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ABSTRACT

Geometry problem solving presents distinctive challenges in artificial intelligence,
requiring exceptional multimodal comprehension and rigorous mathematical rea-
soning capabilities. Existing approaches typically fall into two categories: neural-
based and symbolic-based methods, both of which exhibit limitations in reliability
and interpretability. To address this challenge, we propose AutoGPS, a neuro-
symbolic collaborative framework that solves geometry problems with concise,
reliable, and human-interpretable reasoning processes. Specifically, AutoGPS
employs a Multimodal Problem Formalizer (MPF) and a Deductive Symbolic
Reasoner (DSR). The MPF utilizes neural cross-modal comprehension to translate
geometry problems into structured formal language representations, with feedback
from DSR collaboratively. The DSR takes the formalization as input and formulates
geometry problem solving as a hypergraph expansion task, executing mathemat-
ically rigorous and reliable derivation to produce minimal and human-readable
stepwise solutions. Extensive experimental evaluations demonstrate that AutoGPS
achieves state-of-the-art performance on benchmark datasets. Furthermore, hu-
man stepwise-reasoning evaluation confirms AutoGPS’s impressive reliability and
interpretability, with 99% stepwise logical coherence.

1 INTRODUCTION

Mathematical reasoning constitutes a fundamental component of human intelligence. Among various
mathematical domains, geometry problem solving (GPS) has attracted significant attention due to
its intrinsic elegance and deductive completeness (Tarski, 1998; Trinh et al., 2024). Distinct from
other mathematical disciplines such as algebra (Hendrycks et al., 2021; Cobbe et al., 2021; Yu et al.,
2024), geometric problem solving inherently involves the analysis and comprehension of multimodal
information, including visual diagrams and textual descriptions (Chen et al., 2022b; Seo et al., 2015;
Lu et al., 2021; Wu et al., 2024; Peng et al., 2023; Huang et al., 2024). This process necessitates not
only the understanding of multimodal problem formulation but also rigorous mathematical deduction
to derive solutions (Lu et al., 2023; Gao et al., 2025; Huang et al., 2025b; Zhang et al., 2024a; Chen
et al., 2022b; Liu et al., 2024a).

Recently, many methods have been proposed for this challenging task, which are primarily fall into
two categories: (1) Neural-based methods, including specialized neural geometry solvers (Zhang
et al., 2023; Li et al., 2024c) and multimodal large language models (MLLMs) (Gao et al., 2025;
OpenAI, 2024; OpenAI et al., 2024; Qwen et al., 2025; Huang et al., 2025b; Chen et al., 2024c;b;
Gao et al., 2024; Wang et al., 2024b; Chen et al., 2024a; Zhang et al., 2025; Sun et al., 2023;
2024), demonstrate superior multimodal comprehension capabilities. However, as shown in Figure 1
(left), such methods are unreliable and prone to generating plausible but logically flawed reasoning
steps due to hallucination (Huang et al., 2025a), leading to erroneous conclusions. (2) Symbolic
approaches (Lu et al., 2021; Peng et al., 2023; Wu et al., 2024) operate on formal language inputs
through predefined rules and algebraic computations with basic mathematical rigor. However, as
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Question: Find the measure of angle H.
Choices: A. 26°  B. 31°  C. 62°  D. 88°
Answer: B 

Neural Method
Qwen2.5-VL-32B: We are tasked with 
finding the measure of angle H in the 
given geometric diagram ... The points H, 
G, J, K, F lie on the circumference of the 
circle, forming a cyclic quadrilateral ... 
The inscribed angle \angle H subtends 
arc HF ... \angle H = \frac{1}{2} \times 
\text{Measure of arc } HF = \frac{1}{2} 
\times 132^\circ = 66^\circ ... The 
correct measure, based on the problem's 
context, is: \[\boxed{C}\]

Symbolic Method
InterGPS: 215

K

J
H

G

F

26° 88°

Diagram Formalization
Circle(B, r0), Circle(D, r1), Circle(E, r2),
PointLiesOnCircle(A, Circle(B, r0)),
PointLiesOnCircle(A, Circle(D, r1))
...
AutoGPS:
Equals(DiameterOf(Circle(D)), 10),
Equals(DiameterOf(Circle(E)), 10), 
Equals(DiameterOf(Circle(B)), 20),

Text Formalization
InterGPS:
Find(AreaOf(Shape($)))
AutoGPS:
Find(Sub(AreaOf(Circle(B)),Add(AreaOf
(Circle(E)),AreaOf(Circle(D)))))

Problem Text
Find the area of the shaded region.

A

D

B

E

C

Figure 1: Failure cases of current methods. Left: Qwen2.5-VL-32B-Instruct exhibits hallucination-
induced errors during reasoning, producing an incorrect conclusion. The symbolic method (Inter-GPS)
also fails and lacks traceable steps for error diagnosis. Right: Inadequate cross-modal understanding
leads to incomplete formalization, further obstructing symbolic solving. Blue/red annotations indicate
correct/erroneous reasoning or answers.

exemplified in Figure 1 (right), they struggle to completely formalize given multimodal problem
input, leading to unreliable problem-solving results. Furthermore, neural methods inherently lack
interpretability (Zhang et al., 2021; Li et al., 2024c), and existing symbolic methods fail to provide
explicit human-interpretable reasoning steps (Lu et al., 2021; Peng et al., 2023; Wu et al., 2024) as
shown in Figure 1 (left). This naturally leads us to pose a significant research challenge: Can we
develop an automated geometry problem solving methodology that demonstrates reliable and
interpretable reasoning capabilities?
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Figure 2: Performance compari-
son among existing methods.

To address this challenge, we propose AutoGPS, a neuro-symbolic
collaborative framework that solves geometry problems with
concise, reliable, and human-interpretable reasoning processes.
Specifically, AutoGPS comprises two principal components: the
Multimodal Problem Formalizer (MPF) and the Deductive Sym-
bolic Reasoner (DSR). The MPF is a formalization agent that
processes image-text pairs of geometric problems. By enhancing
multimodal large language models with domain-specific parsing
tools, it executes pre-formalization and multimodal alignment op-
erations to transform geometric problems into formal language
representations. The DSR is a symbolic computation engine based
on predefined rules, accepting formal problem descriptions as in-
put. It validates the formalization and provides feedback to the
MPF for refinement until the formalization is error-free. Subse-
quently, the DSR formulates the problem-solving process as a
hypergraph expansion task, where the formal language literals are
treated as nodes and derivation steps are treated as hyperedges. It iteratively applies two complemen-
tary strategies to expand the hypergraph until the solution node is reached. Upon solution attainment,
it identifies the minimal sub-hypergraph for solution derivation and generates a syllogistic-structured
reasoning process. Therefore, the proposed AutoGPS effectively solves the geometry problem with
rigorous, concise, and human-readable derivation, maintaining both reliability and interpretability.

Experimental results on two GPS benchmarks (Lu et al., 2021; Zhang et al., 2023) demonstrate
that our AutoGPS outperforms the existing methods by margins of 4.1% and 9.2% and the state-
of-the-art mathematical reasoning MLLMs by 18.0% and 26.4%. Human stepwise reasoning eval-
uations validate that AutoGPS achieves 99% stepwise accuracy, surpassing the 71% accuracy of
the best-performing MLLM (Zhu et al., 2025), demonstrating absolute superiority in reliability and
interpretability over existing methods.

2 RELATED WORK

2.1 MATHEMATICAL REASONING WITH MLLMS

Recent advancements in MLLMs have demonstrated significant potential for mathematical reasoning
in visual contexts, as evidenced by multiple benchmark studies. The research community has
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developed specialized datasets to systematically assess these capabilities: MathVista (Lu et al., 2023)
serves as the pioneering benchmark for evaluating visual mathematical reasoning, while MATH-
Vision (Wang et al., 2024a) provides comprehensive assessments across core mathematical domains,
including algebra, statistics, and geometry. MathVerse (Zhang et al., 2024b) contributes 2,612 human-
annotated visual mathematical problems spanning planar geometry, solid geometry, and functional
analysis. Complementing these efforts, GeoEval (Zhang et al., 2024a) specifically targets geometric
reasoning evaluation through plane and solid geometry problems. Building upon these foundational
works, our research involves a comprehensive evaluation of MLLMs’ performance in plane geometry
contexts. We utilize two larger-scale datasets: Geometry3K (Lu et al., 2021) and PGPS9K (Zhang
et al., 2023), with particular emphasis on both formalization and solution-generation.

2.2 GEOMETRY PROBLEM SOLVING

Geometry problem solving remains a critical research focus (Lu et al., 2021; Peng et al., 2023; Wu
et al., 2024; Li et al., 2024c; Gao et al., 2025; Huang et al., 2025b; Seo et al., 2015; Hao et al., 2022;
Zhang et al., 2022; 2023; Sun et al., 2025), with existing approaches falling into three main categories:
neural-based, symbolic-based, and neural-symbolic methods. Neural methods leverage trained
networks (PGPSNet (Zhang et al., 2023) and LANS (Li et al., 2024c)) or fine-tuned multimodal
LLMs (LLaVA (Liu et al., 2023; 2024a;b), G-LLaVA (Gao et al., 2025), Vision-R1 (Huang et al.,
2025b)) for geometric reasoning, while symbolic systems (Inter-GPS (Lu et al., 2021), E-GPS (Wu
et al., 2024)) employ formal language (Xu et al., 2024b;a) and deductive rules. Neural-symbolic
approaches such as GeoDRL (Peng et al., 2023) and FGeo-HyperGNet (Zhang et al., 2024c) integrate
neural networks with symbolic solvers for heuristic search, reducing the search space to enhance
efficiency. These methods, however, exhibit limitations in reliability and interpretability. Neural
methods suffer from hallucination issues, leading to incorrect reasoning and answers, while symbolic
methods produce algebraic solutions lacking procedural transparency. Our framework first translates
multimodal problems into formal language representations, then executes symbolic deduction to
generate human-readable reasoning steps, ensuring reliability and interpretability.

