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Abstract

Large language models (LLMs) have emerged001
as powerful tools for processing and generating002
human-like text, raising intriguing possibilities003
for their application in physics—a field char-004
acterized by complex mathematical formula-005
tions, abstract concepts, and precise reasoning.006
While recent studies have demonstrated LLMs’007
potential in physics applications, from automat-008
ing simulations to enhancing physics education,009
the field lacks a systematic framework for un-010
derstanding and advancing these efforts. This011
paper presents a comprehensive survey of LLM012
applications in physics, which examines four013
critical domains: physical simulation, knowl-014
edge discovery, physical reasoning, and physics015
education, revealing both promising advances016
and fundamental challenges. We introduce a017
systematic taxonomy that classifies approaches018
based on LLM utilization patterns: generic en-019
coders, language generators, auxiliary modules,020
and autonomous agents. Our analysis uncov-021
ers common patterns across successful applica-022
tions while identifying key limitations in cur-023
rent approaches. We also compile and analyze024
relevant benchmarks and datasets, providing a025
resource for evaluating LLM performance in026
physics tasks. Finally, we outline critical chal-027
lenges and promising research directions, offer-028
ing a roadmap for leveraging LLMs to advance029
both physics research and education.030

1 Introduction031

Physics, as the fundamental science of matter, en-032

ergy, and their interactions, underpins our under-033

standing of the universe from quantum phenomena034

to cosmological scales. Despite significant theoret-035

ical and experimental advances (Long et al., 2021),036

many challenging problems in physics remain un-037

solved, ranging from efficient simulation of quan-038

tum systems to discovering new physical laws from039

complex experimental data (Lu, 2024). Recent040

advances in artificial intelligence, particularly in041

machine learning, have introduced promising new 042

approaches to tackle these challenges (Boehnlein 043

et al., 2022; Karagiorgi et al., 2022; Willard et al., 044

2020). Graph neural networks (GNNs) (Ramakr- 045

ishnan et al., 2025; Shen et al., 2025) have proven 046

particularly effective at modeling particle dynam- 047

ics by capturing complex interactions (Liang et al., 048

2024; Mayr et al., 2023), while physics-informed 049

neural networks (PINNs) (Karniadakis et al., 2021) 050

have successfully addressed challenging problems 051

in fluid mechanics such as solving Navier-Stokes 052

equations (Cho et al., 2023). 053

Meanwhile, large language models (LLMs) have 054

introduced a powerful pipeline across various do- 055

mains, ranging from natural language process- 056

ing (Zhao et al., 2023) to artificial general intel- 057

ligence (Zhang et al., 2024a,b; Luo et al., 2025b). 058

LLMs contain billions of parameters by stacking 059

Transformer architectures, which are trained in 060

massive text corpora (Yang et al., 2024). There 061

have been a range of popular commercial LLMs 062

such as GPT (Achiam et al., 2023), Llama (Tou- 063

vron et al., 2023), and PaLM series (Chowdhery 064

et al., 2023). These models, built on Transformer 065

architectures and trained on massive scientific cor- 066

pora, have already demonstrated remarkable abili- 067

ties in tasks ranging from deriving equations from 068

physics principles to suggesting novel experimental 069

designs. Their ability to combine vast knowledge 070

representation (Lu et al., 2023; Shu et al., 2024; 071

Meyer et al., 2023) with human-like reasoning pat- 072

terns opens unprecedented possibilities for acceler- 073

ating physics discovery and deepening our under- 074

standing of physical systems (Luo et al., 2025a). 075

In literature, research applying LLMs to physics 076

primarily focuses on four main areas, i.e., sim- 077

ulation (Ali-Dib and Menou, 2024), knowledge 078

discovery (Du et al., 2024), reasoning (Meadows 079

et al., 2024), and education (West, 2023) (see Fig- 080

ure 1). In physical simulation, LLMs enhance tra- 081

ditional computational methods by providing inter- 082
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Figure 1: In this work, we focus on four mainstream areas of LLM applications in physics.

