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ABSTRACT

Federated fine-tuning is critical for improving the performance of large language
models (LLMs) in handling domain-specific tasks while keeping training data
decentralized and private. However, prior work has shown that clients’ private data
can actually be recovered via gradient inversion attacks. Existing privacy preserva-
tion techniques against such attacks typically entail performance degradation and
high costs, making them ill-suited for clients with heterogeneous data distributions
and device capabilities. In this paper, we propose SHE-LoRA, which integrates
selective homomorphic encryption (SHE) and low-rank adaptation (LoRA) to en-
able efficient and privacy-preserving federated tuning of LLMs in cross-device
environments. Based on model parameter sensitivity assessment, heterogeneous
clients adaptively negotiate and select a subset of model parameters for homo-
morphic encryption. To ensure accurate model aggregation, we design a column-
aware secure aggregation method and customized reparameterization techniques to
align the aggregation results with the heterogeneous device capabilities of clients.
Extensive experiments demonstrate that SHE-LoRA maintains performance com-
parable to non-private baselines, achieves strong resistance to state-of-the-art
attacks, and significantly reduces communication overhead by 99.71% and en-
cryption time by 99.87%, compared to HE baselines. Our code is accessible at
https://anonymous.4open.science/r/SHE-LoRA.

1 INTRODUCTION

Large language models (LLMs) have excelled in various tasks, but their deployment in domain-
specific applications (e.g., healthcare, finance) often requires private, user-generated data (Durante
et al., 2024; Huang et al., 2024). However, stringent privacy preservation regulations like GDPR
(Voigt & Von dem Bussche, 2017) pose significant barriers to centralized fine-tuning on such data.
To address this, federated learning (FL) emerged as a promising solution by enabling decentralized
parameter-efficient fine-tuning (PEFT) of LLMs without exposing raw data (Zhang et al., 2024).

Among various PEFT techniques, Low-Rank Adaptation (LoRA) stands out due to its high efficiency
and model quality. It reparameterizes the weight matrix W ∈ Rm×n as W = W0 + ∆W =
W0 +BA, where W0 ∈ Rm×n represents the frozen pre-trained parameters, and B ∈ Rm×r and
A ∈ Rr×n are the two low-rank adapter matrices to be learned. Given that the rank r ≪ min(m,n),
LoRA significantly reduces both computation and communication costs in federated PEFT. However,
recent works (Petrov et al., 2024; Balunovic et al., 2022) have shown that the parameters or gradients
transmitted during federated PEFT can be exploited via inversion attacks to reconstruct private
training data, highlighting the need for stronger privacy protection in federated PEFT with LoRA.

Many privacy-preserving techniques have been proposed to mitigate privacy leakage risks in FL,
including differential privacy (DP) (Sun et al., 2024c; Yu et al., 2022; Zhu et al., 2025), secure
multi-party computation (MPC) (Mugunthan et al., 2019; Kanagavelu et al., 2020; Zheng et al.,
2024)), and homomorphic encryption (HE) (Han & Yan, 2023; Jin et al., 2023; Hu & Li, 2024)). DP
ensures formal privacy guarantees by perturbing data or model updates with random noise. However,
in LoRA-based settings that involve the multiplication of A and B, this noise becomes amplified
through the multiplication, often hindering convergence and degrading model performance (Sun
et al., 2024c). In contrast, cryptographic approaches such as MPC and HE can achieve higher
accuracy. MPC-based secure aggregation employs techniques like garbled circuits and secret sharing
to securely compute PEFT updates.Nevertheless, it often requires intricately designed computation
and synchronization protocols, making it less practical for FL with heterogeneous data and device
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capabilities (Kairouz et al., 2021; Li et al., 2020). Selective HE (SHE) (Han & Yan, 2023; Jin et al.,
2023; Hu & Li, 2024) offers a compelling alternative by encrypting only sensitive parameters and
allowing computation over ciphertexts, delivering strong privacy guarantees with low HE costs and
preserving accuracy for privacy-preserving federated PEFT.

However, existing SHE methods struggle to balance privacy and efficiency in cross-device federated
PEFT with LoRA, particularly under Non-IID (Non-Independently Identically Distributed) data and
heterogeneous device capabilities. As discussed in Section 2.4, two observations highlight these
challenges: 1) LoRA matrix multiplication makes ∆W denser, which may increase the number of
parameters requiring encryption, and 2) heterogeneous clients produce different encrypted parameter
positions, whose union during aggregation expands the encrypted set and inflates HE costs. Driven by
these limitations, we aim to adaptively balance security and HE overhead per client in cross-device
federated PEFT with LoRA. Achieving this goal requires addressing the following key challenges:

• How to adaptively apply SHE across heterogeneous clients? Algorithms like FedAvg (McMahan
et al., 2017) are not directly applicable to LoRA-based PEFT. Naively applying LoRA requires all
clients to use the same low-rank configuration, which is impractical for devices with heterogeneous
capabilities. Furthermore, separately aggregating the adapter matrices (A and B) is not mathemat-
ically equivalent to full-weight aggregation (Section 2.4). Heterogeneous hardware also prevents
clients from encrypting updates of the same size, since clients with limited resources can encrypt
only a small subset of parameters while stronger devices may encrypt more. This mismatch disrupts
aggregation and complicates reconstruction of low-rank matrices from encrypted weights. Thus, a
new aggregation algorithm that is efficient, accurate, and compatible with SHE is needed.
• How to avoid expansion of encrypted subsets under SHE? In heterogeneous settings, clients
may independently encrypt arbitrary positions in their model parameter matrix, inflating ciphertext
size during aggregation. Moreover, mixing plaintext and ciphertext matrices introduces structural
disorder, making aggregation inefficient. Without coordinated negotiation of encryption positions,
both ciphertext size and aggregation overhead can increase substantially.

To address these challenges, we propose SHE-LoRA, which integrates SHE and LoRA to enable
efficient and privacy-preserving federated PEFT in cross-device environments. Specifically,

• We devise a HE subset negotiation mechanism that tailors model-parameter encryption to each
client’s capabilities. Each client assesses its model parameter importance and selects an affordable
subset for HE based on its resource constraints and privacy needs. This subset is encoded using
order-preserving encryption (OPE) and sent to a server, which then negotiates a global HE subset to
optimally balance privacy and HE overhead across heterogeneous clients.
• We introduce a selective parameter encryption method based on column-swapping parameter
obfuscation, which clusters unencrypted and encrypted parameters separately, enabling efficient
matrix operations on plaintexts and batch encryption of ciphertexts. Moreover, obfuscating encrypted
parameter positions increases adversarial uncertainty and mitigates privacy leakage.
• We propose a column-aware adaptive aggregation method, which aligns encrypted columns across
clients for efficient and accurate aggregation of adapter matrices and subsequent reparameterization
to recover LoRA parameters without losing meaningful model updates.
• Experiments on clients and LLMs with varying scales demonstrate that SHE-LoRA provides strong
resistance to state-of-the-art (SOTA) attacks while maintaining model performance comparable to
non-private baselines. Compared to HE baselines, SHE-LoRA reduces communication overhead by
up to 99.71% and HE overhead by 99.87%.

2 PRELIMINARIES AND MOTIVATIONS

2.1 DEFINITION OF PARAMETER SENSITIVITY

Inspired by model pruning, which removes unimportant model parameters to reduce model size while
maintaining performance, SHE identifies and selectively encrypts the most important parameters.
Specifically, given model parameters W, let L(W) denote the loss function. For a subset of the
model parameters w ∈ W, and the model parameters with w zeroed out (denoted as W−w), the
sensitivity of w is defined as the change in loss when w is zeroed out:

Ω(w) = |L(W)− L(W−w)|. (1)

Eq. (1) implies that a larger loss change upon removing w indicates higher sensitivity of w. Thus,
Ω(w) reflects not only importance, but also the potential privacy leakage risk associated with exposing
w. However, directly computing Ω(w) for all parameters is computationally infeasible. Taylor
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Figure 1: Expansion of encryption positions.
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Figure 2: Inflation of ciphertext size.
approximation-based estimation (Frantar et al., 2023) requires gradient computation, which also
incurs significant overhead, especially in LLMs, where high dimensionality and outlier activations
further exacerbate the cost (Sun et al., 2024a). To mitigate this, we adopt Wanda (Sun et al., 2024b)
to estimate the sensitivity of a parameter Wij in the i-th row and j-th column as:

Ω(Wij) = |Wij | · ∥xj∥2, (2)

where | · | is the absolute value operator, ∥xj∥2 is the l2 norm of the j-th features in the input data
X. Since both W and X are directly accessible, Wanda estimates parameter sensitivity with only a
single forward pass. See Appendix B.1 for details on the link between high-sensitivity parameters
and privacy risk.

2.2 PRIVACY LEAKAGE QUANTIFICATION

We leverage mutual information to quantify privacy leakage caused by the selective encryption of
w. Specifically, we assume that once encrypted with HE, w does not leak any privacy information.
While for the accessible plaintext portion of the model parameters (i.e., W−w), we measure the
mutual information shared between W−w and W as:

I(W;W−w) =
∑

y∈W−w

∑
x∈W

p(x, y) log2
p(x, y)

p(x)p(y)
, (3)

where p(x, y) is the joint probability distribution, p(x) and p(y) are the marginal distributions of W
and W−w, respectively. I(W;W−w) quantifies the extent of privacy leakage attributable to the
unencrypted model parameters. As the value of I(W;W−w) increases, the risk of privacy leakage
due to the selective encryption of w also increases.

2.3 THREAT MODEL

Following prior works (Jin et al., 2023; Kiani et al., 2025), we consider a semi-honest adversary A that
may compromise the aggregation server or a subset of clients. While A follows the training protocol,
it passively attempts to infer client data from observed model updates. We assume that 1) when A
compromises a subset of clients, it can only infer private information from the clients’ local models; 2)
when A compromises the aggregation server, it can only infer private information from unencrypted
parameters; 3) when both the aggregation server and a subset of clients are compromised, A can
access the private key (shared among all clients) to decrypt model updates sent from benign clients,
which can be addressed via multi-party HE techniques such as multi-key HE, proxy re-encryption,
etc. The multi-party HE techniques and protection against other malicious behaviors (e.g., poisoning,
backdoor attacks) are not the focus of this work, and we refer to existing defenses (Zheng et al., 2022;
Queyrut et al., 2023) and possible extensions in Appendix C as future endeavors.

2.4 MOTIVATIONS

Naive averaging of LoRAs leads to mathematical errors. Popular federated LoRA methods (Zhang
et al., 2024; Yan et al., 2024; Meng et al., 2024; Babakniya et al., 2023) require clients to possess
homogeneous LoRA ranks, and aggregate A and B separately across clients (i.e., server side =∑

B ×
∑

A, rA = rB). However, this introduces inconsistency in global model updates, as the
aggregation of LoRA updates (i.e.,

∑
(B × A)) is intrinsically unequal to

∑
B ×

∑
A, which

will degrade model performance. Moreover, separately aggregating the LoRA matrices requires all
clients to use the same rank, which is unrealistic for cross-device federated LoRA. Thus, these naive
approaches are inapplicable to heterogeneous LoRA settings.

Matrix multiplication expands encryption positions. Albeit the strong privacy guarantee of HE,
applying HE per parameter is computationally and communicatively expensive. Although existing
SHE methods like FedML-HE (Jin et al., 2023) and MaskCrypt (Hu & Li, 2024) reduce HE overhead
by selectively encrypting a subset of model parameters with masking, the matrix multiplication
of LoRA will lead to an expanded HE subset as shown in Fig. 1, which significantly impairs the
cost-saving performance of SHE for federated LoRA.
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Matrices from heterogeneous clients inflate ciphertext size. Our experiments show that clients
with heterogeneous hardwares and Non-IID data tend to focus on different sensitive model parameters
during fine-tuning. As a result, the positions selected for encryption vary across clients. In the
aggregation phase of existing SHE methods, if a client encrypts a specific model parameter, the
parameter corresponding to the same position must remain encrypted in the global model as well,
leading to inflated ciphertext size as the number of clients grows, which is illustrated in Fig. 2.

3 METHOD
In order to adaptively balance security and HE overhead per client in cross-device federated LoRA,
encrypting A offers a cost-effective solution. Since A directly operates on user data, it is more
vulnerable to inversion attacks (Petrov et al., 2024), making its protection essential for preventing
privacy leakage. Following this rationale, the diagram of SHE-LoRA is as illustrated in Fig. 3.

Heterogeneous Devices

Step 2. Selective Encryption of 
Model Parameter Matrix

Client 1

Client N

HE Subset 1

HE Subset N

Before After

Before After

Model
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Column 
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… … …

…

Figure 3: The workflow of SHE-LoRA.
SHE-LoRA consists of the following components: Step 1. HE Subset Negotiation. Based on the
definition of model parameter sensitivity in Eq. (2), each client assesses and transmits its model param-
eter importance to a server. Then, the server negotiates a global HE subset and feeds it back to clients.
Step 2. Selective Encryption of Model Parameter Matrix. Based on the global subset, clients
perform column swapping to separately cluster unencrypted and encrypted parameters, enabling
efficient matrix operations on plaintexts, batch encryption of ciphertexts, and parameter position
obfuscation that enhances privacy protection and HE efficiency. Step 3. Adaptive Aggregation.
The server performs adaptive, column-aware aggregation of the clients’ unencrypted and encrypted
parameters, respectively, enabling efficient and accurate aggregation of adapter matrices. Step 4.
Reparameterization. Each client reparameterizes the aggregated plaintext and ciphertext results into
LoRA parameters, matching its local rank for the next round of model tuning.

