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ABSTRACT

Few works study the variation and cross-lingual consistency of factual knowledge
embedded in multilingual models. However, cross-lingual consistency should be
considered to assess cross-lingual transferability, maintain the factuality of the
model’s knowledge across languages, and preserve the parity of language model
performance. We are thus interested in analyzing, evaluating, and interpreting
cross-lingual consistency for factual knowledge. We apply interpretability ap-
proaches to analyze a model’s behavior in cross-lingual contexts, discovering that
multilingual models show different levels of consistency, subject to either lan-
guage families or linguistic factors. Further, we identify a cross-lingual consis-
tency bottleneck manifested in middle layers. To mitigate this problem, we try vo-
cabulary expansion, additional cross-lingual objectives, adding biases from mono-
lingual inputs, multi-task fine-tuning, and code-switching training. We find that
all these methods, except for multi-task fine-tuning, boost cross-lingual consis-
tency to some extent, with cross-lingual supervision and code-switching training
offering the best improvement.

1 INTRODUCTION

Figure 1: Illustration of Cross-lingual knowledge consistency. Frege’s theory of reference defines
the reference of a sub-sentential expression as the object singled out by the name.

Frege’s theory of reference (Fregel |1892) indicates that the knowledge conveyed by a sentence de-
pends on the references of the expressions that compose the sentence. A salient aspect of humanity
is that while people may speak different languages, they can share common knowledge. Thus, ref-
erences and knowledge should be consistent across languages, and a multilingual model serving as
a knowledge base (Gupta & Srikumar, 2021} Kassner et al., 2021} |Hu et al., [2024)) should provide
consistent knowledge when queried in different languages. Not only does this theory contribute to
the cross-lingual performance and maintain the knowledge across languages, but it ensures parity
and self-consistency of model performance (Hupkes et al.,2023; Wang et al.,|2023). This motivates
us to evaluate the knowledge consistency of multilingual language models across languages.

Although recent advances have shown that multilingual models are effective for cross-lingual trans-
fer and generalization (Conneau et al., 2020; | Xue et al., 2020; Hu et al., [2020; Muennighoff et al.,
2023)), Kassner et al.|(2021); Fierro & S@gaard| (2022); Q1 et al.| (2023) reported that the prediction
varies from one language to others when recalling knowledge in different languages. For given par-
allel statements, a language model may output predictions for a particular query that differs from
one obtained from the query’s translation. This examination implicitly instantiates Frege’s theory of
reference to check knowledge consistency across languages that parallel statements with the same
references for sub-sentential expressions such as entities should have the same knowledge.
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Inspired by that theory, we hypothesize that multilingual language models recall consistent factual
knowledge for coreferential statements in cross-lingual settings. To evaluate this hypothesis (Fig-
ure[I)), we create code-mixed coreferential statements from monolingual statements by substituting
a subject entity with an equivalent one in another language that shares the same reference and at-
tempt to answer two questions: 1) do multilingual language models recall factual knowledge for the
coreferential statements in a similar manner on different languages? and 2) how does the mecha-
nism of multilingual language models work on the incorporation between entities or references in
cross-lingual settings? Our study is related to a broader linguistic phenomenon of entity-level code-
switching: an entity code-switches between two languages without changing the reference. More
recently, we share a similar goal with knowledge incorporation and editing (Beniwal et al., 2024;
Li et al., 2024), as we incorporate a coreferential entity from other languages for factual knowledge
recall in cross-lingual settings. Our main findings are:

» Multilingual language models can leverage coreferential entities across similar languages,
e.g., similar writing scripts, to maintain cross-lingual knowledge consistency when recall-
ing factual knowledge but worse across dissimilar languages.

* Scaling models is not a promising strategy to improve cross-lingual consistency as we
observed a bottleneck starting from middle layers across different model families and sizes.

» Consistency patterns in feed-forward neurons and subject—object attention scores are indis-
tinguishable for similar languages and distinguishable for dissimilar languages.

Based on our main findings, we further evaluate several mitigations that could resolve inconsistency
issues with the results described below, particularly those observed in dissimilar languages.

* There is a partial causality between adding monolingual biases and improving cross-lingual
knowledge consistency. Thus, adding bias could be a potential method to calibrate consis-
tency across languages while we do need to think a better way to incorporate such bias.

* Expanding the multilingual vocabulary, adding word alignment objective, and code-
switching training can improve the cross-lingual consistency as such method helps in align-
ing coreferential entities across languages to alleviate the consistency bottleneck.

* Multi-task fine-tuning is not promising to benefit the cross-lingual consistency as it poten-
tially refines specific attention heads for in-context information instead of knowledge.

Our contribution is to offer an understanding of multilingual language models’ limitations under
cross-lingual settings and highlight potential research directions to address such issues.

