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Abstract

Speech Translation (ST) is a machine transla-001
tion task that involves converting speech sig-002
nals from one language to the corresponding003
text in another language; this task has two dif-004
ferent approaches, namely the traditional cas-005
cade and the more recent end-to-end. This pa-006
per explores a combined end-to-end architec-007
ture of pre-trained speech encoders and Large008
Language Models (LLMs) for performing both009
Automatic Speech Recognition (ASR) and ST010
simultaneously. Experiments with the English-011
to-German language pair show that our best012
model not only can achieve better translation re-013
sults than SeamlessM4T (Communication et al.,014
2023), a large foundational end-to-end, multi-015
modal translation model, but can also match the016
performance of a cascaded system with Whis-017
per (Radford et al., 2022) and NLLB (Team018
et al., 2022), with up to a score gain of 8% in019
COMETDA

22 metric.020

1 Introduction021

End-to-end Speech Translation is a growing re-022

search direction that aims to ignore the intermediate023

ASR step to directly translate the audio input into024

its corresponding text in another language. This025

approach simplifies the overall architecture, which026

has been shown to match the performance of the027

cascaded counterpart (Bérard et al., 2018; Liu et al.,028

2019; Gaido et al., 2020).029

Large Language Models (LLMs) have demon-030

strated their emergent capabilities on a large num-031

ber of complex natural language tasks, including032

machine translation (Minaee et al., 2024; Zhang033

et al., 2024; Zhao et al., 2023; Naveed et al., 2024).034

With the ever-improving potential of LLMs, re-035

searchers have been trying to integrate different036

components used for other modalities, in order to037

extend their abilities to go beyond text-only tasks038

(Li et al., 2023a; Gao et al., 2023; Liu et al., 2023;039

Li et al., 2023b; Zhang et al., 2023).040

Motivated by recent contributions in speech rep- 041

resentation learning and LLMs, we aim to investi- 042

gate an end-to-end architecture that simultaneously 043

performs both ASR and ST. This architecture com- 044

bines the high-quality audio representation from 045

the pre-trained acoustic models with the excellent 046

performance of LLMs to serve as an end-to-end 047

speech translation system, while still having the 048

ability to transcribe from the audio signal. Our pro- 049

posed model, after being fine-tuned with the Quan- 050

tized Low-Rank Adaptation (QLoRA; Dettmers 051

et al., 2023) technique, achieves a robust transla- 052

tion performance, comparable to a cascaded sys- 053

tem, which is still a state-of-the-art approach for 054

this task. 055

The paper is structured as follows: 056

• Section 2 describes the details of the pipeline, 057

along with the dataset used for training and 058

evaluation. 059

• Section 3 provides the ASR and ST evaluation 060

results of the model in different public test 061

sets, and compares them to some baselines 062

from out-of-the-box models. 063

• Section 4 proposes possible directions to im- 064

prove the architecture. 065

2 Methods and Dataset 066

2.1 Architecture 067

The overall architecture is illustrated in Figure 1. 068

For each training sample, given the speech signal, 069

its corresponding transcript, and the translated text, 070

the speech hidden features are obtained using a 071

speech encoder, including HuBERT (Hsu et al., 072

2021) and Whisper encoder (Radford et al., 2022). 073

Next, the speech features are fed to a Projection 074

layer, in order to convert the feature dimension to 075

match the LLM’s embedding dimension. The re- 076

sulting speech embeddings are subsequently given 077

to the LLM as the prompt for it to generate the 078

corresponding transcription and the translated text 079



Figure 1: The overall architecture includes a frozen
speech encoder component, an adapter, and a fine-tuned
LLM. The adapter can be frozen or trainable depending
on the adapter type. Red arrows denote the usage of
tokens during training, and blue arrows indicate tokens
generated during inference; while black arrows repre-
sent the prompt fed to the LLM.

