
Accepted at the ICLR 2025 FPI Workshop

DEEP OPTIMAL SENSOR PLACEMENT FOR BLACK BOX
STOCHASTIC SIMULATIONS

Paula Cordero-Encinar & Tobias Schröder
Department of Mathematics, Imperial College London
{paula.cordero-encinar22,t.schroeder21}@imperial.ac.uk

Peter Yatsyshin
Alan Turing Institute
pyatsyshin@turing.ac.uk

Andrew B. Duncan
Department of Mathematics, Imperial College London
a.duncan@imperial.ac.uk

ABSTRACT

Selecting cost-effective optimal sensor configurations for subsequent inference of
parameters in black-box stochastic systems faces significant computational barriers.
We propose a novel and robust approach, modelling the joint distribution over input
parameters and solution with a joint energy-based model, trained on simulation data.
Unlike existing simulation-based inference approaches, which must be tied to a
specific set of point evaluations, we learn a functional representation of parameters
and solution. This is used as a resolution-independent plug-and-play surrogate for
the joint distribution, which can be conditioned over any set of points, permitting
an efficient approach to sensor placement. We demonstrate the validity of our
framework on a variety of stochastic problems, showing that our method provides
highly informative sensor locations at a lower computational cost compared to
conventional approaches.

1 INTRODUCTION

A common challenge across many areas of science and engineering is recovering an unobserved
parameter or input from noisy, indirect observations. Examples arise in imaging (e.g. in-painting and
up-scaling), weather forecasting and oceanography (flow reconstruction), material design (molecular
force-field reconstruction) and medicine (computed tomography). Such inverse problems are often
ill-posed, meaning that there may be several choices of model parameters which are consistent
with the observations, or that the output is highly sensitive to errors in the parameter. Many highly
relevant inverse problems are also large-scale, where the map from input parameters to output is
sufficiently complex to be effectively black-box, and its evaluation is highly computationally intensive.

An inverse problem can be formulated as the following system of equations

u = G(κ)
y = O(u) + η,

where the forward problem G is an associated mathematical model, mapping an (unobserved) input
parameter κ to a spatially-varying field u, e.g. the solution of a partial differential equation (PDE). In
typical settings, we do not observe u completely, but rather make partial observations y through an
observation operator O subject to noise η.

For this work we are interested in settings where the relationship between κ and u is non-deterministic,
so that G possesses intrinsic stochasticity. This challenge arises in settings where the forward model
is not a complete representation of reality, and additional (unobserved) noise sources are introduced

1



Accepted at the ICLR 2025 FPI Workshop

Table 1: Comparison of scope of Functional Neural Couplings (ours) and existing methods.

Methods Direct PDE Neural Operator Neural Operator w/ Functional Neural
solves surrogate oracle noise Coupling (ours)

Low-cost evaluation ✗ ✔ ✔ ✔
Low-cost inversion ✗ ✔ ✔ ✔

Supports stochastic PDEs ✔ ✗ ✔ ✔
Tractable likelihood ✗ ✗ ✗ ✔

to characterise external/environmental effects. Such forward models are typically formulated as
stochastic partial differential equations (SPDEs).

The Bayesian approach to inverse problems (Stuart, 2010) is a systematic method for uncertainty
quantification of parametric estimates in which the parameter and the observations are viewed as
coupled-random variables. By placing a prior for the distribution of the parameter κ, Bayes’ rule
yields a posterior distribution for κ given the observations, thus providing a probabilistic method to
solving inverse problems.

The quality of the inference will depend on how informative the observations are which is charac-
terised by the observation operator O which is typically a vector of point-wise evaluations of u at
a fixed set of sensor locations within the problem domain. In settings where we have control over
sensor placement, we have a strong incentive to choose them optimally, i.e. to be as informative of κ
as possible.

While optimal sensor placement has been widely studied in the scientific computing literature
(Chaloner & Verdinelli, 1995; Rainforth et al., 2024), established approaches are infeasible for
larger-scale problems. Typical approaches to sensor placement involve a nested Markov Chain
Monte Carlo (MCMC) approach to perform Bayesian Experimental Design (BED). In the setting
of a PDE-governed inverse problem, each MCMC step necessitates at least one simulation of the
underlying PDE, meaning that the process quickly becomes computationally infeasible (Alexanderian,
2021).

A natural strategy would be to perform optimal sensor placement over a surrogate model (Gramacy,
2020), learnt from forward model evaluations. However, such approaches are not applicable if the
parameter is functional or if the forward operator is intrinsically stochastic. In the latter case, the
likelihood becomes intractable due to the introduction of auxiliary noise variables, and one must
resort to expensive pseudo-marginal MCMC methods (Andrieu & Roberts, 2009).

To overcome these limitations we propose Functional Neural Couplings, a novel probabilistic model
of the relationship between inputs and outputs of a stochastic forward problem. Functional Neural
Couplings provide accurate likelihood evaluations for κ given noisy observations of u, which enables
low-cost solution of both the forward and inverse-problem, despite requiring a single training phase.
Specifically, we make the following contributions:

1. We introduce Functional Neural Couplings (FNC), a probabilistic model of the joint distri-
bution of a functional parameter κ and the functional solution of the forward problem u as a
joint Energy-Based Model (EBM).

2. We leverage implicit neural representations (INR) to express functional data as low-
dimensional latent codes. This introduces a new way to extend the scope of energy-based
models to functional data on diverse geometries and makes our approach resolution inde-
pendent, i.e. the model can be queried from functions evaluated at arbitrary evaluation
points.

3. Finally, we use the Functional Neural Coupling framework to introduce the first computa-
tionally feasible method for deep optimal sensor placement for stochastic inverse problems
with black-box noise.

1.1 RELATED WORK

Neural Operators Neural Operators are a class of deep learning architectures designed to learn
maps between infinite-dimensional function spaces. As data-driven methods, they do not require

2



Accepted at the ICLR 2025 FPI Workshop

any knowledge of the underlying PDE. Additionally, they are resolution invariant in the sense that
they can generate predictions at any resolution. Examples include DeepONets and Fourier Neural
Operators (FNO) (Kovachki et al., 2021; Li et al., 2021). A related approach, CORAL (Serrano et al.,
2023) uses an encode-process-decode structure to learn functional operators between functions on
non-uniform geometries by leveraging INRs as in our framework.

Some works have leveraged Neural Operators for solving inverse problems, e.g. Molinaro et al.
(2023). Long & Zhe (2024) adopts a Bayesian approach by introducing an invertible FNO enhanced
with a VAE that allows for posterior inference. However, these methods assume only observational
noise and cannot account for stochasticity in the forward operator.

Generative Models On Function Spaces Recent work has sought to extend generative models to
distributions on function spaces, which can therefore capture stochastic relationships between the
input parameter κ and G(κ). Rahman et al. (2022) propose a Generative Adversarial Neural Operator
for learning function data distributions. Baldassari et al. (2023), Franzese et al. (2023), Kerrigan et al.
(2023), Lim et al. (2023a) and Pidstrigach et al. (2023) generalise diffusion models to operate directly
on a Hilbert space. In contrast to our approach, these methods do not immediately yield a likelihood
which can be used for downstream tasks. Mishra et al. (2022) propose a Variational Autoencoder
approach which employs a function space decoder. Similar approaches include Neural Processes
(Garnelo et al., 2018), Energy-Based Processes (Yang et al., 2020) and Functional EBMs (Lim et al.,
2023b).

Inverse Problems and Sensor Placement Methods that use black-box simulators for the statistical
inference of underlying finite dimensional parameters are well-established and typically referred to
as likelihood-free or simulation-based inference methods (Cranmer et al., 2020). In recent years,
neural networks have been employed to learn synthetic likelihood surrogates with normalising flows
(Papamakarios et al., 2019) and energy-based models (Glaser et al., 2022) as in our work. However,
these approaches neither apply to functional data nor address sensor placement.

The problem of optimising sensor locations is typically approached as a combinatorial optimisation
task by discretising the domain into a finite grid (Barthorpe & Worden, 2020; Yuen et al., 2001;
Andersson et al., 2023), while we are able to select sensor placement sites across the entire problem
domain.