2 METHODOLOGY

2.1 TASK DEFINITION

We focus on a code-mixed context-independent cloze task. This setting forces the multilingual
model to rely on its internal knowledge base and recall the common knowledge shared by coreferen-
tial entities across languages because of cross-lingual generalization[ﬂ In the following introduction,
we will define the evaluation task mathematically. Let I = {S'1,-.- O,---} € lbe a statement,
where /1 stands for matrix language (the predominant language), S'* = {s1,--- , s} € I1 are sub-
ject sub-tokens, and O = {01, 09, - - ,Oj} € 11 denote object sub-tokens. This statement is used
to create a masked input Lono = {S™, -+, M, }, where M = {maski,--- ,mask;} are the
mask (or the sentinel token M =< extra_id_0 >) used to substitute O in I. We define n-gram
prediction for the mask O, denoted as Cand(Ocvy |[Inono), as the top-k n-gram candidates with
token lengths ranging from 1 to j obtained from beam search decoding over the model’s vocabu-
lary V. Considering the trade-off between the computational time and the holistic of the language
model’s prediction, we set the top-k threshold and beam search width to 5. Similarly, we can create
a code-mixed coreferential statement I, by replacing S'' with a coreferential subject S*? in the
embedded language [2 (the subsidiary language) in order to obtain Cand(Ogcv |l ). Therefore,

'See limitation in §@
2The surface structure is not restricted. We use the common subject—object structure as an example.
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I, and I,,,,, are coreferential and expected to recall the same knowledge. Finally, we define
cross-lingual knowledge consistency as 0 < fretric(Cand(Ocv | Imono), Cand(Ocy | Iem)) < 1,
where f,etric 18 @ consistency metric defined in the next subsection. If fi,etric = 1, it implies that
multilingual language models recall factual knowledge for the coreferential statements I,,,,,, and
I, in an identical manner. The coreferential statements disagree if f,,etric = 0. Note that we do
not consider whether the prediction is correct. Instead, f,¢tric €valuates the parity and consistency
across the languages that the model is expected to output similar candidates for I,,,,,,, and Iy, .

From a probability view, we can define our task as measuring the difference between two dis-
tributions, Cand(Ocy|lem) = P(Ocv|Kg)P(Kg|S™, 1\ (s1100)) and Cand(Ocv |[Imono) =
P(Ocv|Kj;)P(K;|S", 1\ (s100), Where Ky is the knowledge recalled from the model given
the preceding context, and I\ (g11~p) stands for I without both the subject and the object. Then,
cross-lingual knowledge consistency between Kj; and Ky reflects on the measured difference. The
high-level idea of this evaluation task is illustrated in Figure [T] where en entry "Paris is the capi-
tal of ___” is evaluated with its possible code-mixed statements (ar entry & ta entry). In this ex-
ample, S, I\ (s1n0oy, and S'2 are “Paris”, “is the capital of”, and the ar or ta entry for “Paris”,
respectively. In addition, we are aware of a baseline from this probability view. Specifically, we
define the baseline as the difference between Cand(Ocy |Iinono) and Cand(Ocy |\ (s11n0)) =
P(Ocv |K§)P(K§|I\(s11n0)), measuring agnostic consistency without the coreferential subjects

S and S'2 in cross-lingual settings. In implementation, we mask the both subject and object enti-
ties to create the “code-mixed” counterpart as the baseline. Readers can refer to Appendix §A.T]for
our implementation.

2.2 METRIC FUNCTION AND INTERPRETABILITY APPROACH

Readers can refer to Appendix §A.2|for more details, e.g., equations.

Consistency Metrics. For fi,ctric, Top@1 Accuracy and RankC (i.e., weighted Preci-
sion@5) (Q1 et al., 2023) are used to evaluate the cross-lingual knowledge consistency between
Cand(Ocv |Imono) and Cand(Oc¢y |1.r,). Since we observe similar experimental results on Top@1
and RankC, Top@1 results are moved to Appendix

Consistency Evolution. We analyze the “evolution” of consistency scores as the layer goes deeper
to trace the consistency bottleneck and understand the models’ behavior. Since the encoder part is
crucial for both encoder and encoder-decoder language models to understand the input, we apply
LogitLens (nostalgebraist, |2019) (for the xIm-r family) and DecoderLens (Langedijk et al., [2023)
(for the mTO family) to each encoder layer to obtain the layer-wise distribution O¢y .

Subject—-Object Attention. Inspired by the attention weight analysis method (Clark et al.,2019),
we calculate the sum of all subject tokens’ attention scores across all masked tokens and average
those scores over all possible I,,,,,, and I.,, statements. Then we collect the difference between
average attention scores of I.,, and those obtained from I,,,,,,. Note that masked tokens are used to
prompt the corresponding object tokens of the masked statements, as defined in our task definition.

1G? Score We do minor modification on 7G? (Liu et al.l [2024) to measure the impact of each
feed-forward neuron on the logits of the mask tokens where the higher the value is, the more critical
the neuron is to predict the ground truth object on the mask tokens.

2.3 DATASET

We use mLAMA dataset (Kassner et al.| 2021)) that provides parallel triples (object, predicate, sub-
ject) in 53 languages written in cloze task format (e.g., “Paris is the capital of [MASK].”) to query
knowledge in zero-shot settings. In our experiments, {1 is set to English. Meanwhile, we set [2 to all
other 52 languages to report an overall result and rendered deep analysis for 2 similar /2 languages
(De, 1d) and 2 dissimilar /2 languages (Ar, Taﬂ Moreover, for the overall result, we also categorize

3While Id does not belong to the same language family as En, it has many similarities with En (Krause,
n.d.). Ar and Ta are not considered as Indo-European languages and also do not use latin scripts.
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these [2 languages into two separate categories for each of the three factors (geographics, writing
scripts, and language family) using ISO-639 language code information from “localizely’

2.4 MODELS

We examine distinct language model families: xIm-r (0.3B to 10B) (Conneau et al., 2020) and mTO
(0.6B to 3.7B) (Muennighoft et al., |2023). Decoder-based language models are excluded in our
study to limit inherent hallucination problems affecting the analysis (Xu et all [2024; [Ji et al., 2023},
2023). In our experiments, we obtain similar findings from both families. Therefore, we
only show mTO results in the main text and move the rest to the Appendix §A.3]

