruct models efficiently complete reasoning given
appropriate episode as prefix, the challenge is predicting the correct number of thinking episodes. This
motivates a reverse design: instead of thinking model first, what if the instruct model provides initial
guidance? This eliminates episode prediction while leveraging each model’s strengths optimally. We
propose COTHINK, a collaborative pipeline implementing this reverse approach.

3.2 PIPELINE

In this context, we propose COTHINK, a dynamic two-stage solution process, as illustrated in Figure 4.

Stage 1: Outline Generation by Instruct Model The instruct model generates a concise outline
without solving the problem, leveraging its high token efficiency in straightforward reasoning to
assist the thinking model. The prompts are detailed below:

System Prompt: User Prompt: 

You are a reasoning strategist.
Your job is to break down a complex problem into 2–4 high-level reasoning steps.
Focus only on outlining the general approach or strategy.
Do not include any numbers, formulas, or final answers.
Avoid specific calculations or details—only describe the logic behind solving the problem.

Please break down the 
following problem.

Problem: {problem}

Stage 2: Backward Verification by Thinking Model By following the high-density outline from
the instruct model, the thinking model efficiently verifies and completes it using fewer tokens.

Use only the following steps to solve the problem. Do not change or add steps. Show the work for each step briefly, 
and place the final answer in \\boxed{}.
Problem: {problem}
Steps: {outline generated by instruct model}

User Prompt: 

Interestingly, COTHINK is a more intuitive setup. For simple tasks, the instruct model’s outline is
often correct or nearly correct, allowing the thinking model to converge quickly with minimal effort.
For harder tasks, the outline provides a structured starting point, enabling the thinking model to apply
backward checking and ensure correctness, avoiding unstructured trial-and-error from scratch. This
design fundamentally addresses the difficulty assessment challenge: instead of requiring upfront
difficulty prediction, the thinking model can dynamically adjust its verification effort based on the
outline’s quality and correctness.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Evaluation benchmarks and average outline tokens produced by the instruct model.

Dataset Level #Samples #Tokens in ground truth solutions #Avg outline tokens

GSM8K Primary 1,319 [48, 1,070] 78
MATH50 High school 500 [45, 3,360] 154
AIME24 University 30 [284, 4,010] 264

4 EXPERIMENTAL VALIDATION OF COTHINK

We evaluate COTHINK using the same set of LLMs as in section 2, see Table 1. They include one
instruct model Qwen2.5-32B-Instruct and four thinking models trained with different algorithms and
CoT data. These models cover diverse supervision strategies, allowing a comprehensive evaluation of
COTHINK’s performance.

4.1 EXPERIMENTAL SETUP

We evaluate on three math benchmarks, GSM8K, MATH500, and AIME24, covering increasing
difficulty and chronological release (Cao et al., 2025), as in Table 2. GSM8K consists of relatively
simple grade-school level problems with short solutions, while MATH500 includes more complex
high school competition problems. AIME24 is the most challenging, featuring problems from
prestigious high school mathematics competitions with significantly longer solutions. This setup
helps us validate the insight from the case study, that is whether the instruct model can effectively
guide the thinking model to perform token-efficient inference when handling different kinds of
questions.

Baseline. We compare COTHINK against three methods where models solve problems indepen-
dently, without external outline guidance: (1) Solo-Thinking: A single model solves the problem step
by step; this reflects typical usage in practical settings. We evaluate both instruct and thinking models
in this context. (2) No-Thinking (Ma et al., 2025): The thinking model assistant side is prompted with
“Okay, I think I have finished thinking.” to skip the thinking process and generate the answer directly.
(3) Best-of-N Sampling: The model generates multiple candidate solutions (N = 5), and the shortest
one is selected as the final solution.

Evaluation Metrics. We evaluate models on both accuracy and computational efficiency. For
accuracy, we use Pass@1, the percentage of problems solved correctly on the first attempt. For
efficiency, we measure #Tokens, the total tokens generated per problem, including intermediate
generations (e.g., multiple candidates in best-of-N sampling, outline tokens in COTHINK). We then
compute Token Efficiency τ and Reasoning Efficiency η, as defined in Equation 1 and Equation 2.
Win Rate is defined as the proportion of evaluation points (across datasets × metrics) where a method
demonstrates superiority. A strict win is assigned a score of 1, while a tie is assigned 0.5. The final
win rate is computed as the sum of these scores divided by the total number of evaluation points (×
Pass@1 × #Tokens × τ × η).