Sensor placement in the context of inverse PDE problems has mainly been addressed using traditional
MCMC approaches (Andrieu & Roberts, 2009; Alexanderian, 2021). The number of simulations of
the forward system is orders of magnitude higher in these classical approaches than in our approach
and thus not suitable for complex situations with expensive simulators such as stochastic PDEs.

2 PROBLEM SETTING

We consider a stochastic forward problem κ→ u = G(κ, ω), where the random variable ω captures
the intrinsic stochasticity. The function-valued parameter κ ∈ A is defined on a domain Ω ⊆ Rdx .
For a forward model which involves the solution of a (S)PDE, the parameter κ could be an initial
condition, boundary condition, spatially-varying coefficient field or forcing term, but our framework
is not restricted to these settings, or SPDEs more broadly.

At training time we have access to a black-box stochastic simulator of the forward dynamics to
obtain a solution u = G(κ, ω) for any given κ ∈ A. To reflect real-world settings, the realisation or
distribution of the stochastic contribution ω is assumed to be unknown to us at all times.

Objective At test time, the objective is to find optimal sensor positions ξ which maximise the
information gained on κ ∈ A through inference based on noisy observations y = O(u) + η =
(u(ξj) + ηj)

D
j=1 at sensor locations {ξj}Dj=1. Here, the observational noise η is a property of the

sensor and is different from the intrinsic stochasticity of the system.

3



Accepted at the ICLR 2025 FPI Workshop

3 FUNCTIONAL NEURAL COUPLINGS

We propose to approximate the solution operator G using a probabilistic model pθ that learns the joint
distribution of (κ, u) such that high likelihood regions of pθ correspond to solutions u = G(κ). To do
so, using training data from simulations {(κi(xij), ui(xij))

Ni
j=1}Mi=1, xij ∈ Ω, we encode the functions

κi and ui into finite-dimensional latent codes zκ,i ∈ Rdzκ , zu,i ∈ Rdzu by employing implicit neural
representations (Dupont et al., 2022). Critically, no evaluation grid has to be defined for this step. On
the finite-dimensional representation space, we learn the joint distribution of the latent codes using a
joint energy-based model pθ(zκ, zu) ∝ exp(−Eθ(zκ, zu)) . The neural network architecture of the
joint energy-based model is described in the Appendix. Our training workflow is visualised in Fig. 1.

3.1 LEARNING IMPLICIT NEURAL REPRESENTATIONS

Figure 1: Workflow for the training of the INR and joint
energy-based model. Layout based on Serrano et al.
(2023).

Following COIN++ (Dupont et al., 2022),
we compress the functional data points
(κi)

M
i=1 and (ui)

M
i=1 into implicit neu-

ral representations defined by κi(·) =
gψ(·, zκ,i), zκ,i ∈ Rdzκ , and ui(·) =
fϕ(·, zu,i), zu,i ∈ Rdzu . We train the
neural representations by minimising the
mean square error between the function
value and the neural network prediction
at the evaluation points. Each layer of
gψ and fϕ takes the form of a SIREN
layer sin(ω0(Wh + b + β)) (Sitzmann
et al., 2020). While the weights and bi-
ases W,b of each layer are shared among
all data points, the shifts β depend differen-
tiably on each data point latent code z and
are trained individually for each functional
data point. That is, the training consists of a double optimisation loop, the inner loop updates the modu-
lations zκ,i, zu,i while the outer loop updates the shared parameters, ψ = {Wψ,bψ}, ϕ = {Wϕ,bϕ}.
This produces highly compressed latent representations (zκ,i, zu,i)

M
i=1, which can be decoded ef-

ficiently by applying the maps gψ and fϕ , respectively. Thus, the INR component is crucial to
effectively learn functional relationships, without being limited to a particular discretisation of the
domain.

Due to the generalisation capabilities of INRs it is sufficient to only train on 10% of the dataset,
which dramatically improves efficiency without degrading performance. The latent codes z are then
computed for the entire dataset, keeping the shared parameters fixed.

3.2 FUNCTIONAL NEURAL COUPLINGS WITH JOINT ENERGY-BASED MODELS

Energy-based models (EBMs) (Lecun et al., 2006) are unnormalised statistical models of the form
exp(−Eθ), where the energy-function Eθ is typically modelled with a scalar-valued neural network.
We assume lossless compression in the INR and learn the joint distribution of κ and u = G(κ) as a
joint energy-based model over tuples zi = (zκ,i, zu,i). Since unnormalised models are not amenable
to optimisation with maximum likelihood estimation, we explore training the model with contrastive
divergence (Hinton et al., 2006), score-based methods (Hyvärinen, 2005; Vincent, 2011; Song &
Ermon, 2020) and energy discrepancy (Schröder et al., 2023), achieving the best results with energy
discrepancy. Note that the joint energy-based model component plays a central role in modelling the
stochastic relationship between parameters and solutions.

4 SENSOR PLACEMENT WITH BAYESIAN EXPERIMENTAL DESIGN

The goal is to determine optimal sparse sensor placement positions ξ = {ξ1, ξ2, . . . , ξD} ⊂ Ω for
the inference of (κ, u = G(κ)) based on y = u(ξ) + η. We assess the utility of a sensor position
by calculating the expected information gain over the prior as measured by relative entropy, i.e. we

4



Accepted at the ICLR 2025 FPI Workshop

use the utility function U(ξ) := Ep(y|ξ)DKL(p(zκ, zu|y, ξ) ∥ pθ(zκ, zu)), which can be evaluated at
any point ξ thanks to the INR component. Using Bayes theorem, the utility can be rewritten as

U(ξ) = Epθ(zκ,zu)p(y|zκ,zu,ξ)

[
log

p(y|zκ, zu, ξ)
p(y|ξ)

]
. (1)

Since p(y|ξ) is unknown, a naive Monte Carlo estimation provides a nested Monte Carlo estimator
(Rainforth et al., 2018), which approximates the inner and outer integrals of the utility but suffers
from a slow rate of convergence. Therefore, following on Foster et al. (2020), we use the prior
contrastive estimation (PCE) bound given by

ÛPCE(ξ) = E

[
log

p(y|zκ,0, zu,0, ξ)
1

L+1

∑L
l=0 p(y|zκ,l, zu,l, ξ)

]
where the expectation is computed over pθ(zκ,0, zu,0)p(y|zκ,0, zu,0, ξ)pθ(zκ,1:L, zu,1:L). This al-
ternative estimator significantly speeds up training and is a valid lower bound of the utility which
becomes tight as L→ ∞ (Foster et al., 2020). Further details are given in the Appendix.

The actual selection of optimal locations can be conducted sequentially, which leads to Bayesian
adaptive design (BAD) (Rainforth et al., 2024) for sensor placement. This framework iteratively
places sensors by incorporating observations of the solution from previously identified optimal
locations, using them to guide the selection of the best sensor positions in subsequent steps. In
settings where multiple measurements can be taken in parallel, each step of the optimisation can
select a batch of optimal sensor placement positions instead of just one. More specifically, considering
the sequence of locations and outcomes up to step t of the experiment, denoted by {ξ1, . . . , ξt−1} and
{y1, . . . ,yt−1}, respectively, we aim to maximise the utility given the history ht−1 = {(ξk,yk)}t−1

k=1,

U(ξt|ht−1) = E
[
log

p(y|zκ, zu, ξt, ht−1)

p(y|ξt, ht−1)

]
,

where h0 = ∅ and the expectation is over p(zκ, zu|ht−1)p(yt|zκ, zu, ξt, ht−1). This can also be
interpreted as the utility in Eq. equation 1 with an updated prior and likelihood. However, in most
cases yt is independent of ht−1 given (zκ, zu, ξt), thus only the prior needs to be updated.

4.1 INFERENCE FROM SPARSE OBSERVATIONS

At inference time, we have noisy observations of the system at the selected optimal locations
D = {(ξj ,yj)}Dj=1 with yj = u(ξj) + ηj , where the observational noise ηj ∼ N (0, σ2) is to be
distinguished from the random component inherent in the forward model which is captured by the
energy-based model. The posterior distribution of the latent representations (zκ, zu) conditioned on
the observed data is given by

p(zκ, zu|D) ∝ p(D|zκ, zu)pθ(zκ, zu) =
n∏
j=1

p(ξj ,yj |zκ, zu)pθ(zκ, zu).

