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Abstract

Transformer-based language models trained on large text corpora have enjoyed
immense popularity in the natural language processing community and are com-
monly used as a starting point for downstream tasks. While these models are
undeniably useful, it is a challenge to quantify their performance beyond traditional
accuracy metrics. In this paper, we compare BERT-based language models through
snapshots of acquired knowledge at sequential stages of the training process. Struc-
tured relationships from training corpora may be uncovered through querying a
masked language model with probing tasks. We present a methodology to unveil
a knowledge acquisition timeline by generating knowledge graph extracts from
cloze "fill-in-the-blank" statements at various stages of RoBERTa’s early training.
We extend this analysis to a comparison of pretrained variations of BERT models
(DistilBERT, BERT-base, RoBERTa). This work proposes a quantitative frame-
work to compare language models through knowledge graph extraction (GED,
Graph2Vec) and showcases a part-of-speech analysis (POSOR) to identify the
linguistic strengths of each model variant. Using these metrics, machine learning
practitioners can compare models, diagnose their models’ behavioral strengths and
weaknesses, and identify new targeted datasets to improve model performance.

1 Introduction

The evolution of deep learning methodologies and continual expansion of computing capacity has
enabled many advancements in language modeling field. In specific, transformer-based architectures
have foreshadowed the creation of BERT and its many variants, surpassing previously held records
in GLUE, SQuAD, and MultiNLI benchmarks [1–4]. BERT-based architectures have become
lightweight and more efficient (DistilBERT) and trained more effectively to become increasingly
performant (RoBERTa) [5, 6].

As we build more capable machine learning models with increasingly minute differences in perfor-
mance benchmarks, it is important that our model behavior is interpretable. Evaluation of language
model performance is moving towards fine-grained diagnostics that go beyond simply answering if a
model outperforms another and instead delve into the scale and type of errors the model makes. There
are two main approaches in this area: curating a set of difficult examples, and developing in-depth
metrics for targeted model evaluation [7]. Our work is positioned within the latter approach, as a
diagnostic benchmark to allow for nuanced studies into a model’s strengths and weaknesses. These
diagnostic studies, often using counterfactual or annotated training examples, can be followed by
tailored fine-tuning approaches to improve deficient areas [8–11].

In this paper, we contribute a pipeline for deeper analysis of language model performance by
generating knowledge graph (KG) extracts as inspired from Petroni et al. [12]. We aim to address
two main research directions:
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• How can we quantitatively compare language model knowledge acquisition? Can we extend
this analysis to the same model at different stages of early training?

• As a language model trains, what linguistic traits does it learn over time?

We run this pipeline on a RoBERTa architecture at various stages of early training and on pretrained
models from the Transformers library (BERT-Base, DistilBERT, RoBERTa) [13]. Our objective is
to capture a snapshot of learned knowledge from the current state of the model. We achieve this
by training with a masked language model objective and querying our models using cloze "fill-in-
the-blank" statements. After replacing the predicted word in the masked statement, we generate a
knowledge graph comprised of subject-verb-object triples which acts as a representation of knowledge
generated from the language model. We analyze this work in two ways: by extending previous
literature in graph representations to quantitatively compare differences between language model
knowledge extracts using graph-edit distance and graph2vec metrics and by proposing a part-of-
speech (POS) tagging analysis to better understand a model’s linguistic strengths. The novelty in this
work arises from using these proposed metrics to compare language models with each other over time,
in an analysis that goes beyond accuracy and loss. The results of our approach show strong evidence
for how language models learn knowledge through different training epochs and variants, increasing
the interpretability of language model performance. We release the code for our experiments in our
Github repository 1.