2.3 NEURAL-SYMBOLIC METHODS FOR MATHEMATICS

The limitations of purely neural (unreliable) and purely symbolic (non-scalable) methods have
driven the development of neuro-symbolic frameworks for mathematical reasoning (Trinh et al.,
2024; Li et al., 2025; 2024b; Wu et al., 2025; Shang et al., 2025; Singh et al., 2025; Wu & Yu,
2025). Specifically, these approaches are utilized for complex problem-solving by leveraging neural
methods for heuristic guidance in tasks like geometry proof and inequality deduction (Trinh et al.,
2024; Li et al., 2025). They are also employed for reliable dataset generation, ensuring the logical
rigor of mathematical problem-proof pairs via symbolic verification (Li et al., 2024b; Wu et al.,
2025). Another key direction involves agent-style methods, which empower LLMs with planning
and self-correction to optimally interact with external symbolic tools for enhanced precision and
robustness (Yang et al., 2023; Shang et al., 2025; Singh et al., 2025; Wu & Yu, 2025). These methods
influence our approach. The proposed AutoGPS utilizes an agent-style mechanism in its MPF
coupled with a feedback and refinement loop involving the DSR. This collaboration ensures precise
formalization and guarantees that the DSR’s output is highly reliable and interpretable, providing
minimal, syllogistic-structured human-readable reasoning steps.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Following (Lu et al., 2021), given a predefined theorem set T , we aim to solve geometry problems
formalized as D = {(Di, Ti)

N
i=1}. Here, (Di, Ti) is the i-th multimodal geometry problem descrip-

tion, where Di represents the original geometric diagram and Ti denotes the corresponding textual
description, specifying the problem objective (e.g., “Find length of line AB”). In the following, we
omit the subscript i to represent (Di, Ti) as (D,T ) for brevity. To ensure the reliability and inter-
pretability, given (D,T ), our AutoGPS aims to generate the correct solution a∗ with corresponding
stepwise reasoning process S = {s1, s2, . . . , sn}. where si is the i-th reasoning step.
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3.2 MODEL OVERVIEW

The proposed AutoGPS framework, as illustrated in Figure 3, comprises two core components: the
Multimodal Problem Formalizer (MPF) and the Deductive Symbolic Reasoner (DSR). Initially, given
formal language spaceL defined in Appendix F, the MPF formalizes input geometric problems (D,T )
into structured formal language representations L = {l1, l2, . . . , lk,Find(t)} ⊂ L. Here each li is a
formal language literal (e.g., Line(A,B)), Find(t) is a statement indicating the problem-solving goal
t (e.g., LengthOf(Line(A,B))). Given formalization L, the DSR validates the self-consistency of L
and provides feedback to the MPF for refinement iteratively until the formalization is error-free. Then,
the DSR formulates the problem-solving process as a hypergraph expansion task, where the formal
language literals are treated as nodes and derivation steps are treated as hyperedges. Subsequently,
DSR iteratively expands the hypergraph through two complementary strategies, Deductive Reasoning
and Algebraic Reasoning, until the solution literal a∗ is reached. Here a∗ is of form Equals(t, v),
where t is the target literal and v is the solution value (e.g., Equals(LengthOf(Line(A,B)), 2)).
Finally, DSR generates a human-readable and concise solution consisting of a sequence of reasoning
steps S = {s1, s2, . . . , sn} based on the minimal reasoning sub-hypergraph leading to a∗. The details
of each component are described in the following sections.

Deductive Symbolic Reasoning

Multimodal Problem Formalization

     Stepwise Solution

Find the area of the figure.

Formalize the following 
geometry problem.

       User Request

1. Annotate key points such 
as intersections, center of 
circles...

2. Pre-formalize the diagram 
and text respectively...

3. Align the diagram and text 
pre-formalization using 
MLLM’s ability...

4. Check if the final 
formalization is complete...

      Tasks

Based on the annotated 
diagram and formalized 
results, the geometric 
figure in question is a 
triangle, specif ically 
Triangle(A, D, C). The 
task is to find the area of 
this triangle... Replace $ 
with Triangle(A, D, C). 
So the  f inal  problem 
formalization is... At last, 
use syntax check tool to 
make sure grammatical 
correctness...

      Alignment

Line(A, B), Line(A, C), Line(B, C)
Line(A, D), Line(C, D), Line(B, D)
PointLiesOnLine(B, Line(A, C))
Perpendicular(Line(B, C), Line(B, D))
Equals(LengthOf(Line(A, C)), 10)
Equals(LengthOf(Line(A, D)), 13)
Equals(LengthOf(Line(C, D)), 13)
Triangle(B, C, D), Triangle(A, B, D)
Find(AreaOf(Triangle(A, D, C)))

       Fomalization

    Geometry
    Validation

CD BC

BD ⟂ BC

BD△ ADC

···

start

△ BCD

      Hypergraph
      Construction

BD ⟂ BC

BD CD BC△ ADC

···

start

△ BCD

BC2 + BD2 = CD2 AD=CD

      Hypergraph
      Expansion

AD=CD

BD ⟂ BC

BD CD BC△ ADC

···

start

△ BCD

BC2 + BD2 = CD2

Area(△ ACD) = 10 × BD/2

···

···

Area(△ ACD) = 60

BD=12

Area(△ ABD) = 30

      Minimal Subgraph 
      Traceback

✔️Completeness

Lines:[AB, AC, BC, AD, CD, 
BD]...
Relations:[BD ⟂ BC]
Labels:[AC=10,AD=13,CD=13]

Find(AreaOf(Shape($)))

      Preformalization

       Annotation

Assume ...
similar ...

Annotation

Text 
Parsing

Diagram 
Parsing line A B

AB = 5

Similar($, $)

Line(A, B)
Line(A,B,C)
Line($,$)

Syntax 
Check ️√️Line(A,B)

×️Line(A,B,C)
×Line($,$)

        Tool Library

✔️Unambiguity ✔️Syntax

✔️Consistency

Solution
Found?

Yes

No

    Iteration

Triangle 
Definition

Line(A, B)

Literal Node

Derivation Hyperedge

      Deductive Reasoning

      Algebraic Reasoning

        Feedback and Refinement

Step 1: Triangle Definition
퐶�, 퐵�, 퐵퐶 ⇒△ 퐵퐶�
Step 2: Pythagorean Theorem
퐵퐶 ⊥ 퐵�, △ 퐵퐶�
⇒ 퐵퐶2 + 퐵�2 = 퐶�2

Step 3: Triangle Area Formula
퐵퐶 ⊥ 퐵�, △ 퐴퐶�
⇒ Area(△ 퐴퐶�)
=  퐴퐶 × 퐵� / 2
... ...
Step 11: Substitution
Area(△ 퐴퐶�)
= 10 × 퐵�/2, 퐵� = 12
⇒ 60 = Area(△ 퐴퐶�)

Answer: Area(△ 퐴퐶�) = 60

Figure 3: Overview of the proposed AutoGPS framework.

3.3 MULTIMODAL PROBLEM FORMALIZER

To transform geometry problems into formal language representations, we propose the Multimodal
Problem Formalizer (MPF). Specifically, the MPF is a multimodal agent equipped with a tool
library and executes a predefined sequence of tasks (Annotation, Pre-formalization, and Multimodal
Alignment) to generate a complete formal language representation L.

Annotation. Formal language specifications depend on point labels, while real-world geometric
diagrams often lack annotations of critical points. To address this issue, we introduce a pre-trained
model Ma based on the FPN architecture (Lin et al., 2017) to detect key points and explicitly
annotate them in the diagram. For a given geometry diagram D, the model Ma detects key points
such as intersection points and circle centers, and assigns labels to these points, formulated as
Pt, Y = Ma(D), where Pt represents the detected key points (e.g., triangle vertices in Figure 3) and
Y refers to the corresponding label annotations (e.g., ABCD in Figure 3). Then, a new diagram
D′ = (D,Pt, Y ) is constructed with all key points annotated for subsequent processing.

Pre-formalization. Given the annotated diagram D′, we introduce a pre-formalization process to
extract geometric relations. However, Figure 1 (left) shows that existing MLLMs still struggle with
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extracting precise geometric relations. To address these, we introduce a Diagram Parser and a Text
Parser to parse the information in the diagram D′ and the problem text T respectively.

To precisely obtain the information in the diagram, we introduced a pre-trained neural model Md

based on PGDP-Net (Zhang et al., 2022) as the Diagram Parser. For a given annotated diagram D′,
the model Md extracts geometric primitives (e.g., segments, circles) and relations (e.g., parallelism,
perpendicularity), formulated as Pg, R = Md(D

′), where Pg represents geometric primitives (e.g.,
lines shown in Figure 3) and R represents geometric relations (e.g., BD ⊥ BC shown in Figure 3).

Inspired by Lu et al. (2021), for better efficiency, we utilize a rule-based Text Parser Mt to translate
the natural language text T into formal language literals T ′ = {l′1, l′2, . . . , l′k′ ,Find(t′)}, where
each l′i is a pseudo formal language literal and Find(t′) is a pseudo problem solving goal. Here,
“pseudo” indicates that the literals are not yet in the formal language space L, which may include
incomplete expressions (e.g., Shape($) in Figure 3 with the unknown represented as $). Unlike
neural sequence-to-sequence approaches (Vaswani et al., 2017; Gan & Yu, 2018), rule-based methods
empirically show superior efficiency and better performance without relying on large-scale datasets
and computational resources (Seo et al., 2015; Bansal et al., 2014; Lu et al., 2021). However, previous
rule-based methods (Seo et al., 2015; Lu et al., 2021) struggle with handling complex mathematical
expressions (e.g., chain of equalities like x1 = x2 = . . . = xn). To address this, we extend the
pattern-matching rules of the Text Parser to transform complex expressions into formal language
literals. Finally, the pre-formalization F is formulated as F = (Pg, R, T ′) for further processing.

Multimodal Alignment. Since the global geometric information may not be fully captured in the pre-
formalization stage (e.g., shaded region and diameters in Figure 1 (right)), we further introduce the
multimodal alignment phase to enhance the completeness of the formalization. Given the annotated
diagram D′ and the pre-formalization F , we leverage MLLMs’ multimodal understanding capabilities
to generate a complete formalization set L by aligning F with D′. Specifically, the multimodal agent:
(1) takes D′ and F as input, then (2) analyzes multimodal information to clarify ambiguities and fill
in missing information, and (3) generates a complete formalization set L = {l1, l2, . . . , lk,Find(t)}.
Finally, the MPF outputs the complete formalization set L to the DSR for further processing.

Compared to existing methods which only parse elementary geometric relationships, the proposed
MPF effectively comprehensively extracts fine-grained and global geometric relationships from mul-
timodal information, thereby enhancing the completeness and accuracy of the problem formalization.

3.4 DEDUCTIVE SYMBOLIC REASONER

Given the geometry problem formalization L = {l1, l2, . . . , lk,Find(t)}, to derive the solution
a∗ with a reasoning process S = {s1, s2, . . . , sn}, we propose the Deductive Symbolic Reasoner
(DSR). Specifically, the DSR is a symbolic engine that formulates the problem-solving process as a
hypergraph expansion task, and generates human-readable reasoning steps S leading to a∗.

Geometry Validation. Due to the input sensitivity of rule-based symbolic solvers (Lu et al., 2021),
we propose a geometry validation step to ensure the consistency and completeness of the formalization
L. Specifically, the DSR constructs a symbolic representation d of the formalization L, and verifies
whether these relations are self-consistent and complete. If the formal descriptions are incomplete but
can be logically completed using existing knowledge, the symbolic engine automatically supplements
the missing relations. For instance, given PH ⊥ AB with point H on AB, the DSR infers other
two missing relations, i.e., PH ⊥ AH, and PH ⊥ BH. Moreover, contradictory expressions, such
as asserting collinearity of points A,B,C while simultaneously including Triangle(A,B,C) ∈ L,
will be flagged as inconsistent. Consistent and complete formalization should provide equivalent
information given in the original diagram D. Inconsistent formalizations with error messages will
be sent back to the MPF for refinement and resubmission iteratively, until the DSR receives a self-
consistent formalization. If the maximum iteration threshold is reached, the DSR will terminate the
process, and the problem will be marked as unsolvable. Finally, a complete and consistent symbolic
representation d = {ld1 , ld2 , . . . , ldn} is constructed for the next step, hypergraph reasoning.