3  OBSERVING CONSISTENCY

3.1 MAIN FINDINGS

Overall Crosslingual Consistency of mt0 Overall Crosslingual Consistency of mt0 Overall Crosslingual Consistency of mto

Figure 2: Overall cross-lingual consistency in mtO (red: mtO-large, blue: mt0O-base) grouped by 3
factors (left: geographics, mid: language family, right: writing scripts). Note: The dashed line here
is the average corresponding consistency scores of mtO-base across languages( cf: @ )

From Figure E across all the factors, [2 that are dissimilar with [1, tend to have lower consistency
than those are similar to /1. The difference in writing scripts plays the most important role among
the other two factors. Thus, the number of shared tokens between two languages could affect the
cross-lingual consistency, and that is orthogonal to the common view of cross-lingual transfer that
shared tokens are not necessary (K et all [2020; [Artetxe et al., 2020). Another intriguing finding
is that geographic factor also affects consistency and this could be attributed to common culture
and vocabulary (Zhao et all, 2024d). On the other hand, we suppose that other linguistic factors
contributing to the cross-lingual performance (de Vries et al.}2022;[Kann et al. {Chronopoulou|
et al} [2023) such as the similarity in linguistic features (Chronopoulou et al., [2023), or borrowing
(Tsvetkov & Dyer], 2016), could affect cross-lingual knowledge consistency as well. However, for
this study, it is hard to quantify such factors and leave such analyses for future work. Furthermore,
we also observe similar results on other models, and this aligns with empirical studies in the literature
2023)). Note that language families and writing scripts have an impact on vocabulary, and
we will discuss this vocabulary problem in a later section.

To better understand the cross-lingual consistency bottleneck, we examine the layer-wise consis-
tency patterns across different model sizes, as presented in Figure 5] The noticeable difference lies
in the initial consistency, whereby dissimilar language pairs have low consistency scores. The con-
sistency gap between dissimilar and similar languages starts to close at some specific layer while

‘nttps://localizely.com/language-code

Figure 3: Layer-wise consistency scores in models with different sizes. Scaling models is not a
promising strategy to mitigate consistency bottlenecks. ( ¢f: §A.3.1])
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widening again later. This observation provides evidence for empirical studies that scaling benefits
the downstream task performance (Conneau et al.,2020), e.g., XNLI, but not be substantially helpful
in refining cross-lingual consistency due to cross-lingual consistency bottlenecks. Moreover on Fig-
ure[3] we can see the consistency scores of dissimilar languages are quite similar with baseline thus,
the consistency of such code-mixed languages are terrible and needed to be improved. Nonetheless,
these dissimilar languages are more consistent than our baseline on xIm-r models (See Figure[I8).

3.2 ATTENTION WEIGHT ANALYSIS

Average Attention Scores Difference in mtO-large for En-Ta Average Attention Scores Difference in mt0-large for En-Id Average Attention Scores Difference in mt0-large for Baseline

Encoder Layer Encoder Layer Encoder Layer

Figure 4: Subject—Object attention difference with 1,4, to I.,,, in mtO-large. Attention scores are
inversely proportional to the similarity of /1 and (2 (En-Ta vs En-Id). ( ¢f. §A.3.3)

The layer-wise analyses help us understand the model be-
haviors. However, the question remains as to how model Taple 1: Statistically significant spear-
components handle statements. The correlation analy- man p correlation (v = 0.05) between
sis conducted on each layer in Table [I] shows that there average scores of layers with the pat-
is a moderate correlation between the average negative terns on each language model’s subject-
subject—object attention scores and the consistency met- gbject attention and /G2 absolute dif-
rics. In particular, although I,,,0n, and I.,, are coref- ference.
erential, I.,, has to retrieve the reference via the cross-
lingual entry. To identify the difference between the
cross-lingual and monolingual entries, we observe the at-
tention scores for subject—object pairs. Figure ] demon- - - - -
p mTO-base 0.414 0.426 0.528 0.519
strates that the attention scores across layers and heads mromarse  0.666*  0.661* 0.705*  0.699*
are barely distinguishable in the similar language pair, e g-d3s’ 024’ 04007 0897
en—de, but more discernable for the dissimilar language
pair, en—ta. Surprisingly, /.., results in higher attention
scores than Iy, for the dissimilar language pair, which means that the model pays more attention
to the subject entity over the predicate across layers and heads in that case. Despite so, we observe
from the right side of Figure 4] that having subject—object attention that is too small/big might cause
the model to be inconsistent. These insights might be generalizable to different models and other
language pairs, as evidenced by Appendix §A.3.3]

attention I1G?

Model RankC Acc RankC Acc

3.3 IG? SCORE ANALYSIS

Average Activation Values' Gradient Sum on Probability in mto-large En-Id Average Activation Values' Gradient Sum on Probability in mt0-large En-Ta

e . e
B e 000t B e

“r"*uruunnuumm“

Figure 5: IG? scores in mt0O-large for en—de and en—ta. We see that the distribution is more con-
trastive on dissimilar languages (En—Ta) than the similar languages (En-De). (cf: M )

In addition, we inspect the IG? scores of all feed-forward neurons across all encoder layers. Our
correlation analysis for this factor could show a moderate correlation with the cross-lingual consis-
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tency, as shown in Table |1} In Figure the IG? scores for similar language pairs are almost the
same, while there is a subtle difference for the dissimilar language pairs.