pretable guidance and improving accuracy. For083

knowledge discovery, LLMs act as domain ex-084

perts, helping identify underlying physical laws085

and guiding experimental design. Physical reason-086

ing leverages LLMs’ ability to combine theoretical087

knowledge with logical inference, while physics088

education applications exploit their capacity for089

generating explanations and interactive learning090

environments (Gupta, 2023; Wang et al., 2024d).091

The rapid growth of research in this field (Mead-092

ows et al., 2024; Kumar et al., 2023; Pan et al.,093

2025) has brought an urgent need for a comprehen-094

sive overview which summarizes existing literature095

and provides significant insights for future studies096

at the intersection of LLMs and physics. While097

there are a few surveys on LLMs for scientific re-098

search (Zhang et al., 2024a,b; Luo et al., 2025b;099

Yan et al., 2025), they have primarily focused on100

biology, chemistry, and mathematics, which leaves101

a significant gap in physics. This survey addresses102

that gap by providing a systematic overview of how103

LLMs can advance the physical domain.104

In addition, this survey introduces a novel tax-105

onomy based on how LLMs are utilized, which106

classifies existing works into four groups, i.e., as107

generic encoders, language generators, auxiliary108

modules, and autonomous agents. When used as109

generic encoders, LLMs leverage their strong repre-110

sentation learning capabilities to extract features for111

inputs (Ren et al., 2024). As language generators,112

these works produce responses following the given113

instructions (Zeng et al., 2023). When serving114

as auxiliary modules, LLMs work alongside tradi-115

tional non-LLM systems to solve physics problems116

collaboratively (Yang et al., 2023). As autonomous117

agents, LLMs use their reasoning abilities to inter-118

act with external tools (Huang et al., 2024a) and119

solve physics problems automatically (Xu et al., 120

2024a). We organize our analysis by four areas in 121

physics and summarize important insights of rel- 122

evant research, followed by popular datasets and 123

benchmarks. Lastly, we identify several key chal- 124

lenges when applying LLMs to physics and corre- 125

sponding promising future directions. 126

In summary, the contribution of the paper is 127

three-folds: (1) Comprehensive Review. We 128

present the first comprehensive survey of LLMs 129

in physics research, which provides a thorough 130

overview of recent literature. (2) Novel Taxonomy. 131

We introduce a novel taxonomy of current research 132

based on how LLMs are utilized, which offers a 133

clear framework for understanding this field. (3) 134

Future Guidance. We present important challenges 135

and opportunities in this field as a guidance for 136

future research in LLM applications in physics. 137

2 Overview of Survey 138

2.1 Emerging LLM Capabilities for Physics 139

Applications 140

The potential of LLMs in physics stems from their 141

unique emerging capabilities (Wei et al., 2022): 142

Advanced Reasoning Framework (Huang and 143

Chang, 2022; Wang et al., 2023). LLMs support 144

various sophisticated reasoning techniques, includ- 145

ing chain-of-thought and least-to-most prompting, 146

enabling them to tackle complex physics problems 147

through structured, multi-step approaches. This 148

capability is essential for solving intricate physics 149

problems that require careful consideration of mul- 150

tiple principles and constraints. 151

Instruction Following (Zeng et al., 2023; Yin et al., 152

2023). Their ability to accurately follow detailed 153

instructions enables automated handling of vari- 154

ous physics tasks, from generating computational 155
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Figure 2: We propose a taxonomy of recent works on LLMs for physics, which divides them into four categories.

code to deriving mathematical formulas and analyz-156

ing experimental data. This capability streamlines157

many routine tasks of physics research while main-158

taining rigorous accuracy.159

Knowledge Transfer and Generalization (Liu160

et al., 2024a). LLMs demonstrate exceptional abil-161

ity to transfer knowledge across related domains, a162

crucial capability in physics where insights from163

one field often inform developments in another.164

This generalization ability can accelerate hypothe-165

sis generation and theoretical developments.166

Autonomous Research Planning (Boiko et al.,167

2023). Through their capability to decompose com-168

plex problems and design experimental approaches,169

LLMs can function as autonomous research assis-170

tants. They can plan and execute sophisticated171

physics simulations, manage experimental work-172

flows, and analyze results, particularly valuable in173

fields like fluid dynamics and particle physics.174

2.2 Methodology Taxonomy175

In this survey, we divide current applications of176

LLMs in physics into four main categories based177

on how they utilize LLMs (Figure 2):178

LLM as Generic Encoder. LLMs demonstrate179

strong representation learning capabilities with180

strong generalization due to their massive parame-181

ters (Ren et al., 2024; Cai et al., 2024; Bogdanov182

et al., 2024). This category employs LLMs as fea-183

ture extractors of generic input to generate outputs184

in the required formats for both classification and185

regression tasks in physics. These models are typi-186

cally trained in an end-to-end manner.187

LLM as Language Generator. The most direct188

application of LLMs is their ability to generate189

meaningful responses to textual inputs (Wei et al.,190

2022). This category either uses general-purpose191

commercial LLMs such as GPT and LLaMA se-192

ries, or enhances their physics domain knowledge193

through fine-tuning on domain-specific corpus.194

LLM as Auxiliary Module. A range of physics195

problems do not require text outputs, but they can196

still benefit from textual information such as knowl-197

edge databases and human guidance (Zhou et al., 198

2024a). This category uses LLMs to interpret and 199

incorporate such information into existing compu- 200

tational frameworks. 201

LLM as Autonomous Agent. LLMs exhibit strong 202

capabilities in autonomous planning for compli- 203

cated tasks such as knowledge discovery (Mudur 204

et al., 2024; Du et al., 2024). After planning, these 205

approaches typically enable LLMs to interact with 206

external tools such as servers and software, and au- 207

tonomously analyze their outputs to generate final 208

solutions. We classify LLM applications into these 209

four categories in Appendix C. 210

2.3 Applications & Organization 211

In this survey, we focus on four principal physi- 212

cal areas including physical simulation (Sec. 3), 213

physics knowledge discovery (Sec. 4), physical 214

reasoning (Sec. 5), and physics education (Sec. 215

6), which aligns with our organization. For every 216

area, we provide more detailed categorization for 217

a clear understanding (see Figure 3). Afterwards, 218

we will summarize the benchmark and datasets in 219

the domain in Sec. 7. Finally, we will point out the 220

challenges in this area and provide several future 221

directions as a guidance in Sec. 8. 222

3 LLMs for Physical Simulation (Table 1) 223

Physical simulation aims to infer the behavior of 224

physical systems according to established rules 225

such as conservation laws (Leyli-Abadi et al., 226

2022). A direct solution is to use computational 227

software (Dickinson et al., 2014) with numerical 228

solvers to generate trajectories. Alternatively, data- 229

driven approaches (Huang et al., 2024b) usually 230

train deep networks such as graph neural networks 231

to model system dynamics in the hidden space for 232

trajectory generation. Accordingly, current works 233

on LLMs for simulation can be roughly divided 234

into code generation approaches and trajectory gen- 235

eration approaches (Wang et al., 2024a). 236

Code Generation Approaches. Following the first 237

line, these approaches aim to achieve automatic 238
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LLMs for
Physical Simulation

Code Generation
FoamPilot (Xu et al., 2024a), FoamPilot (Xu et al., 2024a),

OpenFORAMGPT (Pandey et al., 2025), Ali-Dib and Menou (2024),
PINNsAgent (Wuwu et al., 2025)

Trajectory Generation

LLM4DS (Luo et al., 2025a), DPOT (Hao et al., 2024),
Poseidon (Herde et al., 2024), ICON-LM (Yang et al., 2023),