Hypergraph Construction. Prior symbolic solvers (Lu et al., 2021; Peng et al., 2023; Wu et al.,
2024) derive solutions by constructing algebraic equation systems between known and unknown
quantities, expanding these systems via theorems, and solving them algebraically. However, this
approach exhibits limited interpretability due to the lack of traceability in the algebraic solving process.
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Inspired by AlphaGeometry (Trinh et al., 2024), we propose a hypergraph-based deductive reasoning
framework that preserves full reasoning traceability. Specifically, we enforce each reasoning step
si ∈ S following a syllogistic structure: (1) a theorem t ∈ T , (2) a premise set P = {p1, p2, . . . , pm}
including m premise literals pi, and (3) a conclusion set Q = {q1, q2, . . . , qm′} including m′

conclusion literals qi. Each reasoning step is formulated as P
t−→ Q. For example, applying the

Pythagorean theorem can be represented as: {△ABC,AB ⊥ AC} Pythagorean Theorem−−−−−−−−−−−→ {AB2+AC2 =
BC2}. Then, we model each literal as a node and each derivation step as a hyperedge. The reasoning
process is represented as a hypergraph G = (V,E), where V is the node set (all known literals) and E
is the hyperedge set (all derivation steps). Given symbolic representation d and problem formalization
L, the initial hypergraph is constructed with a hyperedge labeled “Known Facts” connecting the start
node (a trivial root) to all literals li ∈ L and ldi ∈ d.

Hypergraph Expansion. While AlphaGeometry (Trinh et al., 2024) excels at proving geometric
theorems, its core framework is strictly confined to deductive reasoning (DD) and geometric relation
transitions (AR), leaving general algebraic equation solving outside of its scope. To address this
limitation, we propose a unified hypergraph expansion framework that integrates both deductive and
algebraic reasoning. To derive the solution literal a∗ from the initial hypergraph G, we expand G
through the following two complementary strategies: (1) Deductive Reasoning matches each theorem
t ∈ T across node set V to expand G with new hyperedges (reasoning steps) and conclusion nodes.
(2) Algebraic Reasoning solves algebraic equations through stepwise transformations instead of bulk
solving (Lu et al., 2021; Peng et al., 2023; Wu et al., 2024), to ensure that each computation step
is intuitively human-interpretable. This strategy implements four atomic operations: Equivalent
Substitution, Constant Evaluation, Univariate Non-Linear Equation Solving, and Linear Equation
System Solving. Each algebraic transformation is formulated as a special deductive operation. For
example: Equivalent substitution deriving a = sin(x) from a = b and b = sin(x) is represented as:

{a = b, b = sin(x)} Equivalent Substitution−−−−−−−−−−−−→ {a = sin(x)} (1)

This uniform hyperedge representation ensures coherent graph expansion. To eliminate redundant
premise nodes in hyperedges, we enforce minimal sufficient equation sets for each atomic operation.
This is straightforward for the first three operations. For Linear Equation System Solving, which
yields multiple new equations, we solve a mixed-integer linear programming problem to identify the
minimal sufficient equation set required to derive each new equation.

The DSR iteratively applies Deductive Reasoning and Algebraic Reasoning alternately to expand
the hypergraph until either the solution node a∗ is identified or a predefined maximum iteration
threshold is reached. Additionally, to prevent cyclic reasoning during the process, the DSR tracks
all predecessors for each node (including all its premise nodes and their recursive predecessors) to
block backward reasoning toward ancestral nodes. This mechanism ensures the entire reasoning
hypergraph remains a directed acyclic hypergraph. This unified hypergraph-based framework
guarantees consistent formulation of diverse reasoning processes while maintaining full traceability
and interpretability throughout the problem-solving trajectory.

Minimal Solution Generation. Once identifying the solution node a∗, the DSR generates the most
concise solution steps by extracting the minimal reasoning sub-hypergraph that connects the start
node to the a∗ node. This subgraph must satisfy the following criteria:

(1) Single Source: Contains exactly one source node (in-degree of zero), i.e., the initial node start;

(2) Single Sink: Contains exactly one sink node (out-degree of zero), i.e., the solution node a∗;

(3) Minimality: Among all subgraphs satisfying (1) and (2), it minimizes the number of hyperedges.

This optimization problem, formerly known as the hypergraph shortest path problem, is generally
NP-hard but solvable in polynomial time for directed acyclic hypergraphs like ours (Gallo et al.,
1993; Gao et al., 2014). Once the minimal sub-hypergraph Gmin is obtained, the DSR first performs
topological sorting on Gmin to establish dependency order, then translates the sorted hyperedge
sequence into a human-readable stepwise solution S = {s1, s2, . . . , sn}. This process ensures logical
coherence and preserves interpretability throughout the solution trajectory. Appendix E provides some
examples of minimal reasoning hypergraphs. The complete algorithm is detailed in Algorithm 1.

6



Published as a conference paper at ICLR 2026

Algorithm 1 Deductive Symbolic Reasoning Algorithm

Input: problem formalization L = {l1, l2, . . . , lk,Find(t)}, max iteration n
Output: solution literal a∗, minimal stepwise solution S

1: d← GeometryValidation(L) ▷ If inconsistent, provide feedback to MPF and return
2: G← ProofGraph(L, d) ▷ Hypergraph Construction
3: a∗ ← null, i← 0
4: while a∗ = null and i < n do
5: G← DeductiveReasoning(G, T ) ▷ Deductive Reasoning
6: G← AlgebraicReasoning(G) ▷ Algebraic Reasoning
7: a∗ ← MatchLiteral(Equals(t, v)) ▷ Check if solution is found
8: i← i+ 1
9: end while

10: Gmin ← FindMimimalReasoningSubgraph(G, a∗)
11: S ← TopologicalSort(Gmin) ▷ Minimal Solution Generation
12: return a∗, S

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 1: Performance comparison among state-
of-the-art geometry problem solvers.

Method Geometry3K PGPS9K

Choice Completion Choice Completion

MLLMs
G-LLaVA-13B 29.0 0.3 27.0 0.0
Vision-R1-7B 57.1 43.8 49.6 36.8

Qwen2.5-VL-32B 67.6 41.9 56.1 43.5
InternVL2.5-78B 60.9 36.1 51.3 28.1
InternVL3-78B 74.5 57.4 61.1 48.9

GPT-4o 57.1 46.3 46.0 37.2

Neural Solvers
NGS 58.8 35.3 46.1 34.1

Geoformer 59.3 36.8 47.3 35.6
PGPSNet 77.9 65.0 70.4 62.7

LANS 82.3 71.3 73.8 66.1

Symbolic Solvers
InterGPS 63.5 50.6 66.2 57.4
E-GPS 67.9 - - -

GeoDRL 68.4 - - -
Ours (InternVL3) 77.6 70.2 79.2 72.3
Ours (Qwen2.5) 78.2 71.0 78.0 70.7
Ours (GPT-4o) 81.6 75.4 81.5 75.3

Datasets and Evaluation. Experiments were con-
ducted on two specialized GPS benchmarks: Ge-
ometry3K (Lu et al., 2021) and PGPS9K (Zhang
et al., 2023), which contain 3,001 and 9,000 image-
text pairs of plane geometric problems, respectively,
both providing four candidate options and corre-
sponding ground-truth answers. To enable compre-
hensive performance comparison, we adopted both
Choice and Completion evaluation formats. Addi-
tionally, we utilized Stepwise Accuracy evaluated
by human experts for stepwise reasoning quality.
More details are provided in Appendix A.

Implementation Details. We employed several
state-of-the-art MLLMs as agents in our framework.
Open-source: Qwen2.5-VL-32B-Instruct (Qwen
et al., 2025) (Qwen2.5), InternVL3-78B (Zhu et al.,
2025) (InternVL3). Closed-source: GPT-4o (Ope-
nAI, 2024). See Appendix A.3 for more details.

Baselines. (1) MLLMs: G-LLaVA-13B (Gao et al.,
2025), Vision-R1-7B (Huang et al., 2025b), Qwen2.5-VL-32B-Instruct, InternVL2.5-78B (Chen
et al., 2024c), InternVL3-78B and GPT-4o. (2) Specialized neural solvers: NGS (Chen et al., 2022b),
Geoformer (Chen et al., 2022a), PGPSNet (Zhang et al., 2023) and LANS (Li et al., 2024c). (3)
Symbolic solvers: InterGPS (Lu et al., 2021), GeoDRL (Peng et al., 2023) and E-GPS (Wu et al.,
2024).

4.2 EXPERIMENTAL RESULTS

This section presents the main experimental results of the proposed AutoGPS framework. We provide
additional experiments and analyses in Appendix B, including: (1) answer reliability evaluation, (2)
symbolic solver comparison, (3) failed cases analysis and (4) efficiency analysis.

Performance Comparison with State-of-the-Art Methods. As shown in Table 1, our AutoGPS
achieves competitive performance across task formats and datasets. For Choice tasks, it attains
comparable accuracy to SOTA methods on Geometry3K (81.6% vs. 82.3%), while demonstrating
a 7.7% improvement on the more complex PGPS9K dataset. In Completion tasks, our framework
outperforms SOTA methods by 4.1% and 9.2% on Geometry3K and PGPS9K, respectively.
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Notably, most of the neural methods exhibit significant performance degradation in open-form Com-
pletion tasks (e.g., Qwen2.5-VL-32B dropping by 25.7% on Geometry3K and 12.6% on PGPS9K),
as their probabilistic guessing mechanisms struggle to constrain solution spaces without predefined
options. In contrast, our AutoGPS demonstrates superior stability across task formats and dataset
complexities, maintaining minimal accuracy gaps between Choice and Completion tasks (∆=6.2% on
both datasets), attributed to its rigorous symbolic reasoning that derives solutions through explicitly
defined rules rather than data-driven predications.

Performance Comparision with Specialized MLLM. G-LLaVA-13B and Vision-R1-7B are special-
ized MLLMs fine-tuned for geometry problem solving. While Vision-R1-7B achieves comparable
accuracy with a small-scale model, G-LLaVA-13B struggles across all tasks (27.0–29.0% on Choice,
near-zero on Completion), revealing a critical limitation: such methods that rely on exhaustive textual
descriptions fail when text-diagram alignment is not perfect, which is common in real-world problems.
In contrast, our AutoGPS framework fundamentally addresses this gap by effectively extracting geo-
metric relations from diagrams and leveraging texts as supplementary information. This methodology
enables a thorough understanding of geometry problems through multimodal integration, thereby
attaining enhanced robustness in geometric comprehension.

Reasoning Reliability Evaluation. Generative large models suffer from hallucination phenomena,
leading to cascading errors in reasoning chains. In contrast, AutoGPS employs symbolic syllogistic
reasoning to enforce rigorous derivations, inherently avoiding such issues. To quantify this advantage,
we conducted a human evaluation experiment and utilized the Stepwise Accuracy metric to assess
the reasoning reliability of different methods, as shown in Figure 4. From the subset of problems
consistently and correctly solved by all methods, we randomly selected 100 instances to exclusively
focus on the reliability of their reasoning processes. Despite equivalent final accuracy, MLLMs
exhibited substantial logical flaws (Qwen2.5: 33.0%, InternVL3: 29.0%, GPT-4o: 32.0%), whereas
AutoGPS achieved almost perfect logical coherence (99%) across all cases. This demonstrates
AutoGPS’s capability in simultaneously guaranteeing answer correctness and reasoning validity,
thereby establishing both interpretability and reliability. Figure 6 illustrates a reasoning process
comparison example. Additional comparative examples are provided in Appendix D.2.