2 Related work

The rise of deep learning architectures in language modeling has been followed closely by explain-
ability research seeking to understand what these models encode. BERT is successful at encoding
information at the syntactic and semantic level [14]. Hewitt and Manning [15] proposes a probe
that identifies whether syntax trees can be represented as a linear transformation of BERT embed-
dings. Clark et al. [16] uses probing classifiers to demonstrate that a number of BERT attention
heads correspond to syntactic tasks, while Goldberg [17] demonstrates BERT’s capabilities to solve
syntax-based objectives, like subject-verb agreement. Coenen et al. [18] focuses on BERT’s attention
matrices, examining dependency relations represented as certain directions in the matrix subspace.
Coenen et al. [18] further suggests that BERT’s internal geometry can be represented as separate
linear subspaces for syntactic and semantic information. It is evident that BERT encodes knowledge
beyond language representations into the syntactic and semantic space, but the full extent of this is
still debated upon.

Several recent studies divide the model into smaller architecture blocks such as layers, encoded
hidden states, and attention heads to expose where in the model specific information is being stored.
Tenney et al. [19] shows that the top layers of BERT address long-range dependencies (subject-object
dependencies) while the early layers of BERT encode short dependency relationships at the syntactic
level (subject-verb agreement). Peters et al. [20] extends this conclusion to Convolutional, LSTM, and
self-attention architectures. Hao et al. [21] implies that layers close to inputs learn more transferable
language representations by exposing which layers of BERT change during finetuning. Our novelty
lies in identifying when certain knowledge is acquired in the model training process instead of aiming
to find where in the model the information is stored. Recent papers from Liu et al. [22], Chiang et al.
[23] analyze when a language model gains certain types of knowledge (commonsense, factual), but
focus on case studies of individual language models instead of comparisons across language models
over time.

In recent work towards understanding language model errors, training examples are annotated and
used to probe for model behavioral phenomena common to a task of interest. Minimal pairs, also
known as counterfactual examples or contrast sets, perturb examples and often change the gold label
to highlight model weaknesses [9–11]. Ribeiro et al. [24] proposes a CheckList framework, which
enables the semi-automatic creation of such test cases. Alternatively, Fu et al. [8] shows that examples
can be annotated with different attributes, which allow for a more granular analysis of missed areas.
These approaches seek to augment existing data for insights into model performance.

The most relevant area to our approach is in knowledge graph extraction from language models.
LAMA, released by Petroni et. al, is a pipeline from Facebook to extract knowledge bases directly

1https://github.com/epfml/interpret-lm-knowledge
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from language models [12, 25]. The LAMA methodology focuses on extracting relation triples
from cloze statements to generate knowledge graphs from language models. While we are heavily
inspired by this pipeline and re-use the cloze statement datasets presented in LAMA, their work fails
to consider the extracted knowledge graphs in an interpretability context, focusing on the quality
of KG extraction instead of viewing the differences between the graphs as a diagnostic metric for
language model performance. We also use a simpler and faster relation triple extraction methodology
through natural language processing libraries instead of LAMA’s attention-based approach, as we
are more interested in the evaluation of these graphs than the accuracy of their creation. Recent
papers by Heinzerling and Inui [26] and Jiang et al. [27] confirm the claims of LAMA and review
two more methodologies to extract knowledge graphs from language models. Aspillaga et al. [28]
uses query-answering probing tasks and compare knowledge graph concept relatedness to WordNet.
Goswami et al. [29] propose ReFLEX, which focuses on unsupervised cloze template completion
using language models, but does not extend the work towards knowledge graph analysis.

In summary, the relevant literature shows that BERT and its transformer-based variants do store
information at the syntactic and semantic level. This demonstrates that there is some signal to
capture in our probing experiments. In related explainability literature, the work focuses on revealing
which blocks of a transformer-based model are responsible for storing a specific type of information
with moderate success. We extend this analysis to understand when certain knowledge is acquired
over time in the model training process, comparing across multiple language model variations.
Diagnostic benchmarks for language models, aiming to demonstrate model strengths and weaknesses
are more in line with the purpose of this work, but focus mainly on augmenting data examples
instead of measuring knowledge. The literature on knowledge graph extraction is closest to our
work, specifically Petroni et al. [12]’s approach to treating language models as knowledge bases.
We propose a novel extension of LAMA by using a simpler relation extraction methodology and
extending metrics from graph literature [30, 31] to analyze knowledge graph extracts over time across
multiple models. Probing task literature helps us contextualize evaluation strategies, namely the
benchmarks presented in Kim et al. [32]’s work to identify skills in a language model, like predicting
the correct wh- word (why, when, where) and identifying the correct coordinating conjunction. We
explore aspects of this linguistic analysis in our results section with grammatical tagging, but future
work involves a more granular exploration of these probing task benchmarks on our pipeline.