FLUID-LLM (Zhu et al., 2024), UPS (Shen et al., 2024),
Text2PDE (Zhou et al., 2024a), POD-LLM (Zou et al., 2024),

Unisolver (Zhou et al., 2024b), M-FactFormer (Lorsung et al., 2024)

LLMs for Physics
Knowledge Discovery

Tool-use Du et al. (2024), SGA (Ma et al., 2024),
ICSR (Merler et al., 2024), LLM-SR (Shojaee et al., 2024)

Tool-free MLLM-SR (Li et al., 2024), Cai et al. (2024), RydbergGPT (Fitzek et al., 2024),
Liu et al. (2024d), MoLFormers (Liu et al., 2024c), Meta-design (Arlt et al., 2024)

LLMs for
Physical Reasoning

Training-free

Meadows et al. (2024), MyCrunchGPT (Kumar et al., 2023), Pan et al. (2025),
LLMPhy (Cherian et al., 2024), SciPhy-RAG (Anand et al., 2023b),
FEABench (Mudur et al., 2024), LP-COMDA (Liu et al., 2024b),
Jadhav and Farimani (2024), Physics Reasoner (Pang et al., 2024)

Fine-tuning

MechGPT (Buehler, 2024), Xiwu (Zhang et al., 2024c), Meadows et al. (2024),
AstroLLaMA (Nguyen et al., 2023), AstroLLaMA-chat (Perkowski et al., 2024),

astroBERT (Grezes et al., 2021), PhysBERT (Hellert et al., 2024),
Pan et al. (2025), FT-LLM (Lu et al., 2024)

LLMs for
Physics Education

Educational QA Gupta (2023), West (2023), Kieser et al. (2023)

Interactive Systems PhysicsAssistant (Latif et al., 2024), NewtBot (Lieb and Goel, 2024),
Polverini and Gregorcic (2024)

Dataset and Benchmark

Physical Simulation Ali-Dib and Menou (2024), LLM4DS (Luo et al., 2025a)

Physics Knowledge Discovery SRBench (La Cava et al., 2021), FSReD (Udrescu and Tegmark, 2020),
SSDNC (Li et al., 2022), Shojaee et al. (2024)

Physical Reasoning

FEABench (Mudur et al., 2024), MMLU (Hendrycks et al., 2021),
MMLU-Pro (Wang et al., 2024d), GPQA (Rein et al., 2024),

SciBench (Wang et al., 2024c), JEEBench (Arora et al., 2023),
Arb (Sawada et al.), Scieval (Sun et al., 2024),

Physics Education Gupta (2023), Anand et al. (2023a)

Figure 3: An overview of the taxonomy of LLM applications in physics.

code generation with human instruction (Pandey239

et al., 2025). For example, Ali-Dib and Menou240

(2024) have evaluated the performance of GPT-4241

in generating simulation codes in physics-related242

domains. It has been found that in most cases,243

GPT-4 cannot solve the problem with their codes244

with extensive errors and unnecessary lines. LLM245

agents (Wang et al., 2024b) are popular in this line246

due to their ability to execute the code and ana-247

lyze the feedback. FoamPilot (Xu et al., 2024a)248

utilizes retrieval-augmented generation (RAG) to249

build an agent framework for fire dynamics sim-250

ulation, which enhances the understanding of the251

FireFOAM code and then generates proper config-252

urations for source code based on users’ requests.253

OpenFORAMGPT (Pandey et al., 2025) is also an254

LLM agent for fluid dynamics, which leverages the255

strong GPT model O1 for better performance. It256

also follows the RAG procedure to integrate do-257

main knowledge, which can greatly facilitate engi-258

neering efforts. PINNsAgent (Wuwu et al., 2025)259

is another agent framework that utilizes LLMs to260

identify the best configuration for PDE solving. It261

incorporates both characteristics of PDEs and a262

tree-based search strategy for automatic PDE solv- 263

ing without human heuristics. 264

Trajectory Generation Approaches. The second 265

line aims to directly generate the trajectories either 266

in the text form (Luo et al., 2025a; Gruver et al., 267

2023; Xu et al., 2024b) or by collaborating with the 268

other data-driven models (Zhou et al., 2024b,a; Lor- 269

sung et al., 2024; Zou et al., 2024). LLM4DS (Luo 270

et al., 2025a) systematically utilizes prompt engi- 271

neering to describe the states of dynamical systems 272

with interactions considered and then generate the 273

future prediction in an auto-regressive fashion. It 274

builds a benchmark to demonstrate the potential of 275

LLMs in dynamical system modeling. To enhance 276

the performance, several works train Transformer- 277

based models with massive data (Hao et al., 2024; 278

Herde et al., 2024), resulting in general-purpose 279

foundation models for PDEs. Another solution 280

is to incorporate textual guidance into non-LLM 281

data-driven models. ICON-LM (Yang et al., 2023) 282

makes the attempt by incorporating extended text 283

descriptions and trains the model to derive numeri- 284

cal predictions from both the input data and accom- 285

panying captions. Unisolver (Zhou et al., 2024b) 286
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leverages the strengths of both data-driven and287