0% 20% 40% 60% 80% 100%
Stepwise Accuracy (%)

Qwen2.5
InternVL3

GPT-4o
Ours (Qwen2.5)

Ours (InternVL3)
Ours (GPT-4o)

Ours (GT)

67.0%

71.0%

68.0%

99.0%

99.0%

99.0%

100.0%

Figure 4: Reasoning reliability evaluation.
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Figure 5: Formalization quality comparison.

Find the perimeter of the parallelo-
gram.

Qwen2.5-VL-32B-Instruct

...We are tasked with finding the perimeter of a parallelogram. The given diagram shows a par-
allelogram ABCD with the following information: - One side length: AB = 18 - Another side
length: AE = 20. The height from D to AB is 16. ... From the diagram: AB = CD = 18
(opposite sides are equal). AD = BC = 20 (opposite sides are equal). ... The perimeter P of
a parallelogram is the sum of the lengths of all its sides. For a parallelogram with side lengths a
and b: P = 2a + 2b. Here: a = AB = 18, b = AD = 20 Substitute these values into the formula:

P = 2(18) + 2(20) ... P = 76. Final Answer: 76

AutoGPS

Step 1 : start
Known facts−−−−−−−−→ Para(A, C, D, E), 18 = AC, 20 = AE

Step 2 : Para(A, C, D, E)
PerimeterDefinition−−−−−−−−−−−−−−→ Peri(Para(A, C, D, E)) = AC + AE + CD + DE

Step 3 : Para(A, C, D, E)
Parallelogram−−−−−−−−−−−−−−→

Opposite Lines Equal
AE = CD, AC = DE

...(Step 4 and 5 are based on Transtivity of Equivalence, omitted)

Step 6 : Peri(Para(A, C, D, E)) = AC + AE + CD + DE, 18 = AC, 20 = CD,

18 = DE, 20 = AE,
Substitution−−−−−−−−→ 18 + 18 + 20 + 20 = Peri(Para(A, C, D, E))

Step 7 : 18 + 18 + 20 + 20 = Peri(Para(A, C, D, E))
Evaluate−−−−−−→ Peri(Para(A, C, D, E)) = 76

InterGPS
No intermediate steps provided.

↓
Answer: 76

Figure 6: Reasoning process Comparision. Blue/Red indi-
cates correct/wrong reasoning steps.

N Q ∥ O P. Find Q P.

Choices: A. 1.5 B. 2.8 C. 3.6 D. 6
Original Answer: C

Correct Answer: 3.0

Find the area of shaded region.

AutoGPS: Conflict encountered

when deriving AC2 + CD2 =

AD2 ⇔ 462 + 302 = 412

Figure 7: AutoGPS robustly handles
noisy inputs.

Formally Grounded Reasoning Enhances Noise Robustness. The inherent rigor of syllogistic
reasoning endows AutoGPS with exceptional resilience against inconsistent problem statements.
As demonstrated in Figure 7 (left), the framework successfully solves problems with missing valid
options through autonomous derivation of ground truth solutions. The complete reasoning process is
detailed in Appendix D.1, with corresponding hypergraph representations visualized in Figure 20. In
Figure 7 (right), it detects geometric contradictions (e.g., a right triangle leg exceeding hypotenuse
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length: 19 + 27 = 46 > 41) during the reasoning process. These results validate the robustness of
DSR against noisy inputs, demonstrating its appealing potential for real-world applications such as in
education and tutoring systems, where robustness and reliability are important.

Formalization Quality Comparison. Symbolic solvers are highly sensitive to the formalization
quality. We evaluate our AutoGPS against InterGPS (Lu et al., 2021) on Geometry3K through two
metrics: (1) Jaccard Similarity measures overlap between generated and ground-truth formalizations,
(2) Completion Accuracy assesses DSR’s problem-solving success using formalizations as input. As
demonstrated in Figure 5, AutoGPS achieves a Jaccard similarity of 0.868, significantly higher than
InterGPS’s 0.395, indicating substantially more accurate formal representations. This improvement
translates to a 27.6% increase in completion accuracy, showcasing that AutoGPS’s formalization
captures more complete and accurate geometric relations by Pre-formalization’s guidance and
Multimodal Alignment’s refinement, thereby enhancing the overall problem-solving performance.

4.3 ABLATION STUDY

To systematically evaluate component efficacy within our framework, we performed ablation studies
targeting both the MPF and DSR. Specifically, we analyzed the impact of Pre-formalization and
Multimodal Alignment in the MPF module, and the effectiveness of Minimal Solution Generation in
the DSR module. Additional ablation studies on the DSR module are provided in Appendix B.
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0%

50%

A
cc

ur
ac

y 
(%

)

0.0%

19.3% 18.1% 22.6%

62.4%
70.2% 71.0% 75.4%

+62.4%
+50.9% +52.9% +52.8%

W/O Pre-formalization
With Pre-formalization

Figure 8: Completion performance with/without
pre-formalization.
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Figure 9: Completion performance with different
alignment models.
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Figure 10: Steps distribution analysis for solu-
tion generation with versus without minimal so-
lution generation (MSG).

Pre-formalization. We compared the per-
formance of AutoGPS with and without Pre-
formalization on the Completion task. When pre-
formalization is not applied, the model generates
formalizations directly from annotated diagrams
and problem texts. The results are shown in Fig-
ure 8, where the Completion accuracy is signifi-
cantly improved by 50.9%–62.4% across all mod-
els. Since MLLMs still struggle to identify precise
geometric relationships such as collinearity shown
in Figure 1 (left), the generated formalizations are
often inaccurate. The pre-formalization guides
them to capture accurate geometric configurations,
providing formalizations of higher quality.

Multimodal Alignment. We evaluated problem-
solving accuracy across alignment configurations,
comparing no alignment with three distinct mul-
timodal alignment methods (Figure 9). Experi-
ments show that applying multimodal alignment to
pre-formalization achieved performance improve-
ments ranging from 7.8% to 13.0%, when eval-
uated with our symbolic solver. Notably, even
for solvers such as InterGPS that demonstrated
primary capability in handling ambiguous for-
malizations, multimodal alignment maintained a
4.2% improvement in problem-solving accuracy.
This demonstrates the effectiveness of our multi-
modal alignment phase to address semantic ambi-
guities and capture global geometric relationships,
thereby providing more complete formalizations.

Minimal Solution Generation. With Geome-
try3K ground-truth formalization, we analyzed the reasoning step distribution with and without
minimal solution generation, as visualized in Figure 10. The framework achieves a substantial step
reduction, decreasing the average number of reasoning steps from 237.15 to 16.69 (93% reduction).
It demonstrates that minimal solution generation systematically identifies the optimal deduction
trajectory, resulting in a more concise solution without sacrificing mathematical rigor.
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5 CONCLUSION

This study introduces AutoGPS, a neural-symbolic framework that addresses key challenges in
automated geometry problem-solving through multimodal formalization and deductive reasoning. By
aligning diagram-text semantics and generating verifiable stepwise proofs, AutoGPS outperforms
existing approaches on benchmark datasets while ensuring reliability and interpretability.
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A MORE EXPERIMENTAL SETUP DETAILS

A.1 DATASET

We evaluated our AutoGPS on two datasets: Geometry3K (Lu et al., 2021) and PGPS9K (Zhang et al.,
2023). Geometry3K contains 3,001 geometry problems with ground-truth formalization labeled and
double-checked by our human experts. The ground-truth formalization was used for two purposes:
(1) to evaluate the quality of generated formalization results, (2) as the input of symbolic solvers to
evaluate the performance of symbolic solvers.

A.2 EVALUATION METRICS

Choice and Completion Accuracy. To enable comprehensive performance comparison, we adopted
both Choice and Completion evaluation formats. For Choice tasks, the option answered by the
model or numerically closest to the solver’s output is selected, with random selection from four
options if resolution fails. For Completion tasks, answers are strictly validated through numerical
equivalence to ground-truth values, with unresolved cases automatically classified as incorrect. For
all tasks involving MLLMs, performance was evaluated using the Pass@3 metric, which deems a
task successful if at least one out of three independent sampling attempts produces a correct solution.

Formalization Quality. To evaluate the quality of formalization, we employed Jaccard similar-
ity (Jaccard, 1901) as one of the metrics. It is defined as the size of the intersection divided by the
size of the union of two sets, specifically:

J(P, Y ) =
|P ∩ Y |
|P ∪ Y | ,

where P is the set of predicted formalization results and Y is the set of ground-truth formalization
results. The order of literals in the formalization does not matter.

Human Evaluation of Stepwise Reasoning. To evaluate the quality of stepwise reasoning, we
employed Stepwise Accuracy. When evaluated by Stepwise Accuracy, a reasoning process is correct
if and only if all reasoning steps are logically valid and lead to a correct answer. Our evaluation
is conducted on the subset of problems that are consistently and correctly solved by all methods,
to isolate the impact of final answer correctness. These problems with corresponding reasoning
processes were distributed to three human experts for evaluation. The detailed criteria of stepwise
reasoning evaluation are provided as follows:

1. Accuracy of Geometric Information Comprehension: Whether the textual and graphical
information in the problem has been properly captured, including geometric elements (e.g.,
points, lines, circles), geometric relationships (e.g., perpendicularity, intersections), and text labels
(whether they are correctly associated with the corresponding geometric elements).

2. Correctness of Theorem Application: Whether each theorem is applied to appropriate geometric
entities and derives valid conclusions.

3. Validity of Algebraic Transformations: Whether algebraic operations are correctly implemented
and yield accurate equations.

4. Logical Coherence and Consistency: Whether the reasoning exhibits logical coherence and
consistency. Intermediate conclusions must align with the final answer, with no critical steps
omitted.

All reasoning steps were independently examined by three human experts. For contested items (i.e.,
those with divergent evaluations), the correctness of the reasoning process was ultimately determined
through collective deliberation and majority voting.
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A.3 IMPLEMENTATION DETAILS

The symbolic method InterGPS was reproduced using the authors’ open-source code. while results for
GeoDRL (Peng et al., 2023) and E-GPS (Wu et al., 2024) were extracted from original publications
due to code unavailability. All experiments were executed on an Intel(R) Xeon(R) Gold 6226R CPU
@ 2.90GHz platform in conjunction with eight NVIDIA GeForce RTX 3090 GPUs. A strict timeout
threshold of 1800 seconds was imposed on symbolic solvers, where any computation exceeding this
duration was systematically categorized as resolution failure. For MLLMs hyperparameters, we set
the max_tokens to 3096, temperature to 0.1, and top-p to 1.

B ADDITIONAL EXPERIMENTAL RESULTS

Answer Reliability Analysis. To further evaluate the reliability of answers generated by different
methods, we computed the Answer Reliability Rate (ARR) on the Completion task, defined as follows:

ARR =
Ncorrect

Nvalid
, (2)

where Ncorrect denotes the number of correct answers and Nvalid refers to the number of valid
answers produced by the model. This metric reflects the trustworthiness of a given answer, i.e., the
probability that a returned answer is correct. For MLLMs, a valid answer is defined as one that is
numerically well-formed and interpretable. For symbolic solvers, a valid answer is one derived within
the time limit. We calculated ARR as the proportion of correct answers among all valid responses;
the results are illustrated in Figure 11.