The noise assumption together with the underlying forward model, results in p(ξj ,yj |zκ, zu) =
N (yj ; fϕ(ξj , zu), σ

2). The desired parameter-solution pair (κ, u = G(κ)) can now be sampled from
the posterior using stochastic gradient Langevin dynamics (Welling & Teh, 2011).

5 NUMERICAL EXPERIMENTS

In this section, we test the performance of the proposed Functional Neural Coupling framework
for optimal sensor placement in stochastic versions of a 1D boundary value problem and the 2D
Navier-Stokes equation. We compare our method with approaches based on Fourier neural op-
erators. Our training data consists of M pairs of parameters and their corresponding solutions
evaluated at Ni point observations that can be different across the M function realisations, that is,
{(κi(xij), ui(xij))

Ni
j=1}Mi=1 with xij ∈ Ω. While the method can handle functional parameters through

the INR encoding, we assume for simplicity in the first presented example that κ is parametrised
by a real-valued vector of finite dimension. We emphasise that direct evaluations of G are only

5



Accepted at the ICLR 2025 FPI Workshop

required to train the INRs and the energy-based model. Once trained, no further evaluations of G are
required, and the INRs and EBM are used exclusively for optimal sensor placement and inference,
drastically reducing the computational burden when G is a computationally intensive simulator model.
Additional experimental details (dataset generation, implementation, run times) and further numerical
experiments are included in the Appendix.

Benchmarks We compare our method for optimal sensor placement against using a Fourier
Neural Operator (FNO) surrogate for the forward model (Li et al., 2021). In this case, the posterior
distribution of the parameter given observations of the solution is obtained following Section 5.5 of Li
et al. (2021), which is subsequently used to perform sensor placement. As neural operators can only
learn deterministic maps, they fail to incorporate the effect that a spatio-temporal external random
signal has on the system described. To provide a gold standard baseline, we additionally consider the
FNO with oracle noise from Salvi et al. (2022) which assumes that the driving noise of the stochastic
model, that we previously denoted as ω, is observed and taken as input to the model. The FNO with
oracle noise is an unattainable baseline in practice as it has the benefit of having full knowledge of
the noise driving the forward model. In contrast, our approach does not rely on observing the driving
noise ω, which is typically the case in real-world situations where the system’s intrinsic stochasticity
cannot be directly measured. For each surrogate method (ours, FNO and FNO with oracle noise),
we determine optimal sensor locations using both adaptive and batch non-adaptive approaches. We
compare the efficiency of optimally selected positions with the use of points from a Quasi Monte
Carlo sequence (Niederreiter, 1992) within the domain.

Note that we do not compare our approach with traditional methods for sensor placement, as our
objective is to develop an efficient, lightweight framework for Bayesian sensor placement and
classical approaches are computationally prohibitive or infeasible for the type of problems considered,
often requiring run times on the order of several days. Table 1 offers a clear comparison of the key
advantages of our approach over other methods, highlighting its distinctive characteristics.

5.1 BOUNDARY VALUE PROBLEMS IN 1D

Consider the boundary value problem (BVP) on the interval [−1, 1] given by the non-linear PDE

u′′(x)− u2(x)u′(x) = f(x), u(−1) = Xa, u(1) = Xb,

f(x) = −π2 sin(πx)− π cos(πx) sin2(πx),

Xa ∼ N (a, 0.32), Xb ∼ Unif(b− 0.3, b+ 0.4),

where a, b ∼ Unif(−3, 3). The training data consists of pairs of parameters (a, b) and their corre-
sponding solution for a realisation of the random variables Xa and Xb. Once trained the INR and
joint energy-based models, we carry out a toy sensor placement task, in which we aim to select
two optimal locations. We observe that, using our Functional Neural Coupling surrogate, posterior
samples based on information from batch non-adaptive optimal locations match closer the ground
truth compared to those from optimal adaptive locations or points of a random sequence (see Figure
2 for the case with true parameters a = −2, b = 1.5). Table 2 shows the mean and standard deviation
of the relative L2 error norm across 100 experiments with different random values for (a, b) for the
different methods. The performance of our approach is comparable to that of FNO with oracle noise,
which has complete knowledge of the intrinsic stochasticity. In addition, our method consistently
exhibits a lower standard deviation compared to the other approaches.

5.2 NAVIER STOKES EQUATION

We study a stochastic version of the 2D Navier Stokes equation for a viscous, incompressible fluid in
vorticity form on the unit torus

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x) + αε,

∇ · u(x, t) = 0, w(x, 0) = w0(x),

where x ∈ (0, 1)2, t ∈ (0, T ], u is the velocity field, w = ∇ × u is the vorticity, ν ∈ R+ is the
viscosity coefficient, which is set to 10−4, f is the deterministic forcing function, which takes the
form f(x) = 0.1[sin(2π(x1 + x2)) + cos(2π(x1 + x2))], and ε is the stochastic forcing given by

6



Accepted at the ICLR 2025 FPI Workshop

Table 2: Relative L2 error norm for the posterior mean of the solution and MSE for the boundary
conditions a, b for sensor placement on the BVP. We average over 100 experiments with different
random values for (a, b).

Method Design points ∥û− utr∥2/∥utr∥2 MSE(â) MSE(b̂)

Functional Neural Coupling (Ours)
Adaptive BED 0.124 ± 0.101 0.135 ± 0.099 1.441 ± 1.003

Batch non-adaptive BED 0.097 ± 0.081 0.103 ± 0.193 1.074 ± 0.906
Random sequence 0.331 ± 0.259 0.476 ± 0.888 4.162 ± 3.885

FNO surrogate
(Li et al., 2021)

Adaptive BED 0.137 ± 0.308 0.441 ± 1.337 1.224 ± 2.084
Batch non-adaptive BED 0.125 ± 0.255 0.428 ± 1.239 1.111 ± 1.785

Random sequence 0.251 ± 0.507 0.484 ± 0.947 3.839 ± 7.457

FNO w/ oracle noise surrogate
(Salvi et al., 2022)

Adaptive BED 0.116 ± 0.250 0.021 ± 0.058 1.580 ± 2.888
Batch non-adaptive BED 0.090 ± 0.131 0.041 ± 0.105 1.046 ± 1.620

Random sequence 0.356 ± 0.613 0.494 ± 1.412 8.372 ± 11.856

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1

2

3 Posterior samples
True
Data

4

3

2

1

0

1

2

3

(a) Adaptive optimal design

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1

2

3 Posterior samples
True
Data

4

3

2

1

0

1

2

3

(b) Batch non-adaptive optimal design

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1

2

3 Posterior samples
True
Data

4

3

2

1

0

1

2

3

(c) Random sequence design

Figure 2: Sensor placement task for the BVP using our Functional Neural Coupling surrogate.
Posterior samples based on two optimal design points: adaptive (a) and batch non-adaptive (b), versus
two points from a random sequence (c). True values: a = −2, b = 1.5.

ε = Ẇ for W being a Q-Wiener process which is coloured in space. The initial condition w0(x) is
generated according to a Gaussian random field with periodic boundary conditions. Following Salvi
et al. (2022), we solve the previous equation for each realisation of the Q-Wiener process using a
pseudo-spectral solver and a time step of size 10−3. The training data is generated by evaluating the
solution at time points t = 1, 2, 3 on a 16× 16 spatial mesh. We learn a Functional Neural Coupling
between the initial vorticity ω0 and the vorticity at times t = 1, 2, 3.

The sensor placement task consists in finding optimal locations for fifteen additional measurement
sites based on five initial observations of a randomly chosen solution. Inference is performed using
observations of the vorticity at t = 1, 2, 3 in the chosen locations. As illustrated in Figure 3, inference
results using adaptive sensor placement locations closely match the ground truth. Table 3 shows that
our Functional Neural Coupling approach outperforms the FNO surrogate and performs close to the
FNO with oracle noise which is unattainable in practice.

Gr
ou

nd
 tr

ut
h

t=0 t=1 t=2 t=3

Ad
ap

tiv
e

Figure 3: Left: ground truth solution. Right: posterior mean based on observations at adaptively
chosen sensor locations using our Functional Neural Coupling surrogate.