physics-informed approaches, enhancing the gen-288

eralization ability of LLMs across PDE scenarios289

by conditioning on comprehensive physical infor-290

mation. M-FactFormer (Lorsung et al., 2024) en-291

hances the capabilities of LLMs in PDE surrogate292

modeling by integrating textual information into293

neural operators. FLUID-LLM (Zhu et al., 2024)294

projects multiple snapshots into spatio-temporal295

signals, which are then fed into pre-trained LLMs296

along with a decoder to output the future predic-297

tions. UPS (Shen et al., 2024) proposes an FNO-298

Transformer architecture that leverages pre-trained299

LLMs to warmup the Transformer model and em-300

ploys explicit alignment strategies to mitigate the301

modality gap. Text2PDE (Zhou et al., 2024a) is302

a diffusion model for physics simulation, which303

includes a prompt of text-based instruction includ-304

ing physical phenomenon description to guide the305

generation process. POD-LLM (Zou et al., 2024)306

aligns spatio-temporal signals after orthogonal de-307

composition and text-based prompt data by patch308

reprogramming, and then adopts frozen LLMs and309

trainable head to generate future trajectories. How-310

ever, dissenting voices still persist in recent works.311

For instance, DASHA (Xu et al., 2024b) argues312

that it is consistently possible to train simple super-313

vised models that can match or even outperform314

the latest foundation models.315

4 LLMs for Physics Knowledge Discovery316

(Table 2)317

Physics knowledge discovery aims to identify un-318

known principles and laws such as PDEs based on319

experimental observations in physical science. Pre-320

vious works usually incorporate physics-informed321

neural networks (PINN) (Stephany and Earls, 2024;322

Chen et al., 2021; Stephany and Earls, 2022) with323

regression methods to recover the underlying laws.324

However, these approaches usually require com-325

plicated optimization calculations and efforts of326

domain experts (Stephany and Earls, 2024). In327

contrast, LLMs can achieve autonomous knowl-328

edge discovery with strong reasoning and plan-329

ning skills (Du et al., 2024). Recent approaches330

can be divided into two groups based on whether331

they interacted with external tools, i.e., tool-use332

approaches and tool-free approaches.333

Tool-use Approaches. Physics knowledge discov-334

ery can be understood as a search problem with335

alternative proposals and evaluation in an LLM336

agentic framework. In particular, they usually uti- 337

lize LLMs to generate several potential proposals 338

based on prompts about domain knowledge and 339

previous trajectories. Then, they execute external 340

tools such as simulation software and source codes 341

to validate the guess with feedback alternatively. 342

For example, (Du et al., 2024) utilize the reasoning 343

capacity of LLMs to achieve automatic equation 344

discovery by combining genetic algorithms and 345

score-based optimization, which accelerates the 346

search process of PDEs and ODEs. SGA (Ma et al., 347

2024) adopts a bi-level framework where LLMs 348

put forward hypotheses based on observation while 349

simulation is done to provide feedback as guidance. 350

SGA has been evaluated on both constitutive law 351

discovery and molecule design. ICSR (Merler et al., 352

2024) utilizes LLMs to refine the skeletons based 353

on the fitness scores for symbolic regression as an 354

optimization loop and utilize optimization methods 355

for coefficients. LLM-SR (Shojaee et al., 2024) 356

further proposes to utilize LLMs to generate source 357

codes based on the equation skeletons, which can 358

evaluate the hypotheses automatically. 359

Tool-free Approaches. An alternative solution is to 360

build a map between the input and target values in 361

a learnable manner. Here, the input can be of any 362

form and these approaches utilize the Transform- 363

based architecture due to its effectiveness. (Cai 364

et al., 2024) utilize the Transformer architecture 365

to predict the integer coefficients with the consid- 366

eration of highly complicated relationships across 367

different terms in theoretical high-energy physics. 368

RydbergGPT (Fitzek et al., 2024) also follows the 369

Transformer architecture with the input of interact- 370

ing Hamiltonian, which outputs the qubit measure- 371

ment probabilities in quantum physics. Several ap- 372

proaches leverage LLMs to directly output source 373

codes for knowledge discovery. Meta-design (Arlt 374

et al., 2024) utilizes LLMs to generate Python 375

codes for a wide range of quantum states, and it 376

adopts abundant synthetic data to train the LLM 377

for the generalized ability of scientific discovery 378

in physics. (Liu et al., 2024d) generate simulation 379

data using the fire simulation toolkit, which is uti- 380

lized to fine-tune the popular chemical language 381

model MolLFormer. After training, MoLFormers 382

are adopted to predict the target properties with 383

physical prior induced. (Liu et al., 2024d) directly 384

input the observation of a dynamical system into 385

the LLM, but leverage LLM’s probabilistic output 386

instead of the text output to discover the evolu- 387
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tion laws based on the Markov processes. These388