4.2 COTHINK AGAINST BASELINES

We evaluate COTHINK against three baselines: Solo-Thinking, Best-of-N sampling, and No-Thinking,
across five thinking models and three math reasoning benchmarks: GSM8K, MATH500, AIME24.
The Win Rate analysis in Table 3 provides a comprehensive view of our method’s effectiveness
across different problem complexities. Our approach demonstrates particularly strong performance
on MATH500 (87.5% win rate), indicating high effectiveness on high-school level mathematical
reasoning tasks. The method achieves moderate success on university-level problems (AIME24:
60%) and shows room for improvement on elementary problems (GSM8K: 37.5%). Overall, our
method attains the best performance in 37 out of 60 evaluation points, resulting in a 61.7% win rate
across all model-dataset combinations.

Notably, compared to each model’s own Solo-Thinking, on average, COTHINK reduces total token
usage by 21.1%, reaching up to 41.8% in some cases, while achieving an overall average accuracy

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy and efficiency of different reasoning methods across three datasets. The instruct
model serves as the baseline reference for reasoning efficiency η. For COTHINK in each setting,
improvements over Solo-Thinking of the thinking model are marked in green, declines in red.

Method GSM8K MATH500 AIME24
Pass@1 (%)↑ #Tokens↓ τ ↑ η ↑ Pass@1 (%)↑ #Tokens↓ τ ↑ η ↑ Pass@1 (%)↑ #Tokens↓ τ ↑ η ↑

Instruct model: Qwen2.5-32B-Instruct (as a reference)

- 96 309 31.07 100 82 505 16.24 100 16.7 1,077 1.56 100

Thinking model: DAPO-Qwen-32B (zero RL on Qwen2.5-32B)

Solo-Thinking 98 510 19.22 61.99 67 2,025 3.31 20.38 46.7 6,639 0.70 45.36
Best-of-N 98 2,611 3.75 12.11 65 11,464 0.57 3.49 60 30,210 0.20 12.81

No-Thinking 98 516 18.99 61.27 68 2,742 2.48 15.27 46.7 6,965 0.67 43.24
COTHINK +0.0% 98 +6.3% 542 18.08 58.33 +35.8% 91 -15.7% 1,707 5.33 32.83 -14.3% 40 -29.4% 4,686 0.90 58.34

Thinking model: DeepSeek-R1-Distill-Qwen-32B (Distilled from Qwen2.5-32B)

Solo-Thinking 94.5 823 11.48 37.04 94 3,199 2.94 18.10 70 10,208 0.69 44.22
Best-of-N 95.5 4,295 2.22 7.17 97 15,857 0.61 3.77 76.7 57,943 0.13 8.54

No-Thinking 95.5 449 21.27 68.61 89 2,809 3.17 19.51 63.3 11,070 0.57 36.88
COTHINK -2.1% 92.5 -35.7% 529 17.49 56.41 -2.1% 92 -36.6% 2,027 4.54 27.94 -19.0% 56.7 -12.5% 8,937 0.63 40.92

Thinking model: QwQ (SFT + RL on Qwen2.5-32B)

Solo-Thinking 97.5 1,602 6.09 19.63 98 3,933 2.49 15.35 80 13,977 0.57 36.91
Best-of-N 97.5 8127 1.20 3.87 97 18,887 0.51 3.16 80 68,605 0.12 7.52

No-Thinking 95 1,679 5.66 18.25 96 4,047 2.37 14.61 80 14,590 0.55 35.36
COTHINK -3.1% 94.5 -41.8% 933 10.13 32.67 -3.1% 95 -19.1% 3,183 2.98 18.38 +4.1% 83.3 -16.2% 11,717 0.71 45.85

Hybrid thinking model: Qwen3 (Disable thinking mode, SFT + RL on Qwen2.5-32B with mixed long/short CoT)

Solo-Thinking 96 249 38.55 124.10 62 1,258 4.93 30.35 26.7 5,138 0.52 33.51
Best-of-N 96.5 1,351 7.14 22.99 64 3,891 1.64 10.13 30 19,058 0.16 10.15

No-Thinking 97 266 36.47 117.38 65 771 8.43 51.92 33.3 4,686 0.71 45.83
COTHINK -1.6% 94.5 +25.7% 313 30.19 97.18 +4.8% 65 -41.2% 740 8.78 54.10 +24.7% 33.3 -21% 4,060 0.82 52.90

Hybrid thinking model : Qwen3 (Enable thinking mode, SFT + RL on Qwen2.5-32B with mixed long/short CoT)

Solo-Thinking 96.5 1,696 5.69 18.31 73 4,085 1.79 11.01 80 12,390 0.65 41.64
Best-of-N 97 8,669 1.12 3.60 74 21,454 0.34 2.12 90 63,389 0.14 9.16