3.1 HE SUBSET NEGOTIATION

3.1.1 ASSESSMENT OF MODEL PARAMETER IMPORTANCE
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Figure 4: Sensitivity of model parameters.

Fig. 4 shows the sensitivity of parameters measured
by Eq. (2), where darker color indicates higher im-
portance. We find that the sensitivity values generally
differ by columns, suggesting a strong correlation
with specific data channels. Considering that encrypt-
ing even a single element in a column will result in
the expansion of encryption positions for that entire
column due to matrix multiplication (Section 2.4),
and vectorized encryption by columns is beneficial to
improving HE efficiency (Cheon et al., 2017), we let
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each client assess parameter importance by columns and determine its HE subset of columns based
on its encryption budget. Specifically, the encryption budget of Client i is defined as the ratio of
parameters for SHE (denoted as γi ∈ [0, 1]), which is specified according to its hardware capabilities
such as CPU clock speed, etc. For an adapter matrix A ∈ Rr×n and input X ∈ RL×n, we use
Sj =

∑r
k=0 |Wkj | · ∥xj∥2 to calculate the importance of the j-th channel, where ∥xj∥2 is the l2

norm of the j-th feature xj ∈ RL. Thus, the proposed approach can not only provide channel-level
privacy protection, but also prevent unnecessary expansion of encryption positions.

3.1.2 HE SUBSET NEGOTIATION

As explained in Section 2.4, clients with heterogeneous data distributions and device capabilities
will select different positions and amounts of important model parameters for encryption according
to their individual budgets. As the union of HE subsets expands with the aggregation of client
model updates, the ciphertext size may inflate significantly. To address this, we devise a HE subset
negotiation mechanism to tailor client-specific encryption of model parameters, ensuring that the
overall ciphertext size remains affordable per client.

To prevent the server from snooping on the positions of important model parameters and conducting
targeted attacks, we apply OPE to hide each client’s HE subset. Since SHE-LoRA is modular, OPE
can be replaced by alternatives like order-revealing encryption, secure multi-party computation, or a
trusted third party whenever stronger order privacy is required. As OPE only preserves numerical
ordering of the plaintext, the server cannot obtain any information from the cipher other than the
plaintext order. Specifically, Client i first encrypts a tuple (Gi, Si) with OPE and sends it to the
server, where Gi is the set of columns that needs HE, and Si is their sensitivities. Then, the server
maintains two shared lists based on all the clients’ tuples: the Common list, which sorts all columns
in
⋃

i Gi from most to least frequently deemed as sensitive, and the Sensitivity list, which sorts all
columns in

⋃
i Gi from highest to lowest sensitivity. Finally, by taking into account both the overlap

of important HE subsets across clients (reflected in Common and Sensitivity) and the preferred HE
subsets of individual clients (reflected in Gi), the server negotiates a global HE subset affordable for
each client, of which algorithmic details are elaborated in Appendix D.1. As a result, the negotiated
global HE subset optimally balances privacy and HE overhead per client.

3.2 SELECTIVE ENCRYPTION OF MODEL PARAMETER MATRIX

b1b2
Column chunking

Column swapping

调整字体大小

Figure 5: Selective encryption of
columns.

As illustrated in the top of Fig. 5, the selected columns for
encryption may be scattered across the parameter matrix. This
irregular distribution increases the complexity of matrix batch-
ing and the overhead of encryption, decryption and computation.
To address this, based on the negotiated HE subset, we propose
a column-swapping method to separately cluster the columns
pending for encryption and those remain unencrypted. This
approach brings three key benefits: (1) encrypted columns are
clustered together, allowing for efficient batch encryption with
reduced storage and communication overhead; (2) the clustered
unencrypted columns can be directly used in matrix operations,
improving computational efficiency; and (3) the column-wise
obfuscation increases the difficulty of potential privacy attacks.

After swapping, Client i selectively encrypts its parameter matrix, and uses the last ki = ⌊n× γi⌋
columns as its HE subset, which is affordable according to the client’s encryption budget. Thus, the
tensor to be encrypted, denoted as A′, has the shape of (r, ki). In HE, the CKKS (Cheon-Kim-Kim-
Song) scheme (Cheon et al., 2017) serves as an encryption technique that facilitates approximate
floating-point arithmetic, making it particularly advantageous for the encryption of matrices or tensors.
For large-scale tensors, the limited capacity of HE requires them to be partitioned into blocks, each
encrypted separately. As illustrated in the bottom of Fig. 5, given a block size of chunk, A′ can be
divided into N b = ⌈ki/chunk⌉ blocks by column (denoted as A′ = {b1, . . . , bj , . . . , bNb}), where
each block contains a tensor that has the shape of (r, chunk). For each block bj , the client applies
CKKS encryption to obtain its ciphertext Cj = CKKS(bj , pk), where pk is the public HE key. After
all blocks are encrypted, the complete list of ciphertext blocks {Cj}N

b

is sent to the server.
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3.3 ADAPTIVE AGGREGATION

To prevent the inflation of ciphertext size caused by aggregating heterogeneous HE subsets as
illustrated in Section 2.4, we propose an adaptive column-aware aggregation method to aggregate the
unencrypted and encrypted parts separately.

Aggregation of Unencrypted Model Parameters: Upon receiving the adapter matrix Bi and the
unencrypted part of Ai (denoted as Aplain

i ) from Client i, the server calculates the unencrypted weight
update from Client i as ∆Wplain

i = BiA
plain
i . However, as the number of encrypted columns (i.e., ki)

differs across the clients due to their diverse encryption budgets, the shape of ∆Wplain
i ∈ Rm×(n−ki)

also varies across the clients, which makes the traditional aggregation methods of weight-averaging
∆Wplain

i or Aplain
i inapplicable. Considering that the unencrypted columns of all the clients have

been clustered to the left as explained in Section 3.2, we let the server apply column-wise weighted
averaging to aggregate the unencrypted model parameters as illustrated in the top of Fig. 6. This
column-wise partial aggregation is consistent with standard FedAvg (McMahan et al., 2017) under
client subsampling and ensures no bias is introduced from non-contributing clients. The detailed
algorithm is elaborated in Appendix D.2.

Aggregation:

Aggregation:

Unencrypted Parameters 
Zero Padding Column-wise Weighted Averaging

Encrypted Parameters 

Client 1:

Client 1:

Client 3:Client 2:

Client 2: Client 3:

Server:

Server:

文字公式

1
plainW 2

plainW 3
plainW

cipherW
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1
cipherW 2

cipherW 3
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 1 2 3
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Figure 6: Aggregation of unencrypted (top) and encrypted (bottom) model parameters.

Aggregation of Encrypted Model Parameters: Similarly, upon receiving Bi and the encrypted
part of Ai (denoted as Acipher

i = {Cj}N
b

) from Client i, the server calculates the encrypted weight
update from Client i as ∆Wcipher

i = BiA
cipher
i ∈ Rm×ki . Although the difference in ki also causes

∆Wcipher
i to have different shapes, the cipher block order is consistent across the clients, and the

encrypted columns of all the clients have been clustered to the right as explained in Section 3.2. Thus,
the encrypted model parameters can be similarly aggregated via column-wise weighted averaging as
illustrated in the bottom of Fig. 6. The detailed algorithm is elaborated in Appendix D.3.

To reduce communication overhead, the server sends the unencrypted and encrypted parts separately:

• For the unencrypted part, since most model parameters remain unencrypted during LoRA, we let the
server, which generally has more computation capability, apply singular value decomposition (SVD)
to decompose the aggregation result: ∆Wplain

SVD
= UpΣpV

⊤
p ∈ Rm×K , where K = n−min(ki),

Up ∈ Rm×m, Σp ∈ Rm×K and V⊤
p ∈ RK×K . Then, given each client’s rank ri, the server slices

the decomposition results as: Up[:, : ri] ∈ Rm×ri , Σp[: ri, : ri] ∈ Rri×ri and V⊤
p [: ri, :] ∈ Rri×K .

Thus, each client receives the unencrypted aggregation result corresponding to its own rank.
• For the encrypted part, since each client only selectively encrypts a small portion of model
parameters, we let the server first truncate the aggregation result by the encryption budget of respective
clients, and then let the clients decrypt their corresponding aggregation results as in Section 3.4.
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3.4 REPARAMETERIZATION

To enable the next round of model tuning, each client needs to merge the plaintext and ciphertext
results returned by the server into new LoRA parameters. Suppose the client receives the plaintext
decomposition result: ∆Wplain

SVD
= BpAp, where Bp = Up

√
Σp ∈ Rm×r and Ap =

√
ΣpV

⊤
p ∈

Rr×K , and the cipher blocks from the server. For the plaintext decomposition results, the client
directly zero-pads Bp and Ap to the shapes of (m, r) and (r, n), respectively, for further update of
its model parameter matrix. For the cipher blocks, the client first decrypts the ciphertext into plaintext,
and then performs SVD and zero-padding to obtain the decomposed results as ∆Wcipher

SVD
= BcAc,

where Bc = Uc

√
Σc and Ac =

√
ΣcV

⊤
c . By merging the decomposition results of the plaintext

and ciphertext via Eq. (4) and restoring the position of the model parameters according to the
corresponding positions in Section 3.2, the correct aggregation result can be reparameterized as:

Bg = [Bp Bc] = [Up

√
Σp Uc

√
Σc] ∈ Rm×(r+r),Ag =

[
Ap

Ac

]
=

[√
ΣpV

⊤
P√

ΣcV
⊤
c

]
∈ R(r+r)×n. (4)

Finally, the client performs SVD on Ag and Bg again, and re-adjusts the parameter shapes according
to the client’s rank to B̂ ∈ Rm×r and Â ∈ Rr×n. As the SVD conducted by the client is all on low-
rank matrices, the computation overhead is trivial. The detailed derivation of the reparameterization
is presented in Appendix D.4. The formal proof of the losslessness of meaningful model updates in
SHE-LoRA is provided in Appendix D.5.

3.5 PRIVACY GUARANTEE OF SHE-LORA

The parameters protected by HE do not leak privacy, and privacy risks are mainly caused by un-
encrypted parameters. The column swapping process, which serves as column-wise obfuscation,
increases the difficulty of privacy attacks, and can be viewed as adding an asymptotic Gaussian-
distributed noise (with s2 as the equivalent variance) to the original gradient as detailed in Ap-
pendix D.7.

Thus, the privacy guarantee of selective encryption can be given by the Bayesian Cramér-Rao Lower
Bound (Chen et al., 2025; Huang et al., 2025). Specifically, the reconstruction error ER can be
defined as the minimum expected squared reconstruction error:

ER = min
R

Ex∼XEy∼f(g(x))

[∥∥R(y)− x
∥∥2
2

]
(5)

where R(·) is any data reconstruction attack method, f(·) is the selective HE method of SHE-LoRA,
and g(x) is the gradient calculated on data x. Then, the Bayesian Cramér-Rao Lower Bound can be
given by (Huang et al., 2025):

ER ≥ d2

Ex∼X [tr(JF (x))] + λe(JP )
≥ d2

n(1−γ)
s2 Ex∼X ∥∇xg(x)∥2max + λe(JP )

, (6)

where JF (x) is the Fisher information matrix, tr(·) is the trace operator, λe(JP ) is the largest
eigenvalue of the prior-informed Fisher information matrix JP , d is the data dimension, n is the
number of columns in G, γ is the encryption ratio, s2 is the variance of the equivalent noise, and
∥∇xg(x)∥2max = (maxi,j |∇xgj(xi)|)2 quantifies the maximum gradient exposure, which is defined
as the squared maximum sensitivity of an unencrypted (exposed) gradient coordinate gj(xi) with
respect to a data feature xi.

Eq. (6) means that the reconstruction error ER is lower-bounded by a quantity whose denominator
depends on tr(JF (x)) and λe(JP ). Since λe(JP ) is determined solely by the data prior, the bound
under fixed n, s2, and γ is governed exclusively by ∥∇xg(x)∥2max. By selectively encrypting the
most sensitive columns, which are measured in terms of the Wanda parameter sensitivity (a proxy for
their contribution to input-space sensitivity via the score Sj in Line 217), SHE-LoRA suppresses the
dominant terms in the Fisher information matrix, thereby reducing the magnitude of the unencrypted
gradients ∥∇xg(x)∥2max and lowering tr(JF (x)).

In summary, by encrypting the most sensitive parameters, SHE-LoRA increases the minimum
achievable reconstruction error and strengthens privacy against any gradient inversion attack.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENTAL SETUP
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Table 1: Heterogeneous device types.
Type GFlops Rank Budget (Bert, LLaMA) #

1 105.2 8 (0.4%, 0.125%) 20
2 165.5 16 (0.4%, 0.125%) 15
3 216.9 16 (0.8%, 0.25%) 10
4 243.1 32 (1.6%, 0.50%) 5

Model: We select the Bert-Large (Devlin
et al., 2018) model and the OpenLLaMA-
3B (Geng & Liu, 2023) model for perfor-
mance evaluation across diverse task scenar-
ios. More evaluation settings and results on
larger LLMs can be found in Appendix E.
Datasets: We use the IMDB (Maas
et al., 2011) and natural-instructions
datasets (Wang et al., 2022) for natural language understanding and natural language generation
tasks, respectively. We use the MMLU (Hendrycks et al., 2021) and the GLUE (Wang et al., 2019)
benchmarks for evaluation on natural language generation and natural language understanding tasks,
respectively. For evaluation on vision tasks, we use the MNIST (LeCun et al., 2002), DTD (Cimpoi
et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2012), SVHN (Netzer et al.,
2011) visual classification datasets.
Hyperparameters of HE: We adopt the CKKS implementation from the TenSEAL library (Benaissa
et al., 2021) for HE operations. As instructed1, we set the polynomial degree to 8192, 2048, and the
modules chain to [60, 40, 60], [20,20] for OpenLLaMA-3B and Bert-Large, respectively.
Implementation: SHE-LoRA is implemented with PyTorch based on the Flower framework2. We
deploy federated LoRA of LLMs on 50 clients for 200 rounds. The heterogeneous data partitioning
is instantiated via a Dirichlet distribution with ρ = 0.3. The evaluation settings and results on more
clients can be found in Appendix E.1. As detailed in Table 1, we configure four types of client devices
with varying computing capabilities, LoRA ranks and encryption budgets. Without losing generality,
we posit that weaker devices are characterized by lower ranks and encryption budgets, while stronger
devices are capable of supporting higher ranks and encryption budgets.