4 IMPROVING CONSISTENCY

4.1 CAN BIAS CALIBRATE CONSISTENCY?

From previous findings, we think of one question: can we add biases from I, .y, to attention layers
and feed-forward layers for consistency calibration? Thus, based on two different patterns dis-
covered from our experiments and having that both are moderately correlated with the consistency
score, we do three different causal interventions to align the output of I, closer to the output of
Inono- This experiment measures whether each pattern has a causal relationship with cross-lingual
consistency. The experimental setup can be seen in Appendix §A.4.1] We consider:

 Attention suppression: we suppress I.,,’s attention scores to make them closer to I,,,o0’s.

¢ Feed-forward neuron activation patching (Vig et al.| 2020; [Geiger et all, 2021): we patch
Inono’s activations of all tokens to I, in selected feed-forward neurons based on 1G?2.

* Hybrid: we use the above methods simultaneously.

RankC across Encoder Layers in mt0-base RankC across Encoder Layers in mt0-large RankC across Encoder Layers in xim-r-base RankC across Encoder Layers in xim-r-large

Rankc(o-1)
Rankc(o-1)
Rankc(0-1)

Figure 6: Intervention scores for En-Ta. ( cf. §A.4.1).

Based on Figure [6] there is a causal relationship between the two studied factors to some certain
extent. For mTO, intervention approaches can increase the consistency scores in the middle-later
layers only. While for xIm-r, none of the interventions manages to improve the consistency for the
base model despite there is a rising trend for the hybrid intervention and feed-forward activation
patching. However, when we observe the larger model, all intervention methods increase the con-
sistency score on the last layers. Overall, our monolingual bias incorporation offers quite limited
improvement subject to the architecture and model size thus a better monolingual bias should be
considered. These findings are consistent with those of other languages.

Overall Crosslingual Consistency of xim-v Overall Crosslingual Consistency of xim-v Overall Crosslingual Consistency of xim-v

Figure 7: Effects of vocabulary expansion to cross-lingual consistency (red: xlm-v, blue: xlm-r-

base). (c¢f. §A.4.2)
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Average Attention Scores Difference in xim-r-base for En-Ar Average Attention Scores Difference in xim-r-base for En-Ta Average Attention Scores Difference in xIm-r-base for Baseline
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Figure 8: Effects of vocabulary expansion to subject—object attention scores shift to xIm-r-base
where we can see there is a shift from earlier layers to middle & last layers. We do not see any
notable shift on the baseline input and this is possibly the reason why this method does not offer

improvement on the baseline input. (cf. §A.4.2)

4.2 THE EFFECT OF VOCABULARY EXPANSION TO THE CROSS-LINGUAL CONSISTENCY

We hypothesize that the size of vocabulary plays a crucial role in improving consistency as this
enables a language model to align the semantics better due to lesser ambiguityﬂ To test this hy-
pothesis, we consider two similar language models, xIm-r-base and xIm-v-base (Liang et al., 2023)),
where xIm-v-base has larger vocabularies (901,629 tokens) than xIm-r-base (250,002 tokens).

Vocabulary expansion offers slight consistency improvement for

similar and dissimilar language on any categorization, as pre- — ferceaes fosertoyersnimrbese
sented in Figure[/| A large vocabulary limits sub-tokens to pre-
vent the model from latching onto shallow local signals or restor-
ing words from sub-tokens (Levine et al.,|2021), which benefits
deep semantic learning. However, more samples are required
to generalize training. Therefore, vocabulary expansion alone
cannot improve the consistency significantly, especially for low-
resource languages, but it sitll benefits dissimilar languages with
lower consistency in the last layers to alleviate the consistency
bottleneck to some extent. This can be observed in Figure O] Figure 9: Effects of vocabulary
that the layer-wise consistency dr.ops significantly in the base expansion to cross-lingual con-
model’s last layers but increases in the expanded model’s last sistency. (cf @

layers. Meanwhile, it can be further confirmed by a similar shift

phenomenon in attention analysis, as shown in Figure [§] The

attention scores on the expanded model’s last layer or deep semantic layers are more potent than
the base model. Since dissimilar language pairs have minimum language features shared across
languages, better-aligned semantics alone is not enough to completely resolve the consistency bot-
tleneck. Nonetheless, it is still a crucial aspect to consider for the cross-lingual consistency im-
provement as demonstrated on the minor improvement shown on Figure[7] This finding also in line
with |Zhao et al.| (2024a) where they found that the one-token P@1 of Afrikaans is higher than the
Japanese due to segmentation and tokenziation. E]

4.3 THE EFFECT OF CROSS-LINGUAL SUPERVISION TO THE CROSS-LINGUAL CONSISTENCY

Another possible hypothesis is that there might be an entanglement of features between linguistic
and knowledge features. Elhage et al.|(2022) discovered that the language model (in particular GPT-
2 (Radford et al.,|2019)) could fit multiple features into one dimension at the price of more entangled
features, and this entanglement might cause tokens not cross-lingually aligned as there may be an
entanglement between syntactic and semantic features within one dimension. Inspired by that, we
suspect this might hinder the consistency of language models. To test this assumption, we evaluate
two different similar language models in which one model is trained solely on MLM objective (xIm-

Se.g., if the tokenizer of a language model tokenizes the word ”Tokyo” to ["To,” ”Kyo™], the token "To” is
polysemous making thus the alignment of this word would be one-to-many, on the other hand, if a tokenizer
keeps the word as it is, the tokenized form of the word is monosemous making it less ambiguous.

SWe define this as a token parity issue. See more discussion in Figure .
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Average Attention Scores Difference in xIm-r-base for En-Ar Average Attention Scores Difference in xim-r-base for En-Ta Average Attention Scores Difference in xim-r-base for Baseline

Figure 10: Effects of cross-lingual supervision on subject—object attention in xIm-r-base. We ob-
serve a slight layer shift. A similar pattern is observed as the attention difference caused by the
vocabulary expansion on the baseline input. left: En—Ar, mid: En-Ta, right: baseline. (cf. @)

r), and another similar model is trained on one additional objective on word alignment (xIm-align
[2021)), where this word alignment might be helpful to align references across languages.