approaches froze the parameters of LLMs and uti-389

lize the reasoning ability of LLMs with in-context390

learning for knowledge discovery. In comparison,391

MLLM-SR (Li et al., 2024) is a multi-modal frame-392

work, where a branch is involved in analyzing the393

observation data such as images and videos, and394

another branch is adopted to provide requirements.395

The whole framework is trained with instruction396

tuning (Zhang et al., 2023; Peng et al., 2023).397

5 LLMs for Physical Reasoning (Table 3)398

Physical reasoning (Meadows et al., 2024; Kumar399

et al., 2023) refers to solving complicated research-400

oriented physics tasks and answering questions401

with necessary calculations. As LLMs have a402

strong reasoning ability for providing accurate an-403

swers and solutions with analysis in various do-404

mains (Wei et al., 2022), they can be applied to405

the physical domain as well. Current research can406

be generally divided into training-free approaches407

and fine-tuning approaches according to whether408

LLMs are trained in the domain-specific corpus.409

Training-free Approaches. The first line of re-410

search is close to evaluation, which prepares411

physics-related question-answering (QA) datasets412

and instructions and feeds them to commercial413

LLMs. For example, Meadows et al. (2024) build414

a carefully designed dataset with extensive nota-415

tions in the domain of physics and have validated416

the limit of current LLMs in understanding physics417

content. MyCrunchGPT (Kumar et al., 2023) is418

a scientific machine learning platform, which is419

adopted from ChatGPT to enhance the applicabil-420

ities for users. The platform demonstrates strong421

ability in handling examples on fluid mechanics.422

Pan et al. (2025) evaluate the calculation perfor-423

mance of LLMs in quantum physics. With the424

enhancement of correction steps, GPT-4 can ef-425

fectively obtain the final Hartree-Fock Hamilto-426

nian in a range of cases, which demonstrates the427

strong potential of LLMs in quantum many-body428

physics. SciPhy-RAG (Anand et al., 2023b) lever-429

ages the retrieval-augmentation generation mod-430

ule to enhance the question-answering ability of431

LLMs. They also fine-tune the LLMs with instruc-432

tion tuning, which achieves enhanced performance433

on physical reasoning benchmarks. Similarly, sev-434

eral models further utilize agent frameworks en-435

hanced with external tools for complicated tasks436

such as code generation. LLMPhy (Cherian et al.,437

2024) iteratively generates source codes to infer the 438

important physics attributes and layout parameters 439

from a series of given observations and provide 440

feedback using a physical simulator. After infer- 441

ring the physics model, LLMPhy can widely solve 442

a wide range of reasoning questions such as pre- 443

dicting steady-state poses. Mudur et al. (2024) 444

build LLM agents which can interact with physics 445

tools including simulation software COMSOL Mul- 446

tiphysics, and thus effectively solve physics reason- 447

ing problems. LP-COMDA (Liu et al., 2024b) is 448

a physics-information LLM agent for power con- 449

verter modulation design. The agent can analyze 450

the requirements from humans and then interact 451

with a physics-informed surrogate model for opti- 452

mal results. Physics Reasoner (Pang et al., 2024) 453

is an agentic framework for physical reasoning, 454

which consists of three agents for problem anal- 455

ysis, formula retrieval and guided reasoning, re- 456

spectively. With the enhanced reasoner focused 457

on formula understanding, it can generate proper 458

source codes for execution. 459

Fine-tuning Approaches. The second line 460

is to fine-tune LLMs using domain-specific 461

datasets for better understanding of physics fields. 462

MechGPT (Buehler, 2024) is a fine-tuned LLM 463

using a domain-specific mechanics and materials 464

dataset of question-answer pairs, which can effec- 465

tively solve a range of tasks including knowledge 466

retrieval and creative applications. Xiwu (Zhang 467

et al., 2024c) is an LLM applied to high energy 468

physics, which is trained on a carefully designed 469

dataset from effective collection and cleaning tools. 470

This customized LLM can outperform the strong 471

GPT-4 on code generation and question answering 472

in the field of high energy physics. Grezes et al. 473

introduce astroBERT (Grezes et al., 2021), which 474

is trained on a huge dataset of astronomy papers 475

in recent years. The authors have further devel- 476

oped an entity recognition tool to further enrich 477

the astronomy dataset. PhysBERT (Hellert et al., 478

2024) is a text embedding model based on BERT, 479

which is trained on a huge dataset of over 100,000 480

physics publications and has shown superior abil- 481

ity of physics-related problem solving. AstroL- 482

LaMA (Nguyen et al., 2023) is a foundation model 483

trained on the corpus of astronomy containing over 484

300,000 abstracts of publications, which has shown 485

state-of-the-art performance on paper summariza- 486

tion. AstroLLaMA-chat (Perkowski et al., 2024) is 487

a chatbox version based on AstroLLaMA, which 488

6



can greatly facilitate research in the domain of as-489

tronomy. Jadhav and Farimani (2024) combine490

LLMs and the finite element method to generate491

mechanical design automatically. The finite ele-492

ment method can provide the feedback of the cur-493

rent design while an LLM agent can improve the494

design based on the feedback. Lu et al. (2024)495

fine-tune the LLMs using a dataset of metasur-496

face geometry. This work validates that LLMs497

can achieve lower error compared with traditional498

machine learning methods with the potential of499

detecting hidden patterns in the data.500

6 LLMs for Physics Education (Table 4)501

Compared with research-oriented physical reason-502

ing, physics education primarily focuses on an-503

swering educational questions (Kieser et al., 2023;504

Lu et al., 2024) and developing interactive sys-505

tems (Latif et al., 2024), which we will introduce506

separately. These approaches usually adopt the507

commercial LLMs including ChatGPT due to the508

interactive characteristics.509

Educational Question Answering (QA). These510

works usually adopt commercial LLMs to solve the511

reasoning and concept problems in physics educa-512

tion. In addition to QA on force concept inventory,513

Kieser et al. (2023) use ChatGPT to simulate com-514

prehension as well as preconceptions from different515

students. West (2023) demonstrate that GPT-4 can516

achieve promising grades in introductory physics517

courses, which bring in performance increment518

compared with GPT-3.5. Lu et al. (2024) fine-tune519

the LLMs using a dataset of metasurface geometry.520

This work validates that LLMs can achieve lower521

error compared with traditional machine learning522

methods with the potential of detecting hidden pat-523

terns in the data. Pranav Gupta (Gupta, 2023) has524

explored the performance of GPT-4 and GPT-3.5525

on Physics GRE and found that LLMs have diffi-526

culty in generating accurate answers.527

Interactive Systems. These works focus on enhanc-528

ing the teaching experiment with advanced robot529

systems and chatboxs. For example, PhysicsAs-530

sistant (Latif et al., 2024) is a robot system built531

on YOLOv8 and GPT-3.5-turbo for K-12 physics532

education. Their experiments have found that the533

proposed system can achieve comparable perfor-534

mance compared with GPT-4 but with high effi-535

ciency. NewtBot (Lieb and Goel, 2024) is a physics536

education LLM-based chatbox that can serve as537

a personalized tutor to release the burden of sec-538

ondary teachers. Students have been found to have 539

a better experience than the standard GPT model 540

with personalized feedback input. Polverini and 541

Gregorcic (2024) demonstrate a series of examples 542

to emphasize the importance of prompt techniques 543

on LLMs and how to maximize the functionality 544

of LLMs for physics education. 545

7 Datasets and Benchmarks (Table 5) 546

In this section, we briefly introduce the bench- 547

marks and datasets in these aforementioned four 548

tasks, which can provide a guidance to facilitate 549

researchers in this area. 550

Physical Simulation. Ali-Dib and Menou (2024) 551

propose a benchmark to evaluate the ability of 552

LLMs to solve complex physics problems that re- 553

quire computational simulations. They test LLMs 554

on PhD-level to research-level tasks in physics, 555

using widely used simulation tools such as RE- 556

BOUND (celestial mechanics), MESA (stellar 557

physics), Dedalus (1D fluid dynamics), and SciPy 558

(non-linear dynamics). They construct 50 origi- 559

nal problems, avoiding common textbook exam- 560

ples to ensure that LLMs must generalize beyond 561

memorized training data. The study evaluates the 562

performance of LLMs based on correctness in cod- 563

ing, physics reasoning, necessity, and sufficiency 564

of the generated solutions. Luo et al. (2025a) es- 565

tablishes a comprehensive benchmark LLM4DS to 566

evaluate LLM’s performance across nine datasets 567

on dynamical system modeling. The benchmark 568

includes two tasks, i.e., dynamic forecasting and 569

relational reasoning. 570

Physics Knowledge Discovery. LLM applica- 571

tions in physics discovery (Grayeli et al., 2024) 572

are evaluated on symbolic regression benchmarks 573

including SRBench (La Cava et al., 2021) and 574

FSReD (Udrescu and Tegmark, 2020). For exam- 575

ple, SSDNC (Li et al., 2022) is a test set specifically 576

designed to evaluate how well symbolic regres- 577

sion models handle variations in numerical con- 578

stants while retaining the same underlying expres- 579

sion structure “skeleton”. Shojaee et al. (2024) 580

introduce a new benchmark for scientific equation 581

discovery that spans multiple non-trivial domains, 582

namely, nonlinear oscillators, bacterial growth 583

models, and real-world material stress–strain data. 584

These benchmark problems are deliberately de- 585

signed so that LLMs cannot merely rely on memo- 586

rized standard physics or biology equations such as 587

textbook formulas. Instead, they require genuine 588
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reasoning and inference from the data.589