7



Accepted at the ICLR 2025 FPI Workshop

Table 3: Relative L2 errors for the posterior mean of the initial vorticity w0 and the vorticity at
t = 1, 2, 3, wt, for the sensor placement experiment on the Navier Stokes equation. We take the
average over 20 sensor placement experiments.

Method Design points ∥ŵ0 − wtr,0∥2/∥wtr,0∥2 ∥ŵt − wtr,t∥
2/∥wtr,t∥

2

Functional Neural Coupling (Ours)
Adaptive BED 0.293 ± 0.077 0.175 ± 0.091

Batch non-adaptive BED 0.321 ± 0.083 0.239 ± 0.090
Quasi-Monte Carlo sequence 0.578 0.422

FNO surrogate
(Li et al., 2021)

Adaptive BED 0.382 ± 0.067 0.242 ± 0.095
Batch non-adaptive BED 0.454 ± 0.092 0.288 ± 0.089

Quasi-Monte Carlo sequence 0.652 0.576

FNO w/ oracle noise surrogate
(Salvi et al., 2022)

Adaptive BED 0.221 ± 0.065 0.103 ± 0.079
Batch non-adaptive BED 0.301 ± 0.080 0.169 ± 0.083

Quasi-Monte Carlo sequence 0.454 0.332

6 DISCUSSION AND LIMITATIONS

In this paper we introduce Functional Neural Couplings, a novel approach to learning resolution-
invariant surrogate models for stochastic functional operators by modelling the joint distribution of
operator input and output with an energy-based model without assuming any knowledge about the
intrinsic driving noise. The combination of probabilistic generative models and the implicit neural
representation unlocks a unique set of properties of our method: it is resolution independent (meaning
that even if trained on a lower resolution it can be directly evaluated on a higher resolution), it captures
the effects of stochasticity present in the forward model (as is the case for SPDEs), and it outputs
an unnormalised joint distribution which allows inference and downstream tasks such as sensor
placement through sampling from the posterior distribution. To the best of our knowledge, our work
is the first that makes use of generative models in sensor placement of inverse problems for SPDEs
avoiding costly traditional MCMC-based methods and providing a tractable likelihood model. The
numerical experiments demonstrate that our approach outperforms the FNO surrogate in the sensor
placement task, as the latter are unsuitable for stochastic forward problems. While our approach does
not require full knowledge of the driving noise, it is still able to achieve performance comparable
to the FNO having full access to the driving noise, thus yielding an accurate and practically useful
surrogate. We also show improved accuracy when performing inference with a principled sensor
placement strategy using BED tools, compared to using points from a Quasi-Monte Carlo sequence.
In both cases, our Functional Neural Coupling serves as a surrogate for the joint distribution.

While Functional Neural Couplings are a promising method for probabilistic surrogate modelling of
expensive stochastic systems, they make the assumption that the density of parameter-solution pairs
is positive everywhere. This may pose challenges to our method when the data distribution is sparsely
distributed on A×U , for example, in fully deterministic settings or when only few parameter choices
lead to stable behaviour of the system. In particular, the training of the energy-based model may fail
when the implicit neural representation is chosen too high-dimensional, thus we may need to sacrifice
the accuracy with which the functions are described through the finite dimensional latent variables to
allow for stable training. In addition, the energy based model will not necessarily generalise to parts
of the state space not covered by the prior from which a ∈ A was sampled. Thus, the specific training
data needs to be chosen judiciously. Alternatively, an adaptive data-generation approach as proposed
in Papamakarios et al. (2019) might be required, particularly when the simulator is expensive.

For future work, we are interested in exploring improved sample efficient methods for the modelling
and training of energy-based models for functional data and studying sequential strategies that use
the observation data more effectively for fine-tuning the base energy-based model.

ACKNOWLEDGMENTS

PCE is supported by EPSRC through the Modern Statistics and Statistical Machine Learning (StatML)
CDT programme, grant no. EP/S023151/1. TS is supported by the EPSRC-DTP scholarship partially
funded by the Department of Mathematics, Imperial College London. We thank the anonymous
reviewer for their comments.

8



Accepted at the ICLR 2025 FPI Workshop

REFERENCES

Alen Alexanderian. Optimal experimental design for infinite-dimensional Bayesian inverse problems
governed by PDEs: A review. Inverse Problems, 37(4):043001, 2021.

Tom R. Andersson, Wessel P. Bruinsma, Stratis Markou, James Requeima, Alejandro Coca-Castro,
Anna Vaughan, Anna-Louise Ellis, Matthew A. Lazzara, Dani Jones, Scott Hosking, and et al.
Environmental sensor placement with convolutional gaussian neural processes. Environmental
Data Science, 2:e32, 2023.

Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient Monte Carlo
computations. The Annals of Statistics, 37(2):697 – 725, 2009.

Lorenzo Baldassari, Ali Siahkoohi, Josselin Garnier, Knut Solna, and Maarten V. de Hoop. Condi-
tional score-based diffusion models for Bayesian inference in infinite dimensions. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richardson,
Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: the next
generation FEniCS problem solving environment. preprint, 2023.

Robert James Barthorpe and Keith Worden. Emerging trends in optimal structural health monitoring
system design: From sensor placement to system evaluation. Journal of Sensor and Actuator
Networks, 9(3), 2020. ISSN 2224-2708.

Yoshua Bengio and Olivier Delalleau. Justifying and Generalizing Contrastive Divergence. Neural
Computation, 21(6):1601–1621, 06 2009. ISSN 0899-7667.

Miguel Á. Carreira-Perpiñán and Geoffrey Hinton. On contrastive divergence learning. In Robert G.
Cowell and Zoubin Ghahramani (eds.), Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics, volume R5 of Proceedings of Machine Learning Research, pp.
33–40. PMLR, 06–08 Jan 2005.

Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Review. Statistical
Science, 10(3):273 – 304, 1995.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and Arnaud
Doucet. COIN++: Neural Compression Across Modalities. Transactions on Machine Learning
Research, 2022. ISSN 2835-8856.

Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye Teh, Tom Rainforth, and
Noah D. Goodman. Variational Bayesian Optimal Experimental Design. In Neural Information
Processing Systems, 2019.

Adam Foster, Martin Jankowiak, Matthew O’Meara, Yee Whye Teh, and Tom Rainforth. A Unified
Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 2959–
2969. PMLR, 26–28 Aug 2020.

Adam Foster, Desi R. Ivanova, Ilyas Malik, and Tom Rainforth. Deep Adaptive Design: Amortizing
Sequential Bayesian Experimental Design. In International Conference on Machine Learning,
2021.

Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and Pietro
Michiardi. Continuous-Time Functional Diffusion Processes. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pp. 1704–1713. PMLR, 2018.

9



Accepted at the ICLR 2025 FPI Workshop

Pierre Glaser, Michael Arbel, Arnaud Doucet, and Arthur Gretton. Maximum Likelihood Learning
of Energy-Based Models for Simulation-Based Inference. arXiv preprint arXiv:2210.14756, 2022.

Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the applied
sciences. CRC press, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A Fast Learning Algorithm for Deep Belief
Nets. Neural Computation, 18:1527–1554, 2006.

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

Noble Kennamer, Steven Walton, and Alexander Ihler. Design amortization for Bayesian optimal ex-
perimental design. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth
Symposium on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI
Press, 2023.

Gavin Kerrigan, Justin Ley, and Padhraic Smyth. Diffusion Generative Models in Infinite Dimensions.
In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of
Machine Learning Research, pp. 9538–9563. PMLR, 2023.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural Operator: Learning Maps Between Function
Spaces. CoRR, abs/2108.08481, 2021.

Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. In G. Bakir, T. Hofman, B. Scholkopt, A. Smola, and B. Taskar (eds.),
Predicting structured data. MIT Press, 2006.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial
Differential Equations. In International Conference on Learning Representations, 2021.

Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal,
Arash Vahdat, and Anima Anandkumar. Score-based Diffusion Models in Function Space. arXiv
preprint arXiv:2302.07400, 2023a.

Jen Ning Lim, Sebastian Vollmer, Lorenz Wolf, and Andrew Duncan. Energy-based models for
functional data using path measure tilting. In Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, volume 206, pp. 1904–1923. PMLR, 2023b.