simultaneously. The LLM is then fine-tuned in the080

next-token-prediction fashion.081

2.2 Speech Encoder082

We adopted HuBERT (Hsu et al., 2021) and Whis-083

per (Radford et al., 2022) as the speech encoders,084

utilizing their capability of extracting high-quality085

representation from audio data. We used the086

hubert-large-ls960-ft variation, which was087

trained on 60,000 hours of data from the Libri-088

Light (Kahn et al., 2020) corpus, then fine-tuned089

on 960 hours of data from the LibriSpeech (Panay-090

otov et al., 2015a) corpus. For Whisper-based091

models, we only used the encoder part of the pre-092

trained whisper-large-v3-turbo to extract the093

audio hidden features.094

2.3 Length Adapter095

Because the length of the speech feature sequence096

can be longer than the supported length of the LLM,097

it is more favorable to shorten it beforehand.098

For HuBERT-based models, we followed the099

work of Gaido et al. (2021), and compressed the100

feature sequence by taking an average of vec-101

tors whose repeated labels were obtained from102

the followed Connectionist Temporal Classifica-103

tion (CTC) layer. Wu et al. (2023) illustrated that104

speech feature sequence compression with CTC105

gave better results than the traditional collapsing106

approach with convolution layers in the speech107

translation task. Hence, in our pipeline, from the 108

obtained labels predicted by CTC, we merged the 109

vectors with repeating labels by averaging their 110

corresponding values. 111

While for Whisper-based models, a convolution- 112

based downsampling layer with a kernel size of 5 113

and a stride of 5 is used to reduce the length of the 114

speech feature sequence. The details of both length 115

adapters are illustrated in Figure 2. 116

(a) CTC collapse (b) Convolution

Figure 2: Details of different adapters

2.4 Projection Layer 117

For the Projection layer, we used only one simple 118

feed-forward layer to map from the encoder’s hid- 119

den size to the corresponding LLM’s hidden size. 120

This layer ensures the resulting speech representa- 121

tion is well integrated into the LLM’s embedding 122

space, giving it enough information for the down- 123

stream task. 124

2.5 LLMs 125

We experimented with four different pre-trained 126

LLMs available on HuggingFace, namely Gemma 127

7B (gemma-7b), Gemma 2 9B (gemma-2-9b), 128

Llama 2 7B (Llama-2-7b-hf), and Mistral 7B v0.1 129

(Mistral-7B-v0.1). Details about each variation 130

are described in Table 1. 131

Encoder Decoder Adapter

HuBERT

Gemma 7B

CTC collapseGemma 2 9B
Llama 2 7B
Mistral 7B v0.1

Whisper
enc.

Gemma 7B

5x5 ConvolutionGemma 2 9B
Llama 2 7B
Mistral 7B v0.1

Table 1: Details of each model, with its corresponding
Encoder and Decoder components