Physical Reasoning. FEABench (Mudur et al.,590

2024) is a benchmark designed to evaluate LLMs591

and LLM agents on their ability to solve physics592

problems with finite element analysis (FEA). The593

study focuses on whether LLMs can reason through594

natural language descriptions of problems to gen-595

erate API calls, and iteratively improve solutions.596

It includes two datasets: FEABench Gold consists597

of 15 manually verified solvable problems, that598

span across different physics domains such as heat599

transfer, electromagnetism, and quantum mechan-600

ics; FEABench Large consists of 200 algorithmi-601

cally extracted problems. There are also several602

scientific LLM benchmarks which include physics603

reasoning subsets. For example, popular LLM eval-604

uation benchmarks such as MMLU (Hendrycks605

et al., 2021), MMLU-Pro (Wang et al., 2024d),606

and GPQA (Rein et al., 2024) all contain a sub-607

section of multiple choice physics questions that608

require physics knowledge and reasoning skills.609

SciBench (Wang et al., 2024c) includes a subset of610

free-response physics problems extracted from fun-611

damentals of physics, statistical thermodynamics,612

and classical dynamics of particles and systems.613

Similarly, JEEBench (Arora et al., 2023) contains614

several free-response physics questions and their615

corresponding detailed solutions. Arb (Sawada616

et al.) and Scieval (Sun et al., 2024) are another617

two general scientific reasoning benchmarks that618

include a group of physics questions.619

Physics Education. Gupta (2023) uses an actual620

physics GRE test consisting of 100 multiple choice621

questions across nine major physics topics includ-622

ing classical mechanics, electromagnetism, quan-623

tum mechanics. Each question is presented to an624

LLM as an image snippet without additional text625

or instructions, and the LLM responds with one of626

the five options. A penalized scoring is applied for627

incorrect answers. Anand et al. (2023a) introduces628

a novel dataset derived from NCERT exemplar so-629

lutions to explore the ability of LLMs in solving630

domain-specific high school physics problems. Ini-631

tially containing 766 questions with LaTeX-based632

representations, the dataset was significantly ex-633

panded to 7,983 questions through advanced tech-634

niques, broadening its diversity and coverage.635

8 Challenges and Future Directions636

Despite the great progress, we summarize three637

important challenges and potential future directions638

in recent LLMs for physics: 639

Numerical Data. Due to the next-token prediction 640

mechanism, LLMs could consider each digit sepa- 641

rately (Requeima et al., 2024; Gruver et al., 2023; 642

Wang et al., 2024e). Therefore, their ability of un- 643

derstanding complicated numbers is quite limited, 644

which deteriorates their performance in physical 645

simulations. Towards this end, a potential solution 646

is to enhance the understanding of numerical data 647

for effective physical calculation. 648

Generalization Across Multiple Domains. Com- 649

merical LLMs are usually trained on general knowl- 650

edge datasets, which could limit the reasoning abil- 651

ity when it comes to specific domains (Hu et al., 652

2023). Note that physics consists of a range of sub- 653

domains including electromagnetism, astrophysics 654

and quantum mechanics (Duque, 2024), which are 655

quite infrequent in general corpus. Barman et al. 656

(2025) point out that we should have actively fine- 657

tuned LLMs in the physical domains rather than 658

believing in universal LLMs such as GPT series. 659

However, fine-tuning LLMs requires extensive ef- 660

forts for data collection and computation. There- 661

fore, an efficient framework for adapting LLMs to 662

specific physical domains is highly expected. 663

Hallucination. LLMs could generate plausible 664

but incorrect physics explanations during reason- 665

ing, especially when it comes to new domains (Ji 666

et al., 2023; Yao et al., 2023). This hallucination 667

comes from the fact that current LLMs follow the 668

paradigm of pattern recognition instead of human- 669

like understanding, which would damage the re- 670

liability of LLMs. In future works, researchers 671

need to carefully build trustworthy LLMs, which 672

could be achieved by introducing verification mech- 673

anisms with domain knowledge and external tools. 674

9 Conclusion 675

In this work, we present a comprehensive survey of 676

LLMs for physics, which involves four mainstream 677

physical tasks, i.e., physical simulation, physics 678

knowledge discovery, physical reasoning and phys- 679

ical education. We further provide a novel taxon- 680

omy of current works based on how they leverage 681

LLMs for physical problems. Besides, we intro- 682

duce the current benchmark datasets to facilitate 683

researchers. In the end, we provide challenges of 684

current research and potential future directions. In 685

summary, our work provides the first systematic 686

review of current progress in LLMs for physics, 687