3 Methodology

To extract knowledge graphs from a language model, we begin by obtaining the model in question
(either training early epochs from scratch as referenced in implementation details below, or loading
the pretrained model from an existing library) using a standard masked language model objective. We
query the model using cloze statements from our 4 datasets, i.e. "During Super Bowl 50 the [MASK]
gaming company debuted their ad for the first time." from the LAMA SQuAD dataset where the
intended gold label is "Nintendo" [12]. The language model predicts the top 5 missing masks, we
select the one that is most likely (based on output probability) and replace it in the sentence. We
then extract relevant subject-relation-object triples from these sentences and construct a knowledge
graph. Figure 1 represents our knowledge graph extraction pipeline. When we reference Ground
Truth Knowledge graphs, this is simply a baseline approach using the SpaCy and Textacy libraries to
extract triples from the gold-label sentences [33, 34].

While deciding upon an optimal method for relation extraction, we explore two different natural
language processing libraries: SpaCy and Textacy. The SpaCy approach uses a dependency parser
to identify entities and extract the relevant subject-relation-object triples in our sentences, while
Textacy abstracts the process into their own library. We noticed that these out-of-the-box taggers were
failing to capture certain triples that made intuitive sense, so we extend the SpaCy implementation
by creating a hybrid approach with linguistic rule-based modifications. Our hybrid implementation
provides many more triples, including a number that out-of-the-box methodologies from Textacy
and SpaCy do not recognize, as highlighted in Table 2. An example of subject-relation-object triple
extraction for the sentence "The ad shown during the Super Bowl for the next Jason Bourne movie
was paid by Sony." is the following list of tuples: {ad, shown by, The Super Bowl}, {ad, paid by,
Sony}.
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Figure 1: Architecture of our probing pipeline to generate knowledge graphs from language models.

Sentence Extractor Triple
The ad shown during the Super Bowl
for the next Jason Bourne movie was
paid by [Sony].

SpaCy []
Textacy [[‘ad’, ‘was paid’, ‘Sony’]]

Custom [[‘ad’, ‘shown by’, ‘The Super Bowl’],
[‘ad’, ‘paid by’, ‘Sony’]]

In Groner v Minister for Education,
the Court of Justice accepted
[Gaelic] to be required to teach
in Dublin colleges.

SpaCy [[‘the Court of Justice’, ‘accepted in’,
‘Groner’]]

Textacy [[‘Gaelic’, ‘to be required’,
‘to teach in Dublin colleges’]]

Custom [[‘Dublin colleges’, ‘teach’, ‘Gaelic’]]

Table 1: Subject-relation-object extraction examples between out-of-the-box SpaCy and Textacy
taggers and our custom parser.

3.1 Model Training details

We use PyTorch for our training model code, aided by the HuggingFace Transformers library [13]. In
preprocessing our evaluation data, we use a LineByLineTextTokenizer from Transformers.