2.6 Dataset 132

All models were trained using the MuST-C dataset 133

(Cattoni et al., 2021), a large multilingual corpus 134

built from English TED Talks, which contains the 135



audio data, the English transcription of such audio,136

with its translation in multiple languages. In spe-137

cific, we used the English-to-German subset from138

version 1.0 of the dataset, with approximately 400139

hours of audio data.140

For evaluation, MuST-C also provides two pub-141

lic test sets, both named tst-COMMON in version 2.0142

and 3.0. We also used the test sets from the Offline143

Track of IWSLT’21 and ’22. In addition, to evalu-144

ate ASR performance, we used two test sets from145

the LibriSpeech (Panayotov et al., 2015b) dataset,146

namely test-clean and test-other, both of147

which are the standard datasets for this task. As148

all models can perform both ASR and ST simul-149

taneously, evaluation results for both tasks are de-150

scribed in Sections 3.2 and 3.3, respectively.151

3 Evaluation152

3.1 Metrics and Tools153

For the Offline Speech Translation task, we eval-154

uated all models using standard metrics, namely155

BLEU (Papineni et al., 2002), COMETDA
22 (Rei156

et al., 2022a),1 and COMETKIWI-DA
22 (Rei et al.,157

2022b).2 For the Automatic Speech Recognition158

Task, we used WER, the standard metric for speech159

recognition.160

For the evaluation purpose, we used the SLTev161

(Ansari et al., 2021) library, because it supports162

both MT and ASR evaluation in one package, us-163

ing sacreBLEU (Post, 2018) to calculate BLEU164

score. However, since SLTev does not report any165

COMET-family metrics, we had to change the166

structure of the sentence with mwerSegmenter,3167

to automatically resegment the models’ output ac-168

cording to the reference, before evaluating with169

the unbabel-comet package. The evaluation was170

done using python-3.11.5, SLTev-1.2.3, and171

unbabel-comet-2.2.2.172

We compared our architecture with two out-173

of-the-box baselines: a cascaded pipeline of174

Whisper (whisper-large-v3-turbo; Radford175

et al., 2022) producing the transcript and NLLB176

(nllb-200-3.3B; Team et al., 2022) translat-177

ing the transcript, along with SeamlessM4T178

(seamless-m4t-v2-large; Communication et al.,179

1https://huggingface.co/Unbabel/
wmt22-comet-da

2https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

3https://www-i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz

2023) - an end-to-end, multi-modal translation 180

model. 181

3.2 ASR Results 182

Table 2 details the ASR evaluation results against 183

the four test sets. We reported the WER score 184

after applying the “LPW” pre-processing strategy 185

available in SLTev, which first lowercased every 186

character, removed all punctuation, then used the 187

built-in mwerSegmenter tool to resegment the out- 188

put transcripts. Due to some bugs when processing 189

the IWSLT’21 test set (tst2021), mwerSegmenter 190

failed to run during evaluation, hence we could not 191

obtain the results. It can be seen that models with 192

Gemma 2 9B as the decoder have the best result 193

among the four LLMs, albeit still lagging behind 194

the performance of Whisper. 195

3.3 Offline ST Results 196

Tables 3 and 4 report the BLEU and COMET- 197

family scores, respectively, on the four test sets. 198

For evaluating with BLEU, we included both 199

docAsWhole score, which concatenated all refer- 200

ence segments and candidate complete segments as 201

two documents, and mwerSegmenter score, which 202

resegments complete candidate segments according 203

to reference segments to minimize WER. Similar to 204

Section 3.2, mwerSegmenter scores for IWSLT’21 205

test set could not be obtained, hence we did not 206

include them. 207

Similarly, the models with Gemma 2 9B still 208

have the best evaluation score among the four fine- 209

tuned LLMs. In combination with the Whisper 210

encoder, it even surpassed the performance of the 211

cascaded system of Whisper + NLLB in most of 212

the test sets and metrics. 213

4 Future work 214

To date, we could only conduct experiments for the 215

English-to-German direction; hence, in the future, 216

we will expand our experiments to more language 217

pairs and directions. In addition, we have some 218

ideas to improve the pipeline: 219

• Try replacing the CTC collapsing procedure 220

with a length adapter of convolution layers 221

for the HuBERT encoder. Try other modal 222

adapter methods, like Q-Former. 223

• Experiment with smaller variants of the LLMs 224

for faster training and inference, while retain- 225

ing the robustness in translation, by distilling 226

knowledge from fine-tuned systems. 227

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz


Model MuST-C IWSLT LibriSpeech
tst-

COMMON
v2

tst-
COMMON

v3

tst2022 test-clean test-other

Whisper 6.7% 7.7% 11.8% 4.1% 7.2%

HuBERT + Gemma 2 9B 11.1% 12.5% 21.9% 8.4% 13.1%
HuBERT + Gemma 7B 12.9% 14.5% 30.7% 11.7% 17.4%
HuBERT + Llama 2 7B 11.1% 12.6% 22.9% 8.7% 13.2%
HuBERT + Mistral 7B v0.1 11.1% 12.4% 22.9% 8.5% 13.3%
Whisper enc. + Gemma 2 9B 8.2% 8.1% 22.6% 8.0% 13.7%
Whisper enc. + Gemma 7B 8.6% 10.4% 25.1% 11.7% 18.8%
Whisper enc. + Llama 2 7B 10.5% 12.8% 22.5% 9.2% 14.8%
Whisper enc. + Mistral 7B v0.1 9.0% 10.2% 23.7% 8.2% 14.5%

Table 2: ASR evaluation results (WER)

Model MuST-C IWSLT
tst-COMMON v2 tst-COMMON v3 tst2021 tst2022

Cascaded Whisper + NLLB 39.84 / 31.06 40.30 / 31.60 43.84 / - 41.86 / 30.48
SeamlessM4T 32.62 / 22.98 33.36 / 23.59 35.97 / - 34.08 / 22.68

HuBERT + Gemma 2 9B 37.98 / 28.15 37.50 / 27.59 37.59 / - 37.04 / 25.86
HuBERT + Gemma 7B 36.20 / 25.89 36.24 / 26.02 33.00 / - 34.27 / 22.98
HuBERT + Llama 2 7B 36.52 / 26.42 35.93 / 25.89 35.66 / - 35.13 / 23.88
HuBERT + Mistral 7B v0.1 36.91 / 26.90 36.94 / 27.05 36.29 / - 36.09 / 25.07
Whisper enc. + Gemma 2 9B 41.33 / 31.98 41.16 / 31.72 40.76 / - 39.64 / 29.18
Whisper enc. + Gemma 7B 38.62 / 28.55 38.81 / 28.81 37.02 / - 37.58 / 26.29
Whisper enc. + Llama 2 7B 38.95 / 29.17 38.79 / 28.94 37.18 / - 36.94 / 26.18
Whisper enc. + Mistral 7B v0.1 39.52 / 30.03 39.28 / 29.59 38.60 / - 37.55 / 26.64

Table 3: Offline ST en2de BLEU results, with both docAsWhole and mwerSegmenter scores, respectively

Model MuST-C IWSLT
tst-COMMON v2 tst-COMMON v3 tst2021 tst2022

Cascaded Whisper + NLLB 83.00 / 79.98 82.49 / 80.53 64.47 / 58.23 65.32 / 59.27
SeamlessM4T 76.72 / 73.49 76.42 / 74.03 59.63 / 53.92 60.34 / 54.93