Da Long and Shandian Zhe. Invertible Fourier Neural Operators for Tackling Both Forward and
Inverse Problems. arXiv preprint arXiv:2402.11722, 2024.

Swapnil Mishra, Seth Flaxman, Tresnia Berah, Harrison Zhu, Mikko Pakkanen, and Samir Bhatt. π
VAE: a stochastic process prior for Bayesian deep learning with MCMC. Statistics and Computing,
32(6):96, 2022.

Roberto Molinaro, Yunan Yang, Björn Engquist, and Siddhartha Mishra. Neural inverse operators for
solving PDE inverse problems. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Harald Niederreiter. Random number generation and quasi-Monte Carlo methods. Society for
Industrial and Applied Mathematics, USA, 1992.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-
free inference with autoregressive flows. In The 22nd international conference on artificial
intelligence and statistics, pp. 837–848. PMLR, 2019.

10



Accepted at the ICLR 2025 FPI Workshop

Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-Dimensional Diffu-
sion Models. arXiv preprint arXiv:2302.10130, 2023.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022.

Tom Rainforth, Robert Cornish, Hongseok Yang, and Andrew Warrington. On Nesting Monte Carlo
Estimators. In International Conference on Machine Learning, 2018.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern Bayesian
experimental design. Statistical Science, 39(1):100–114, 2024.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-
cal Statistics, 22(3):400 – 407, 1951.

Cristopher Salvi, Maud Lemercier, and Andris Gerasimovics. Neural stochastic PDEs: Resolution-
invariant learning of continuous spatiotemporal dynamics. Advances in Neural Information
Processing Systems, 35:1333–1344, 2022.

Tobias Schröder, Zijing Ou, Jen Ning Lim, Yingzhen Li, Sebastian Josef Vollmer, and Andrew
Duncan. Energy Discrepancies: A Score-Independent Loss for Energy-Based Models. In Neural
Information Processing Systems, 2023.

Louis Serrano, Lise Le Boudec, Armand Kassaı̈ Koupaı̈, Thomas X Wang, Yuan Yin, Jean-Noël
Vittaut, and Patrick Gallinari. Operator Learning with Neural Fields: Tackling PDEs on General
Geometries. In Neural Information Processing Systems, 2023.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit Neural Representations with Periodic Activation Functions. In Neural Information
Processing Systems, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Generative Models.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Andrew M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451–559, 2010.

Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive divergence. In
Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pp. 789–795, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Improved architectures and training algorithms for
deep operator networks. Journal of Scientific Computing, 92(2):35, 2022.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11, pp. 681–688, Madison, WI, USA, 2011.

Mengjiao Yang, Bo Dai, Hanjun Dai, and Dale Schuurmans. Energy-based processes for exchangeable
data. In International Conference on Machine Learning, pp. 10681–10692. PMLR, 2020.

Ka-Veng Yuen, Lambros S. Katafygiotis, Costas Papadimitriou, and Neil C. Mickleborough. Optimal
Sensor Placement Methodology for Identification with Unmeasured Excitation . Journal of
Dynamic Systems, Measurement, and Control, 123(4):677–686, 02 2001. ISSN 0022-0434.

11



Accepted at the ICLR 2025 FPI Workshop

A METHODOLOGY: FURTHER DETAILS

A.1 IMPLICIT NEURAL REPRESENTATIONS

Since we are using the latent representations to learn a surrogate model for the operator G, sim-
ilar functions should map to similar latent representations. This is guaranteed via the following
proposition.
Proposition 1. Let gψ(·, ·) : Ω× Rdz → R be an implicit neural representation. If the activation
functions of the neural network are continuous and differentiable almost everywhere, then the function
gψ is continuous and differentiable almost everywhere in both variables. In addition, if the domain
Ω ⊆ Rdx is bounded and the neural network activation functions are Lipschitz, then gψ is Lipschitz
with respect to the second variable z, i.e. there exists a constant L such that for all z, z′ ∈ Rdz

∥gψ(·, z)− gψ(·, z′)∥L2
≤ L∥z− z′∥Rdz .

Proof. Recall that gψ is composed of layers of the form sin(w0(Wh+ b+ β)), where β = β(z) is
a hypernetwork itself with continuous and differentiable almost everywhere activation functions, in
particular in our implementation we use ReLU activations which satisfy this condition. Therefore, it
immediately follows that gψ is continuous and differentiable almost everywhere in both variables.

On the other hand, we have that linear functions are Lipschitz and if the activation functions are
also Lipschitz by composition we have that gψ(x, ·) is Lipschitz for every x ∈ Ω, i.e, there exists a
constant L̃ such that for every x ∈ Ω

∥gψ(x, z)− gψ(x, z
′)∥R ≤ L̃∥z− z′∥Rdz .

Putting this together with the fact that the domain Ω ∈ Rdx is bounded, it follows that gψ is Lipschitz
with respect to the second variable z. In particular, in our case we use sine and ReLU activation
functions which are Lipschitz with constant 1.

A.2 ENERGY-BASED MODEL TRAINING

Energy-Based Models are a class of parametric unnormalised probabilistic models of the form
exp(−Eθ) originally inspired by statistical physics. Despite their flexibility, energy-based models
have not seen widespread adoption in machine learning applications due to the challenges involved in
training them. In particular, because the normalising constant is intractable, these models cannot be
optimised using maximum likelihood estimation. Alternative training methods have been explore
such as contrastive divergence (Hinton et al., 2006), score-based methods (Hyvärinen, 2005; Vincent,
2011; Song & Ermon, 2020) and energy discrepancy (Schröder et al., 2023).

Contrastive divergence (Hinton et al., 2006) is a method that approximates the gradient of the log-
likelihood via short runs of a Markov Chain Monte Carlo (MCMC) process. Although using short
MCMC runs greatly reduces both the computation per gradient step and the variance of the estimated
gradient (Carreira-Perpiñán & Hinton, 2005), it comes at the cost of producing poor approximations
of the energy function. This issue arises, in part, because contrastive divergence is not the gradient of
any objective function (Sutskever & Tieleman, 2010; Bengio & Delalleau, 2009) which significantly
limits the theoretical understanding of its convergence.

Score-based methods provide an alternative way for training based on minimising the expected
squared distance of the score function of the true distribution ∇x log pdata and the score function
given by the model ∇x log pθ, which by definition are independent of the normalising constant
(Hyvärinen, 2005; Vincent, 2011). However, these methods only use gradient information and are
therefore short-sighted (Song & Ermon, 2019) as they do not resolve the global characteristics of the
distribution when limited data are available.

Energy discrepancy attempts to solve the problems of the two previous methods by proposing a new
loss function that compares the data distribution and the energy-based model (Schröder et al., 2023).
This loss is given by

Lt,M,w(θ) :=
1

N

N∑
i=1

log

 w

M
+

1

M

M∑
j=1

exp
(
Eθ(zi)− Eθ(zi +

√
tξi +

√
tξ′i,j)

) ,

12



Accepted at the ICLR 2025 FPI Workshop

where ξi, ξ′i,j ∼ N (0, Idza+dzu ) are i.i.d. random variables and t,M,w are tunable hyper-parameters.
Energy discrepancy depends only on the energy function and is independent of the scores and MCMC
samples from the energy-based model.

We applied these three methods to train the energy-based model in our framework, obtaining the best
results with the latter. Notably, for the 2D examples, both contrastive divergence and score matching
failed to converge.