Our findings indicate that symbolic solvers (including InterGPS and our method) achieve substantially
higher ARR than MLLMs, underscoring the inherent reliability of symbolic reasoning. Furthermore,
our AutoGPS attains an ARR exceeding 90% across all experimental settings, outperforming InterGPS
by 10.3% to 11.8%, which highlights the enhanced reliability of our framework. This improvement
can be attributed to more rigorous formalization achieved by MPF, which reduce formalization
inaccuracies and establish a more dependable foundation for symbolic reasoning.
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Figure 11: Answer reliability rate comparison among different methods.

Additional Evaluation.

To further demonstrate the generalization and scalability of proposed AutoGPS framework, we evalu-
ated its performance on two additional datasets: MathVista (GPS) (Lu et al., 2023) and GeoQA (Chen
et al., 2022b), as shown in Table 2 and Table 3. The proposed AutoGPS (InternVL3) achieves 86.2%,
ranking 1st among existing open-source methods and competitive with several close-source models
on MathVista (GPS) and achieves 86.2%, outperforming NGS, SCA-GPS, and DualGeoSolver, and is
comparable to FGeo-HyperGNet (85.6%) on GeoQA. These results further validate the effectiveness
and robustness of our AutoGPS framework in solving diverse geometry problems.
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Table 2: MathVista (GPS) Performance Comparison

Method Choice Acc.
Human 48.4

Close-Source
DreamPRM (o4-mini) (Cao et al., 2025) 95.7
Step R1-V-Mini 89.9
Kimi-k1.6-preview-20250308 91.8
Doubao-pro-1.5 88.9

Open-Source
Vision-R1-7B (Huang et al., 2025b) 82.7
Ovis2_34B (Lu et al., 2025) 84.6
AutoGPS (InternVL3) 86.2

Table 3: GeoQA Performance Comparison

Method Choice Acc.
Human (Chen et al., 2022b) 92.3

NGS (Chen et al., 2022b) 57.4
NGS-Auxiliary (Chen et al., 2022b) 60.0
SCA-GPS (Ning et al., 2023) 64.1
DualGeoSolver (Xiao et al., 2024) 65.2
FGeo-HyperGNet (Zhang et al., 2024c) 85.6
AutoGPS (InternVL3) 86.2

Performance Comparison of Symbolic Solvers. We benchmarked the solving accuracy across
different solvers using the Geometry3K ground-truth formalization. This approach effectively isolates
the impact of formalization inaccuracies on problem-solving outcomes. As shown in Table 4, our
approach achieves superior performance in most tasks, even surpassing human experts in average
accuracy. This advantage of DSR originates from its enhanced capability for handling complex
geometric configurations and an advanced symbolic reasoning algorithm with a larger theorem set.

Table 4: Symbolic solvers comparison using the Geometry3K ground-truth formalization by Choice.

Method Question Type Geometric Shape Average
Angle Length Area Ratio Line Triangle Quad Circle Other

Human (Lu et al., 2021) 53.7 59.3 57.7 42.9 46.7 53.8 68.7 61.7 58.3 56.9
Human Expert (Lu et al., 2021) 89.9 92.0 93.9 66.7 95.9 92.2 90.5 89.9 92.3 90.9

InterGPS (Lu et al., 2021) 83.1 77.9 62.3 75.0 86.4 83.3 77.6 61.5 70.4 78.3
E-GPS (Wu et al., 2024) 90.4 92.2 73.6 100.0 91.4 93.1 87.9 81.1 75.3 89.8

GeoDRL (Peng et al., 2023) 86.5 93.7 75.5 100.0 87.7 93.1 90.2 78.3 77.8 89.4
HyperGNet(Zhang et al., 2024c) - - - - - - - - - 92.0

Ours 95.6 94.5 93.0 87.5 91.7 95.3 93.2 95.3 80.6 94.5

Failed Cases Analysis. In the human evaluation of reasoning processes, AutoGPS achieved 99%
stepwise accuracy, with only one failed case. We provide this case in Figure 12. Although the final
answer is correct, the formalization is not fully faithful to the original problem statement, violating
the requirement for accurate comprehension of geometric information (Criterion 1 in Appendix A.2).
The underlying causes are as follows:

(1) Ambiguous Labeling. The labels are spatially ambiguous. The label “13” could refer to either
segment DC or CE, which may mislead both MLLMs and even human experts to incorrectly associate
it with the nearer segment DC.

(2) Training Corpus Bias. The polygon “ABCD” appears far more frequently than “ABCE” in the
LLM’s training corpus, resulting in a bias, especially when a low decoding temperature is used.

Nevertheless, the formalization remains logically consistent and produces both sound reasoning
steps and the correct answer. This case raises a more challenging question for future work: How
can we ensure faithful formalization that accurately reflects the original problem, even when the
formalization is logically consistent and yields a correct answer?

For MLLMs, we observed that stepwise accuracy was surprisingly higher than anticipated. We
therefore further examined several failed cases and found that the correctly solved problems were
generally simpler, requiring only straightforward reasoning without complex theorem applications or
deep geometric understanding. Most complex problems, however, were not solved correctly, since
MLLMs often failed to provide valid reasoning steps, leading to incorrect answers, and thus such
cases were excluded from this category. Even when correct answers were produced, the following
reasoning flaws were evident:

(1) Incorrect theorem application (e.g., Qwen2.5 in Figure 15).
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(a) Original problem diagram.

A B

CDE

(b) MPF labeled diagram.

Problem: Find the Perimeter of the parallelogram.

Formalization:
PointLiesOnLine(D, Line(E, C))
Equals(LengthOf(Line(A, D)), 5)
Equals(LengthOf(Line(B, C)), 13)
Equals(LengthOf(Line(C, D)), 12)
Find(PerimeterOf(Parallelogram(A, B, C, D)))
Answer: 50

(c) Problem description and MPF formalization. The red part indicates the
unfaithful formalization and the blue part indicates the correct answer.

Figure 12: Failed case of AutoGPS.

(2) Incorrect matching of geometric elements and text labels (e.g., GPT-4o in Figure 15).

(3) Incorrect understanding of geometric relationships (e.g., InternVL3 in Figure 15).

In most cases, MLLMs simultaneously suffered from multiple issues, occasionally arriving at correct
conclusions while demonstrating incorrect outcomes across the majority of scenarios.

Notably, relatively few errors were found in the algebraic transformation process, which was surpris-
ing. These results provide us with some insights about how to further improve the geometric reasoning
capability of MLLMs: (1) Enhancing the understanding of fine-grained geometric primitives and
relationships, (2) Improving the theorem application capability.

Solving Efficiency Analysis. During the experiments, we set up a 1800-second timeout for the DSR
to ensure high performance. In fact, most problems were solved in a much shorter time, as shown in
Figure 13. For example, on the Geometry3K dataset with GPT-4o for the MPF module, the average
solving time was only 57.59 seconds, with 99% of problems solved within 360 seconds (Figure 13a).
It demonstrates the high efficiency of our DSR, which stems from high-quality formalization provided
by the MPF and the efficient reasoning algorithm of the DSR.

Ablation Study of Geometry Validation. Geometry validation not only ensures the correctness of the
generated formalization but also completes the implicit geometric relationships that are not explicitly
stated in the diagram. We conducted an ablation study to evaluate the performance of our DSR with
and without geometry validation, as shown in Table 5. Without geometry validation, the DSR was
unable to fully capture the geometric relationships, even with the ground-truth formalization, reaching
an accuracy ceiling around 56%. There are two reasons for this performance barrier: (1) Inconsistent
formalization makes the problem unsolvable. (2) Many geometric relationships are implicit but
important for problem solving. Since the Geometry Validation phase detects inconsistencies and
supplements implicit geometric relationships, it provides the symbolic representation with error-free
and complete geometric relationships, thereby significantly improving the performance of DSR.

Ablation Study of Reasoning Strategies. There are two reasoning strategies in our DSR: Deductive
Reasoning (DR) and Algebraic Reasoning (AR). To evaluate their effectiveness, we conducted an
ablation study by removing one of the two reasoning strategies and comparing the performance
of our DSR using the Geometry3K ground-truth formalization, as shown in Table 6. When either
reasoning strategy was removed, the DSR failed to solve most of the problems, where the accuracy
dropped to 5.5% for both cases. Only when both reasoning strategies were employed did the DSR
achieve a significant accuracy of 94.5%. DR’s role is to derive new geometric relationships from
existing ones through the application of geometric theorems, while AR’s role is to solve algebraic
equations and obtain values for unknown variables. Since geometry problems often require both
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(a) Geometry3K with GPT-4o’s formalization.
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(b) PGPS9K with GPT-4o’s formalization.
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Figure 13: Solving time distribution of DSR.

theorem applications and algebraic transformations, the two reasoning strategies are complementary
and indispensable, collaboratively enhancing the overall reasoning capability of the DSR.

Ablation Study of Feedback and Refinement. To rigorously evaluate the utility of our Feedback and
Refinement mechanism, we conducted an ablation study comparing it with two standard multi-pass
strategies: Pass@5 (a naive approach) and Major@5 (Self-Consistency). As shown in Table 7,
the Refine@5 strategy demonstrates clear superiority in both efficacy and efficiency. Efficacy is
evidenced by Refine@5 significantly outperforming Major@5 (Self-Consistency) by a substantial
margin of +4.9% to +7.0% across all datasets (Geo3K, PGPS9K, and GeoQA). This finding strongly
suggests that the directed refinement based on explicit feedback is vastly more effective for error
correction than simply aggregating an undirected consensus from independent samples. Regarding
Efficiency, Refine@5 achieves this superior performance with an average of only 1.36-1.51 total
forward passes, dramatically lower than the 5 full, independent passes required by both Pass@5 and
Major@5. This confirms that our mechanism not only yields higher accuracy but also does so in a
computationally efficient manner.

Table 5: Completion accuracy of DSR with and without geometry validation on Geometry3K dataset.

Geometry Validation Formalization

MPF (GPT-4o) Ground Truth
% 55.5 55.4
" 75.4 94.5

Table 6: Completion accuracy of different reasoning strategies on Geometry3K dataset.

W/O DR With DR

W/O AR 0.0 5.5
With AR 5.5 94.5
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Table 7: Completion accuracy of different forward strategies.

Strategy Geo3K PGPS9K GeoQA

Refine@5 71.2% 73.3% 71.9%
Pass@5 68.2% 70.0% 67.3%

Major@5 66.3% 67.2% 64.9%

C LIMITATIONS AND FUTURE DIRECTIONS

• Limited Geometric Formal Representation. The formal language used in our work is expressive
enough to represent most geometric configurations in the datasets. However, it is not sufficient to
represent some corner cases, such as three tangential circles. General-purpose formal languages
such as Lean (De Moura et al., 2015; Moura & Ullrich, 2021) and Coq (Bertot & Castéran,
2013) still require a large amount of groundwork to describe the geometry problems at present.
Formalization with those languages requires deep expertise in both geometry and formal languages,
which is a high barrier for most researchers. This challenge complicates the annotation of large-
scale geometry datasets. Additionally, due to the limited existing training data, LLMs are not able
to understand such complex formal languages well, resulting in low performance (Wu et al., 2022;
Li et al., 2024a). In this paper, we do not pursue a complete solution to geometry representation, as
it is a separate and extremely challenging research topic that demands substantial investment from
the mathematical formalization community.