As mentioned in the previous sections, the models we use for evaluation are standard BERT-inspired
architectures. More precisely, we have three variations of pretrained architectures: BERT, Distil-
BERT, and RoBERTa [1, 5, 6]. The reason for choosing these specific models is because of their
immense popularity and their ability to show an evolution in training, where DistilBERT is a smaller
approximation of BERT trained for less time, BERT-base is very widely used and is our standard
reference point, and RoBERTa is built on top of BERT, trained for a longer amount of time and with
more data. We utilize a pretrained BERT-based-cased, with 12 layers, 12 attention heads and 109M
parameters, trained on cased English text from Wikipedia. For RoBERTa, we utilize a pretrained
model with a similar architecture modifying BERT-base, with 12 layers, 12 attention heads, and
125M parameters, trained on 16GB of uncompressed English text from BookCorpus and English
Wikipedia [6]. DistilBERT was also pretrained and originally distilled from the BERT-base-cased
checkpoint, using 6 layers, 768 hidden nodes, 12 attention heads and 66M parameters. All results can
be replicated using pretrained models from version 4.2.0 of Transformers [13] and a standard NVidia
K80 / T4 GPU.

For the training experiments, we train RoBERTa from scratch, for increments of 1, 3, 5, and 7 epochs
on a Tesla P100 GPU with 52,000 vocab size, 514 position embeddings, 12 attention heads, batch
size of 64, and 6 hidden layers from 15 GB of English Wikipedia articles 2. We use the Transformers
library’s ByteLevelBPETokenizer to preprocess the data with block size 128, masking probability
0.15, and train RoBERTa with the standard masked language model training objective [6].

2We use an English Wikipedia extract file, enwiki-latest-pages-articles, from November 2020. A script with
further replication details can be found in our Github repository, using the smaller sample corpus (enwiki-10)
with 0.5 GB of data.
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4 Experiments

We begin by highlighting our datasets, introduced by Petroni et al. in LAMA [12, 25]. We then
describe our evaluation metrics and probing tasks, and present our experimental KG results.

We use two cloze "fill-in-the-blank" statement datasets from LAMA to query our language models
and generate knowledge graphs [12]. These datasets are based on the Stanford Question Answering
Dataset (SQuAD) and the Google Relation Extraction Corpus (Google-RE) [3, 35]. Both datasets are
derived from Wikipedia, the same data that was used to train BERT and its variants, which is why we
can use them to query information the language model has been exposed to.

4.0.1 SQuAD

SQuAD [3] is widely used in the field of question-answering. Petroni et al. select a subset of 305
questions that are context-insensitive from the SQuAD development set, and manually convert the
question-answer pairs to cloze-style questions [12]. For example, the question “Who developed
the theory of relativity?” is rewritten as “The theory of relativity was developed by [MASK]”. The
SQuAD cloze statement dataset is the smallest of the four LAMA datasets.

4.0.2 Google-RE

The Google-RE corpus contains over 60,000 facts extracted from Wikipedia. Petroni et al. use three
of Google-RE’s five databases, focusing on facts pertaining to place of birth, date of birth, and place
of death [12]. Each fact is directly tied to a Wikipedia text supporting it. Each sentence is sampled
with a template sentence format; for the place of birth dataset, sentences that fit the template "[S] was
born in [O] ..." were extracted. The three Google-RE cloze datasets (place-of-birth, date-of-birth,
place-of-death) are significantly larger than the SQuAD cloze dataset, with 2937, 1825, and 768
statements respectively.

4.1 Evaluation Metrics

To obtain a quantitative comparison of our knowledge graph extracts, we present two approaches
from related literature, graph-edit-distance and graph2vec [30, 31]. These metrics can be used to
compare the extracted knowledge graph with the ground truth knowledge graph to measure accuracy.
However, more novelty arises in using these metrics to compare language models against each other,
as shown later in the results where BERT, DistilBERT, and the trained from scratch variants are
compared with pretrained RoBERTa.