A.3 OPTIMAL BAYESIAN EXPERIMENTAL DESIGN FOR SENSOR PLACEMENT

The sensor placement task consists in optimally selecting ξ to maximise the information gain about
the parameter and solution of the stochastic PDE. In our proposed framework, parameter and solution
are approximated by gψ(·, zκ) and fϕ(·, zu), respectively, where zκ ∈ Rdzκ and zu ∈ Rdzu are
the associated latent embeddings. Mathematically, the utility function for ξ needs to maximise
the expected information gain over the prior pθ(zκ, zu), as measured by relative entropy. This is
equivalent to maximising the expected KL-divergence

U(ξ) = Ep(y|ξ)
[
DKL

(
p(zκ, zu|ξ,y) ∥ pθ(zκ, zu)

)]
=

∫
d(zκ, zu)

∫
dy
(
log p(zκ, zu|ξ,y)− log pθ(zκ, zu)

)
p(zκ, zu,y|ξ),

where the expectation is computed over the predictive distribution of the new (yet unobserved) data
p(y|ξ). Applying Bayes theorem, we rewrite the above expression in a form amenable to estimation

U(ξ) =

∫
d(zκ, zu)

∫
dy

(
log

p(y|zκ, zu, ξ)pθ(zκ, zu)
p(y|ξ)

− log pθ(zκ, zu)

)
p(zκ, zu,y|d)

=

∫
d(zκ, zu)

∫
dy
(
log p(y|zκ, zu, ξ)− log p(y|ξ)

)
p(zκ, zu,y|ξ)

= Ep(zκ,zu,y|ξ) log p(y|zκ, zu, ξ)− Ep(y|ξ) log p(y|ξ). (2)

Finding the optimal sensor location ξ is very challenging since the density p(y|ξ) in Eq. (2) is
intractable. A naive Monte Carlo approach will require the use of a nested Monte Carlo estimator
which results in high variance and converges relatively slow. Moreover, the utility U(ξ) must be
computed separately for each location ξ, which makes the framework highly inefficient especially in
high-dimensional settings, as U(ξ) is fed into an outer optimisation loop to select the optimal sensor
position.

To circumvent these inefficiencies amortised variational approaches have been proposed in the
literature (Foster et al., 2019; 2020; 2021; Kennamer et al., 2023). By constructing a variational
lower bound to U(ξ), we can obtain a unified framework that can be simultaneously optimised with
respect to both the variational φ and position parameters ξ using stochastic gradient ascent (Robbins
& Monro, 1951). Foster et al. (2020) proposed the adaptive contrastive estimation (ACE) bound
given by

ÛACE(ξ, φ) = E

log p(y|zκ,0, zu,0, ξ)
1

L+1

∑L
l=0

pθ(zκ,l,zu,l)p(y|zκ,l,zu,l,ξ)
qφ(zκ,l,zu,l|y)

 ,
where qφ(zκ,0, zu,0|y) is the inference network which takes as input φ, y and
outputs a distribution over (zκ, zu) and the expectation is taken with respect to
pθ(zκ,0, zu,0)p(y|zκ,0, zu,0, ξ)qφ(zκ,1:L, zu,1:L|y). Foster et al. (2020) prove that
ÛACE(ξ, φ) ≤ U(ξ). By replacing the inference network qφ(zκ, zu|y) with the prior pθ(za, zu) to
generate contrastive samples, we obtain the prior contrastive estimation (PCE) bound

ÛPCE(ξ) = E

[
log

p(y|za,0, zu,0, ξ)
1

L+1

∑L
l=0 p(y|zκ,l, zu,l, ξ)

]

= −E

[
log

(
1 +

L∑
l=1

p(y|zκ,l, zu,l, ξ)
p(y|zκ,0, zu,0, ξ)

)]
+ C,

13



Accepted at the ICLR 2025 FPI Workshop

where the expectation is over pθ(zκ,0, zu,0)p(y|zκ,0, zu,0, ξ)pθ(zκ,1:L, zu,1:L). This alternative
estimator significantly speeds up the training since no variational parameters need to be learnt.

To optimise the PCE bound with respect to ξ we need an unbiased gradient estimator of ∂ÛPCE/∂ξ.
This can be achieved by using a reparametrisation trick, where we introduce a random variable
ε independent of ξ together with a representation of y as a deterministic function of ε, that is,
y = y(zκ,0, zu,0, ξ, ε). Recalling that yi ∼ N (fϕ(ξ, zui), σ

2) we can write y = fϕ(ξ, zu,0) + σε,
where ε ∼ N (0, 1). This allows us to derive the following reparametrised gradient

∂ÛPCE

∂ξ
= E

[
∂g

∂ξ
+
∂g

∂y

∂y

∂ξ

]
,

where the expectation is over pθ(zκ,0, zu,0)p(ε)pθ(zκ,1:L, zu,1:L) and

g(y, zκ,0:L, zu,0:L, ξ) = − log

(
1 +

L∑
l=1

p(y|zκ,l, zu,l, ξ)
p(y|zκ,0, zu,0, ξ)

)
.

A Monte Carlo approximation of this expectation leads to a much lower variance estimator for the true
ξ-gradient. Note that E[∂g/∂ξ] can be efficiently computed in PyTorch as ∂E[g]/∂ξ by detaching
y from the computational graph. On the other hand,

∂g

∂y
= − 1

exp(−g)

L∑
l=1

p(y|zκ,l, zu,l, ξ)
p(y|zκ,0, zu,0, ξ)

1

σ2
(fϕ(ξ, zu,l)− fϕ(ξ, zu,0)) ,

which can be evaluated using the numerically stabilised logsumexp function, and

∂y

∂ξ
=
∂fϕ(ξ, zu,0)

∂ξ
.

B NUMERICAL EXPERIMENT: STOCHASTIC LOTKA-VOLTERRA MODEL

Another active field of research, where our framework can bring significant benefits is inference
on models with intractable likelihoods, such as dynamical systems described by stochastic PDEs.
The intractability of the density in such systems arises from the need to marginalise the transition
probabilities over all possible trajectories of the stochastic system. To illustrate this, take the general
Itô SDE

dXt = a(Xt)dt+ dWt, X0 = x0, 0 ≤ t ≤ T,

where Wt is a Wiener process and a : R → R is a sufficiently regular non-linear drift coefficient.
Given N sparse noisy observations of a trajectory, {yi = Xti + ηi}Ni=1, where ηi are i.i.d. N (0, σ2).
Then, the joint distribution over observations and latent realisations is given by

p(y1, . . . , yN , Xt1 , . . . , XtN ) = p(Xt1 , . . . , XtN )

N∏
i=1

p(yi|Xti) = p(Xt1)

N−1∏
j=1

p(Xtj+1
|Xtj )

N∏
i=1

p(yi|Xti),

where for the second equality we have used that the process {Wt}t≥0 has independent increments. We
have that yi|Xti ∼ N (Xti , σ

2), however in general the distribution ofXti+1 |Xti cannot be expressed
analytically. If the observations occur frequently, so that the time between observations ti and ti+1 is
small, then we can approximate the distribution of Xt+∆t|Xt using a Gaussian approximation,

Xt+∆t|Xt ∼ N (Xt + a(Xt)∆t,∆t).

The validity of this approximation breaks down as the step size ∆t increases, necessitating alternative
approaches in scenarios where the observations are infrequent. Our Functional Neural Couplings
method can be used to obtain the distribution over possible trajectories {Xt}0≤t≤T from a dataset
consisting of point observations of different trajectories, without needing to evaluate each trajectory
of the training set at the same time steps.

To provide a specific example, consider a stochastic version of the Lotka-Volterra model, which
describes the joint temporal dynamics of two coexisting populations, predator, X1,t, and prey, X2,t,

dX1,t =(θ1X1,t − θ2X1,tX2,t)dt+
√

θ1X1,tdW
(1)
t −

√
θ2X1,tX2,tdW

(2)
t ,

dX2,t =− (θ3X2,t − θ2X1,tX2,t)dt−
√

θ3X2,tdW
(3)
t +

√
θ2X1,tX2,tdW

(2)
t , (3)

14



Accepted at the ICLR 2025 FPI Workshop

where 0 ≤ t ≤ 1, X1,0 = a, X2,0 = b, Wt is a Wiener process and θ = [θ1, θ2, θ3] are the
model parameters, which for our experiment we keep fixed at θ = [5, 0.035, 6]. We train our
functional neural coupling surrogate to learn a probability distribution over possible trajectories
{X1,t, X2,t}0≤t≤T from a dataset consisting of point observations of simulated trajectories obtained
using an Euler-Maruyama scheme with a sufficiently small time step ∆t = 0.01 to ensure numerical
stability.