Overall Crosslingual Consistency of xim-align Overall Crosslingual Consistency of xim-align Overall Crosslingual Consistency of xim-align

Figure 11: Effects of cross-lingual supervision to xlm-r-base consistency red: xIm-align and blue:
xIlm-r-base. Note: The dashed line here is the average corresponding consistency scores of xIm-r-

base across languages. (cf. §A.4.3).

Word alignment increases cross-lingual consistency monotoni-

cally to alleviate the cross-lingual bottleneck. Similar to the — renceros frodertoersinimroee
vocabulary expansion, this strategy does not improve the con-
sistency for the baseline as we would expect. The aligned
model outperforms the baseline starting from the middle lay-
ers in Figure Multiple pre-training objectives that could
approximately disentangle different features can help preserve
the model’s knowledge of different languages. We could also e e
confirm this finding by observing the overall cross-lingual con-

sistency result in Figure [IT] as consistency scores jump over

the baseline quel’s c;oss—lingugl consistency. When we look Figure 12: Effects of cross-
f:los§r at the ob_]ect—.subje.ct attention scores of thp ahgne('i model lingual supervision on the layer-
in Figure[I0] there is a slight shift of subject-object relation fea- wise consistency. (cf. @

tures extraction from earlier layers (in the baseline model) into e
middle-last layers (in the aligned model). In line with the vo-

cabulary expansion, the responsibility shift on feature extraction from the earlier layer into later
layers might justify the effectiveness of both approaches on dissimilar languages. Despite this, one
interesting observation is that the attention shift is not as strong as the one caused by vocabulary
expansion, and this is quite counterintuitive if we look at the consistency improvement that vocabu-
lary expansion and additional cross-lingual supervision could offer. Hence, we leave this interesting
finding analysis for future work. In addition, we could observe that this strategy does not offer
notable improvement just like vocabulary expansion as we would expect.

Rankc(0-1)

4.4 THE EFFECT OF CODE-SWITCHING TRAINING TO THE CROSS-LINGUAL CONSISTENCY

Inspired by the experiment on cross-lingual supervision, we further hypothesize that code-switching
training, which substitutes an entity with alternatives from other languages for intra-sentential
alignments in cross-lingual settings, can help the model understand common knowledge across
languages for cross-lingual consistency to some extent. To evaluate this hypothesis, we study



Under review as a conference paper at ICLR 2025

Average Attention Scores Difference in xim-r-base for En-Ar Average Attention Scores Difference in xim-r-base for En-Ta Average Attention Scores Difference in xim-r-base for En-Baseline

Figure 14: Effects of code-switching training on subject—object attention in xIm-r-base. A similar
pattern is observed as the attention difference caused by the vocabulary expansion and the cross-
lingual supervision on the baseline input. left: En—Ar, mid: En-Ta, right: baseline. (cf.

xlm-r and xIm-r-cs (Whitehouse et al.l 2022), where xIm-r-cs is continuously trained on code-
switching corpus from xlm-r-base and shows high performance in multilingual fact-checking.
From Figure[I3] we observe a shift in the consistency bottleneck

from the middle layers to the later layers of xlm-r-cs, where the = rericsos trdertaesinames

consistency gap between dissimilar and similar languages nar- =
rows in xlm-r-cs compared to xIm-r in the middle layers. When .
observing the attention in Figure [T4 we can see one similar /=

layer shift pattern with experiments on the vocabulary expansion ~ : /'/'/ M\
and the cross-lingual supervision where the attention weights 1
are suppressed on earlier layers. However, unlike these two ap- e e e e
proaches, there is no amplification of the attention weights on

later layers thus we posit that the key of the improvement prob-

ably lies on refiuci.ng the responsibili?y on earli.er layers. There- Figure 13: Effects of code-
fore, code-switching can offer significant gains to the cross-
lingual consistency, even without additional objectives. Overall,
this finding is consistent with previous experiments.

\

c(0-1)

switching training on the layer-
wise consistency. (cf. F.3)

4.5 THE EFFECT OF MULTI-TASK FINE-TUNING TO THE CROSS-LINGUAL CONSISTENCY

In previous discussions, we discussed the cross-lingual consis-

tency in the mtO family, which is multi-task fine-tuned from —  reneecos Ercocerioyesinmsarse
the mt5 family (Xue et al., 2020). We hypothesize that this
fine-tuning can improve the cross-lingual consistency due to im-
proved cross-lingual generalization across similar tasks in dif-
ferent languages, as opposed to word-level alignments discussed
in previous sections. Surprisingly, multi-task fine-tuning can not
offer significant gains to the cross-lingual consistency. As pre- |
sented in Figure [T3] the consistency patterns are quite similar

across mtO and mt5'. Instead of shifting layers'for the attentipn, Figure 15: Effects of multi-
which is observeq in oth.er experiments, multi-task fine-tuning . fine-tuning on the layer-
causes a head shift in Figure [I6] We suspect that the model :qo consistency. (cf. @
adjusts some neurons at each layer to maintain knowledge but

such adjustment has limited contributions to cross-lingual con-

sistency. While this finding is distinguishable from most of other methods, it is consistent with Fig-
ure ] where we found scaling is not promising to improve cross-lingual consistency. Specifically,
both of them encourage some neurons to preserve the cross-lingual knowledge consistency, showing
limited effectiveness. This finding aligns with |Ortu et al.|(2024); Jin et al.| (2024) who reported that
LLM has attention heads with contrasting roles in which some of them consider retrieving internal
knowledge of language models and other heads prefer to get the in-context information.