The first approach, graph-edit-distance (GED), is also known as tree-edit-distance for rooted trees
[30]. GED is a measure for the similarity between two graphs and is commonly used in knowledge
graph literature. As we are not measuring hierarchical relationships, we choose this metric to compare
our graphs. Given a standard set of graph edit operations (vertex insertion, vertex deletion, vertex
substitution, edge insertion, edge deletion, edge substitution), the graph edit distance between two
graphs g1 and g2 is defined as

GED(g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑
i=1

c(ei)

Target Model Graph edit distance
on the extracted knowledge graph

Euclidean distance
on the graph2vec embeddings

RoBERTa 1e 141.25 0.2260
RoBERTa 3e 135.00 0.1733
RoBERTa 5e 130.50 0.1607
RoBERTa 7e 121.50 0.1605
DistilBERT 28.50 0.0284
BERT 16.50 0.0202

Table 2: Distance from the target models to pretrained RoBERTa using the graph-edit-distance and
graph2vec metrics on the Google RE Place of Birth dataset.
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where P(g1, g2) denotes the set of edit paths transforming g1 into (a graph isomorphic to) g2 and
c(e) ≥ 0 is the cost of each graph edit operation e. In our implementation of GED, c(e) = 1 for
every graph edit operation. Since our knowledge graphs are large and our compute is limited, we
use an approximation of graph edit distance (Assignment Edit Distance) as presented by Riesen and
Bunke [36].

In our second quantitative evaluation metric, we transform the knowledge graphs into embeddings
and compare these graph vector representations using Euclidean distance. We utilize the graph2vec
functionality from the KarateClub 3 library and train a FEATHER graph level embedding [37] with
the standard hyperparameter settings to embed each language model’s knowledge graph into a 100-
dimensional vector space. In order to increase the connectivity of the graph, we stem the tokens in
each of the subject-verb-object triples. A future extension could be to apply lemmatization instead,
using the part-of-speech tag of the token.

In addition to the graph evaluation metrics, we investigate how representations of linguistic structure
are learned over time. To understand the grammatical construction of sentence, interpret its underlying
meaning, and extract subject-verb-object relationships, part-of-speech tagging is an important step
as showcased by Saphra and Lopez [38], Manning [39], Voutilainen [40] among many others. We
extend related literature in probing tasks [32] by proposing a new diagnostic linguistic metric using
part-of-speech tagging (POS-tags) on the relation triples with Natural Language Toolkit (NLTK)’s
Average Perceptron Tagger for the English language [41]. This POS-tag percentage difference metric
compares the number of times each part of speech appears in the relations of the language model’s
knowledge graph versus the ground truth knowledge graph. The motivation for this analysis is in
allowing us to understand how a language model learns in relation to different parts of speech. We
define this metric as the POSOR (Part-of-Speech Overprediction Rate) and represent it with the
following equation

POSOR(pos) =
(LMpos −GLMpos) · 100

GLMpos

where LMpos is the number of triples extracted from the language model knowledge graph for each
POS category, and GLMpos is the number of triples extracted from the ground truth knowledge graph
for each POS category.

We first tag each relation triple with the appropriate POS-tags across both knowledge graphs, compute
the difference in the counts of POS-tags appearing in each graph, and then normalize over the ground
truth counts to create POS-tag percentage differences (Table 4). This allows us to suggest statements
of the format: Model A overpredicts nouns (high positive percentage difference) when it should be
predicting more adverbs (high negative percentage difference). Analyzing models through these
statements is useful because it enables a data scientist to select a relevant subset of training data
to fix deficiencies in a language model’s performance. The NLTK POS tagset consists of verbs,
nouns, pronouns, adjectives, adverbs, adpositions (prepositions and postpositions), conjunctions,
determiners, cardinal numbers, particles or other function words, and punctuation [41].

4.2 Results

In the following section, we provide experimental results addressing the two research directions
of this work: quantitatively comparing language model knowledge and identifying linguistic skills
over time. Accordingly, we analyze the knowledge graph extracts through the lens of quantitative
graph metrics (graph-edit-distance and graph2vec similarity) and linguistics (part-of-speech tagging).
Knowledge graphs were extracted across 3 pretrained models (DistilBERT, BERT, RoBERTa) and 4
trained-from-scratch models (RoBERTa epochs 1, 3, 5, and 7), through 4 cloze datasets (SQuAD, 3

3https://karateclub.readthedocs.io/

ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB
Ground Truth 5.1% 21.3% 0.9% 0.4% 1.6% 50.7% 3.3% 0.2% 2.0% 14.5%

Table 3: Ground truth frequencies (% of entries in the ground truth KG) for each POS tag in the
SQuAD cloze statement dataset. The smallest and largest frequencies are bolded, and the ground
truth KG has 451 words in total.
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Figure 2: Micro-accuracy of POS classes for pretrained DistilBERT and BERT (green) and for the
first two training phases of RoBERTa model (blue), in comparison with pretrained RoBERTa (orange)
on the SQuAD dataset.