Given the inference data, D = {(y1,ti , y2,ti)}Mi=1, consisting on M noisy observations of a trajectory,
i.e. yj,ti = Xj,ti + ηi where ηi ∼ N (0, σ2) and σ = 0.2. The posterior distribution over the latent
representation (z1, z2) is

p(z1, z2|D) ∝
M∏
i=1

p(y1,ti , y2,ti |gψ(ti, z1), fϕ(ti, z2))pθ(z1, z2)

=

M∏
i=1

N (y1,ti |gψ(ti, z1), σ2)N (y2,ti |fϕ(ti, z2), σ2)pθ(z1, z2),

where gψ, fϕ denote the INRs for the prey and predator trajectories, respectively.

We perform Bayesian optimal experimental design to place five sensor/measurement times based
on two initial low-informative observations. Table 4 shows the relative L2 error norm for the
posterior means of the prey and predator trajectories when averaged across 100 different prey-
predator trajectories. Our approach performs comparably to the FNO surrogate with oracle noise,
where complete knowledge of the driving noise is assumed, and consistently outperforms the standard
FNO surrogate across all types of design points.

Table 4: Relative L2 errors for the posterior means of the prey and predator trajectories for the sensor
placement task. We average over 100 different prey-predator trajectories.

Method Design points ∥X̂1 −Xtr,1∥2/∥Xtr,1∥2 ∥X̂2 −Xtr,2∥2/∥Xtr,2∥2

Neural Coupling (Ours)
Adaptive BED 0.070± 0.066 0.068± 0.059

Batch non-adaptive BED 0.081± 0.100 0.078± 0.068
Quasi-Monte Carlo sequence 0.101± 0.090 0.095± 0.073

FNO surrogate
(Li et al., 2021)

Adaptive BED 0.092± 0.104 0.091± 0.199
Batch non-adaptive BED 0.111± 0.163 0.123± 0.187

Quasi-Monte Carlo sequence 0.176± 0.211 0.184± 0.337

FNO w/ oracle noise surrogate
(Salvi et al., 2022)

Adaptive BED 0.056± 0.050 0.045± 0.041
Batch non-adaptive BED 0.061± 0.052 0.057± 0.055

Quasi-Monte Carlo sequence 0.089± 0.049 0.082± 0.060

C EXPERIMENTAL DETAILS: DATASETS

C.1 BOUNDARY VALUE PROBLEM

The dataset to train our neural coupling surrogate is of the form{(
(ai, bi), ui(x

i
j)
)Ni

j=1

}M
i=1

,

where a, b ∼ Unif[−3, 3], xij ∈ Ω = [−1, 1] and u represents the solution corresponding to a
realisation of the random variables Xa, Xb. The solutions ui are computed using DOLFINx (Baratta
et al., 2023). To train the FNO with oracle noise baseline (Salvi et al., 2022), we also store the
particular realisation of Xa and Xb for each data point.

The dataset consists of 10000 pairs of boundary conditions and solutions. Each solution is evaluated
at Ni = 30 points in the domain [−1, 1].

15



Accepted at the ICLR 2025 FPI Workshop

C.2 NAVIER STOKES EQUATION

We consider a stochastic version of the 2D Navier Stokes equation for a viscous, incompressible fluid
in vorticity form on the unit torus

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x) + αε,

∇ · u(x, t) = 0, w(x, 0) = w0(x),

where x ∈ (0, 1)2, t ∈ (0, T ], u is the velocity field, w = ∇ × u is the vorticity, ν ∈ R+ is the
viscosity coefficient, which is set to 10−4, f is the deterministic forcing function, which takes the
form f(x) = 0.1[sin(2π(x1 + x2)) + cos(2π(x1 + x2))], and ε is the stochastic forcing given by
ε = Ẇ forW being a Q-Wiener process which is coloured in space. The initial condition is generated
according to w0 ∼ N (0, 33/2(−∆+ 49I)−3)) with periodic boundary conditions. Following Salvi
et al. (2022), we solve the previous equation for each realisation of the Q-Wiener process using a
pseudo-spectral solver, where time is advanced with a Crank-Nicolson update using a time step of
size 10−3. The SPDE is solved on a 64× 64 mesh in space.

To form the training dataset, we subsample the trajectories wt by a factor of 4 in space (resulting
in a 16× 16 spatial resolution) and only consider the initial vorticity w0 and the vorticity at times
t = 1, 2, 3.

C.3 STOCHASTIC LOTKA-VOLTERRA MODEL

To obtain the training dataset, we simulate trajectories for the prey and predator. Specifically, we
generate 1000 uniformly distributed initial conditions and simulate 100 stochastic trajectories of
the model for each initial condition using an Euler-Maruyama scheme for Eq. equation 3 with a
sufficiently small time step ∆t = 0.01 to ensure numerical stability. Each trajectory is evaluated in
30 different time steps.

D EXPERIMENTAL DETAILS: IMPLEMENTATION

All experiments were conducted on a GPU server consisting of eight Nvidia GTX 3090 Ti GPU cards,
896 GB of memory and 14TB of local on-server data storage. Each GPU has 10496 cores as well as
24 GB of memory.

D.1 TRAINING

The training is done in two steps. First, we train the modulated INRs to encode the functional data in
a finite dimensional latent space. Note that due to the generalisation capabilities of the INR we only
train the INR on 10% of the entire dataset. In all experiments, we use 300 epochs, a batch size of 16
and for the other hyper-parameters we keep the same values as Dupont et al. (2022).

Once, the INRs have been fitted, we obtain the latent representations of the functions of interest in the
whole training dataset. As the functional data is encoded using only a few steps of gradient descent
(specifically 3 steps, for details see Dupont et al. (2022)), the resulting standard deviation of the latent
representations is very small, falling within the range of [10−3, 10−1]. Therefore, these raw latent
modulations are not appropriate for subsequent processing. To address this, we standardise the codes
by subtracting the mean and dividing by the standard deviation.

Subsequently, the standardised latent modulations are concatenated in a single vector in cases where
we seek for a prior over different functional parameters and solutions. The concatenated latent
embeddings are then used to train the joint energy-based model. The final hyper-parameters for the
joint energy-based model training are presented in Table 5. In addition, in all experiments we use
Adam optimiser with a learning rate of 10−3 and an exponential scheduler.

Note that the means and standard deviations are stored to renormalise the samples generated by the
joint energy-based model, which are then used as modulations for the INR to recover the functions in
real space.

16



Accepted at the ICLR 2025 FPI Workshop

Table 5: Final hyper-parameters for joint energy-based model in the different experiments.

Dataset t M w Epochs

Boundary Value Problem 1 4 1 1000
Navier Stokes 1 32 1 1000

Lotka-Volterra Model 1 4 1 1500

D.2 ARCHITECTURES

D.2.1 IMPLICIT NEURAL REPRESENTATION

We have only made minor changes to the COIN++ model proposed by Dupont et al. (2022), so that
it can take arbitrary point evaluations of the functions of interest. The number of layers and the
dimension of each layer remain the same. The initialisation scheme is the same as the one proposed
in Sitzmann et al. (2020).

D.2.2 ENERGY-BASED MODEL

In all our experiments, each training point for the joint energy-based model consists of the concatena-
tion of the latent representations of the stochastic PDE solution and the functional or vector-valued
parameter of the stochastic PDE, and our goal is to understand the connection between the two by
learning their joint probability density. To do this, we build on Wang et al. (2022) to design the neural
network architecture for the energy function. First, we uplift each part of the input vector into a latent
space (using an encoder) so that they have the same dimension (equal to 128) and then propagate and
merge them, with shared connections between the two branches. The architecture of the network is
illustrated in Figure 4.

Figure 4: Energy-based model neural network architecture, where zκ and zu represent the finite
dimensional latent embeddings of two functions, such as, the parameter and solution of the PDE.

The specific structure of each element of the architecture is the following

• Encoder block

Encoder(x) = Linear(σ ◦ Linear(y) + y), y = σ ◦ Linear(x),

where σ is a GELU (Hendrycks & Gimpel, 2016) activation function.
• Block 1

Block 1k(x) = σ ◦ Linear(x),
where σ is a RELU activation and k denotes the output dimension.

• ∆ operation
∆(x,y|z) = (1− z) · x+ z · y,

where · denotes point-wise multiplication. Note that the vectors x,y and z need to have the
same dimension and the operation is just an interpolation.