5 RELATED WORK

Petroni et al.| (2019) found the availability of relational knowledge within the pre-trained language
model by evaluating the language models on the cloze task dataset they proposed, namely LAMA.
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Average Attention Scores Difference in mtS-large for En-Ar Average Attention Scores Difference in mt5-large for En-Ta Average Attention Scores Difference in mt5-large for En-Baseline

06
z ] c
- -

Figure 16: Effects of multi-task fine-tuning on subject—object attention in mt5. We observe a signif-
icant head shift but no cross-lingual consistency gains. This is a distinguishable findings from other
experiments, where layer behaviors change to mitigate the consistency bottleneck. left: En—Ar, mid:
En-Ta, right: baseline. (cf. [1;5[)

Kassner et al| (2021)) introduced the multilingual version of it, mLAMA, and discovered that the
language’s relational knowledge capability varies in different languages and other works also found
similar findings (Schott et al., 2023} Zhao et al., [2024a)). Nevertheless, Zhao et al.| (2024a) showed
that multilingual language models exhibited limited cross-lingual knowledge recall capability on
low-resource languages. Following this line, |[Fierro & Sggaard! (2022);|Q1 et al.| (2023)) studied the
final predictions in different languages and reported inconsistencies across languages. Moreover,
Jin et al.| (2024) proposed a method to mitigate such conflicting mechanisms by nullifying heads
having significant impact in either of both roles. We take a different angle from those works where
we evaluate the cross-lingual knowledge consistency against references in different languages by
creating coreferential statements in cross-lingual settings.

Bhattacharya & Bojar (2023)); Kojima et al.| (2024); [Zhao et al.| (2024b) discovered the language-
sensitive neurons of decoder in the early and last layers while a considerable portion of language-
agnostic ones in the middle layers encode universal concepts and utilize the latent language (in
this case English) (Wendler et al.| 2024} [Dumas et al., 2024). [Tan et al.[(2024)) observed encoder-
decoder language models that neurons tend to be more language-agnostic in the later layers of the
encoder part while language-specific in the later layers of the decoder part. |Zhao et al| (2024b);
'Wang et al.[(2024b); |[Zhang et al.|(2024) further showed the cross-lingual downstream performance
is potentially proportional to the amount of language-agnostic neurons. |Ferrando & Costa-jussa
(2024) discovered a shared circuit or subnetwork that is responsible for subject-verb agreement task
for English & Spanish and |Stanczak et al.| (2022); |Wang et al. (2024a)) found that morpho-syntax
attributes have noticeable neuron overlapping degree over notable amount of language pairs. We
push this line further to trace consistent information and knowledge throughout the layers in cross-
lingual settings, attempting to understand and interpret how commonly used strategies to improve
multilingual models for downstream tasks could impact the cross-lingual knowledge consistency.

6 CONCLUSION

Do multilingual language models demonstrate cross-lingual consistency? Is it worthwhile to op-
timise for cross-lingual knowledge consistency? We find the answer to both of these questions is
‘yes’, but with the caveat that performance is tied to language characteristics. In our work, we code
mix source monolingual sentences containing a coreferential named entity to control and analyse
cross-lingual knowledge consistency. Our analysis reveals that knowledge consistency is heavily
dependent on language-specific information such as geography, language family, and writing script.
Our layer-by-layer analysis of multilingual models discovers a consistency bottleneck in the mid-
dle layers of models. This bottleneck can be alleviated by expanding the vocabulary, injecting
cross-lingual supervision and in training, or including code-swithcing corpus. Our work highlights
promising directions in post-calibration, vocabulary formation, pretraining with cross-lingual objec-
tives, and code-switching training to achieve knowledge consistency across languages, which will
better preserve parity of language model performance. As our experiment discovers that pretraining
objective and code-switching training cause most significant positive impact on the cross-lingual
consistency, we encourage researchers to emphasize more on representation learning approaches to
make the language models more consistent across different languages.
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LIMITATIONS

We only cover the transformer encoder and encoder-language models for this work. Another promis-
ing avenue for this work is evaluating cross-lingual knowledge consistency on other language mod-
els. Moreover, we only analyze each crucial component independently due to the time constraint
and left scrutinizing the interaction between each component for future work. In the future, we may
expand this work by analyzing how the interaction among these components could affect the cross-
lingual consistency of multilingual models. Another thing is that our causal intervention method
needs to be done manually, and we suspect that this method could produce a side effect on the
model because the representations encoded by language models are more likely to be polysemous.
Additionally, we only evaluate the language models in context-independent settings. Thus, in the
future, we plan to evaluate the consistency of the models’ knowledge and observe whether language
models utilize their parametric knowledge more or emphasize the knowledge from the given context
under the cross-lingual setting. Another thing to consider is that we only evaluate our solution using
one particular model due to the time constraint. Also, we do not explore various pre-training ob-
jectives and evaluate solutions to the encoder-decoder model; hence, we leave such things as future
work. One interesting thing to explore in this aspect is to see whether adversarial training could
help to enhance cross-lingual consistency. Another thing that we want to consider is that we use an
assumption that one reference is represented as a single English object entity to make the evaluation
tractable; hence, we do not take into account the real-world setting where one reference can be inter-
preted in different ways on multiple languages (e.g., "China” is written as ”ZhongGuo” in Chinese
rather than ”China”). Lastly, our research scope assumes that the knowledge we want to evaluate is
factual and not dependent on subjective aspects (e.g., cultural context). With that assumption, we
assume that references here generally have one-to-one mapping to representation in one language
where the representation here is considered common knowledge.