• Large-Scale Annotated Geometry Datasets for AI Community. The creation of large-scale
geometry datasets remains challenging due to the labor-intensive nature of manual collection
and annotation(Huang et al., 2024). Current benchmarks like Geometry3K (Lu et al., 2021) and
PGPS9K (Zhang et al., 2023) not only suffer from limited scale but also lack detailed step-by-step
solutions. Our AutoGPS addresses these limitations by enabling the automated generation of
high-quality formalizations and rigorous reasoning steps, which can be utilized to create large-scale
datasets with comprehensive solution documentation. This will empower the community to develop
more robust neural models with enhanced reasoning fidelity and reduced hallucination risks.

• Trade-off between Proof Conciseness and Computational Efficiency. The proposed methodol-
ogy employs a deductive reasoning-based algorithm that operates by exhaustively searching and
applying all potential axioms to progressively expand the reasoning hypergraph, aiming to enable
backtracking to identify the shortest proof path. The imperative to find the shortest proof requires
exhaustive exploration of various proof approaches to find the optimal path, which fundamentally
limits algorithmic efficiency through combinatorial explosion. Should computational efficiency
be prioritized over proof conciseness, heuristic search strategies would be a superior alternative,
though at the expense of guaranteeing solution optimality. This fundamental tension reveals an
inherent trade-off between the dual goals of minimal proof determination and highly efficient
problem solving, requiring us to find a balance between the two objectives in future work.
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D SOLUTION EXAMPLES

D.1 STEPWISE REASONING PROCESS FOR NOISE DATA

Problem Text
N Q ∥ O P. Find length of Q P.

Solution by AutoGPS

Step 1 : Known facts : start =⇒ x = PQ, 6 = MN, 3 +
3

5
= NO, QonMP, ∠NMP,∠OMP

NQ ||OP, 5 = MQ, N onMO

Step 2 : Line Segment Split : QonMP =⇒ MP = MQ + PQ

Step 3 : Same Angle : ∠NMP, QonMP =⇒ ∠NMP = ∠NMQ

Step 4 : Corresponding Angle Theorem : NQ ||OP =⇒ ∠MNQ = ∠MOP, ∠MPO = ∠MQN

Step 5 : Line Segment Split : N onMO =⇒ MO = MN + NO

Step 6 : Same Angle : ∠OMP, N onMO =⇒ ∠NMP = ∠OMP

Step 7 : Substitution : MP = MQ + PQ, x = PQ, 5 = MQ =⇒ 5 + x = MP

Step 8 : Substitution : 6 = MN, MO = MN + NO, 3 +
3

5
= NO =⇒ 6 + (3 +

3

5
) = MO

Step 9 : Transtivity of Equivalence : ∠NMP = ∠OMP, ∠NMP = ∠NMQ =⇒ ∠NMQ = ∠OMP

Step 10 : Solve Linear Equation System : 6 + (3 +
3

5
) = MO =⇒ 9.6 = MO

Step 11 : Angle-Angle Similarity Theorem : ∠NMQ = ∠OMP, ∠MNQ = ∠MOP, ∠MPO = ∠MQN

=⇒ △MNQ ∼ △MOP

Step 12 : Similar Definition : △MNQ ∼ △MOP =⇒ ∠NMQ = ∠OMP, sim_ratio =
MN

MO

sim_ratio =
MQ

MP
, ∠MNQ = ∠MOP

Step 13 : Substitution : 6 = MN, 9.6 = MO, sim_ratio =
MN

MO
=⇒ 6

9.6
= sim_ratio

Step 14 : Substitution : sim_ratio =
MQ

MP
, 5 + x = MP, 5 = MQ =⇒ sim_ratio =

5

(5 + x)

Step 15 : Transtivity of Equivalence : sim_ratio =
5

(5 + x)
,

6

9.6
= sim_ratio =⇒ 6

9.6
=

5

(5 + x)

Step 16 : Solve Linear Equation System :
6

9.6
=

5

(5 + x)
, x = PQ =⇒ 3 = PQ

Figure 14: Reasoning process of AutoGPS for a noise problem.
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D.2 REASONING PROCESSES COMPARISON

Find x so that m ∥ n.

InterGPS
Step 1: parallel lines theorem

↓
Answer: 20.0

InternVL3-78B
To solve the problem, we need to find the value of x that makes lines m and n paral-
lel.
Step-by-Step Solution:
1. **Identify the Angles:** - The angle ∠BFE is given as (4x − 23)◦. - The angle
∠CDF is given as (2x+ 17)◦.
2. **Use the Corresponding Angles Postulate:** - For lines m and n to be parallel,
the corresponding angles must be equal. - Therefore, ∠BFE = ∠CDF .
3. **Set Up the Equation:**

4x− 23 = 2x+ 17

4. **Solve for x:** - Subtract 2x from both sides:

4x− 2x− 23 = 17

2x− 23 = 17

- Add 23 to both sides:
2x = 40

- Divide by 2:
x = 20

Final Answer: “‘ 20.000 “‘

GPT-4o
**Description of the Figures and Label Information:**
1. **Lines:** - Two parallel lines are labeled as m and n. - A transversal intersects
these two lines at points E and D.
2. **Angles:** - The angle formed at B (above line m) is labeled as (4x−23)◦. - The
angle formed at C (below line n) is labeled as (2x+ 17)◦.
3. **Points:** - Points A,B,C,D,E, F,G,H are labeled on the diagram. - A,B,C
are on the transversal. - F,E,D are intersections of the transversal with lines m and
n. - G,H are points on lines m and n, respectively.
—
**Step-by-Step Solution:**
To ensure that m ∥ n, the corresponding angles formed by the transversal must be
equal. This means:

(4x− 23)◦ = (2x+ 17)◦

**Step 1: Set up the equation**

4x− 23 = 2x+ 17

**Step 2: Solve for x** 1. Subtract 2x from both sides:

4x− 2x− 23 = 17

2x− 23 = 17

2. Add 23 to both sides:
2x = 40

3. Divide by 2:
x = 20

— **Final Answer:**
answer: 20.000

Qwen2.5-VL-32B-Instruct

Problem Analysis: We are given a geometry problem where we need to find the value
of x such that the lines m and n are parallel. The diagram shows two intersecting
lines AB and CD, with transversals EF and GH. The angles formed by these inter-
sections are labeled as (4x− 23)◦ and (2x+ 17)◦.
Step-by-Step Solution:
1. **Identify the Key Elements in the Diagram:** - Lines m and n are the two lines
we want to be parallel. - Line EF is a transversal intersecting lines m and n. -
Line AB is another transversal intersecting lines m and n. - The angles given are:
- ∠AEF = (4x− 23)◦ - ∠CGD = (2x+ 17)◦

2. **Understand the Condition for Parallel Lines:** - For lines m and n to be paral-
lel, the corresponding angles formed by the transversal must be equal. - In this case,
∠AEF and ∠CGD are corresponding angles because they are on the same side of the
transversal AB and above the lines m and n, respectively.
3. **Set Up the Equation:** - Since m ∥ n, the corresponding angles ∠AEF and
∠CGD must be equal:

∠AEF = ∠CGD

- Substitute the given expressions for the angles:

4x− 23 = 2x+ 17

4. **Solve the Equation:** - Start by isolating x:

4x− 23 = 2x+ 17

- Subtract 2x from both sides:

4x− 2x− 23 = 17

2x− 23 = 17

- Add 23 to both sides:
2x = 40

- Divide by 2:
x = 20

5. **Verify the Solution:** - Substitute x = 20 back into the expressions for the an-
gles:

∠AEF = 4x− 23 = 4(20)− 23 = 80− 23 = 57◦

∠CGD = 2x+ 17 = 2(20) + 17 = 40 + 17 = 57◦

- Since ∠AEF = ∠CGD = 57◦, the lines m and n are indeed parallel when x = 20.
Final Answer:

20

AutoGPS

Step 1 : Known facts : start =⇒ pi × (
(4 × x − 23)

180
) = ∠FEB, ∠CEH, E onDF, D onCE, 3.14 = pi, ∠FDA, AG ||BH, pi × (

(17 + 2 × x)

180
) = ∠CDG

Step 2 : SameAngle : DonCE, ∠CEH =⇒ ∠CEH = ∠DEH

Step 3 : Substitution : pi × (
(4 × x − 23)

180
) = ∠FEB, 3.14 = pi =⇒ 3.14 × (

(4 × x − 23)

180
) = ∠FEB

Step 4 : SameAngle : ∠FDA, E onDF =⇒ ∠EDA = ∠FDA

Step 5 : CorrespondingAngleTheorem : AG ||BH =⇒ ∠FDA = ∠FEB, ∠CDG = ∠CEH

Step 6 : Alternate InteriorAngleTheorem : AG ||BH =⇒ ∠DEH = ∠EDA

Step 7 : Substitution : pi × (
(17 + 2 × x)

180
) = ∠CDG, 3.14 = pi =⇒ 3.14 × (

(17 + 2 × x)

180
) = ∠CDG

Step 8 : Transtivity of Equivalence : ∠FDA = ∠FEB, pi × (
(4 × x − 23)

180
) = ∠FEB =⇒ pi × (

(4 × x − 23)

180
) = ∠FDA

Step 9 : Transtivity of Equivalence : ∠CDG = ∠CEH, pi × (
(17 + 2 × x)

180
) = ∠CDG =⇒ pi × (

(17 + 2 × x)

180
) = ∠CEH

Step 10 : Transtivity of Equivalence : pi × (
(17 + 2 × x)

180
) = ∠CDG, 3.14 × (

(17 + 2 × x)

180
) = ∠CDG =⇒ 3.14 × (

(17 + 2 × x)

180
) = pi × (

(17 + 2 × x)

180
)

Step 11 : Transtivity of Equivalence : ∠CEH = ∠DEH, ∠DEH = ∠EDA, pi × (
(17 + 2 × x)

180
) = ∠CEH =⇒ pi × (

(17 + 2 × x)

180
) = ∠EDA

Step 12 : Transtivity of Equivalence : pi × (
(4 × x − 23)

180
) = ∠FDA, ∠EDA = ∠FDA, pi × (

(17 + 2 × x)

180
) = ∠EDA =⇒ pi × (

(17 + 2 × x)

180
) = pi × (

(4 × x − 23)

180
)

Step 13 : Transtivity of Equivalence : pi × (
(17 + 2 × x)

180
) = pi × (

(4 × x − 23)

180
), pi × (

(4 × x − 23)

180
) = ∠FEB =⇒ pi × (

(17 + 2 × x)

180
) = ∠FEB

Step 14 : Transtivity of Equivalence : pi × (
(17 + 2 × x)

180
) = ∠FEB, 3.14 × (

(17 + 2 × x)

180
) = pi × (

(17 + 2 × x)

180
) =⇒ 3.14 × (

(17 + 2 × x)

180
) = ∠FEB

Step 15 : Transtivity of Equivalence : 3.14 × (
(4 × x − 23)

180
) = ∠FEB, 3.14 × (

(17 + 2 × x)

180
) = ∠FEB =⇒ 3.14 × (

(17 + 2 × x)

180
) = 3.14 × (

(4 × x − 23)

180
)

Step 16 : Solve LinearEquation System : 3.14 × (
(17 + 2 × x)

180
) = 3.14 × (

(4 × x − 23)

180
) =⇒ 20 = x

Figure 15: Comparison of reasoning processes (1). All three MLLMs generated correct answer but
provided logically incorrect reasoning process. Symbolic-based method, InterGPS, provided the
theorem applied but lacked detailed reasoning process. In constract, AutoGPS generated logically
coherent stepwise solution with correct answer.
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In the figure, measure of ∠1 = 58, measure of ∠2 = 47, and meausre of
∠3 = 26. Find the measure of ∠5.