17



Accepted at the ICLR 2025 FPI Workshop

• + operation is a point-wise addition.

The dimension remains constant at 128 in the 2 branches of the architecture. Therefore, when both
vectors are concatenated, it becomes 256. The last two Block 1’s reduce the dimension from 256 to
128 and from 128 to 64, respectively.

D.3 OPTIMAL BAYESIAN EXPERIMENTAL DESIGN FOR SENSOR

To estimate the utility function as presented in Appendix A.3 we use the following number of samples
N,L = 50 for all experiments. To obtain them, we sample from the prior, or updated posterior in
subsequent iterations, using stochastic gradient Langevin dynamics for a total of 1000 steps, and take
the last ones to calculate the utility.

D.4 CHOICE OF HYPERPARAMETERS

Our method requires selecting the dimensions of the latent representations of the functional parameters
and the solutions of the stochastic PDEs for the different numerical experiments. The latent dimension
is selected based on the criterion that the mean relative L2 error norm between the true function
and the function reconstructed from the latent embedding using the INR remains below a certain
threshold across all test data points. At the same time, we want the dimension to be low to ensure
that the resulting distribution of the latent representations has a positive probability density that can
be easily modelled by the energy-based model.

Tables 6, 7 and 8 show the mean relative L2 error norms for different latent dimensions computed on
a validation set of size 200 not seen during training for the solutions of the boundary value problem,
the Navier Stokes equation, and the Lotka-Volterra model, respectively.

The final latent dimensions for the different numerical experiments are the following.

Boundary Value Problem Recall that in this case the parameter is given by a two-dimensional
real-valued vector. The latent dimension for the solution is 11.

Navier Stokes Equation The latent dimensions for the initial vorticity and the vorticity at three
different time snapshots t = 1, 2, 3 are both 32.

Lotka Volterra Model The latent dimension for both prey and predator trajectories is 11.

Table 6: Mean relative L2 error norm for the INR reconstructed solution of the boundary value
problem on a validation set of size 200.

Dimension ∥û− utr∥2L2/∥utr∥2L2

15 6.4× 10−7

13 9.2× 10−7

11 1.3× 10−6

9 9.7× 10−6

7 8.6× 10−5

D.5 TIMES

We present the data generation, training and inference times to assess the efficiency of our framework
compared to classical approaches that use PDE solves within the MCMC. For data generation, we
first obtain 10% of the training dataset, which is the amount needed to train the INRs, while the
remaining data can be generated in parallel with the training of the INRs for the functional parameter
and the stochastic PDE solution. Additionally, the training of both INRs can also be performed in
parallel.

18



Accepted at the ICLR 2025 FPI Workshop

Table 7: Mean relative L2 error norm for the INR reconstructed initial vorticity and the vorticity at
t = 1, 2, 3, wt of the Navier Stokes equation on a validation set of size 200.

Dimension ∥ŵ0 − wtr,0∥2L2/∥wtr,0∥2L2 ∥ŵt − wtr,t∥2L2/∥wtr,t∥2L2

64 3.5× 10−4 5.7× 10−5

48 8.1× 10−4 1.1× 10−4

32 1.9× 10−3 4.3× 10−4

16 9.5× 10−3 9.2× 10−4

8 2.2× 10−2 6.8× 10−3

Table 8: Mean relative L2 error norm for the INR reconstructed prey and predator trajectories on a
validation set of size 200.

Dimension ∥X̂1 −Xtr,1∥2L2/∥Xtr,1∥2L2 ∥X̂2 −Xtr,2∥2L2/∥Xtr,2∥2L2

15 8.5× 10−7 7.8× 10−7

13 1.1× 10−6 9.9× 10−7

11 3.3× 10−6 3.0× 10−6

9 9.9× 10−6 8.4× 10−6

7 1.0× 10−4 7.1× 10−5

After training the INRs we need to compute the latent codes z on the whole dataset, however this
time is around a minute and therefore insignificant compared to the other times reported in Table
9. The inference times correspond to the average time required to obtain an approximation of the
posterior distribution (conditioned on the final number of observations used in the sensor placement
task) by sampling 1000 iterations per chain for two independent chains using stochastic gradient
Langevin dynamics. We note that the inference times are negligible compared to the training and
data generation times, which are both performed off-line and only have to be done once. This makes
our approach highly efficient for downstream tasks like sensor placement. For instance, in the case of
the stochastic Navier Stokes equation, the adaptive Bayesian sensor placement loop requires about
20 minutes to identify fifteen new locations using our surrogate model. In contrast, conventional
methods would take several days to achieve the same result, which exceeds the combined training
and inference time of our approach.

Table 9: Data generation, training and inference times for the different numerical examples.

Dataset Data generation Training Inference

10% Rest INR EBM

Boundary Value Problem 1 mins 9 mins 65 mins 34 mins 1.1 mins
Navier Stokes 30 mins 4 hours 91 mins 47 mins 3.2 mins
Lotka Volterra Model 3 mins 27 mins 67 mins 38 mins 1.4 mins

D.6 BENCHMARKS

In this section, we explain in more detail the FNO (Li et al., 2021) and FNO with oracle noise (Salvi
et al., 2022) baselines. For all the numerical examples except for the Navier Stokes equation, the FNO
with oracle noise reduces to an FNO with noise as an additional input, as the dynamics in these cases
are temporally independent. The architecture and hyperparameters used for training the benchmarks
are described below.

Boundary Value Problem The FNO and the FNO with oracle noise are trained on 20000 epochs
with a learning rate of 3 × 10−4. The hyperparameters used are as follows: 16 modes, 64 hidden

19



Accepted at the ICLR 2025 FPI Workshop

channels and 4 Fourier layers. It is worth noting that the FNO learns a mapping between function
spaces, whereas our initial condition is represented by a two-dimensional real-valued vector. To
address this, we learn a mapping between a linear interpolation of the boundary conditions and the
solution.

Navier Stokes Equation The FNO is trained on 20000 epochs with a learning rate of 1× 10−4.
The hyperparameters used are as follows: 12 modes, 32 hidden channels and 4 Fourier layers. For
the FNO with oracle noise we use the same hyperparameters and training details specified in Salvi
et al. (2022).

Lotka-Volterra Model In this example the neural operator baselines learn a mapping between the
prey and predator trajectories. Both baselines are trained on 15000 epochs with a learning rate of
5× 10−3. The hyperparameters used are as follows: 16 modes, 64 hidden channels and 4 Fourier
layers.

The neural operator benchmarks learn a deterministic mapping between inference parameters and the
corresponding solution, in contrast to our neural coupling model, which learns a joint probability
distribution over both parameters and solutions.

Once these baselines are trained on simulation data, they can be used for the sensor placement task.
To achieve this, we need to be able to sample from the posterior distribution of the initial parameters,
conditioned on the observations of the solution. In particular, the posterior distribution takes the form

p(κ|D) ∝
M∏
i=1

p(yi|κ,xi)p(κ) =
M∏
i=1

N (yi|NO(κ)(xi), σ
2)p(κ),

where NO denotes the neural operator surrogate which takes κ as input and p(κ) denotes the prior
distribution over κ.

20


	INTRODUCTION
	Related Work

	PROBLEM SETTING
	FUNCTIONAL NEURAL COUPLINGS
	Learning Implicit Neural Representations
	Functional Neural Couplings with Joint Energy-Based Models

	SENSOR PLACEMENT WITH BAYESIAN EXPERIMENTAL DESIGN
	Inference from sparse observations

	NUMERICAL EXPERIMENTS
	Boundary Value Problems In 1D
	Navier Stokes Equation

	DISCUSSION AND LIMITATIONS
	Methodology: Further Details
	Implicit Neural Representations
	Energy-Based Model Training
	Optimal Bayesian Experimental Design For Sensor Placement

	Numerical Experiment: Stochastic Lotka-Volterra Model
	Experimental details: Datasets
	Boundary Value Problem
	Navier Stokes Equation
	Stochastic Lotka-Volterra Model

	Experimental details: Implementation
	Training
	Architectures
	Implicit Neural Representation
	Energy-Based Model

	Optimal Bayesian Experimental Design for Sensor
	Choice of Hyperparameters
	Times
	Benchmarks