4.2 MODEL TUNING PERFORMANCE

We compare the model tuning performance of SHE-LoRA with two homogeneous LoRA-based
methods (FedIT (Zhang et al., 2024) and FedSA (Guo et al., 2024)) and two heterogeneous LoRA-
based methods (HeterLoRA (Cho et al., 2024) and Flex-LoRA (Bai et al., 2024)). The methods’
performance on natural language understanding tasks and natural language generation tasks is
evaluated on the GLUE benchmark (Wang et al., 2019) and the MMLU benchmark (Hendrycks
et al., 2021), respectively, while the methods’ performance on vision tasks is evaluated on the 5
visual classification datasets. SHE-LoRA achieves comparable performance to the SOTA method
(Flex-LoRA) and outperforms the other baselines. Detailed results are elaborated in Appendix F.1.

4.3 HE COST EFFICIENCY

To our best knowledge, SHE-LoRA is the first to integrate SHE into federated LoRA of LLMs. We
implement two methods for the comparison of HE cost efficiency: (1) MaskCrypt (Hu & Li, 2024),
the SOTA SHE method for securing FL, and (2) Baseline, the vanilla method with full HE of LoRA
parameters. Specifically, MaskCrypt lets each client select an encryption mask and uses the union
of the masks for global SHE of parameters during FL. Baseline uses the stock implementation of
CKKS (Benaissa et al., 2021) to encrypt each LoRA parameter. The clients’ device specifications
follow Table 1. We collect the encryption time and communication overhead of all the clients under
the methods per round during the federated tuning of the OpenLLaMA-3B and Bert-Large models,
respectively. Fig. 7 and Fig. 8 show the collected results, where the bar represents the mean, and the
lines extending upward and downward from the mean represent the maximum and minimum values,
respectively. More results regarding HE cost efficiency can be found in ??.

Encryption Time: Baseline always consumes the longest encryption time as it encrypts each LoRA
parameter. In comparison, MaskCrypt greatly shortens the encryption time on both models, which is
primarily due to its selective encryption of partial parameters. However, the clients’ encryption time
in both Baseline and MaskCrypt severely fluctuates within [311s, 653s] and [1.556s, 104.63s] on
OpenLLaMA-3B, and [12s, 60s] and [0.27s, 39.75s] on Bert-Large, respectively. This is because that
these methods cannot deal with the inflation of the global HE mask caused by matrix multiplication
and mask heterogeneity (Section 2.4). Thus, the clients in these methods, whether weak or strong,
have to encrypt the same amount of parameters, causing highly imbalanced encryption time. In
contrast, thanks to the column swapping and clustering of encrypted columns, which enables efficient

1https://github.com/OpenMined/TenSEAL
2https://flower.ai/
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Figure 7: Encryption time.
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Figure 8: Communication overhead.
utilization of CKKS key sizes, SHE-LoRA reduces the mean encryption time by 99.87%∼98.10% and
99.81%∼99.31% as compared to Baseline and MaskCrypt on the OpenLLaMA-3B and Bert-Large
models, respectively. Moreover, we notice that even if the clients differ in computing capabilities,
their encryption time under SHE-LoRA hardly fluctuates. The primary reason is that each client in
SHE-LoRA can choose an affordable encryption budget γi that matches its device capability, and
hence results in no significant difference in encryption time across the clients.

Communication Overhead: The mean values under the methods follow similar rankings as those
in encryption time, where SHE-LoRA reduces communication overhead by 99.71%∼98.18% on
OpenLLaMA-3B and 98.78%∼98.18% on Bert-Large as compared to Baseline and MaskCrypt,
respectively. The major difference lies in variations, where the communication overhead stays
constant in Baseline and MaskCrypt, but fluctuates in SHE-LoRA. This is consistent with their
designs: Baseline lets each client encrypt all the parameters (full ciphertext size) and MaskCrypt
lets clients encrypt the global union of masks (partial ciphertext size), while SHE-LoRA lets clients
choose encryption budgets that match their device capabilities (diverse ciphertext sizes).

4.4 RESISTANCE TO PRIVACY ATTACK

SHE-LoRA is applicable to both parameter and gradient updates. Although parameter-based attacks
can be transformed into gradient-based ones, they are highly inaccurate and impractical for large
models, even with direct access to gradients (Wang & Li, 2024). Therefore, we evaluate the resistance
of SHE-LoRA against the DAGER attack (Petrov et al., 2024), which is the SOTA gradient inversion
attack method. DAGER exploits the fact that gradients are linear combinations of input embeddings
(Appendix B.2). It iterates over the entire vocabulary and measures the distance between each
embedding vector and the principal components of the gradient, aiming to identify tokens. More
results against membership inference attacks are detailed in Appendix F.4.

We conduct the federated LoRA of the OpenLLaMA-3B model via SHE-LoRA and MaskCrypt on
two datasets, SST2 (Socher et al., 2013) and Rotten Tomatoes (Pang & Lee, 2005), as in DAGER, with
r=256 and HE settings in Section 4.1. For fair comparison, we let them use the same HE overhead
(ciphertext size). We also implement a non-private SOTA federated LoRA method, Flex-LoRA, and
its privacy-preserving form with DP protection, Flex-LoRA-DP, where gradients are obfuscated with
σ2 noise, and σ = 10−3 as in DAGER. We launch the DAGER attack on gradients per training round
for each method over the two datasets, respectively, and collect the data reconstruction scores of
DAGER under the batch sizes of 4, 8, 16. The scores are collected in terms of “ROUGE-1” (R-1 in
short), which measures the matching degree of unigrams, and “ROUGE-2” (R-2 in short), which
measures the matching degree of bigrams. Smaller scores reflect better privacy protection.

Table 2 shows the mean and standard deviation of the scores. In practice, if SHE-LoRA and
MaskCrypt use the encryption budget of the weakest device in Table 1 (i.e., γi = 0.125%) for SHE,
DAGER completely fails on both methods under all settings (i.e., scores=0). Thus, we gradually
decrease γi and find that DAGER begins to succeed in partially compromising SHE-LoRA when
γi < 0.3‰, which consumes only one ciphertext packet. In contrast, MaskCrypt is no longer secure
under the same HE overhead, while DP is far less secure than SHE-LoRA and may significantly
degrade model accuracy (Sun et al., 2024c). The strong resistance of SHE-LoRA against DAGER
is primarily due to the column swapping and SHE of important columns. Although the change in
the principal components of gradients caused by column swapping is trivial, which does not lead
to the failure of DAGER, such change leads to a strong perturbation in the orthogonal complement
of gradients in the low-rank space of LoRA parameters, which causes the failure of DAGER’s span
check. In addition, as the key gradient information for reconstructing data has also been protected by
SHE, DAGER completely fails when the batch size is greater than 8 even if only 0.3‰ parameters
are encrypted.
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Table 2: Data reconstruction scores of DAGER.

Dataset Method B=4 B=8 B=16
R-1 R-2 R-1 R-2 R-1 R-2

SST2

Flex-LoRA 95.18±1.6 94.66±1.8 61.14±1.9 52.49±2.2 10.27±1.6 5.86±1.2
Flex-LoRA-DP 86.25±1.1 86.11±1.4 80.28±1.1 78.54±1.3 68.62±3.1 66.44±3.7

MaskCrypt 89.16±1.3 87.93±2.1 61.49±2.2 61.49±2.4 10.91±1.2 6.79±1.4
SHE-LoRA 0.72±5.2 0.12±1.2 0.98±4.4 0.14±0.6 0.0±0.0 0.0±0.0

Rotten
Tomatoes

Flex-LoRA 38.44±1.5 32.76±1.3 3.76±1.4 2.12±2.1 0.0±0.0 0.0±0.0
Flex-LoRA-DP 36.74±1.9 31.28±2.6 3.76±1.3 2.02±2.3 0.0±0.0 0.0±0.0

MaskCrypt 31.65±2.0 25.11±2.6 6.09±1.0 3.27±1.2 0.0±0.0 0.0±0.0
SHE-LoRA 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

1 20 40 60 80 100
MaskCrypt HE overhead
SHE-LoRA HE overhead

0
20
40
60
80

100

Sc
or

e

R-1 SHE-LoRA
R-2 SHE-LoRA
R-1 MaskCrypt
R-2 MaskCrypt

Figure 9: Resistance comparison.

We further decrease the batch size to 1 (i.e., easiest for in-
version attack) with γi = 0.3‰ in SHE-LoRA, while grad-
ually increasing the ratio= MaskCrypt HE overhead

SHE-LoRA HE overhead , and measure
the data reconstruction scores of DAGER under the two
methods, which are shown in Fig. 9. Due to ciphertext
inflation, when MaskCrypt HE overhead

SHE-LoRA HE overhead =1, MaskCrypt is inef-
ficient at protecting sufficient parameters against DAGER.
To match SHE-LoRA’s security, MaskCrypt has to con-
sume > 100× the HE overhead of SHE-LoRA, making it
unsuitable for weak clients.

4.5 PRIVACY LEAKAGE ANALYSIS FROM MUTUAL INFORMATION PERSPECTIVE
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Figure 10: Impact of encryption budget
and strategy on mutual information.

To delve into the root cause of SHE-LoRA’s effectiveness,
we perform a detailed analysis on how encryption budget
and SHE strategy affect privacy leakage from the perspec-
tive of mutual information. Specifically, we implement
three naive encryption strategies: (1) Max: the most im-
portant parameters are prioritized for encryption; (2) Min:
the least important parameters are prioritized for encryp-
tion; (3) Random: parameters are randomly selected for
encryption. Then, we gradually increase the encryption
budget from 0.3‰ to 80%, and measure the mutual infor-
mation shared between full parameters and the selectively
encrypted parameters per strategy via an efficient approach based on the kernel density estimators
(Appendix F.3). Fig. 10 shows the measured results. We find that the mutual information in Max
drops much faster than the others, while the mutual information in Min drops the slowest, reflecting
a strong correlation between parameter importance and privacy leakage risk. The cost-effective
protection of important parameters is the key to the effectiveness of SHE-LoRA against DAGER-like
attacks.

5 CONCLUSION

We propose SHE-LoRA, a framework integrating SHE and LoRA for efficient and privacy-preserving
federated tuning of LLMs in cross-device environments. It constrains the expansion of ciphertexts
through HE subset negotiation, enables tailored privacy protection via selective encryption of parame-
ters based on column-swapping parameter obfuscation, and achieves efficient and accurate update of
LoRA parameters by column-aware adaptive aggregation and subsequent reparameterization. Results
show that SHE-LoRA maintains model tuning performance comparable to non-private baselines,
while achieving strong resistance to SOTA attacks, and significantly reducing communication over-
head by 99.71% and encryption time by 99.87%, compared to HE baselines. Our work demonstrates
that SHE with a well balance between privacy and utility can secure federated LoRA of LLMs against
DAGER-like attacks and membership inference attacks. We hope SHE-LoRA can foster further
research into creating more reliable and cost-effective privacy protection frameworks for private
collaborative learning.
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6 REPRODUCIBILITY STATEMENT

The paper has fully disclosed all the information needed to reproduce the main experimental results of
the paper to the extent that it affects the main claims and conclusions of the paper. We have provided
a link to an anonymous downloadable source code with detailed explanations and annotations to
support the reproducibility of our work. In addition, the necessary hyperparameter settings are
described in Section 4.1.

REFERENCES

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In Proc. of SIGMOD, pp. 563–574, New York, NY, USA, 2004.

Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. Computing blindfolded on data
homomorphically encrypted under multiple keys: A survey. ACM CSUR., 54(9), October 2021.
ISSN 0360-0300.

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM TISSEC, 9(1):1–30, 2006.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of
language models. arXiv preprint arXiv:2308.06522, 2023.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li. Federated fine-tuning of large
language models under heterogeneous tasks and client resources. In Proc. of NeurIPS, 2024.

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev. Lamp: Extracting text
from gradients with language model priors. In Proc. of NeurIPS, 2022.

Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. Tenseal: A library
for encrypted tensor operations using homomorphic encryption. arxiv 2021. arXiv preprint
arXiv:2104.03152, 2021.

Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptography.
In Proc. of TACT, pp. 127–144. Springer, 1998.

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. Order-preserving symmetric
encryption. In Proc. of EUROCRYPT, pp. 224–241. Springer, 2009.

E Bolthausen. An estimate of the remainder in a combinatorial central limit theorem. Probability
Theory and Related Fields, 66(3):379–386, 1984.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In USENIX security, pp. 2633–2650, 2021.

Shuaijun Chen, Omid Tavallaie, Niousha Nazemi, and Albert Y Zomaya. Rbla: Rank-based-lora-
aggregation for fine-tuning heterogeneous models in flaas. In Proc. of ICWS, 2024.