No-Thinking 94.5 1,199 7.88 25.37 73 3,688 1.98 12.19 73.3 12,814 0.57 36.89
COTHINK -2.1% 94 -49.9% 850 11.06 35.60 0.0% 73 -29.2% 2,893 2.52 15.54 -8.4% 73.3 -4.1% 11,888 0.62 39.76

COTHINK Performance Summary

Win Rate GSM8K
7.5/20 (37.5%)

MATH500
17.5/20 (87.5%)

AIME24
12/20 (60%)

Average
37/60 (61.7%)

improvement of 1.66% across all tasks. This efficiency gain is achieved without requiring prior
estimation of problem difficulty, making COTHINK a practical choice for many scenarios.

COTHINK improves efficiency across all three thinking models, with the overall trend being: QwQ >
DeepSeek-R1-Distill > DAPO. QwQ and DeepSeek-R1-Distill benefit from SFT training, making
them better at following the outline instructions in COTHINK. In contrast, DAPO, trained via RL from
a base model, follows less consistently. However, in tasks like MATH500, where DAPO performs
poorly but the instruct model does well, COTHINK shows strong guiding ability. These consistent
efficiency gains across diverse thinking models highlight the generality and robustness of COTHINK
in improving reasoning efficiency. In particular, on the most challenging dataset, AIME24, COTHINK
benefits from the strongest thinking model, QwQ, to achieve the highest pass@1 accuracy along
with the best token and reasoning efficiency, demonstrating its potential to complement models with
strong reasoning capabilities.

Figure 5 shows reasoning efficiency η changes from Solo-Thinking to COTHINK across three models
and datasets, with reference curves at β = 0.3 and 0.5. When η = 1, the reasoning model matches the
instruct model’s token efficiency; all reasoning models fall below this threshold.

Complex tasks show higher reasoning efficiency than simple ones, as simple problems often lead to
overthinking while complex tasks better utilize the reasoning model’s strengths. The hollow markers
representing COTHINK consistently show efficiency improvements, validating our approach.

5 RELATED WORK

Token efficiency refers to the problem-solving quality achieved per unit of computation (Qu et al.,
2025a), capturing the trade-off between performance and cost. Different models show opposite issues:
instruct models often underthink on hard tasks, while thinking models tend to overthink, generating
redundant steps even for simple ones (Feng et al., 2025; Sui et al., 2025; Chen et al., 2024; Wang
et al., 2025b). To mitigate overthinking, some works limit output length via prompts (Han et al.,
2024; Xu et al., 2025; Aytes et al., 2025; Yan et al., 2025), encourage early stopping (Zhang et al.,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

𝜏 𝑀! = 𝜏 𝑀"

SoloThinkCoThink

Figure 5: Reasoning efficiency comparison between Solo-Thinking and COTHINK.

2025a; Yang et al., 2025a; Jiang et al., 2025a), RL with length penalty (Luo et al., 2025b; Aggarwal
& Welleck, 2025; Arora & Zanette, 2025) or SFT on short-solution (Yang et al., 2025b; Xia et al.,
2025; Kang et al., 2025). However, these approaches tend to reduce token usage only superficially,
and on more challenging tasks, shorter outputs might compromise accuracy by limiting the necessary
“thinking time”. A more natural way is to assign easy tasks to instruct models and harder ones to
thinking models. Recent hybrid reasoning methods (Qwen Team, 2025a; Ma et al., 2025; Jiang et al.,
2025b; Liu et al., 2025; Luo et al., 2025a; Zhang et al., 2025b) adaptively assign tasks based on
perceived difficulty, for example, Qwen3 (Qwen Team, 2025a) and NoThinking (Ma et al., 2025) use
hard-coded switching rules.

A key challenge lies in whether LLMs can perceive problem difficulty. As LLMs are often treated as
black boxes, prior work has explored this indirectly through interpretability methods. Some analyze
attention patterns show that CoT helps LLMs reason on harder problems (Schnabel et al., 2025;
Edelman et al., 2022; Roy et al., 2021). Others disrupt CoT via prompt perturbations (Turpin et al.,
2023; Chen et al., 2025), revealing a disconnect between what the model “knows” and what it “says”:
on simple problems, generation often lacks faithfulness, whereas complex tasks trigger more genuine
reasoning. We hypothesize that LLMs treat all inputs equally during the prefill phase, and difficulty
emerges dynamically during generation. For example, models may find the correct answer early
but keep generating redundant steps due to learned patterns. This dynamic assessment remains
underexplored and lacks accurate evidence.