which can serve as a roadmap for researchers in the 688

fields of LLM applications and physics. 689
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10 Limitations690

This paper mainly covers LLM applications for691

physics. We also notice that there are several works692

of LLM for material discovery which is highly re-693

lated to physics knowledge discovery, which we694

do not include in our survey. In the future, we will695

expand our survey with more advanced applica-696

tions in these areas to provide more comprehensive697

insights for researchers in this domain.698
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A Background1268

A.1 Large Language Models for Scientific1269

Research1270

With the rise of scientific machine learning (Hey1271

et al., 2020; Chang et al., 2024), LLMs have re-1272

ceived increasing attention in scientific research1273

including biology, chemistry, and medicine (Zhang1274

et al., 2024a,b; Luo et al., 2025b; Yan et al., 2025).1275

For example, in the biological domain, LLMs have1276

been leveraged for single-cell (Xiao et al., 2024;1277

Liu et al., 2023) and protein analysis, which help1278

researchers answer complex questions and extract1279

deep embeddings from textual inputs. LLMs have1280

also made significant contributions to the physi-1281

cal domain, especially in simulation and educa-1282

tion (Huang et al., 2024a; Latif et al., 2024). De-1283

spite their growing impact, there has not yet been a1284

comprehensive survey of LLMs for physics. This1285

paper addresses this gap by providing the first sys- 1286

tematic overview of the field. 1287

A.2 Machine Learning for Physics Research 1288

Machine learning has achieved great progress 1289

in physics research across various areas includ- 1290

ing fluid mechanics (Liang et al., 2024; Mayr 1291

et al., 2023; Kashinath et al., 2021), high-energy 1292

physics (Guan et al., 2021; Mondal and Mas- 1293

trolorenzo, 2024), and quantum physics (Peral- 1294

García et al., 2024; García-Ramos et al., 2024). 1295

In fluid mechanics, data-driven approaches have 1296

accelerated simulation processes, while in high- 1297

energy physics, existing approaches have been de- 1298

veloped to analyze particle collisions using collider 1299

data. As a powerful tool, LLMs have wide appli- 1300

cations across four key areas, i.e., simulation (Ali- 1301

Dib and Menou, 2024), knowledge discovery (Du 1302

et al., 2024), reasoning (Meadows et al., 2024), 1303

and physics education (West, 2023). Our survey 1304

provides a comprehensive overview of existing lit- 1305

erature in these four areas to guide future research. 1306

B Difference from Existing Surveys 1307

There have been several surveys related to our work 1308

on scientific LLMs (Zhang et al., 2024a,b). In par- 1309

ticular, Zhang et al. (2024a) summarize the cur- 1310

rent progress in scientific LLMs on biological and 1311

chemical domains, which includes textual scien- 1312

tific models, molecular models, protein models, 1313

genomic models, and multi-modal models. Zhang 1314

et al. (2024b) provide an overview of LLMs for 1315

scientific discovery, which is mostly focused on 1316

chemistry, biology, and medicine, while only in- 1317

cluding seven works on LLMs for physics. Luo 1318

et al. (2025b) focus on how to leverage LLMs to 1319

facilitate scientific research at different stages, i.e., 1320

hypothesis, planning, writing, and reviewing. Yan 1321

et al. (2025) points out that multimodal LLMs can 1322

benefit reasoning tasks in general science domains. 1323

In summary, they almost focus on general science 1324

with an emphasis on biological and chemical do- 1325

mains while failing to provide an overview from 1326

the physics perspective. Compared with these sur- 1327

veys, we provide the first comprehensive overview 1328

of LLMs targeting at the physical domains. 1329

C Summary of LLM Applications for 1330

Physics 1331

We provide a detailed summary of LLM applica- 1332

tions for physics in four areas, i.e., physical simula- 1333
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Table 1: LLMs for physical simulation.

Model Fndn. LLM Category Different Modalities Finetuned

ICON-LM (Yang et al., 2023) ChatGPT Auxiliary Module Small Model
Ali-Dib and Menou (2024) GPT-4 Language Generator

FoamPilot (Xu et al., 2024a) GPT-4o Autonomous Agent
FLUID-LLM (Zhu et al., 2024) OPT-125m, OPT-2.7b Auxiliary Module Small Model

UPS (Shen et al., 2024) RoBERTa Auxiliary Module Small Model
DPOT (Hao et al., 2024) Fourier Transformer Generic Encoder

Poseidon (Herde et al., 2024) Transformer Generic Encoder
Text2PDE (Zhou et al., 2024a) Claude 3.5 Sonnet Auxiliary Module Small Model
POD-LLM (Zou et al., 2024) Undiscovered Auxiliary Module Small Model
Unisolver (Zhou et al., 2024b) Llama3-8B Auxiliary Module Small Model

M-FactFormer (Lorsung et al., 2024) Llama3-8B Auxiliary Module Small Model
LLM4DS (Luo et al., 2025a) GPT-3.5, Llama3-70B Language Generator

OpenFORAMGPT (Pandey et al., 2025) O1 Autonomous Agent
PINNsAgent (Wuwu et al., 2025) GPT-4 Autonomous Agent

Table 2: LLMs for physics knowledge discovery.