Yuxiao Chen, Gamze Gursoy, and Qi Lei. Optimal defenses against data reconstruction attacks. In
ICML Workshop, 2025.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Proc. of ASIACRYPT, 2017.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for federated
fine-tuning of on-device foundation models. In Proc. of EMNLP, 2024.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proc. of CVPR, pp. 3606–3613, 2014.

Harald Cramér and Herman Wold. Some theorems on distribution functions. Journal of the London
Mathematical Society, 1(4):290–294, 1936.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan
Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, et al. Agent ai: Surveying the horizons of
multimodal interaction. arXiv preprint arXiv:2401.03568, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In Proc. of ICML, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. Proc. of ICLR, 2023.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proc. of STOC, pp. 169–178,
2009.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selective
aggregation for low-rank adaptation in federated learning. arXiv preprint arXiv:2410.01463, 2024.

Jaroslav Hájek. Some extensions of the wald-wolfowitz-noether theorem. The Annals of Mathematical
Statistics, pp. 506–523, 1961.

Junhao Han and Li Yan. Adaptive batch homomorphic encryption for joint federated learning in
cross-device scenarios. IEEE IoT-J, 11(6):9338–9354, 2023.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In Proc. of ICNN, pp. 293–299. IEEE, 1993.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE J-STARS, 12(7):
2217–2226, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proc. of ICLR, 2021.

Wassily Hoeffding. A combinatorial central limit theorem. The Annals of Mathematical Statistics,
pp. 558–566, 1951.

Chenghao Hu and Baochun Li. Maskcrypt: Federated learning with selective homomorphic encryp-
tion. IEEE TDSC, 2024.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In Proc. of ICLR, 2022.

Qiuyuan Huang, Naoki Wake, Bidipta Sarkar, Zane Durante, Ran Gong, Rohan Taori, Yusuke Noda,
Demetri Terzopoulos, Noboru Kuno, Ade Famoti, et al. Position paper: Agent ai towards a holistic
intelligence. arXiv preprint arXiv:2403.00833, 2024.

Ren-Yi Huang, Dumindu Samaraweera, Prashant Shekhar, and J Morris Chang. Advancing practical
homomorphic encryption for federated learning: Theoretical guarantees and efficiency optimiza-
tions. arXiv preprint arXiv:2509.20476, 2025.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. In Proc. of NeurIPS, 2021.

Weizhao Jin, Yuhang Yao, Shanshan Han, Jiajun Gu, Carlee Joe-Wong, Srivatsan Ravi, Salman
Avestimehr, and Chaoyang He. Fedml-he: An efficient homomorphic-encryption-based privacy-
preserving federated learning system. arXiv preprint arXiv:2303.10837, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends in Machine Learning, 14
(1–2), 2021.

12

https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Renuga Kanagavelu, Zengxiang Li, Juniarto Samsudin, Yechao Yang, Feng Yang, Rick Siow Mong
Goh, Mervyn Cheah, Praewpiraya Wiwatphonthana, Khajonpong Akkarajitsakul, and Shangguang
Wang. Two-phase multi-party computation enabled privacy-preserving federated learning. In Proc.
of CCGrid, 2020.

Shahrzad Kiani, Nupur Kulkarni, Adam Dziedzic, Stark Draper, and Franziska Boenisch. Dif-
ferentially private federated learning with time-adaptive privacy spending. In Proc. of ICLR,
2025.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some
applications. IEEE TAC, 25(2):164–176, 1980.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. of the IEEE, 86(11):2278–2324, 2002.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. In Proc. of SPM, 2020.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proc. of ACL, pp. 142–150, Portland,
Oregon, USA, June 2011.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proc. of AISTATS,
2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. In Proc. of NeurIPS, 2024.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using
kernel density estimators. Physical Review E, 52(3):2318, 1995.

Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybinette Balch. Smpai:
Secure multi-party computation for federated learning. In Proc. of NeurIPS, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop, volume
2011, pp. 7. Granada, 2011.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proc. of ACL, pp. 115–124, 2005.

Ivo Petrov, Dimitar I Dimitrov, Maximilian Baader, Mark Müller, and Martin Vechev. Dager: Exact
gradient inversion for large language models. In Proc. of NeurIPS, 2024.

Simon Queyrut, Valerio Schiavoni, and Pascal Felber. Mitigating adversarial attacks in federated
learning with trusted execution environments. In Proc. of ICDCS, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proc. of ICML, pp. 8748–8763. PmLR, 2021.

Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy homomor-
phisms. Foundations of secure computation, 4(11):169–180, 1978.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. In Proc. of ICLR,
2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proc. of EMNLP, pp. 1631–1642, 2013.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332,
2012.

Shangchao Su, Bin Li, and Xiangyang Xue. Fedra: A random allocation strategy for federated tuning
to unleash the power of heterogeneous clients. In Proc. of ECCV, 2024.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In Proc. of ICLR Workshop, 2024a.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. In Proc. of ICLR, 2024b.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving LoRA in privacy-preserving federated
learning. In Proc. of ICLR, 2024c.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Proc. of
NeurIPS, 26, 2013.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. In Proc. of NeurIPS, 2024.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A practical
guide, 1st ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proc. of
ICLR, 2019.

Fei Wang and Baochun Li. Data reconstruction and protection in federated learning for fine-tuning
large language models. IEEE TBD, pp. 1–13, 2024.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In Proc.
of EMNLP, 2022.

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li. Flora:
Federated fine-tuning large language models with heterogeneous low-rank adaptations. arXiv
preprint arXiv:2409.05976, 2024.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Gong, and Bhuwan
Dhingra. Recall: Membership inference via relative conditional log-likelihoods. In Proc. of
EMNLP, pp. 8671–8689, 2024.

Yuxuan Yan, Qianqian Yang, Shunpu Tang, and Zhiguo Shi. Federa: Efficient fine-tuning of language
models in federated learning leveraging weight decomposition. arXiv preprint arXiv:2404.18848,
2024.

Wentao Ye, Jiaqi Hu, Liyao Li, Haobo Wang, Gang Chen, and Junbo Zhao. Data contamination
calibration for black-box llms. In Findings of ACL, pp. 10845–10861, 2024.

Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. pfedlora: model-heterogeneous
personalized federated learning with lora tuning. arXiv preprint arXiv:2310.13283, 2023.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
Differentially private fine-tuning of language models. In Proc. of ICLR, 2022.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and
Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In Proc. of ICASSP,
2024.

Chao Zheng, Liming Wang, Zhen Xu, and Hongjia Li. Optimizing privacy in federated learning with
mpc and differential privacy. In Proc. of CACML, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Yifeng Zheng, Shangqi Lai, Yi Liu, Xingliang Yuan, Xun Yi, and Cong Wang. Aggregation service
for federated learning: An efficient, secure, and more resilient realization. IEEE TDSC, 20(2):
988–1001, 2022.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Proc. of NeurIPS, 2019.

Meilu Zhu, Axiu Mao, Jun Liu, and Yixuan Yuan. Deer: Deviation eliminating and noise regulating
for privacy-preserving federated low-rank adaptation. IEEE TMI, 44(4):1783–1795, 2025.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Appendix for Submission #1959

LIST OF APPENDIX

A: Related Work
B: Preliminary

B.1 Relationship between Parameter Importance and Privacy Leakage Risk
B.2 Data Reconstruction via Inversion Attacks
B.3 Federated Parameter-Efficient Fine-Tuning
B.4 Matrix Multiplication in LoRA Amplifies DP Noise
B.5 Homomorphic Encryption
B.6 Order-Preserving Encryption
B.7 Singular Value Decomposition

C: HE Key Management and Distribution
D: Additional Technical Details of SHE-LoRA

D.1 The Algorithm of HE Subset Negotiation
D.2 Aggregation of Unencrypted Model Parameters
D.3 Aggregation of Encrypted Model Parameters
D.4 Reparameterization of LoRA
D.5 Proof of the Losslessness of Meaningful Model Updates in SHE-LoRA
D.6 Distribution Shift of Model Parameter Importance Values
D.7 Proof of Asymptotic Gaussian-distributed Noise

E: Distributability and Scalability
E.1 Performance on More Clients
E.2 Performance on Larger LLMs
E.3 Performance on Stronger Base Models and more Challenging Benchmarks

F: Additional Experimental Results
F.1 Performance on Varying Tasks
F.2 Robustness under Varying Non-IID Conditions
F.3 Efficient Estimation of Mutual Information
F.4 Resistance against Membership Inference Attacks
F.5 Impact of Sensitive Parameters on Performance

G: Table of Notations
H: Limitations
I: Broader Impact
J: The Use of Large Language Models (LLMs)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A RELATED WORK

LoRA Tuning in FL. FedIT (Zhang et al., 2024) employed FedAvg to aggregate updates from locally
performed LoRA fine-tuning. FeDeRA (Yan et al., 2024) modified the initialization of matrices A
and B by the SVD results of pre-trained parameters, which helps mitigate client drift caused by data
heterogeneity. SLoRA (Babakniya et al., 2023) employed SVD for initializing matrices A and B,
and calculated a mask to reduce the parameters for training and communication overhead. FedRA (Su
et al., 2024) partitioned the pre-trained model by layer, enabling clients to fine-tune specific layers
on homogeneous models. Inspired by the mixture of experts architecture, HydraLoRA (Tian et al.,
2024) proposed to learn multiple LoRAs corresponding to different knowledge. PiSSA (Meng et al.,
2024) proposed to directly fine-tune the principal component of the pre-trained model, facilitating
rapid convergence and enhancing overall performance. These LoRA variants primarily focus on
reducing training costs in homogeneous settings, but neglect the heterogeneity of device capabilities
and Non-IID data in cross-device federated PEFT scenarios.

Heterogeneous LoRA. FLoRA (Wang et al., 2024) contended that the aggregation used in FedIT
(Zhang et al., 2024) is flawed and employed stacking to aggregate parameters from heterogeneous
clients. HeterLoRA (Cho et al., 2024) implemented different ranks on clients and aggregates
heterogeneous LoRA modules through zero-padding, which may dilute certain parameters. RBLA
(Chen et al., 2024) designed a rank-based LoRA aggregation method to prevent model parameter
dilution caused by zero-padding. Flex-LoRA (Bai et al., 2024) synthesized a complete set of LoRA
weights from individual client contributions, and employed SVD for weight reparameterization,
thereby fully leveraging heterogeneous client resources. Furthermore, pFedLoRA (Yi et al., 2023)
aggregated adapters to facilitate personalized FL, and treated LoRA as a mechanism for knowledge
transfer, allowing clients to locally train heterogeneous models while maintaining a homogeneous
adapter. Although these works have made significant contributions to heterogeneous federated PEFT
with LoRA, they still suffer from potential privacy leakage risks under inversion attacks.

Privacy Preservation Techniques. To defend against inversion attacks, (Yu et al., 2022) employed
the DP-SGD optimizer for fine-tuning, providing formal DP guarantees for model parameters.
Considering that DP noise may be amplified by LoRA multiplication, FFA-LORA (Sun et al., 2024c)
modified the LoRA training procedure by freezing matrix A after initialization and solely applying
DP on matrix B, at the cost of fewer tunable model parameters. Similarly, FedSA-LoRA (Guo
et al., 2024) proposed to globally train matrix A while reserving matrix B for local training without
participating in aggregation. (Han & Yan, 2023) proposed an adaptive, precision-lossless batch
HE method that transforms model parameters into non-negative values to prevent overflow errors.
Inspired by model pruning techniques, FedML-HE (Jin et al., 2023) proposed to encrypt only a subset
of sensitive model parameters to reduce HE overhead. MaskCrypt (Hu & Li, 2024) proposed to select
a consensus mask for SHE to minimize overhead across homogeneous devices. In summary, the
application of DP involves a trade-off between privacy protection and model convergence, while
existing HE methods struggle to balance privacy and efficiency in cross-device federated PEFT with
LoRA, particularly under scenarios with Non-IID data and heterogeneous device capabilities.

B PRELIMINARY

B.1 RELATIONSHIP BETWEEN PARAMETER IMPORTANCE AND PRIVACY LEAKAGE RISK

On one hand, as indicated in previous SHE methods (Hu & Li, 2024; Jin et al., 2023), the privacy
leakage risk in FL mainly comes from the fact that the locally trained model weights contain private
data information, and are vulnerable to attacks. The lower gradient loss a parameter results in, the
higher privacy leakage risk it may cause under the attacks.

On the other hand, model pruning methods (Frantar et al., 2023; Hassibi et al., 1993; Sun et al.,
2024b) have proved that by carefully screening the parameters by importance, many parameters can
be removed without hurting performance. Following this rationale, SHE-LoRA lets heterogeneous
clients adaptively encrypt partial parameters via importance screening and negotiate a global HE
subset for secure Federated PEFT without hurting privacy and efficiency.

Specifically, let W and L(W) denote parameters and the loss function, respectively. Given a subset
of the parameters w ∈ W, W−w = W −w denotes the parameters with w zeroed out. According
to (Hassibi et al., 1993), the loss function L(W−w) can be expanded as the following Taylor series:
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L(W−w) = L(W −w) = L(W) + g⊤w +
1

2
w⊤Hw +O(∥w∥3), (7)

where g⊤ and H are the first-order (gradient) and second-order (Hessian) partial derivatives, respec-
tively. O(∥w∥3) is the higher-order infinitesimal of w. The sensitivity of w (denoted as Ω(w)) can
be denoted as:

Ω(w) = |L(W−w)− L(W)| = g⊤w +
1

2
w⊤Hw +O(∥w∥3) ≈ 1

2
w⊤Hw. (8)

Considering that when W converges at the local minimum after training, g⊤ is 0, while O(∥w∥3)
can be neglected, thus Ω(w) only depends on H and w. Finally, the sensitivity of the q-th parameter

is calculated as Ω(wq) =
w2

q

2[H−1]qq
according to OBS (Hassibi et al., 1993), where [H−1]qq is the

diagonal element at (q, q) of the inverse Hessian matrix, H−1.