Model ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB
BERT -4 5 -33.3 0 0 6.9 0 -50 0 11.2
DistilBERT 20 6 0 0 0 8.5 -13.3 50 10 11.2
RoBERTa 1e -49.9 19.9 0 0 0 -77.9 0 0 -5.2 -31.1
RoBERTa 3e -49.9 20 49.9 0 0 -40.5 0 12.5 0 -6.3
RoBERTa 16 4 -33.3 0 0 -0.3 0 0 -20 4.2

Table 4: POS tagging experiment results (percent difference from ground truth for a specific POS tag
category) on pretrained models (BERT, DistilBERT, and RoBERTa) and trained RoBERTa (1 epoch,
3 epochs) for SQuAD.

Google-RE variants). We discuss interesting result highlights here; more results can be viewed in the
Appendix.

4.2.1 How can we quantitatively compare language model knowledge acquisition?

In Table 2 we show graph comparison scores for 3 pretrained BERT variants and 4 trained RoBERTa
models across the Google-RE Place of Birth dataset. As discussed in the previous sections, we
compute graph similarity between all the models and pretrained RoBERTa using two metrics: an
approximation of the graph-edit-distance (Assignment Edit Distance) between extracted graphs
and the euclidean distance between the embeddings of the graphs [36, 31]. Notice that BERT and
DistilBERT are consistently closer to RoBERTa compared to the trained-from-scratch models (as
evidenced by smaller graph-edit-distance and euclidean distance scores). Also note that the both the
graph-edit-distance metric (141.25, 135, 130.50, 121.50) and the Euclidean distance of the Graph2Vec
representations (0.2260, 0.1733, 0.1607, 0.1605) decrease as the epochs of trained-from-scratch
RoBERTa increases. Additional manually calculated graph-edit-distance results are showcased in
Appendix Tables 5 and 6. This analysis is important because it enables us to quantitatively compare
the knowledge a language model has across model variations and training stages.

4.2.2 As a language model trains, what linguistic traits does it learn over time?

In Table 4 and Appendix Table 7, we present the results of our Part of Speech (POS)-tag metrics,
comparing each of the language model KGs to the ground truth KGs and identifying which parts-
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of-speech are being overpredicted and underpredicted. If a language model KG was performing
perfectly, all of the POSOR percentage differences in Table 4 would be 0. Table 3 sets the scene
for the LAMA SQuAD dataset, extracting the parts-of-speech for the ground truth knowledge graph
to contextualize the results. Nouns are most present with 50.7% of the SQuAD data and pronouns
are least present with 0.2% of the data. In the case of RoBERTa 1 epoch on the SQuAD dataset, we
see that it is severely underpredicting nouns (-77.9%) and overpredicting prepositions (19.9%). In
RoBERTa 3 epochs on the SQuAD dataset, we see that we are no longer as drastically underpredicting
nouns (-40.6%) and are overpredicting adverbs more than prepositions (49.9%).

Observing the relationships between the pretrained DistilBERT, BERT, and RoBERTa on the Google-
RE datasets in Tables 4 and 7, we see that BERT and DistilBERT are very similar (noting that
DistilBERT is a distilled form of our BERT-base-cased model). In the Google-RE Place of Birth
dataset, the difference in BERT and DistilBERT’s largest weaknesses (predicting numbers) and
strengths (predicting particles) are less than half of a percent (-25.8% vs. -25.7%, 16.8% vs. 16.3%).
In the Google-RE Place of Death dataset, we see that pretrained RoBERTa is much more accurate at
predicting pronouns than BERT (0% vs. -33.3%). POS annotations extracted from the KG creation
pipeline allow us linguistic granularity in comparing models across various epochs and variants. It
also enables machine learning practitioners to produce specialized subsets of data to fix language
model linguistic weaknesses in future training iterations.