We propose an extremely simple two-stage collaborative pipeline inspired by sketch prompting
engineering (Khot et al., 2022; Cobbe et al., 2021a; Beurer-Kellner et al., 2023). Several concurrent
works explore related directions. Thought Manipulation (Liu et al., 2025) inserts a pre-generated CoT
between the thinking model’s think tag, allowing the model to better leverage external reasoning.
Scot (Wang et al., 2025a) runs a lightweight model in parallel to draft multiple CoT sketches, from
which a thinking model selects. In contrast, our method transfers the dense forward reasoning of
instruction-tuned models into thinking models via a high-quality outline, requiring no architectural
changes and enabling low-cost, deployment-friendly reasoning gains.

6 CONCLUSION

In this study, we formalize reasoning efficiency as a relative metric comparing thinking models with
instruct counterparts and uncover two key patterns: thinking models are generally less token efficient,
and problem difficulty strongly affects computational efficiency. Our results reveal consistent trends
across model types and datasets, suggesting the existence of a potential reasoning efficiency scaling
law in LLMs. This metric may offer a unified basis for comparing reasoning capabilities across
models and datasets. While still speculative, it provides a useful perspective for examining future
trade-offs between reasoning accuracy and computational cost.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work proposes a method to improve computational efficiency in mathematical reasoning tasks.
We only use publicly available datasets (GSM8K, MATH, AIME) and open-source models, without
involving human subjects or creating new datasets. The method reduces computational costs in
AI reasoning systems, promoting broader access to AI capabilities. We identify no major ethical
concerns regarding harmful applications, bias amplification, or privacy violations. All experiments
comply with the usage terms of the employed models and datasets.

REPRODUCIBILITY STATEMENT

We provide detailed implementation to ensure reproducibility. Section 3 describes the pipeline, and
Section 4 specifies model configurations and hyperparameters. All datasets are publicly available with
standard evaluation protocols. Source code and evaluation scripts are included in the supplementary
materials.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms. arXiv
preprint arXiv:2508.13141, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Prompt sketching for
large language models. arXiv preprint arXiv:2311.04954, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Yixin Cao, Shibo Hong, Xinze Li, Jiahao Ying, Yubo Ma, Haiyuan Liang, Yantao Liu, Zijun Yao,
Xiaozhi Wang, Dan Huang, et al. Toward generalizable evaluation in the llm era: A survey beyond
benchmarks. arXiv preprint arXiv:2504.18838, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021a. URL
https://arxiv.org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021b.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

10

https://arxiv.org/abs/2110.14168


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Guochao Jiang, Guofeng Quan, Zepeng Ding, Ziqin Luo, Dixuan Wang, and Zheng Hu. Flashthink:
An early exit method for efficient reasoning. arXiv preprint arXiv:2505.13949, 2025a.

Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
models. arXiv preprint arXiv:2505.14631, 2025b.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought with-
out compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 24312–24320, 2025.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Yule Liu, Jingyi Zheng, Zhen Sun, Zifan Peng, Wenhan Dong, Zeyang Sha, Shiwen Cui, Weiqiang
Wang, and Xinlei He. Thought manipulation: External thought can be efficient for large reasoning
models. arXiv preprint arXiv:2504.13626, 2025.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao, Dacheng
Tao, and Li Shen. Adar1: From long-cot to hybrid-cot via bi-level adaptive reasoning optimization.
arXiv preprint arXiv:2504.21659, 2025a.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025b.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-
of-thought: Prompting llms for efficient parallel generation. arXiv preprint arXiv:2307.15337,
2023.

OpenAI. Learning to reason with language models, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/. Accessed: 2025-05-19.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025a.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025b.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwq-32b/.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Tobias Schnabel, Kiran Tomlinson, Adith Swaminathan, and Jennifer Neville. Lost in transmission:
When and why llms fail to reason globally. arXiv preprint arXiv:2505.08140, 2025.

Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach, and
Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and generative
verification for llm reasoning. arXiv preprint arXiv:2504.01005, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for llms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025a.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025b.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

12

https://arxiv.org/abs/2505.09388
https://qwenlm.github.io/blog/qwq-32b/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025b.

13


	Introduction
	Reasoning efficiency: A relative perspective
	Hypothesized Scaling Law for Reasoning Efficiency
	Mechanistic Analysis: Sources of Inefficiency.

	CoThink
	Case Study on AIME24
	Pipeline

	Experimental Validation of CoThink
	Experimental Setup
	CoThink against Baselines

	Related Work
	Conclusion