Inspired by H = XX⊤ from SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2024b)
modified weight importance assessment to avoid the high computation cost of H and H−1 (Eq. (2)).
Based on Wanda, SHE-LoRA assesses channel-wise weight importance as in Section 3.1.1.

Besides, Fig. 10 shows that the mutual information (privacy leakage) of “Max” decreases much
sharper than the others along with the encryption of parameters, which intuitively reflects a strong
correlation between weight importance and privacy leakage risk.

B.2 DATA RECONSTRUCTION VIA INVERSION ATTACKS

Inversion attacks (Petrov et al., 2024; Balunovic et al., 2022; Zhu et al., 2019; Jeon et al., 2021) aim
to reconstruct private training data or model parameters, such as pixel values in images or sensitive
information in text, by reversing the clients’ updates uploaded during federated fine-tuning, such as
gradients, parameter updates or prediction results. Specifically, for a model fW(x) = W⊤x, a client
trains it with its local data (x, y), and calculates the gradient g as the derivative of the loss function L:

g =
∂L
∂W

=
∂L
∂fW

∂fW
∂W

=
∂L
∂fW

· x, (9)

and uploads it to the server. The uploaded gradient g contains a linear combination of the original
data. An attacker can analyze the principal components of the model update to search for the client’s
data distribution space and then reconstruct the data (Petrov et al., 2024).

B.3 FEDERATED PARAMETER-EFFICIENT FINE-TUNING

Federated Parameter-Efficient Fine-Tuning (PEFT) is a technology designed for the efficient fine-
tuning of large models within a distributed learning framework that prioritizes data privacy. For
instance, LoRA (Hu et al., 2022) is a well-established method for PEFT. Suppose the weight matrix
of the global pre-trained model is denoted as W ∈ Rm×n, LoRA introduces trainable parameters,
B ∈ Rm×r and A ∈ Rr×n. Each client freezes the original weights W and learns only the trainable
low-rank parameters B and A on its local data. Then, the updates (e.g., weights or gradients) from
clients are aggregated by the server via

∆W =

N∑
i=1

τiBiAi, (10)

where τi denotes the weight coefficient of Client i, proportional to its local data size. Federated
PEFT uses Eq. (10) to guarantee heterogeneous aggregation of LoRA parameters. SVD is used
to reparameterize the aggregation result into heterogeneous LoRA parameters, which reduces the
communication overhead of ∆W . The new LoRA parameters are then sent back to each device for
continued local training, and the process is iterated repeatedly to progressively optimize the model. It
is worth noting that the model parameters are transmitted in plaintext throughout this process, making
them visible to the server.

B.4 MATRIX MULTIPLICATION IN LORA AMPLIFIES DP NOISE

Differential privacy (DP) (Yu et al., 2022; Zhu et al., 2025) is a common privacy defense mechanism
that adds specific noise to gradient or parameter updates, making the relationship between gradients
and data non-linear, which misleads the attacker’s optimization direction. Given that the LoRA
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fine-tuning parameter is ∆W = BA, and ∆W plays a role during model inference, if a noise ϵ
satisfying the privacy budget is added to the parameters, then:

∆W = (B+ ϵB)(A+ ϵA) = BA+BϵA +AϵB + ϵAϵB (11)

Thus, except for BA, all the terms in Eq. (11) are noises that will be aggregated into the global model
parameters, which may severely affect the model’s performance and convergence direction.

B.5 HOMOMORPHIC ENCRYPTION

Homomorphic encryption (Rivest et al., 1978; Gentry, 2009) is a cryptographic primitive that allows
computations to be performed on encrypted data without revealing the underlying plaintext. It is
exceptionally well-suited for FL, as it enables the computation of aggregation in server without
exposing clients’ updates. The Cheon–Kim–Kim–Song (CKKS) encryption scheme (Cheon et al.,
2017) supports approximate numerical computations and floating-point arithmetic. The CKKS offers
relatively high computational efficiency and supports vectorized operations, making it highly suitable
for LoRA tuning in FL. It can be used to encrypt the parameters or gradients of local models, allowing
the server to perform model aggregation without decrypting any data, thereby protecting user privacy.
In the implementation of SHE-LoRA, we employ the CKKS provided by the TenSEAL library,
which supports homomorphic computations on both vectors and tensors, thereby enabling encrypted
computation operations over complex model parameters.

B.6 ORDER-PRESERVING ENCRYPTION

Order-Preserving Encryption (OPE) (Agrawal et al., 2004; Boldyreva et al., 2009) is a cryptographic
technique that preserves the numerical order of plaintexts. If two plaintexts, a and b, satisfy the
condition a < b, then their encrypted ciphertexts will also satisfy Enc(a) < Enc(b). This enables
comparisons, sorting, or range queries to be performed on ciphertexts without decryption. In principle,
OPE maps plaintexts to an interval within the ciphertext space, while ensuring that the mapping
function is monotonically increasing. Although OPE does not provide semantic security in the
traditional sense (i.e., it is possible to infer the approximate range of the plaintext from the ciphertext),
it is highly useful in applications that require sorting or range operations on encrypted data, such as
encrypted databases or cloud storage queries. In SHE-LoRA, we employ OPE to hide clients’ HE
subset, which prevents the server from snooping on the positions of important model parameters and
conducting targeted attacks.

B.7 SINGULAR VALUE DECOMPOSITION

Singular value decomposition (SVD) (Klema & Laub, 1980) is a mathematical method that decom-
poses any real or complex matrix into the product of three standard matrices. It is applicable to
matrices of arbitrary shapes, and hence suitable for tasks such as dimensionality reduction, data
compression, and recommendation systems. For a real matrix W ∈ Rm×n, SVD decomposes it as
follows: W = UΣV⊤, where U ∈ Rm×m is an orthogonal matrix, Σ ∈ Rm×n is a diagonal matrix
with non-negative real values on its diagonal, known as singular values, arranged in descending order,
and V⊤ ∈ Rn×n is an orthogonal matrix as well. To match heterogeneous LoRAs from clients, many
methods (Yan et al., 2024; Babakniya et al., 2023) have employed SVD decomposition, breaking
down the aggregated matrix into B = U

√
Σ and A =

√
ΣV⊤, which enables the projection of the

original parameters into a lower-dimensional space while preserving the essential features.

C HE KEY MANAGEMENT AND DISTRIBUTION

In the configuration outlined herein, the system necessitates an honest-but-curious server to execute
the aggregation of models. Then, a trusted third party is required to oversee the distribution of keys
for both OPE and HE, with the assumption that it will not collude with the server. However, when the
server colludes with compromised clients, cryptographic techniques such as threshold HE, Multi-Key
HE, and proxy re-encryption can be employed to achieve distributed secure computation. Threshold
Homomorphic Encryption (Aloufi et al., 2021) is a cryptographic scheme that amalgamates the
threshold cryptography and HE. It not only supports computations on encrypted data (homomor-
phism), but also enables joint decryption by multiple participants (thresholding), thereby enhancing
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both security and fault tolerance while preserving privacy. Decryption can only be accomplished
with the collective participation of a predetermined number of participants, known as the threshold.
Proxy Re-Encryption (Blaze et al., 1998; Ateniese et al., 2006) permits a semi-trusted third party
(the proxy) to transform ciphertext encrypted for one party into ciphertext decryptable by another, all
without accessing the original plaintext or either party’s private keys. Multi-Key Homomorphic
Encryption (Aloufi et al., 2021) enables homomorphic operations to be performed on user data
encrypted under different keys, obviating the need for key sharing. The resultant ciphertext requires
collaborative partial decryption by all participants, each utilizing their respective private key, to yield
the final plaintext outcome. This mechanism ensures that joint computations can be performed in
multi-party data collaborations while protecting the data privacy of each participant.

In SHE-LoRA, we retain Multi-Key HE as a countermeasure against potential collusion between the
server and clients, while leaving its practical integration and optimization to future endeavors.

D ADDITIONAL TECHNICAL DETAILS OF SHE-LORA

D.1 THE ALGORITHM OF HE SUBSET NEGOTIATION

D.1.1 OBJECTIVES OF THE NEGOTIATION

The negotiation aims to select a subset of columns Res ⊆
⋃N

i=1 Gi with cardinality |Res| =
maxi∈{N} ki, where ki denotes the number of sensitive columns that client i can afford to en-
crypt and {N} denotes the set of all clients, thereby achieving a principled trade-off between privacy
and HE overhead. However, the notions of “privacy” and “HE overhead” are inherently ambiguous
without concrete metrics. To make the trade-off operational, we formalize two explicit objectives
with min-Coverage and max-Risk.

We first define the Coveragei of client i as the fraction of its sensitive columns that are selected for
encryption (i.e., included in Res), and hence protected from exposure: Coveragei =

|Res∩Gi|
|Gi| , where

Gi is the set of columns that client i deems sensitive, and Res is the final selected subset.

To extend HE-based privacy protection to as many clients as possible, we adopt a max-min criterion
and define the overall coverage as:

min-Coverage = min
i∈{N}

Coveragei. (12)

Maximizing min-Coverage ensures that the coverage of every client is at least this value, thereby
guaranteeing the worst-case coverage of sensitive parameter columns: even the least-covered client
receives a quantifiable level of protection.

Second, to quantify the privacy leakage risk of each client, we define Riski =
∑

j∈Gi\Res Sj∑
j∈Gi

Sj
, which

measures the fraction of client i’s total sensitivity that remains unencrypted. We further define
max-Risk = max

i∈{N}
Riski (13)

to capture the worst-case privacy leakage risk across all clients, which we aim to minimize. Lower
residual risk implies stronger privacy preservation. Minimizing max-Risk ensures that the privacy
leakage risk of every client is at most this value, thereby providing a worst-case privacy guarantee:
even the most exposed client suffers from no more than a quantifiable level of privacy leakage risk.

The negotiation thus seeks a balanced Res that jointly optimizes both Eq. (12) and Eq. (13). To
formalize this goal, we define a composite objective score as Eq. (14):

score(Res) = min
i∈{N}

|Res ∩Gi|
|Gi|︸ ︷︷ ︸

min-Coverage

− max
i∈{N}

∑
j∈Gi\Res Sj∑

j∈Gi
Sj︸ ︷︷ ︸

max-Risk

. (14)

Eq. (14) balances the minimal client coverage of sensitive parameters and the maximal privacy
leakage risk of unencrypted parameters. These two objectives often contradict under a limited
encryption budget: satisfying client-specific privacy leakage risk may sacrifice overall coverage of
clients’ sensitive parameters, and vice versa.
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Algorithm 1: HE subset negotiation
Input: clients = {ri, ki, (Gi, Si)}Ni=1, a, b, c are three hyper-parameters of selection ratio.
Output: Res: The column index of global HE subset.

1 Res, selected_num← {}, 0;
2 Common← sorts columns in

⋃
i Gi from most to least frequently deemed as sensitive;

3 Sensitivity← sorts columns in
⋃

i Gi from highest to lowest sensitivity;
4 Γ← {(k, countk)} clusters clients by budget k, and sorts them in ascending order of k;
5 for each budget k in Γ do
6 λ← Update current budget by k − selected_num;
7 Clients← collect all unique columns from

⋃
i:ki=k Gi, and sort them by minSj ;

8 if countk = 1 then
9 P ← Select top λ columns from Gi-Res of the unique client;

10 Res← {P ,{Res}};
11 selected_num← k;

12 else
13 a, b, c← coefficients optimized via Bayesian optimization under a+ b+ c = 1, balancing

min-Coverage and max-Risk as detailed in Algorithm 2;
14 P ← Select top ⌊aλ⌋ columns from Clients-Res;
15 C ← Select top ⌊bλ⌋ columns from Common-P -Res;
16 S← Select top λ− ⌊aλ⌋ − ⌊bλ⌋ columns from Sensitivity-P -C-Res;
17 Res← Result of k columns is {S,C, P, {Res}};
18 selected_num← k;

19 return Res

D.1.2 PROCEDURE OF THE NEGOTIATION

The workflow of HE subset negotiation is summarized as Algorithm 1. Note that the server keeps
the rank ri and encryption budget γi of all clients. The number of encrypted columns of Client i is
denoted as ki = γi · n, where n is the number of columns in the parameter matrix. As described in
Section 3.1.2, the server receives a set of tuples (Gi, Si) from clients as input, where Gi is Client i’s
set of columns that needs HE, and Si is their sensitivities.

At Lines 1-3, the server first initiates the negotiation result Res and the number of columns that have
been selected selected_num. Then, the server maintains two shared lists: the Common list, which
sorts all columns in

⋃
i Gi from most to least frequently deemed as sensitive, and the Sensitivity

list, which sorts all columns in
⋃

i Gi from highest to lowest sensitivity. The columns ranked higher
in Common are more frequently deemed as sensitive by the clients, and selecting them improves
min-Coverage. The columns ranked higher in Sensitivity have greater global sensitivity, and selecting
them reduces max-Risk. At Line 4, the server clusters the clients by their budget k, and sorts them in
the ascending order of k. At Lines 5-18, the server repeats the process several times, which depends
on the number of unique budgets. For each process, the number of column positions to be negotiated,
denoted as λ, is calculated by the difference between current budget k and the number of columns that
have been determined. A Clients list ranks unique columns from budget-k clients by their minimum
sensitivity, aiming to encrypt columns that are personally deemed as sensitive. If the current budget
corresponds to a single client (i.e., countk = 1), the strategy greedily selects from that client’s Gi

for optimal privacy protection. Otherwise, the server iteratively selects ⌊aλ⌋ columns from Clients,
⌊bλ⌋ columns from Common, and λ − ⌊aλ⌋ − ⌊bλ⌋ columns from Sensitivity without duplicate
selection to form the global HE subset, where a+ b+ c = 1 and ⌊·⌋ is the floor function. This hybrid
selection jointly optimizes worst-case coverage and privacy risk while preserving a degree of client
personalization to accommodate heterogeneous environments.