ETHICS STATEMENT

This work aims to evaluate the consistency of the language model across different senses (partic-
ularly between a monolingual input and its code-mixed counterparts) and the impact of different
factors on that metric. Doing such a study could shed light on the limitations of language models
and think of the mitigations of such matters.

REPRODUCIBILITY STATEMENTS

We used open-source pretrained models and also dataset for all of the reported experi-
ments thus no undisclosed assets utilized in our work.  Additionally, we also provide
necessary experiments’ output and codes on https://anonymous.4open.science/r/
knowledgeConsistencyAndConflict-4827.
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Table 2: Input sample for the evaluation task. We only predict the object in bold. I\ (g1~ is the
baseline input.

xlm-r input mt0 input
Iono Paris is the capital of <mask> Paris is the capital of <extra_id_0>
Iem b is the capital of <mask> 2\ is the capital of <extra_id 0>

I\(snnoy <mask> is the capital of <mask>  <extra_id_0> is the capital of <extra_id 1>

A APPENDIX

A.1 INPUT FORMAT

In our task definition, we introduce our evaluation task in both intuition and math perspective. Here
is the input sample in Table [2| Meanwhile, as presented in the task definition, we do not consider
whether predictions are true but focus on the same prediction distributions regardless of languages.
Note that we did not perturb the surface structure in order to minimize variables to affect factual
knowledge recall because S'? ”switches-in” at grammatically correct point as the new subject (Prat-
apa et al., 2018).
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A.2 METRIC FUNCTION AND INTERPRETABILITY APPROACH

RankC RankC (Qi et al.,|2023) is used to evaluate the cross-lingual knowledge consistency. Given
a set of statements S where each of the statement having each own I,,,,,, and I.,,, the number
of candidates Cand(Ocv|Imono) of i-th statement N, mono’ stands for the j-th candidate of
Cand(Ocv|Inono), cm? stands for the j-th candidate of Cand(O¢y |l ), and the RankC score
of Cand(Ocvy |Inono) concerning Cand(Oc¢y |1y, ) can be written as

lel Z] ) % x PQj
RankC(ecm, mono) = Bt , (D
|I7TLOTLO|
1 . .
PQj = ~|{cm},em?, - em]} N {mono}, mono?, - - ,monoal }|. (2)
J

Top@1 Accuracy The Top@1 accuracy is defined as the average number of exact matches be-
tween the top-1 predictions given I, ,n, and I.,.

Subject-Object Attention Let Aflkg be the attention score between a-th token and b-th token in a
statement k, Oy, is the set of indices of the masked tokens in k, S is the set of indices of subject

tokens in k, and K is a set of statements, the average attention weight of head [ in ¢ layer can be
defined as

3 Tocoy Lses, AN
keK [Ok|

K]

Attn(hHY) = 3)

IG? Score  If w'" is the activation value of j-th neuron in the [-th layer of a particular input (either
code-mixed or not), m is the approximation step, and ¢ as a token of the whole ground truth object
entity, the score for a given I,,,n0 O I¢p, is defined as

oP(t| L w")
72]@ 1 k , (l)
20,0y _ OGnw; ")
1G*(w;”) = E | “)

teT
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A3.1

A.3 FINDINGS IN DETAILS

LAYER-WISE CONSISTENCY

RankC across Encoder Layers in mt0-base
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Figure 17: mTO layer-wise cross-lingual consistency scores (left: RankC, right: Top@1)

18



Under review as a conference paper at ICLR 2025

972
973
974
975
976
977
978
979
980
981
982

983 RankC across Encoder Layers in xIm-r-base Accuracy across Encoder Layers in xIm-r-base

984 en-de

en-de
07 e e

985 = o
05, —enta 06 —enta

986 —— baseline —— baseline

0s = os

987 S_, 04 % 0.4
4 e

988 - i

989 02 02
990 0.1 0.1

U;/x —
991 o 2 4 6 8 10 0 2 4 6 8 10
992 Layer Layer
RankC across Encoder Layers in xIm-r-large Accuracy across Encoder Layers in xIm-r-large

994
995 — enae

— en-de

s en-ar 0.8 en-ar

—— en-id ~——— en-id

996 — e — e
997 0.6° —— baseline 0.6 ~— baseline

998
999
1000 S o

1001 = | | | | - S R
1002 : : wo e e v : oo e

1003

1004

1005

ooe —_— S — e e
1007 — —
1008 g =

1009

1010 I::7//ﬂtt§§§§:;<:::::j;;;
1011 L e IR
1012 0 0

1013 e e

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Rankc(0-1)
o
2
Accuracy(0-1)
°
2

RankC(0-1)

Accuracy(0-1)
-
i

Figure 18: xlm-r layer-wise crosslingual consistency scores (left: RankC, right: Top@1)
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A.3.2 OVERALL CONSISTENCY

Overall Crosslingual Consistency of mt0
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Figure 19: Cross-lingual consistency scores across languages of mtO (top: RankC, bottom: Top@1
Accuracy). Note: The dashed line here is the average corresponding consistency scores of mt0-base
across languages
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Figure 20: Cross-lingual consistency scores across languages of xIm-r (top: RankC, bottom: Top@ 1
Accuracy). Note: The dashed line here is the average corresponding consistency scores of xlm-r-
base across languages
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Figure 21: Overall cross-lingual consistency in mtO grouped by 3 factors (left: geographics, middle:
language family, right: writing scripts.). Metrics legend: top: RankC, bottom: Top@1 Accuracy.
Models legend: red: mtO-large, blue: mtO-base

Overall Crosslingual Consistency of xim-r Overall Crosslingual Consistency of xim-r Overall Crosslingual Consistency of xim-r.