AutoGPS

Step 1 : Known facts : start =⇒ pi× 47

180
= ∠ABE,AB||EC

Step 2 : Alternate Interior Angle Theorem : AB||EC =⇒ ∠ABE = ∠CEB

Step 3 : Transtivity of Equivalence : ∠ABE = ∠CEB, pi× 47

180
= ∠ABE =⇒

pi× 47

180
= ∠CEB

Step 4 : Evaluate : pi× 47

180
= ∠CEB =⇒ ∠CEB = 0.82 = 47◦

InterGPS
Failed to solve.

InternVL3-78B
To solve the problem, we need to find the measure of ∠5.
Step-by-Step Solution:
1. **Identify the Given Angles:**
- ∠1 = 58◦

- ∠2 = 47◦

- ∠3 = 26◦

2. **Understand the Geometry:**
- The figure is a quadrilateral ABCD with diagonals intersecting at point E.
- ∠1 and ∠2 are angles on the straight line AB, so they are supplementary to the
angles inside the triangle ABE.
3. **Calculate ∠AEB:**
- Since ∠1 and ∠2 are on a straight line, ∠AEB = 180◦ − (∠1 + ∠2).
- ∠AEB = 180◦ − (58◦ + 47◦) = 180◦ − 105◦ = 75◦.
4. **Use Triangle BEC:**
- In △BEC, the sum of the angles is 180◦.
- ∠BEC = ∠5 + ∠3 + ∠AEB.
- ∠5 + 26◦ + 75◦ = 180◦.
- ∠5 + 101◦ = 180◦.
- ∠5 = 180◦ − 101◦ = 79◦.
Final Answer:
“‘ 79.000 “‘

GPT-4o
To solve the problem, we need to use the properties of angles in triangles and the fact
that the sum of angles in a triangle is always 180 degrees.
Given:
- Measure of angle 1 = 58 degrees
- Measure of angle 2 = 47 degrees
- Measure of angle 3 = 26 degrees
We need to find the measure of angle 5.
First, let’s identify the triangles involved and the relationships between the angles.
1. Triangle ABE:
- Angle 1 = 58 degrees
- Angle 2 = 47 degrees
- Angle 6 = ?
Since the sum of angles in a triangle is 180 degrees:
Angle 6 = 180 - (Angle 1 + Angle 2)
Angle 6 = 180 - (58 + 47)
Angle 6 = 180 - 105
Angle 6 = 75 degrees
2. Triangle EBC:
- Angle 3 = 26 degrees
- Angle 4 = ?
- Angle 5 = ?
Since the sum of angles in a triangle is 180 degrees:
Angle 4 = 180 - (Angle 3 + Angle 5)
We need to find Angle 5. To do this, we need to use the fact that Angle 6 and Angle
4 are supplementary angles (they form a straight line together):
Angle 4 = 180 - Angle 6
Angle 4 = 180 - 75
Angle 4 = 105 degrees
Now, we can find Angle 5:
Angle 5 = 180 - (Angle 3 + Angle 4)
Angle 5 = 180 - (26 + 105)
Angle 5 = 180 - 131
Angle 5 = 49 degrees
Therefore, the measure of Angle 5 is:
“answer“ 49.000

Figure 16: Comparison of reasoning processes (2). MLLMs captured the correct geometric infor-
mation but generated wrong reasoning processes, leading to incorrect answers. Symbolic-based
method, InterGPS, failed to solve this problem. AutoGPS generated a concise stepwise solution
with correct answer.
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Find measure of ∠V XW .

AutoGPS

Step 1 : Known facts : start =⇒ pi× 15 + 4× x

180
= ∠Y XW,X on WZ,

X on V Y ,∠WXV,∠Y XW, pi× 65 + 2× x

180
= ∠V XZ, 3.14 = pi

Step 2 : Vertical Angle Theorem : X on V Y ,X on WZ =⇒ ∠V XZ = ∠Y XW

Step 3 : Straight Angle : ∠Y XW,∠WXV =⇒ pi = ∠WXV + ∠Y XW

Step 4 : Substitution : pi× 15 + 4× x

180
= ∠Y XW, 3.14 = pi =⇒

3.14× 15 + 4× x

180
= ∠Y XW

Step 5 : Substitution : 3.14 = pi, pi× 65 + 2× x

180
= ∠V XZ =⇒

3.14× 65 + 2× x

180
= ∠V XZ

Step 6 : Transtivity of Equivalence : pi× 15 + 4× x

180
= ∠Y XW,∠V XZ = ∠Y XW,

pi× 65 + 2× x

180
= ∠V XZ =⇒ pi× 15 + 4× x

180
= pi× 65 + 2× x

180

Step 7 : Transtivity of Equivalence : 3.14 = pi, pi = ∠WXV + ∠Y XW =⇒
3.14 = ∠WXV + ∠Y XW

Step 8 : Transtivity of Equivalence : 3.14× 65 + 2× x

180
= ∠V XZ,

pi× 65 + 2× x

180
= ∠V XZ =⇒ 3.14× 65 + 2× x

180
= pi× 65 + 2× x

180

Step 9 : Transtivity of Equivalence : pi× 15 + 4× x

180
= pi× 65 + 2× x

180
,

pi× 15 + 4× x

180
= ∠Y XW =⇒ pi× 65 + 2× x

180
= ∠Y XW

Step 10 : Transtivity of Equivalence : pi× 65 + 2× x

180
= ∠Y XW,

3.14× 65 + 2× x

180
= pi× 65 + 2× x

180
=⇒ 3.14× 65 + 2× x

180
= ∠Y XW

Step 11 : Transtivity of Equivalence : 3.14× 15 + 4× x

180
= ∠Y XW,

3.14× 65 + 2× x

180
= ∠Y XW =⇒ 3.14× 15 + 4× x

180
= 3.14× 65 + 2× x

180

Step 12 : Solve Linear Equation System : 3.14 = ∠WXV + ∠Y XW

3.14× 15 + 4× x

180
= 3.14× 65 + 2× x

180
, 3.14× 65 + 2× x

180
= ∠Y XW

=⇒ ∠WXV = 1.13 = 65◦

InterGPS
Step 1:Angle Bisector Theorem

↓
Answer: 65.0◦

InternVL3-78B
To solve the problem, we need to find the measure of angle ∠V XW .
Step-by-Step Solution:
1. **Identify the Given Angles:**
- The angle ∠ZXV is given as (2x+ 65)◦.
- The angle ∠Y XW is given as (4x+ 15)◦.
2. **Understand the Geometry:**
- X is the center of the circle.
- Z, Y, V, and W are points on the circumference of the circle.
- ∠V XW is the angle at the center formed by the points V and W .
3. **Use the Property of Angles at the Center:**
- The sum of the angles around point X is 360◦.
4. **Set Up the Equation:**
- The angles around point X are ∠ZXV , ∠Y XW , and ∠V XW .
- Therefore, (2x+ 65) + (4x+ 15) + ∠V XW = 360.
5. **Solve for x:**
- Combine like terms: 6x+ 80 + ∠V XW = 360.
- Isolate ∠V XW : ∠V XW = 360− 6x− 80.
- Simplify: ∠V XW = 280− 6x.
6. **Determine x:**
- Since ∠ZXV and ∠Y XW are angles at the center, they must be supplementary to
∠V XW .
- Set up the equation: 2x+ 65 + 4x+ 15 = 180.
- Combine like terms: 6x+ 80 = 180.
- Solve for x: 6x = 100 → x = 100

6
≈ 16.667.

7. **Calculate ∠V XW :**
- Substitute x back into the equation: ∠V XW = 280− 6(16.667).
colorred- Calculate: ∠V XW = 280− 100 = 180.
Final Answer:
“‘ 180.000 “‘

GPT-4o
Description of the Geometry Diagram:
The diagram shows a circle with center X. Four points Z, Y, V,W lie on the circum-
ference of the circle. Two intersecting chords ZY and VW pass through the center X.
The angles subtended by the arcs are labeled as follows:
- The arc ZY subtends an angle of (4x+ 15)◦.
- The arc VW subtends an angle of (2x+ 65)◦.
We are tasked to find the measure of angle V XW , which is the angle formed at the
center X by the chord VW .
—
Step-by-Step Solution:
Step 1: Relationship Between Central Angle and Arc Measure
The central angle subtended by an arc is equal to the measure of the arc itself.
Therefore:
- The central angle ZXY is (4x+ 15)◦.
- The central angle V XW is (2x+ 65)◦.
Step 2: Sum of Central Angles in a Circle
The sum of all central angles in a circle is 360◦. Since the circle is divided into two
arcs ZY and VW , we can write:

(4x+ 15) + (2x+ 65) = 360

Step 3: Solve for x
Combine like terms:

6x+ 80 = 360

Subtract 80 from both sides:
6x = 280

Divide by 6:

x =
280

6
= 46.667

Step 4: Find the Measure of Angle V XW
Substitute x = 46.667 into (2x+ 65):

V XW = 2(46.667) + 65 = 93.334 + 65 = 158.334

—
Final Answer:

answer: 158.334

Figure 17: Comparison of reasoning processes (3). MLLMs failed to capture correct geometric
relationships and generated wrong reasoning processes. Symbolic-based method, InterGPS,
provided correct answer but lacked detailed reasoning process. leading to the wrong answers.
AutoGPS generated a human-readable reasoning process with correct answer.
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E HYPERGRAPH EXAMPLES

start

Step 1 - Known facts

premise

R on JL

conclusion

∠LJK

conclusion

∠JLM

conclusion

Parallelogram(J, K, L, M)

conclusion

pi * (30 / 180) = ∠RLM

conclusion

Step 2 - Same Angle

premise

Step 3 - Same Angle

premise premisepremise

Step 4 - Parallelogram Opposite Lines Parallel

premise

Step 7 - Transtivity of Equivalence

premise

∠LJK = ∠RJK

conclusion

Step 6 - Transtivity of Equivalence

premise

Step 8 - Transtivity of Equivalence

premise

∠JLM = ∠RLM

conclusion

premise

JK || ML

conclusion

Step 5 - Alternate Interior Angle Theorem

premise

∠JLM = ∠LJK

conclusion

premise

∠JLM = ∠RJK

conclusion

premise

pi * (30 / 180) = ∠RJK

conclusion

premise

pi * (30 / 180) = ∠LJK

conclusion

Step 9 - Evaluate

premise

0.52 = ∠LJK

conclusion

Figure 18: Minimal reasoning hypergraph example (1). The red nodes indicate literals. The blue
boxes indicate derivation hyperedges connecting the premise nodes to the conclusion nodes. The
hyperedges are topologically sorted to indicate the order of reasoning.
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start

Step 1 - Known Information

premise

24 = CD

conclusion

D on Circle(O, radius_0_0)

conclusion

X on CD

conclusion

CD

conclusion

13 = radius_0_0

conclusion

DO

conclusion

OX

conclusion

CO

conclusion

C on Circle(O, radius_0_0)

conclusion

DX ⊥ OX

conclusion

∠CDO

conclusion

DX

conclusion

∠XDO
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Figure 19: Minimal reasoning hypergraph example (2). The red nodes indicate literals. The blue
boxes indicate derivation hyperedges connecting the premise nodes to the conclusion nodes. The
hyperedges are topologically sorted to indicate the order of reasoning.
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Figure 20: Minimal reasoning hypergraph example (3). The red nodes indicate literals. The blue
boxes indicate derivation hyperedges connecting the premise nodes to the conclusion nodes. The
hyperedges are topologically sorted to indicate the order of reasoning.
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F FORMAL LANGUAGE DEFINITIONS

We have appropriately simplified the formal language used in InterGPS (Lu et al., 2021), and
described its syntax via a context-free grammar (CFG). This mathematical definition facilitates
efficient parsing of the formal language. Let the special character set be SPECIAL_CHAR =
{_, \, (, ), , , ,+,−, ∗, /, ., {, },, $,′ }. The grammar is defined as a quadruple G = (N,Σ, P, S),
where:

N = {logic_form, args, arg, id, expr}
Σ = UPPER_LETTER ∪ ALPHA_NUM ∪ SPECIAL_CHAR
S = logic_form

P :

logic_form→ id( args) | id | expr
args→ arg (, arg)∗

arg→ logic_form | id | expr
id→ UPPER_LETTER (ALPHA_NUM ∪ {_})∗

expr→ [-]ANUB (ALPHA_NUM ∪ SPECIAL_CHAR)∗
UPPER_LETTER = {A,B, . . . ,Z}

ALPHA_NUM = {a, . . . ,z} ∪ {A, . . . ,Z} ∪ {0, . . . ,9}
ANUB = ALPHA_NUM ∪ {_, \}

A detailed illustrative example of the formal language is provided below:

Table 8: Predicate and literal definitions for the formal language (1).