Model Fndn. LLM Category Different Modalities Finetuned

Du et al. (2024) GPT-3.5, GPT-4, Llama2-7B Autonomous Agent
SGA (Ma et al., 2024) GPT-4 Autonomous Agent

ICSR (Merler et al., 2024) Llama3-7B Autonomous Agent
MLLM-SR (Li et al., 2024) Vicuna Auxiliary Module Small Model

Cai et al. (2024) Transformer Generic Encoder
RydbergGPT (Fitzek et al., 2024) Transformer Generic Encoder
LLM-SR (Shojaee et al., 2024) GPT-3.5, Mixtral-8x7B Autonomous Agent
Meta-design (Arlt et al., 2024) Transformer Language Generator

Liu et al. (2024d) Llama2-70B Generic Encoder
MoLFormers (Liu et al., 2024c) MolLFormer Generic Encoder

tion (Table 1), physics knowledge discovery (Table1334

2), physical reasoning (Table 3), and physics edu-1335

cation (Table 4). We summarize the categories of1336

these models based on our new taxonomy, whether1337

models involve different modalities, and whether1338

the model is fine-tuned.1339

D Summary of Datasets and Benchmarks1340

We provide a detailed summary of LLM for physics1341

datasets and benchmarks in Table 5, and believe1342

our work can serve as an important guidance for1343

researchers in both fields of LLM applications and1344

physics.1345
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Table 3: LLMs for physical reasoning.

Model Fndn. LLM Category Different Modalities Finetuned

LLMPhy (Cherian et al., 2024) GPT-o1-mini, GPT-4o VLM Autonomous Agent
FEABench (Mudur et al., 2024) Benchmark Autonomous Agent

MechGPT (Buehler, 2024) OpenOrca-Platypus2-13B Language Generator
Xiwu (Zhang et al., 2024c) Vicuna-1.5 Language Generator

Meadows et al. (2024) Benchmark Language Generator
MyCrunchGPT (Kumar et al., 2023) ChatGPT Language Generator

LP-COMDA (Liu et al., 2024b) GPT-3.5 Autonomous Agent
AstroLLaMA (Nguyen et al., 2023) Llama2-7B Language Generator

AstroLLaMA-chat (Perkowski et al., 2024) Llama2-7B Language Generator
astroBERT (Grezes et al., 2021) BERT Language Generator
PhysBERT (Hellert et al., 2024) BERT Language Generator

(Jadhav and Farimani, 2024) GPT-4 Autonomous Agent
(Pan et al., 2025) GPT-4 Language Generator

FT-LLM (Lu et al., 2024) GPT-3.5 Language Generator
Physics Reasoner (Pang et al., 2024) GPT-3.5, GPT-4, Llama3-70B Autonomous Agent

Table 4: LLMs for physics education.

Model Fndn. LLM Category Different Modalities Finetuned

Gupta (2023) GPT-3.5, GPT-4 Language Generator
PhysicsAssistant (Latif et al., 2024) GPT-3.5 Autonomous Agent

NewtBot (Lieb and Goel, 2024) GPT-3.5 Language Generator
Polverini and Gregorcic (2024) ChatGPT-4 Language Generator

Kieser et al. (2023) ChatGPT-4 Language Generator
(West, 2023) GPT-4 Language Generator

SciPhy-RAG (Anand et al., 2023b) Vicuna-7B Language Generator

Table 5: An overview of datasets and benchmarks.

Task Benchmark Short Description

Physical
Reasoning

FEABench (Mudur et al., 2024) 15 physics problems requiring numerical solutions via finite element analysis

MMLU (Hendrycks et al., 2021)
Containing sub-sections on conceptual physics, high school physics,

and college physics problems
MMLU-Pro (Wang et al., 2024d) 10.8% of MMLU-Pro problems are under physics domain
GPQA (Rein et al., 2024) Containing 227 graduate-level multiple-choice physics problems
SciBench (Wang et al., 2024c) Containing 291 problems from 3 different physics textbooks
JEEBench (Arora et al., 2023) Containing 123 college-level physics problems
Arb (Sawada et al.) Containing 98 numerical physics problems and 31 symbolic physics problems
Scieval (Sun et al., 2024) Containing 1657 physics problem where 1165 of them are scientific calculation questions

Physical
Simulation

Ali-Dib and Menou (2024)
47 problems on computational physics simulations, including celestial mechanics,

stellar evolution, 1D fluid dynamics, and non-linear dynamics
LLM4DS (Luo et al., 2025a) 9 datasets focusing on dynamic forecasting and relational reasoning

Physics
Knowledge
Discovery

SRBench (La Cava et al., 2021)
252 symbolic regression problems, including 122 black-box real-world problems

and 130 synthetic known-form problems with ground-truth equations

FSReD (Udrescu and Tegmark, 2020)
A symbolic regression database containing 100 “basic” physics equations

and 20 additional “bonus” equations chosen for higher complexity

SSDNC (Li et al., 2022)
A synthetic dataset with 100 symbolic expression skeletons
and 10 re-sampled numeric coefficients for each skeleton

Shojaee et al. (2024) Modeling nonlinear oscillators, bacterial growth, and material stress behavior

Physics
Education

Gupta (2023) 100 multiple choice GRE physics questions
Anand et al. (2023a) 7,983 questions augmented from 766 NCERT school physics problems
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