Using the generated knowledge graphs, we can examine how certain relations change over time.
In the RoBERTa trained for 1 epoch, a new relation states {teachers, follow, as curricula}. In the
3 epoch version, that same triple changes to {teachers, follow, curricula}, which demonstrates a
qualitative example of a better grasp of adverbs. In the 1 epoch RoBERTa on the SQuAD dataset,
23 of 40 predicted target objects in the new LM relations were articles (e.g. in, on, the). In 3 epoch
RoBERTa, we see a marked reduction in article prediction, with only 9 of 40 predicted target objects
as articles.

Lastly, the radio graphs in Figure 2 demonstrate the POS results of RoBERTa at 1 and 3 epochs, as
well as pretrained DistilBERT and BERT in comparison with pretrained RoBERTa. As the overall
area of the plots increase, we note that the accuracy of the model performance in the corresponding
part-of-speech categories increases as well. These analyses are conducted as a proof-of-concept on
early stages of RoBERTa and pretrained BERT variants, but the metrics introduced here are broadly
applicable and useful for comparing any set of language models.

5 Conclusion

In this paper, we present a pipeline to extract Knowledge Graphs (KGs) from masked language
models using cloze statements, and 3 metrics to analyze these graphs comparatively. Our main
contribution is the novelty of comparing KG extracts over time to showcase comparative insights
between BERT variants at different stages of training. We are inspired by prior work from Petroni
et al. [12] to develop our extraction pipeline and expand further on their work through the lens of
interpretability and a simpler relation extraction methodology. Our results demonstrate that in each
training phase, language models tend to create better connections and more meaningful triples across
their extracted knowledge graph, which justifies our intuition towards the performance increase
across our metrics in each training epoch (RoBERTa 1 through 7 epochs) and pretrained model
advancement (DistilBERT, BERT, RoBERTa). These generated knowledge graphs are a large step
towards addressing the research questions: How well does my language model perform in comparison
to another (using metrics other than accuracy)? What are the linguistic strengths of my language
model? What kind of data should I train my model on to improve it further? Our pipeline aims
to become a diagnostic benchmark for language models, providing an alternate approach for AI
practitioners to identify language model strengths and weaknesses during the model training process
itself.

5.1 Future Work

This work can most certainly be extended further into the realm of other language models and other
domains. If we had more resources, a natural extension would be to train RoBERTa from scratch at
much larger epochs (i.e. 50, 500, 5000) to better understand later stages of the model training process,
instead of looking at only the first 7 epochs. We skimmed the surface of probing task literature to
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identify skills present in the query answering; delving further into Kim et al. [32]’s benchmarks and
expanding on our POS tagging work could provide more interesting insights. Additionally, switching
our model task from masking to sentence generation and feeding it into the same KG extraction
pipeline could reveal alternative conclusions about grammar and linguistic strengths. Improving the
dataset size and variation is another important step; more diverse data extracted from Wikipedia could
provide stronger evaluation-based claims [42].
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Appendix

Figure 3: Knowledge Graphs (KGs) generated using the pretrained BERT / RoBERTa architecture
and SpaCy relation extraction on the LAMA SQUAD and Google RE datasets. The numbers below
each KG represent the number of unique relation triples. The LM KG represents the cloze sentences
after the masks have been replaced by the Language Model predictions. Ground Truth references
gold label sentences where relations have been extracted directly.
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SQuAD MobileBERT DistilBERT BERT RoBERTa
MobileBERT 0 15 21 25
DistilBERT 15 0 12 23
BERT 21 12 0 17
RoBERTa 25 23 17 0

Table 5: Graph-Edit-Distance scores between KGs for BERT variants using the SQUAD dataset from
LAMA [12].