Clearly, the success of this objective relies heavily on the choice of the coefficients a, b, and
c. As presented in Algorithm 2, we employ the Bayesian optimization (Swersky et al., 2013) to
determine their optimal values via searching different combinations of column selection from three
complementary perspectives: client-specific (Clients), commonly shared (Common), and sensitivity-
driven (Sensitivity). Specifically, Algorithm 2 begins by defining the feasible search space for the
parameters (a, b, c) at Line 1, subject to the constraint a + b + c = 1. At Line 2, a Bayesian
optimization model (i.e., a Gaussian process) is initialized over this search space. At Lines 3–16, the
model performs Nopt (e.g., 50) iterations of optimization: at each iteration t, the current parameter
triple (at, bt, ct) is used to construct the negotiation result Rest at Line 5, following the same column
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Algorithm 2: Bayesian optimization for the selection of a, b and c.
Input: clients = {ri, ki, (Gi, Si)}Ni=1, Current λ , Res, Clients, Common, Sensitivity.
Output: Optimal coefficients (a∗, b∗, c∗) with a∗ + b∗ + c∗ = 1

1 X ← Define search space with {(a, b) ∈ [0, 1]2 | a+ b ≤ 1};
2 Initialize a Bayesian optimization modelM over X ;
3 for t = 1 to Nopt do

// Bayesian optimizer selects (at, bt) for evaluation
4 (at, bt)← SELECT(M);
5 ct ← 1− at − bt;
6 Pt ← Select top ⌊atλ⌋ columns from Clients-Res;
7 Ct ← Select top ⌊btλ⌋ columns from Common-Res-Pt;
8 St ← Select top λ− ⌊atλ⌋ − ⌊btλ⌋ columns from Sensitivity-Res-Pt-Ct;
9 Rest ← the union of {St, Ct, Pt};

10 for each client i do

11 Coveragei ←
|Rest ∩Gi|
|Gi|

;

12 Riski =
∑

j∈Gi\Res Sj∑
j∈Gi

Sj
;

13 min-Coverage← mini∈{N} Coveragei;
14 max-Risk← maxi∈{N} Riski;
15 scoret ← min-Coverage− max-Risk;

// Update Bayesian optimizer with (at, bt,scoret)
16 M← UPDATE(M, (at, bt), scoret);

17 (a∗, b∗)← argmaxt scoret;
18 c∗ ← 1− a∗ − b∗;
19 return (a∗, b∗, c∗);

selection procedure as in Algorithm 1. Then, at Lines 10–12, the client-specific coverage and privacy
risk are evaluated for every client. The overall score is computed at Line 15 using Eq. 14, and in
Line 16, this score is fed back to update the Bayesian optimization model, guiding the next parameter
selection. Finally, Lines 17–19 return the best-performing coefficients (a∗, b∗, c∗) as the outcome of
the negotiation.

D.2 AGGREGATION OF UNENCRYPTED MODEL PARAMETERS

Algorithm 3 illustrates how the server aggregates unencrypted model parameters. The input of
the algorithm is the set of unencrypted weight updates ∆W plain

i from all N clients. At Line 1, the
columns of the aggregation result is initialized by K = n−min(k1, . . . , kN ), where n is the number
of columns in the frozen pre-trained parameter matrix, and ki is the number of encrypted columns of
Client i. At Lines 2-3, the server initializes the aggregation result to 0 ∈ Rm×K , and sets a counter
that records the respective contributions of the clients during the aggregation of each column. At
Lines 4-7, the server incorporates Client i’s parameters ∆W plain

i into the aggregation results, and
updates the counter to record the number of clients contributing to each column. At Lines 8-11,
the server weight-averages the results based on the counters and returns the final aggregated result
∆W plain ∈ Rm×K .

D.3 AGGREGATION OF ENCRYPTED MODEL PARAMETERS

Algorithm 4 illustrates how the server aggregates encrypted model parameters. The algorithm takes
the set of ciphertexts ∆W cipher

i ∈ Rm×ki as the input. At Line 1, the columns of the aggregation result
are initialized by K∗ = max (k1, k2, . . . , kN ), where ki is the column number of encrypted model
parameters of client i. At Lines 2-3, the server initializes the aggregation result to 01×K∗ and sets a
counter to record the respective contributions of the clients. At Lines 4-6, the server incorporates
encrypted model parameters ∆W cipher

i into the aggregation results and updates the counter to record
the number of clients contributing to each column. Finally, at Lines 7-9, the server weight-averages
the encrypted model parameters based on the counters, and returns the final aggregated encrypted
model parameters, denoted as ∆W cipher ∈ Rm×K∗

. Although the columns of encrypted model
parameters extends to K∗, each client can receive a set of encrypted blocks matching its encryption
budget.
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Algorithm 3: Aggregation of unencrypted model parameters

Input: {∆W plain
i }Ni=1: Set of N matrices, each ∆W plain

i has shape (m,n− ki).
Output: ∆W plain: Aggregated matrix with shape (m,K).

1 K ← n−min(k1, . . . , kN ) ;
2 ∆W plain ← 0m×K ;
3 Counts← 01×K ;
4 for each client i = 1 to N do
5 ci ← Get column count of ∆W plain

i ;
6 ∆W plain[:, : ci]← ∆W plain[:, : ci] + ∆W plain

i ;
7 Counts[: ci]← Counts[: ci] + 1 ;

8 for j = 1 to K do
9 if Counts[j] > 0 then

10 ∆W plain[:, j]← ∆W plain[:, j]/Counts[j];

11 return ∆W plain

Algorithm 4: Aggregation of encrypted model parameters

Input: {∆W cipher
i }Ni=1: Sets of N ciphertexts from clients, each ∆W cipher

i has shape (m, ki).
Output: ∆W cipher: Aggregated matrix with shape (m,K∗).

1 K∗ ← max(k1, k2, . . . , kN ) ;
2 ∆W cipher ← 0m×K∗ ;
3 Counts← 01×K∗ ;
4 for each client i = 1 to N do
5 ∆W cipher[:,−ki :]← ∆W cipher[:,−ki :] + ∆W cipher

i

6 Counts[−ki :]← Counts[−ki :] + 1 ;

7 for j = 1 to K∗ do
8 if Counts[j] > 0 then
9 ∆W cipher[:, j]← ∆W cipher[:, j]/Counts[j]

10 return ∆W cipher

D.4 REPARAMETERIZATION OF LORA

The updated full-parameter for each client, termed as ∆W, can be formulated as two parts, the
plaintext update ∆Wplain = BpAp and the ciphertext update ∆Wcipher ∈ Rr×ki as shown in Eq. (15).
In order to reparameterize the two parts of the model parameters into the parameter matrices B̂ and
Â of LoRA, we first apply SVD and zero-padding to the ciphertext update to generate two low-rank
matrices (Bc ∈ Rm×r,Ac ∈ Rr×n), which ensures their dimension aligns with BpAp. The final
LoRA parameter matrices (B̂, Â) are calculated as follows:

∆W = ∆Wplain +∆Wcipher (15)
SVD
==== BpAp +BcAc

= (U1

√
Σ1)

√
Σ1V

⊤
1 + (U2

√
Σ2)

√
Σ2V

⊤
2

=
[
U1

√
Σ1,U2

√
Σ2

]m×(r+r)
[√

Σ1V
⊤
1√

Σ2V
⊤
2

](r+r)×n

SVD
==== (U3Σ3V

⊤
3 )(U4Σ4V

⊤
4 )

= (U3Σ3V
⊤
3 U4

√
Σ4):,:r(

√
Σ4V

⊤
4 ):r,:

= B̂Â

D.5 PROOF OF THE LOSSLESSNESS OF MEANINGFUL MODEL UPDATES IN SHE-LORA

The losslessness of meaningful model updates in the aggregation of SHE-LoRA is supported by the
following theorem.
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Theorem 1 Whether a column of the parameter matrix is encrypted or not, it will always be inte-
grated into the aggregated model, and hence results in no loss of meaningful model updates.

Proof 1 Suppose that for clients 1 to N , their encryption budgets are γi (γ1 ≤ γ2 · · · ≤ γN ), and
the hidden size of the model is n (i.e., number of columns in the parameter matrix). Then the numbers
of encrypted columns of the clients are k1 = n× γ1 ≤ k2 = n× γ2 · · · ≤ kN = n× γN .

From Section 3.3, all ki encrypted columns are integrated in ∆Wcipher, while plaintext columns

are integrated in ∆Wplain. According to Section 3.4, ∆Wplain
SVD
= BpAp and ∆Wcipher

SVD
= BcAc,

respectively. Following Eq. (4), all meaningful updates are integrated in LoRA matrices as B =

[Bp Bc] and A = [Ap Ac]
⊤. Finally, the weight update for each client can be calculated

as ∆W = ∆Wplain + ∆Wcipher = [Bp Bc] [Ap Ac]
⊤

= BA. Thus, whether a column is
encrypted (in ∆Wcipher) or not (in ∆Wplain), it will always be integrated into the aggregated model
(∆W = BA).

D.6 DISTRIBUTION SHIFT OF MODEL PARAMETER IMPORTANCE VALUES

To determine whether the distribution of model parameter importance values will shift during training,
we conduct 50 rounds of FL training on the Natural-Instructions (Wang et al., 2022) dataset under
Non-IID conditions with the Dirichlet distribution parameter ρ = 0.3. Fig. 11 illustrates the variation
of the distribution of channel-wise importance values along with the progress of FL training. We
can see that the specific importance values do change slightly, but their relative ranking remains
almost unchanged as compared to Fig. 4. Considering that the parameter importance in SHE-LoRA
is assessed via channel-wise summation of sensitivity values, the slight change of model parameter
importance distribution has minor impact on performance.

Moreover, considering that extreme cases (e.g., dynamic data change) may occur, especially under
Non-IID settings, the negotiation of HE subsets can be executed periodically depending on the clients’
tolerance to the change of model parameter importance distribution. Specifically, the theoretical costs
of negotiation and training per layer on a client are listed in Table 3.

Table 3: Theoretical costs of negotiation and training per layer.

Communication Computation
Negotiation × Nr 4 Bytes × hidden size × ratio × Nr Forward × Nr

Training × 1 2 Bytes × rank × hidden size Backpropagation × 1

With precision=bf16, encryption ratio=1% and r=16, FL training generally takes Nr < 50 rounds
for convergence. Even if the negotiation is executed per round, the negotiation communication
overhead of 50 rounds is 4 Bytes×6656 hidden size (Llama-30B)×1%×50=13 KB, which is much
smaller than the overall training communication overhead (2 Bytes×16×6656 hidden size (Llama-
30B)=213 KB). However, although the computation cost of a “Forward” is much lower than that of a
“Backpropagation”, the computation cost of N rounds of “Forward” will gradually increase along
with the training progress. Therefore, the clients can choose the negotiation period according to their
expected balance between model parameter importance update timeliness and computation cost.

D.7 PROOF OF ASYMPTOTIC GAUSSIAN-DISTRIBUTED NOISE

Let G = [g1, . . . , gn] ∈ Rr×n be the gradient matrix from LoRA fine-tuning, with columns gk ∈ Rr,
and let P be the permutation matrix corresponding to a uniform random permutation π(·). We define
the noise matrix as Θ = G(P− I), so that the noise added on each gradient element is calculated as
σi,k = gi,π(k) − gi,k. For any fixed linear query matrix Q ∈ Rr×n, the query output is:

OQ(Θ) = ⟨Q,Θ⟩ =
r∑

i=1

n∑
k=1

Qi,k(gi,π(k) − gi,k). (16)
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Figure 11: Distribution of model parameter importance values across FL rounds.
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The randomness comes solely from the permuted sum
∑

i,k Qi,kgi,π(k), which is a combinatorial
statistic of the form studied in (Hoeffding, 1951). Therefore, by combinatorial central limited theorem
(Hoeffding, 1951) and Berry–Esseen bound (Bolthausen, 1984), we have

OQ(Θ)√
Var[OQ(Θ)]

dist−−→ N (0, 1), sup
x∈R

∣∣∣∣∣P
(

OQ(Θ)√
Var[OQ(Θ)]

≤ x

)
− Φ(x)

∣∣∣∣∣ = O

(
1√
n

)
. (17)

The first statement means that the response to any fixed linear query is asymptotically Gaussian,
and the second quantifies the approximation error as O(1/

√
n). Moreover, by the classical variance

formula for permuted linear statistics (Hoeffding, 1951; Hájek, 1961), we have

Var[OQ(Θ)] =

r∑
i=1

1

n− 1

(
n∑

k=1

(Qi,k − Q̄i)
2

)(
n∑

k=1

(gi,k − ḡi)
2

)
, (18)

where ḡi =
1
n

∑n
k=1 gi,k and Q̄i =

1
n

∑n
k=1 Qi,k.