HuBERT + Gemma 2 9B 80.98 / 77.42 80.17 / 77.45 67.63 / 60.34 67.11 / 59.68
HuBERT + Gemma 7B 79.64 / 75.52 78.85 / 75.53 65.22 / 57.51 64.77 / 57.23
HuBERT + Llama 2 7B 79.88 / 76.30 79.08 / 76.32 66.54 / 59.27 65.70 / 58.70
HuBERT + Mistral 7B v0.1 80.12 / 76.92 79.45 / 76.92 66.97 / 59.73 66.62 / 59.85
Whisper enc. + Gemma 2 9B 84.22 / 81.15 83.65 / 81.29 70.51 / 62.80 70.34 / 63.27
Whisper enc. + Gemma 7B 82.55 / 79.69 82.15 / 79.88 67.63 / 60.06 68.24 / 60.91
Whisper enc. + Llama 2 7B 82.84 / 80.09 82.14 / 80.05 68.82 / 61.82 68.64 / 61.91
Whisper enc. + Mistral 7B v0.1 83.13 / 80.24 82.43 / 80.37 69.73 / 62.40 68.86 / 61.79

Table 4: Offline ST en2de COMETDA
22 and COMETKIWI-DA

22 results, respectively

• Integrate some reinforcement learning tech-228

niques into the pipeline for better perfor-229

mance.230

5 Conclusion231

In this paper, we leveraged pre-trained speech en-232

coders and LLMs and connected them to become233

an end-to-end architecture for speech translation.234

The overall result is expected: for the English-to-235

German direction, even though our models per-236

formed better than the end-to-end SeamlessM4T237

model all of the time, there was still a gap com-238

pared to the performance of the cascaded Whisper 239

+ NLLB pipeline. It suggests that cascaded models 240

are still the state-of-the-art approach in the speech 241

translation task; this is also confirmed according to 242

Ahmad et al. (2024), in which all systems submitted 243

to the Offline Track of IWSLT’24 were cascaded 244

systems. 245

6 Limitations 246

The first problem we found was a limitation involv- 247

ing the sparse amount of parallel training data. This 248



has been a notable issue for text translation, but for249

speech data, it is an even bigger concern, especially250

for low-resource languages. The two languages in251

our experiments, English and German, are consid-252

ered high-resource languages, but the dataset only253

contains approximately 400 hours of audio.254

Second, considering the size of the LLMs, our255

models were inferior regarding inference speed,256

compared to the two baselines. Our models also257

managed to surpass the performance of the cas-258

caded system in the translation task; however, the259

differences were not too substantial. In addition,260

despite being a much smaller model, Whisper alone261

still excels at speech recognition. This raises a ques-262

tion: "Can end-to-end speech translation systems263

be smaller in size, while still keeping the robustness264

in translation, especially for the rising need to be265

used in mobile devices?"266
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A Training and Inference Details 452

All models were fine-tuned using 4-bit QLoRA 453

(Dettmers et al., 2023) adapters in bfloat16 pre- 454

cision, with the following LoRA parameters: rank 455

of r = 8, alpha of α = 8. For the models with Hu- 456

BERT as the encoder, because of the manual CTC 457

collapsing procedure, we could only process one 458

example at a time, hence the batch size was set to 459

1; while for those with Whisper, the batch size was 460

set to 2. Other training hyperparameters included 461

the learning rate of 1e− 4 with 10 warmup steps, 462

and an AdamW optimizer (Loshchilov and Hut- 463

ter, 2019) with a cosine scheduler (Loshchilov and 464

Hutter, 2017). All HuBERT-encoder models were 465
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trained for 500, 000 steps, while Whisper-encoder466

models were trained for 100, 000 steps.467

During training, we added three new tokens468

to feed into the LLMs, namely “<>audio<>”,469

“<>transcript<>”, and “<>translation<>”,470

which acted as separators between the ex-471

tracted audio features, the ASR transcript, and472

the corresponding translation, respectively.473

For each sample, the training data is format-474

ted as follows: “<bos> <>audio<> {audio475

features} <>transcript<> {transcript}476

<>translation<> {translation} <eos>”.477

The cross-entropy loss was computed only for478

the tokens following “<>transcript<>”. Each479

model’s training loss details are illustrated in480

Figures 3a and 3b.481

(a) With HuBERT encoder

(b) With Whisper encoder

Figure 3: Training loss of models

During inference, for each audio data, the482

LLMs were prompted using the following for-483

mat: “<bos> <>audio<> {audio features}484

<>transcript<>”, then generated the transcript485

and the corresponding translated text in an auto-486

regressive manner. We performed inference using487

the beam search algorithm, with a beam size of 2488

for all models. All evaluation results, are described489

in Sections 3.2 and 3.3.490
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