Figure 22: Overall cross-lingual consistency in xIm-r grouped by 3 factors (left: geographics, mid-
dle: language family, right: writing scripts). Metrics legend: top: RankC, bottom: Top@1 Accuracy.
Models legend: red: xlm-r-large, blue: xIm-r-base
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A.3.3 SUBJECT-OBJECT ATTENTION SCORE DIFFERENCES
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Figure 24: Subject—Object attention difference with 1,4, to Iy, in xIm-r for some code-mixed
languages (From left to right, base model and large model. from top to bottom, en—de, en—ar, en—id,
and en—ta).
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Average Attention Scores Difference in mt0-base for Baseline
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Figure 25: Subject—Object attention difference with I,,0n0 to Iy, in all models for baseline
codemixed input. Models size legend: left: base, right: large. Models family legend: top: mTO,

bottom: xIm-r.
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A.3.4 FEED-FORWARD NEURONS’ GRADIENTS SUM

average IG~2 sum
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Figure 26: G2 scores in mt0 for en—de, en—ta, en—id, and en—ar. Models legend: upper two rows:
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Figure 27: I G? scores in xIm-r for en—de, en—ta, en—id, and en—ar. Models legend: upper two rows:
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Model Codemixing Language « Patched FFN Layers

en—ta 0.7 1[0,3,10,11]
mi0-base o o 07 [0.1.9,10]
mi0-large en—ta 0.8 1[0,1,19,20,21]

en—ar 0.8 [0,1,19,20,21]
«Imr-base en—ta 0.7 1[5,8,9,10]

en—ar 0.7 [5,7,8,10]
xImr-large en—ta 0.7 10,2,5,19,20]

en—ar 0.8 [17,18,19,20,21]

Table 3: Causal Intervention Hyperparameters Setup

A.4 IMPROVING CONSISTENCY

A.4.1 ADDING MONOLINGUAL BIAS

This experiment aims to measure whether each pattern has a causal relationship with cross-lingual
consistency.

* Attention score suppression: Using the definition from and define a suppression con-
stant v, « € [0, 1), the patched attention weight of every object-subject relation will be
AZ b= OéAa’b.

* Feed-forward neuron activation patching (Vig et al., [2020; |Geiger et al., [2021)): consider
agl’p ) as the activation of ¢-th token on I,,,,, produced by p-th neuron in [-th encoder
layer’s feed-forward network, then patched activation value for the ¢-th token on I.,, is

dgl’p ) — aEl’p ), in which we apply this for every mask token.
* Hybrid: We apply attention weight suppression and feed-forward neuron activations patch-

ing simultaneously.

For the hyperparameters used in the causal intervention experiment, we set the « value that is not
too big so that did not significantly diminish the attention weight yet making the attention weight
distribution for /.., closer to that weight distribution for I,,,,,,. While for FFN-layers, we intervene
4 different encoder layers for base models and 5 different encoder layers that have language-sensitive
neurons based on IG? (i.e. layer which has noticeable I G? distribution difference between I,,,on0
and I.m). Readers can refer to table[3|to see the hyperparameters used in this experiment.
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Figure 28: Intervention scores in mt0. Metrics legend: left: RankC, right: Top@1 Accuracy. Models
legend: upper two rows: mt0O-base, lower two rows: mtO-large
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RankC across Encoder Layers in xIm-r-base
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Figure 29: Intervention scores in xIm-r. Metrics legend: left: RankC, right: Top@1 Accuracy.
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A.4.2 IMPACT OF LARGER VOCABULARY
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Figure 30: Layer-wise cross-lingual knowledge consistency of xIm-v vs xlm-r-base

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

RankC (0-1)

Accuracy (0-1)

Overall Crosslingual Consistency of xIm-r-base
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Figure 31: Effects of vocabulary expansion to overall cross-lingual consistency (top: RankC, bot-
tom: Top@1 Accuracy). Note: The dashed line here is the average corresponding consistency scores
of xIm-r-base across languages
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Token Parity Ratio vs Consistency Difference
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Figure 34: Regression analysis between parity ratio and RankC improvement offered by xlm-v to
xlm-r. Spearman p = 0.06. We define parity ratio as the token length ratio between tokenized
subjects for xIm-v-base and xIm-r-base. Our analysis discovers that many languages have a token

parity ratio average within 0.8-1, which means that many of the subject entities are known on both
tokenizers of the models.
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A.4.3 THE EFFECT OF PRE-TRAINING OBJECTIVE

RankC across Encoder Layers in xIm-r-base Accuracy across Encoder Layers in xIm-r-base
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Figure 35: Layer-wise cross-Lingual knowledge consistency of xlm-align vs xlm-r-base
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Overall Crosslingual Consistency of xIm-r-base
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Figure 36: Effects of pretraining objective to overall cross-lingual consistency (top: RankC, bottom:

Top@1 Accuracy).

Average Attention Scores Difference in xim-r-base for En-Ar Average Attention Scores Difference in xim-r-base for En-Ta Average Attention Scores Difference in xim-r-base for Baseline

Figure 37: Effects of cross-lingual supervision to subject—object attention scores to xIm-r-base.

We

can see there is a slight layer shift on the attention for dissimilar languages. left: en—ar, mid: en—ta,

right: baseline
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