For fixed G and Q, we define s2 as the variance of OQ(Θ). Since this asymptotic normality holds for
every fixed query matrix Q, the Cramér–Wold device (Cramér & Wold, 1936) implies that the noise
matrix Θ, viewed as a random vector in Rrn, converges in distribution to a zero-mean multivariate
Gaussian with the same covariance structure as Θ. Consequently, Θ behaves like Gaussian noise for
all linear queries.

E DISTRIBUTABILITY AND SCALABILITY

Our system implementation is predicated upon Flower, an open-source FL framework developed by a
team at the University of Oxford. Flower is designed to streamline the construction of FL systems
while affording a high degree of flexibility and scalability. It supports a variety of mainstream machine
learning frameworks, such as PyTorch, TensorFlow, and Hugging Face Transformers, rendering it
suitable for researchers and engineers addressing FL requirements across diverse scenarios. Flower
allows users to extensively configure the framework according to their specific needs, thereby
accommodating various FL scenarios while offering substantial support for AI research. Based on
Flower, our SHE-LoRA supports parallelized simulation and multi-machine deployment, capable of
satisfying the distributed and scalable requirements inherent in real-world applications.

E.1 PERFORMANCE ON MORE CLIENTS

We repeat the experiment of bert-large model with 100, 300, 500, 1000, 2000 clients on the IMDB
datasets, which takes 1.58, 4.14, 6.91, 13.8 and 25.3 hours to complete 10 rounds of FL training.
Each client encrypts 0.5% of OpenLLaMA-3B with the same rank (16). The means and standard
deviations of HE time and communication overhead are listed in Table 4.

Table 4: HE time and communication overhead on varying number of clients.

# of Clients HE Time Communication Overhead
100 53.34±0.5s 93.39±0.1MB
300 53.57±0.5s 93.39±0.1MB
500 53.49±0.6s 93.39±0.1MB

1000 54.23±0.8s 93.39±0.1MB
2000 54.19±1.1s 93.39±0.1MB

We find that although the convergence of FL training does slow down along with the increase of
clients, thanks to SHE-LoRA’s global control over HE subset, the clients’ HE time and communication
overhead do not significantly inflate even in extreme heterogeneity with >1000 clients. This means
that SHE-LoRA will not delay FL training and scales well with increased number of clients.
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E.2 PERFORMANCE ON LARGER LLMS

We deploy SHE-LoRA on larger LLMs including OpenLlama-3B, Llama-3-8B, Llama-30B and
Llama-3.1-70B, and analyze its scalability in comparison with the DP baseline. Specifically, as
Section 4.4 has confirmed that SHE-LoRA is secure against the DAGER attack as long as more
than 0.125% of the parameters are encrypted, we let each client encrypt 0.125% of the parameters
in the scalability experiments with rank r=16. In the DP baseline, we let each client add DP noise
to parameters with (ϵ, σ) = (10, 10−7), which is the same as in the DAGER (Petrov et al., 2024)
experiments. The HE key size for OpenLlama-3B and Llama-3-8B is set to 8192. However, the HE
key size for Llama-30B and Llama-70B is set to 16384 as the HE key size of 8192 cannot hold a
single column (minimum encryption unit in SHE-LoRA) of LLMs at this scale. Then, we measure
the encryption time, time cost with DP and ciphertext size per client under varying model scales. The
mean and standard deviation of the measured results are shown in Table 5.

Table 5: The costs under varying model scales.

OpenLlama-3B Llama-3-8B Llama-30B Llama-3.1-70B
# of Layers 26 32 60 80
Hidden Size 3200 4096 6656 8192

Encryption Budget 0.125% 0.125% 0.125% 0.125%
Encrypted Parameters 1,664 2,624 8,040 13,120
Encryption Time (s) 2.67±0.32 4.46±0.73 148.70±5.41 242.32±8.72

HE Key Size 8192 8192 16384 16384
Time Cost with DP (s) 0.0548±0.001 0.0878±0.005 0.2693±0.028 0.4575±0.061
Ciphertext Size (MB) 23.34±0.00 35.91±0.01 289.37±0.01 385.84±0.03

When HE key size is 8192, for OpenLlama-3B, encryption time per parameter=2.67/1664=0.0016
s, ciphertext size per parameter=23.34/1664=0.0140 MB; for Llama-3-8B, encryption time per
parameter=4.46/2624=0.0017 s, ciphertext size per parameter=35.91/2624=0.0137 MB.

When HE key size is 16384, for Llama-30B, encryption time per parameter=148.70/8040=0.0185
s, ciphertext size per parameter=289.37/8040=0.0360 MB; for Llama-3.1-70B, encryption time per
parameter=242.32/13120=0.0184 s, ciphertext size per parameter=385.84/13120=0.0294 MB.

These observations demonstrate that when LLMs are encrypted with the same level of HE key size,
the encryption time and ciphertext size scale almost linearly with the increase of LLM scale. Although
the time cost with DP is much lower than that of SHE-LoRA, DP may significantly degrade model
accuracy (Sun et al., 2024c), and is vulnerable against inversion attacks under low-noise-level settings
(as shown in Table 10 of (Petrov et al., 2024) and Table 2)]).

E.3 PERFORMANCE ON STRONGER BASE MODELS AND MORE CHALLENGING BENCHMARKS

We conduct the fine-tuning of Qwen3-4B-Instruct-2507 3 and Llama-3.2-3B 4 with SHE-LoRA and
Vanilla LoRA on the PILE dataset 5, and evaluate the performance of the fine-tuned models on six
benchmarks: MMLU-Pro 6, GPQA 7, MuSR 8, MATH 9, IFEval 10, and BBH 11. The collected results
of SHE-LoRA, Vanilla LoRA and the base model without fine-tuning are shown in Table 6.

The results demonstrate that SHE-LoRA preserves the original LoRA performance while providing
privacy via selective HE. This benefit generalizes across stronger base model families and diverse
tasks, provided that federated LoRA is used for PEFT.

3https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507
4https://huggingface.co/meta-llama/Llama-3.2-3B
5https://huggingface.co/datasets/iamgroot42/mimir
6https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro
7https://github.com/idavidrein/gpqa
8https://github.com/Zayne-sprague/MuSR
9https://huggingface.co/datasets/nlile/hendrycks-MATH-benchmark

10https://huggingface.co/datasets/google/IFEval
11https://github.com/suzgunmirac/BIG-Bench-Hard
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Table 6: Performance comparison of Qwen-3 and Llama-3.2 across more challenging benchmarks.

Method Method MMLU-Pro GPQA MuSR MATH IFEval BBH

Qwen2.5-4B
SHE-LoRA 47.36 43.94 30.71 78.86 67.34 63.26

Vanilla LoRA 48.54 42.57 32.31 77.63 68.06 64.58
Base 65.36 45.00 61.67 84.00 90.17 85.93

Llama-3.2-3B
SHE-LoRA 14.86 13.64 17.86 21.74 27.24 9.26

Vanilla LoRA 14.62 13.87 18.05 20.96 27.37 9.38
Base 14.29 11.11 30.95 16.68 27.99 10.85

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PERFORMANCE ON VARYING TASKS

We employ FedIT (Zhang et al., 2024) and FedSA (Guo et al., 2024) as baseline methods under
homogeneous settings (rank r=8). FedIT averages LoRA weights across clients, limiting the rank
according to the capability of the weakest device. FedSA trains matrix B locally while aggregating
matrix A globally, leveraging FL to enhance the representation capacity of LoRA. Moreover, we
employ FLoRA (Wang et al., 2024), HeterLoRA (Cho et al., 2024) and Flex-LoRA (Bai et al., 2024)
as baselines under heterogeneous settings. FLoRA utilizes stacking to reduce full-weight computation
and achieve precise averaging across heterogeneous LoRA updates, but at the cost of an expanded
parameter space. HeterLoRA zero-pads all LoRA matrices to the global maximum rank, applies
weight-averaged aggregation similar to FedAvg, and subsequently truncates the aggregated weights
to align with the local rank of each client. However, zero-padding introduces additional dilution
in the aggregated parameters, which in turn leads to degraded model performance. Flex-LoRA
reconstructs the full parameter matrix for each client by computing B ×A and performs aggregation.
Subsequently, the aggregated matrix is decomposed using SVD and truncated according to the client’s
LoRA rank, producing a low-rank parameter matrix.

F.1.1 RESULTS ON NLP TASKS

Natural Language Generation: According to the results in Table 7, FedIT and FedSA perform
the worst on the MMLU Benchmark, obtaining scores of 21.2 and 20.1, respectively. These results
indicate the limitations of traditional homogeneous approaches in heterogeneous LoRA settings,
where the inability to effectively utilize client-specific information hinders overall performance.
While HeterLoRA integrates parameters from heterogeneous devices to improve performance, its
reliance on zero-padding leads to parameter dilution, resulting in inferior performance compared to
Flex-LoRA. SHE-LoRA achieves the highest scores on STEM, Social Sciences(SS) and the overall
Average, and matches Flex-LoRA’s performance on Humanities. Both methods outperform all other
baselines by a significant margin. These results indicate that SHE-LoRA better preserves informative
updates in heterogeneous generative tasks, leading to improved generalization and performance.

Table 7: Performance on the MMLU benchmark.

Method STEM SS Humanities Average
FedIT (Zhang et al., 2024) 21.5 21.3 20.4 21.2
FedSA (Guo et al., 2024) 21.8 21.4 19.7 20.1

HeterLoRA (Cho et al., 2024) 24.7 25.4 25.8 26
Flex-LoRA (Bai et al., 2024) 26.2 27.9 26.6 27.4

SHE-LoRA 28.1 29.2 26.5 28.2

Natural Language Understanding: Similarly, we reviewed on the six datasets of GLUE Benchmark
in Table 8, and the performances of FedIT and FedSA reaffirmed the limitations of traditional
aggregation methods in heterogeneous scenarios. Flex-LoRA and SHE-LoRA, on the other hand,
outperform the other methods, demonstrating that SHE-LoRA can more effectively update model
parameters in heterogeneous environments while achieving performance comparable to non-private
methods. Unsurprisingly, HeterLoRA achieves better performance than homogeneous baselines.
However, it lags behind Flex-LoRA and SHE-LoRA, primarily due to the performance degradation
caused by parameter dilution.
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Table 8: Performance on the GLUE benchmark.

Method SST2 MRPC QQP RTE WNLI QNLI
FedIT (Zhang et al., 2024) 47.41 31.62 64.71 43.07 46.34 48.87
FedSA (Guo et al., 2024) 48.23 33.71 66.32 43.56 48.27 48.26

HeterLoRA (Cho et al., 2024) 55.73 68.38 72.17 44.72 48.86 49.14
Flex-LoRA (Bai et al., 2024) 52.29 74.81 75.31 46.93 49.66 49.51

SHE-LoRA 57.11 70.88 72.52 50.18 57.75 59.63
SHE-LoRA demonstrates strong performance across both benchmarks, achieving SOTA results in
heterogeneous settings while maintaining optimal performance despite the integration of privacy-
preserving mechanisms.

Table 9: Performance comparison on 5 vision tasks.

Datasets
Method MNIST DTD EuroSAT GTSRB SVHN AVG

Clip-Vit-Base-Patch-16 r = 8
FedIT (Zhang et al., 2024) 93.38 68.74 93.17 83.62 90.43 85.87
FedSA (Guo et al., 2024) 93.13 67.51 94.23 85.12 88.49 85.69

HeterLoRA (Cho et al., 2024) 95.37 68.83 96.22 87.18 91.55 87.83
Flex-LoRA (Bai et al., 2024) 99.28 70.32 98.48 95.74 95.37 91.84

SHE-LoRA 99.33 69.97 98.35 95.88 95.13 91.73
Clip-Vit-Base-Patch-16 r = 16

FedIT (Zhang et al., 2024) 95.36 68.85 94.56 85.37 91.58 87.14
FedSA (Guo et al., 2024) 94.62 67.92 95.18 87.23 90.67 87.12

HeterLoRA (Cho et al., 2024) 94.56 68.21 96.77 89.62 92.28 88.29
Flex-LoRA (Bai et al., 2024) 99.30 70.05 98.29 95.45 95.15 91.65

SHE-LoRA 99.25 70.85 98.22 95.35 96.03 91.94

F.1.2 RESULTS ON VISION TASKS

We apply CLIP (Radford et al., 2021) as the basic pre-trained model for vision tasks, a multimodal
model that mixes visual model and language model. Specifically, we load the Clip-Vit-Base-Patch-16
model from huggingface12 and fine-tune its visual model, and conduct experiments on five visual
classification tasks, which are MNIST (LeCun et al., 2002), DTD (Cimpoi et al., 2014), EuroSAT
(Helber et al., 2019), GTSRB (Stallkamp et al., 2012), SVHN (Netzer et al., 2011). We conduct FL
training for 10 rounds on each task, and set that each client has the same LoRA rank.

The results are shown in Table 9. The highest accuracy (%) for each task is highlighted in blod. At
rank r = 8, SHE-LoRA achieves a comparable average accuracy (91.73%) to that of Flex-LoRA
(91.84%), while outperforming FedIT, FedSA and HeterLoRA. At the rank of r = 16, SHE-LoRA
can even achieve the best average accuracy (91.94%). The results indicate that the privacy protection
mechanism of SHE-LoRA will not lead to significant performance degradation.

F.2 ROBUSTNESS UNDER VARYING NON-IID CONDITIONS

The results of SHE-LoRA in Tables 7 and 8 are collected under the Dirichlet distribution with
parameter ρ=0.3, which confirm that SHE-LoRA achieves comparable performance to a SOTA
non-private Federated PEFT method (Flex-LoRA) on various benchmarks under Non-IID conditions.