Google-RE DistilBERT BERT RoBERTa
DistilBERT 0 113 272
BERT 113 0 287
RoBERTa 272 287 0

Table 6: Graph-Edit-Distance scores between KGs for BERT variants using the Google-RE Place of
Birth Dataset from LAMA [12].

POS-tag Experiment . ADJ ADP ADV CONJ DET
re-date-birth BERT -5.3 -1.1 0.6 0 0 6.2
re-date-birth RoBERTa 1e 0 -6.2 0 0 0 66.6
re-date-birth RoBERTa 3e 0 -6.2 -33.3 0 0 53.8
re-date-birth RoBERTa (pretrain) 52.6 -1.7 0.9 5 9 2
re-place-birth BERT 0.5 -0.4 -2.1 3.1 0 2.5
re-place-birth DistilBERT 1.5 -1.7 -2.1 3.1 0 1.6
re-place-birth RoBERTa 1e 0 -4 -37.4 0 0 0
re-place-birth RoBERTa 3e 0 -4 -37.4 0 0 0
re-place-birth RoBERTa (pretrain) -2.5 -8.9 3.6 -3.1 3.4 1.6
re-place-death BERT 20.6 19.2 27.1 -19 14.2 20.5
re-place-death DistilBERT 22.2 19.2 27.9 -14.2 14.2 20.5
re-place-death RoBERTa (pretrain) 20.6 15.3 33 -19 14.2 17.6
squad BERT 0 -4 5 -33.3 0 0
squad DistilBERT 0 20 6 0 0 0
squad RoBERTa 1e 0 -49.9 19.9 0 0 0
squad RoBERTa 3e 0 -49.9 19.9 49.9 0 0
squad RoBERTa (pretrain) 0 16 4 -33.3 0 0

POS-tag Experiment NOUN NUM PRON PRT VERB
re-date-birth BERT -1.9 14.4 0 -1.8 1.9
re-date-birth DistilBERT -0.6 8 0 1.8 1.2
re-date-birth RoBERTa 1e 12.4 -74.9 -0.8 0 -3.6
re-date-birth RoBERTa 3e 5.9 0 0 0 -9.2
re-date-birth RoBERTa (pretrain) -7.6 60 0 -1.2 9.2
re-place-birth BERT -2.2 -25.7 14.2 16.8 -1.7
re-place-birth DistilBERT -1.9 -25.7 14.2 16.3 -1.9
re-place-birth RoBERTa 1e -0.5 0 0 5.5 0.7
re-place-birth RoBERTa 3e -1.2 0 0 5.5 -0.3
re-place-birth RoBERTa (pretrain) 3.9 -24.3 14.2 17.3 3.5
re-place-death BERT 24.2 12.2 -33.3 17.4 26.5
re-place-death DistilBERT 25.2 13.6 0 17.4 26.8
re-place-death RoBERTa (pretrain) 28.8 19.3 0 19 31.5
squad BERT 6.9 0 -50 0 11.2
squad DistilBERT 8.5 -13.3 50 10 11.2
squad RoBERTa 1e -77.9 0 0 -5.2 -31.1
squad RoBERTa 3e -40.5 0 12.4 0 -6.3
squad RoBERTa (pretrain) -0.3 0 0 -20 4.2

Table 7: Difference in POS tags between the language-model-generated KG and ground truth KG.
The largest positive and negative difference are highlighted. POS-tags use the NLTK Averaged
Perceptron Tagger abbreviations: VERB - verbs (all tenses and modes), NOUN - nouns (common and
proper), PRON - pronouns, ADJ - adjectives, ADV - adverbs, ADP - adpositions (prepositions and
postpositions), CONJ - conjunctions, DET - determiners, NUM - cardinal numbers, PRT - particles
or other function words, . - punctuation [41].
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