Literals Explanation

Line(A,B) A line segment with endpoints A and B
Angle(A) The angle with point A as vertex
Angle(A,B,C) Angle ABC with B as the vertex
Triangle(A,B,C) Triangle with vertices A, B, and C
Quadrilateral(A,B,C,D) Quadrilateral with vertices A, B, C, and D
Parallelogram(A,B,C,D) Parallelogram with vertices A, B, C, and D
Square(A,B,C,D) Square with vertices A, B, C, and D
Rectangle(A,B,C,D) Rectangle with vertices A, B, C, and D
Rhombus(A,B,C,D) Rhombus with vertices A, B, C, and D
Trapezoid(A,B,C,D) Trapezoid with vertices A, B, C, and D
Kite(A,B,C,D) Kite with vertices A, B, C, and D
Polygon(A,B,C,. . .) Polygon with vertices A, B, C, etc.
Pentagon(A,B,C,D,E) Pentagon with vertices A, B, C, D, and E
Hexagon(A,B,C,D,E,F) Hexagon with vertices A, B, C, D, E, and F
Heptagon(A,B,C,D,E,F,G) Heptagon with vertices A, B, C, D, E, F, and G
Octagon(A,B,C,D,E,F,G,H) Octagon with vertices A, B, C, D, E, F, G, and H
Circle(A) Circle with center A
Circle(O, r) Circle with center O and radius r
Arc(A,B) Minor arc with A and B as endpoints on circle
Arc(A,B,C) Arc that passes through points A, B, and C
Sector(O,A,B) Sector of a circle with center O and points A and B on the

circumference
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Table 9: Predicate and literal definitions for the formal language (2).

Literals Explanation

Equilateral(Polygon(A,B,C,D)) Polygon ABCD is equilateral
Regular(Polygon(A,B,C,D)) Polygon ABCD is regular
AreaOf(Shape(...)) Area of the Shape ...
PerimeterOf(Shape(...)) Perimeter of the Shape ...
RadiusOf(Circle(O)) Radius of the circle O
DiameterOf(Circle(O)) Diameter of the circle O
CircumferenceOf(Circle(O)) Circumference of the circle O
MeasureOf(Angle(A, B, C)) Measure of the angle ABC
MeasureOf(Arc(A, B)) Measure of the arc AB
LengthOf(Line(A, B)) Length of the line segment AB
PointLiesOnLine(A,Line(B,C)) Point A lies on segment BC
PointLiesOnCircle(A,Circle(O,r)) Point A lies on the circle with center O and radius r
Parallel(Line(A,B),Line(C,D)) Line AB is parallel to Line CD
Perpendicular(Line(A,B),Line(C,D)) Line AB is perpendicular to Line CD
BisectsAngle(Line(A,B),Angle(X,A,Y)) Line AB bisects angle XAY
Congruent(Triangle(A,B,C),Triangle(D,E,F)) Triangle ABC is congruent to triangle DEF
Similar(Triangle(A,B,C),Triangle(D,E,F)) Triangle ABC is similar to triangle DEF
Tangent(Line(A,B),Circle(O,r)) Line AB is tangent to circle O with radius r
Secant(Line(A,B),Circle(O,r)) Line AB is a secant to circle O with radius r
CircumscribedTo(Shape(...),Shape(...)) First shape is circumscribed to the second shape
InscribedIn(Shape(...),Shape(...)) First shape is inscribed in the second shape
IsMidpointOf(C,Line(A,B)) Point C is the midpoint of line AB
IsCentroidOf(O,Triangle(A,B,C)) Point O is the centroid of triangle ABC
IsIncenterOf(O,Triangle(A,B,C)) Point O is the incenter of triangle ABC
IsRadiusOf(Line(O,A),Circle(O,r)) Line OA is a radius of circle O with radius r
IsDiameterOf(Line(A,B),Circle(O,r)) Line AB is a diameter of circle O with radius r
IsMidsegmentOf(Line(A,B),Triangle(D,E,F)) Line AB is a midsegment of triangle DEF
IsChordOf(Line(A,B),Circle(O,r)) Line AB is a chord of circle O with radius r
IsPerpendicularBisectorOf(Line(A,B),Line(C,D)) Line AB is the perpendicular bisector of line CD
IsMedianOf(Line(E,F),Trapezoid(A,B,C,D)) Line EF is the median of trapezoid ABCD
IsMedianOf(Line(E,F),Triangle(A,B,C)) Line EF is a median of triangle ABC
SinOf(var) Sine of var (var can be variable, measure of angle or arc)
CosOf(var) Cosine of var (var can be variable, measure of angle or arc)
TanOf(var) Tangent of var (var can be variable, measure of angle or

arc)
CotOf(var) Cotangent of var (var can be variable, measure of angle or

arc)
HalfOf(var) Half of var (var can be variable, length, measure, area, etc.)
SqrtOf(var) Square root of var (var can be variable, length, measure,

area, etc.)
RatioOf(var1,var2) Ratio of var1 to var2 (can be variables, lengths, measures,

areas, etc.)
Add(var1,var2,...) Addition of var1, var2, and possibly more variables
Mul(var1,var2,...) Multiplication of var1, var2, and possibly more variables
Sub(var1,var2) Subtraction of var2 from var1
Div(var1,var2) Division of var1 by var2
Pow(var1,var2) var1 raised to the power of var2
Equals(var1,var2) var1 equals var2 (a = b is equivalent to Equals(a, b))
Find(var) Find the value of the variable
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G PROMPT TEMPLATE

In our experiments, we involve the use of multimodal large language models to accomplish the
following tasks:

• Choice Task. Solving multiple-choice questions.

• Completion Task. Solving fill-in-the-blank questions.

• Formalization Task. Direct formalization of problems without pre-formalization.

• Alignment Task. Aligning the results with pre-formalization specifications.

The corresponding prompt templates for each task are presented below. The image input is omitted for
brevity. The variables are colored in red to indicate the need for replacement with the corresponding
content.

Prompt Template for Choice Task

This is a geometry problem. The problem text is given as " {problem text} "
There are several choices:
- Choices are: A. {content_A}, B. {content_B}, C. {content_C}, D. {content_D}

**Tasks:**
- Describe the figures and label information in the geometry diagram.
- Solve the problem step by step and give your final choice in the form of “choice“. If your choice is A,
give “A“ at last.

Prompt Template for Formalization Task

Given the geometry problem with problem text “‘{problem text}“‘, we use logic forms to describe the
information of this problem. The logic forms are defined as follows:
“‘plaintext

[
### Predicate Definitions
\{predicate\_definition\}
]

“‘
**Task:**
- Identify the geometric figures in the diagram and list the known value information in the diagram.
- Formalize the problem with the given logic forms. Give your final logic forms in one single plaintext
code block.

**Note:**
- A line named t with endpoints A and B, then it is expressed as Line(A, B) rather than Line(t).
- A circle with center O with a radius of 5 is expressed as Circle(O, radius_o) and Equals(radius_o, 5).
- A line segment with length 10 is expressed as Equals(LengthOf(Line(A, B)), 10).
- An angle ABC with measure 30 degrees is expressed as Equals(MeasureOf(Angle(A, B, C)), 30).
- An arc AB with measure 60 degrees is expressed as Equals(MeasureOf(Arc(A, B)), 60).
- A point A lies on segment BC is expressed as PointLiesOnLine(A, Line(B, C)).
- A point A lies on circle with center O and radius r is expressed as PointLiesOnCircle(A, Circle(O, r)).
- If the goal is to find the area of a shaded region, use the arithmetic operation expression with other
regular figures to represent the shaded region. For example, Sub(AreaOf(Circle(C)), AreaOf(Triangle(D,
E, F))).
- Each problem should have a goal in the form of Find(...), for example, Find(LengthOf(Line(X, Y))).
- Please formalize the problem faithfully. Do not add any extra information or do deduction.
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Prompt Template for Completion Task

This is a geometry problem. The problem text is given as " {problem text} "

**Tasks:**
- Describe the figures and label information in the geometry diagram.
- Solve the problem step by step and give the final answer in the form of “answer“ and round it to 3rd
decimals. If the answer is 5, give “5.000“ at last.

Prompt Template for Alignment Task

Given the geometry problem with problem text “‘{problem text}“‘, we use logic forms to describe the
information of this problem. The logic forms are defined as follows:
“‘plaintext

[
### Predicate Definitions
\{predicate\_definition\}
]

“‘
We have previously parsed the diagram and text. The diagram logic forms are:
“‘plaintext

[
\{diagram_logic_form_1\}
\{diagram_logic_form_2\}
...
]

“‘
And the text logic forms are:
“‘plaintext

[
\{text_logic_form_1\}
\{text_logic_form_2\}
...
]

“‘
**Task:**
- Replace $ with point identifier and replace Shape($) with specific geometric figures.
- Check if the problem is correctly converted to logic forms.
- Combine the final diagram logic forms and text logic forms in the format of plain text code block.

**Note:**
- A circle with center O with a radius of 5 is expressed as Circle(O, radius) and
Equals(RadiusOf(Circle(O)), 5).
- A circle with center O with a diameter of 10 is expressed as Circle(O, radius) and
Equals(DiameterOf(Circle(O)), 10).
- A line segment with length 10 is expressed as Equals(LengthOf(Line(A, B)), 10).
- An angle ABC with measure 30 degrees is expressed as Equals(MeasureOf(Angle(A, B, C)), 30).
- An arc AB with measure 60 degrees is expressed as Equals(MeasureOf(Arc(A, B)), 60).
- If the goal is to find the area of a shaded region, use the arithmetic operation expression with other
regular figures to represent the shaded region. For example, Sub(AreaOf(Circle(C)), AreaOf(Triangle(D,
E, F))).
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