To further validate the robustness of SHE-LoRA under varying Non-IID conditions, we conduct more
experiments on the natural-instructions dataset with ρ set to 0.1, 0.5, 1 and 10, respectively. A smaller
ρ indicates a greater Non-IID degree among clients. The experiment is repeated for 10 rounds under
each ρ value. The mean, standard deviation of model accuracies collected on the MMLU Benchmark
are shown in Table 10 (↑ means that higher accuracy is better):

12https://huggingface.co/openai/clip-vit-base-patch16
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Table 10: MMLU benchmark under varying Non-IID conditions.

ρ STEM↑ SS↑ Humanities↑ Average↑
0.1 24.8±0.00 25.5±0.35 25.4±0.15 25.9±0.09
0.5 24.7±0.15 25.6±0.46 25.4±0.21 25.8±0.21
1 24.7±0.51 25.4±0.11 25.3±0.25 25.8±0.06

10 24.8±0.21 25.4±0.12 25.5±0.11 25.8±0.10
We can see that no matter how Non-IID the clients’ data is, the models trained with SHE-LoRA
can achieve stable performance across clients, which validates the robustness of SHE-LoRA under
varying Non-IID conditions.

F.3 EFFICIENT ESTIMATION OF MUTUAL INFORMATION

As described in Section 2.2, mutual information measures the amount of information shared between
two variables. According to Eq. (3), evaluating the mutual information requires knowledge of p(x),
p(y) and the joint density p(x, y), yet in practice we have only samples and not the true densities. The
simplest empirical approach is a histogram (binning) estimator, which partitions the space and counts
frequencies. However, histograms require large sample sizes and are sensitive to the choice of binning.
A more stable nonparametric approach is to employ kernel density estimators (KDE) (Moon et al.,
1995). Concretely, flatten the parameter matrices W and W−w into one-dimensional collections
and treat the corresponding elements as paired samples {(xi, yi)}Ni=1 . In this step, the marginal
distribution of p(x), p(y) and the joint density p(x, y) are estimated by kernel density estimation
(KDE), which constructs a smooth probability density function by centering kernel functions (e.g.,
Gaussian) at each sample point and aggregating them with an appropriate bandwidth. Once these
probability density variables are obtained, they are substituted into Eq. (3) to compute the final mutual
information. The code for the mutual information calculation is given as follows:

from sklearn.neighbors import KernelDensity
def kde_mutual_info(X_flat, Y_flat, bandwidth=0.2):

X_flat = X_flat.flatten()
Y_flat = Y_flat.flatten()
n = len(X_flat)
sample_num = min(10000, n)
sample_points = np.random.choice(n, sample_num, replace=False)
X_sample = X_flat[sample_points].reshape(-1, 1)
Y_sample = Y_flat[sample_points].reshape(-1, 1)
XY_sample = np.hstack([X_sample, Y_sample])
kde_x = KernelDensity(bandwidth=bandwidth).fit(X_sample)
kde_y = KernelDensity(bandwidth=bandwidth).fit(Y_sample)
kde_xy = KernelDensity(bandwidth=bandwidth).fit(XY_sample)
log_px = kde_x.score_samples(X_sample)
log_py = kde_y.score_samples(Y_sample)
log_pxy = kde_xy.score_samples(XY_sample)
return np.mean(log_pxy - log_px - log_py)

F.4 RESISTANCE AGAINST MEMBERSHIP INFERENCE ATTACKS

We fine-tune the base model Qwen3-4B-Instruct-2507 on the PILE dataset using standard LoRA
(denoted as “Vanilla LoRA” in tables) and SHE-LoRA with varying encryption ratios γ, respectively.
Then, we implement seven membership inference attacks (MIAs)(Loss (Carlini et al., 2021), Lower-
case (Carlini et al., 2021), Zlib (Carlini et al., 2021), Min-k (0.1) (Shi et al., 2024), Min-k (0.5) (Shi
et al., 2024), Recall (Xie et al., 2024) and PAC (Ye et al., 2024)) on the base model (denoted as “Base”
in tables) and the fine-tuned models of Vanilla LoRA and SHE-LoRA. Under SHE-LoRA, attackers
can only launch MIAs based on unencrypted parameters. The attack results are reported in AUROC
with Table 11, FPR@95 with Table 12 and TPR@5 with Table 13.

In the AUROC results, “Base” performs no better than random guessing (with AUROC≈50%),
confirming that the pretraining corpus does not include the evaluation data. In contrast, Vanilla
LoRA achieves much higher AUROC results across all attacks, indicating substantial membership
leakage after fine-tuning. Remarkably, compared with Vanilla LoRA, SHE-LoRA reduces the average
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Table 11: The AUROC results reported under 7 membership inference attacks.

Model Loss Lowercase Zlib Min-k (0.1) Min-k (0.5) Recall PAC
Base 50.9% 48.4% 50.2% 50.5% 50.9% 50.1% 51.2%

Vanilla LoRA 81.4% 80.5% 76.7% 80.9% 82.9% 73.8% 83.3%
γ = 1‰ 62.6% 62.8% 60.3% 62.5% 63.5% 64.7% 65.0%
γ = 1% 56.8% 57.7% 55.4% 56.5% 57.3% 58.4% 58.4%
γ = 5% 54.1% 55.2% 53.1% 53.7% 54.3% 55.8% 55.3%
γ = 10% 56.8% 57.7% 55.4% 56.5% 57.3% 58.4% 58.4%
γ = 20% 52.4% 53.2% 51.7% 52.1% 52.5% 53.1% 53.3%

MIA success rate by 21.0% with an encryption ratio as low as γ = 1‰. With the increasing of γ
(e.g., to 1%), attack success rates further drop by 20.9% 30.9%, resulting in nearly random-guessing
performance and demonstrating significantly stronger privacy protection.

Table 12: The FPR@95 results reported under 7 membership inference attacks.

Model Loss Lowercase Zlib Min-k (0.1) Min-k (0.5) Recall PAC
Base 94.1% 95.4% 96.1% 96.1% 95.2% 95.5% 95.7%

Vanilla LoRA 66.5% 63.3% 88.8% 71.4% 66.2% 79.2% 72.1%
γ = 1‰ 89.7% 86.9% 93.9% 90.8% 90.3% 90.5% 89.9%
γ = 1% 92.4% 90.7% 95.2% 93.8% 93.4% 91.6% 93.1%
γ = 5% 93.2% 92.1% 95.5% 94.5% 94.1% 93.1% 93.8%
γ = 10% 92.4% 90.7% 95.2% 93.8% 93.4% 91.6% 93.1%
γ = 20% 93.2% 93.5% 95.6% 95.4% 95.1% 94.0% 94.8%

Table 13: The TPR@5 results reported under 7 membership inference attacks.

Model Loss Lowercase Zlib Min-k (0.1) Min-k (0.5) Recall PAC
Base 8.6% 5.6% 7.4% 5.5% 8.0% 5.1% 9.9%

Vanilla LoRA 35.7% 35.6% 39.7% 39.4% 41.8% 25.4% 53.5%
γ = 1‰ 12.5% 13.0% 15.2% 14.0% 14.5% 15.4% 17.4%
γ = 1% 9.7% 9.3% 10.8% 9.1% 10.2% 10.3% 15.0%
γ = 5% 9.0% 7.4% 9.1% 7.3% 9.3% 7.7% 12.4%
γ = 10% 9.7% 9.3% 10.8% 9.1% 10.2% 10.3% 11.9%
γ = 20% 8.2% 6.7% 8.5% 6.5% 8.2% 6.2% 11.1%

Consistent with the AUROC results, even at γ = 1‰, SHE-LoRA achieves an average FPR@95 of
90.27% and an average TPR@5 of 14.57%, closely comparable to the base model’s performance
(FPR@95=95.44%, TPR@5=7.16%). In contrast, Vanilla LoRA is significantly more vulnerable,
with an average FPR@95 of 72.50% and TPR@5 of 38.73%. These results demonstrate that SHE-
LoRA preserves membership privacy during fine-tuning: even under a very small encryption ratio,
attackers can only achieve performance close to random guessing, with negligible advantage in
distinguishing members from non-members.

In summary, experiments on Qwen3-4B-Instruct-2507 across seven MIAs demonstrate that SHE-
LoRA is consistently robust. This stems from two key design features: 1) selective encryption of
the most sensitive parameter columns prevents direct leakage of privacy-critical information, and 2)
column-wise position obfuscation, similar to injecting structured perturbations (see ??), increases
uncertainty for attackers. These mechanisms also mitigate property inference and reconstruction
attacks that leverage auxiliary priors, as they obscure the very gradients or parameters these attacks
typically exploit.

F.5 IMPACT OF SENSITIVE PARAMETERS ON PERFORMANCE

As theoretically established in Appendix B.1, parameter sensitivity is closely linked to privacy risk.
To empirically validate this connection, we conduct experiments on the PILE dataset using the
Qwen3-4B-Instruct-2507 model. Specifically, we fine-tune the model on the training set and evaluate
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Table 14: Model performance comparison with perplexity.

Model Base Vanilla LoRA γ = 1‰ γ = 1% γ = 5% γ = 10%

PPL 74.01 21.23 38.83 / 21.23 50.53 / 21.23 55.21 / 21.23 60.57 / 21.23
text generation quality via perplexity (PPL) on the validation set. A higher PPL indicates poorer
adaptation to the target domain. We compare three settings Table 14: (i) the original base model
(denoted as “Base”), (ii) a raw LoRA-finetuned model (denoted as “Vanilla LoRA”), and (iii) SHE-
LoRA with varying encryption ratios γ. This allows us to assess whether protecting high-sensitivity
parameters, rather than removing or ignoring them, preserves model utility while enhancing privacy.

SHE-LoRA reports two PPL metrics: the value on the left of “/” reflects the model performance when
encrypted parameters are masked (i.e., using only unencrypted columns), while the value on the right
of “/” reflects the model’s true performance without masking parameters. As expected, “Base” exhibits
high PPL due to lack of domain adaptation, whereas “Vanilla LoRA” significantly reduces PPL,
confirming effective learning. Notably, SHE-LoRA with an encryption ratio of merely 1‰ already
raises the masked PPL to 38.83, indicating that even trivial removal of the most sensitive columns
substantially degrades utility. In contrast, the PPL result on the right of “/” is nearly identical to that
of “Vanilla LoRA”, demonstrating sound utility preservation under SHE-LoRA. Furthermore, as the
encryption ratio increases, masked PPL consistently rises, confirming that SHE-LoRA prioritizes the
most privacy-sensitive columns.

G TABLE OF NOTATIONS

Table 15 lists the main notations used in this paper.

Table 15: Table of Notations

Notation Description
W ∈ Rm×n Model parameters of a LLM
W−w ∈ Rm×n Model parameters with w zeroed-out
W0 ∈ Rm×n Frozen pre-trained parameters
A ∈ Rr×n Low-rank adapter matrix A of LoRA
B ∈ Rm×r Low-rank adapter matrix B of LoRA
X ∈ RL×n Input embedding
G Gradient Matrix
L(·) Loss function
Ω(·) Sensitivity computation function
S(·) Selective HE method
R(·) Any data reconstruction attack method
r Rank of LoRA adapter
L Number of tokens in an input sequence
xi ∈ RL The i-th features in the input
I(W ;W−w) Mutual information between W and W−w

γi Ratio of parameters in client i for encryption
ki Number of columns in client i for encryption
Gi Group of indices of selected columns in client i
Si Sensitivities of the columns in Gi on client i
bi Block i of tensor to be encrypted
Nb Number of tensor blocks to be encrypted
pk Public HE key
Ci Ciphertext of the i-th block
K Max columns of unencrypted parameters among clients

H LIMITATIONS

As described in Section 2.3 and Appendix C, SHE-LoRA operates under the assumption of an
honest-but-curious server, where all clients share the same HE key. Although secure communication
channels can be used to defend against malicious clients or collusion between the server and clients,
such mechanisms incur higher encryption costs. A promising direction for future work is to explore
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more efficient distributed parameter protection using techniques such as threshold homomorphic
encryption, multi-key homomorphic encryption, or proxy re-encryption.

I BROADER IMPACT

In this work, we leverage parameter sensitivity and SHE to ensure the secure aggregation of federated
LoRA against inversion attacks such as DAGER. Such attacks are able to recover the original client
data from clients’ updates uploaded during federated PEFT, exacerbating privacy concerns and
hindering the possibility of FL to extract value from distributed data. Our work offers adaptive and
sufficient privacy preservation, while minimizing HE overhead per client in cross-device federated
PEFT with LoRA.

Importantly, we find that with more sensitive model parameters being encrypted, the mutual informa-
tion that can be leaked from the model updates drops dramatically, indicating that it is possible to
effectively reduce the risk of privacy leakage in terms of privacy information as long as the sensitive
model parameters are correctly encrypted. Our work implies that critical information within the
model parameters can be soundly protected against the SOTA attacks by merely encrypting less than
1% of the model parameters. Furthermore, we take into account the heterogeneity of the parameter
sensitivity and encryption capabilities across clients, and broadly adapt the cost-effective SHE-LoRA
to accommodate clients with diverse data distributions and device capabilities. With these observa-
tions, we highlight the feasibility and effectiveness of applying tailored and secure privacy protection
for cross-device federated PEFT at much lower overhead compared to existing off-the-shelf privacy
protection techniques.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

According to the policies on large language model usage at ICLR 2026, we state that LLMs are only
used to help with paper writing, including spell checking, grammar checking, and polish writing.
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