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Abstract

Large language models (LLMs) have emerged
as powerful tools for processing and generating
human-like text, raising intriguing possibilities
for their application in physics—a field char-
acterized by complex mathematical formula-
tions, abstract concepts, and precise reasoning.
While recent studies have demonstrated LLMs’
potential in physics applications, from automat-
ing simulations to enhancing physics education,
the field lacks a systematic framework for un-
derstanding and advancing these efforts. This
paper presents a comprehensive survey of LLM
applications in physics, which examines four
critical domains: physical simulation, knowl-
edge discovery, physical reasoning, and physics
education, revealing both promising advances
and fundamental challenges. We introduce a
systematic taxonomy that classifies approaches
based on LLM utilization patterns: generic en-
coders, language generators, auxiliary modules,
and autonomous agents. Our analysis uncov-
ers common patterns across successful applica-
tions while identifying key limitations in cur-
rent approaches. We also compile and analyze
relevant benchmarks and datasets, providing a
resource for evaluating LLM performance in
physics tasks. Finally, we outline critical chal-
lenges and promising research directions, offer-
ing a roadmap for leveraging LLMs to advance
both physics research and education.

1 Introduction

Physics, as the fundamental science of matter, en-
ergy, and their interactions, underpins our under-
standing of the universe from quantum phenomena
to cosmological scales. Despite significant theoret-
ical and experimental advances (Long et al., 2021),
many challenging problems in physics remain un-
solved, ranging from efficient simulation of quan-
tum systems to discovering new physical laws from
complex experimental data (Lu, 2024). Recent
advances in artificial intelligence, particularly in

machine learning, have introduced promising new
approaches to tackle these challenges (Boehnlein
et al., 2022; Karagiorgi et al., 2022; Willard et al.,
2020). Graph neural networks (GNNs) (Ramakr-
ishnan et al., 2025; Shen et al., 2025) have proven
particularly effective at modeling particle dynam-
ics by capturing complex interactions (Liang et al.,
2024; Mayr et al., 2023), while physics-informed
neural networks (PINNs) (Karniadakis et al., 2021)
have successfully addressed challenging problems
in fluid mechanics such as solving Navier-Stokes
equations (Cho et al., 2023).

Meanwhile, large language models (LLMs) have
introduced a powerful pipeline across various do-
mains, ranging from natural language process-
ing (Zhao et al., 2023) to artificial general intel-
ligence (Zhang et al., 2024a,b; Luo et al., 2025b).
LLMs contain billions of parameters by stacking
Transformer architectures, which are trained in
massive text corpora (Yang et al., 2024). There
have been a range of popular commercial LLMs
such as GPT (Achiam et al., 2023), Llama (Tou-
vron et al., 2023), and PaLM series (Chowdhery
et al., 2023). These models, built on Transformer
architectures and trained on massive scientific cor-
pora, have already demonstrated remarkable abili-
ties in tasks ranging from deriving equations from
physics principles to suggesting novel experimental
designs. Their ability to combine vast knowledge
representation (Lu et al., 2023; Shu et al., 2024;
Meyer et al., 2023) with human-like reasoning pat-
terns opens unprecedented possibilities for acceler-
ating physics discovery and deepening our under-
standing of physical systems (Luo et al., 2025a).

In literature, research applying LLMs to physics
primarily focuses on four main areas, i.e., sim-
ulation (Ali-Dib and Menou, 2024), knowledge
discovery (Du et al., 2024), reasoning (Meadows
et al., 2024), and education (West, 2023) (see Fig-
ure 1). In physical simulation, LLMs enhance tra-
ditional computational methods by providing inter-
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Figure 1: In this work, we focus on four mainstream areas of LLM applications in physics.

pretable guidance and improving accuracy. For
knowledge discovery, LLMs act as domain ex-
perts, helping identify underlying physical laws
and guiding experimental design. Physical reason-
ing leverages LLMs’ ability to combine theoretical
knowledge with logical inference, while physics
education applications exploit their capacity for
generating explanations and interactive learning
environments (Gupta, 2023; Wang et al., 2024d).

The rapid growth of research in this field (Mead-
ows et al., 2024; Kumar et al., 2023; Pan et al.,
2025) has brought an urgent need for a comprehen-
sive overview which summarizes existing literature
and provides significant insights for future studies
at the intersection of LLMs and physics. While
there are a few surveys on LLMs for scientific re-
search (Zhang et al., 2024a,b; Luo et al., 2025b;
Yan et al., 2025), they have primarily focused on
biology, chemistry, and mathematics, which leaves
a significant gap in physics. This survey addresses
that gap by providing a systematic overview of how
LLMs can advance the physical domain.

In addition, this survey introduces a novel tax-
onomy based on how LLMs are utilized, which
classifies existing works into four groups, i.e., as
generic encoders, language generators, auxiliary
modules, and autonomous agents. When used as
generic encoders, LLMs leverage their strong repre-
sentation learning capabilities to extract features for
inputs (Ren et al., 2024). As language generators,
these works produce responses following the given
instructions (Zeng et al., 2023). When serving
as auxiliary modules, LLMs work alongside tradi-
tional non-LLM systems to solve physics problems
collaboratively (Yang et al., 2023). As autonomous
agents, LL.Ms use their reasoning abilities to inter-
act with external tools (Huang et al., 2024a) and

solve physics problems automatically (Xu et al.,
2024a). We organize our analysis by four areas in
physics and summarize important insights of rel-
evant research, followed by popular datasets and
benchmarks. Lastly, we identify several key chal-
lenges when applying LLMs to physics and corre-
sponding promising future directions.

In summary, the contribution of the paper is
three-folds: (1) Comprehensive Review. We
present the first comprehensive survey of LLMs
in physics research, which provides a thorough
overview of recent literature. (2) Novel Taxonomy.
We introduce a novel taxonomy of current research
based on how LLMs are utilized, which offers a
clear framework for understanding this field. (3)
Future Guidance. We present important challenges
and opportunities in this field as a guidance for
future research in LLM applications in physics.

2 Overview of Survey

2.1 Emerging LLM Capabilities for Physics
Applications

The potential of LLMs in physics stems from their
unique emerging capabilities (Wei et al., 2022):
Advanced Reasoning Framework (Huang and
Chang, 2022; Wang et al., 2023). LLMs support
various sophisticated reasoning techniques, includ-
ing chain-of-thought and least-to-most prompting,
enabling them to tackle complex physics problems
through structured, multi-step approaches. This
capability is essential for solving intricate physics
problems that require careful consideration of mul-
tiple principles and constraints.

Instruction Following (Zeng et al., 2023; Yin et al.,
2023). Their ability to accurately follow detailed
instructions enables automated handling of vari-
ous physics tasks, from generating computational
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Figure 2: We propose a taxonomy of recent works on LLMs for physics, which divides them into four categories.

code to deriving mathematical formulas and analyz-
ing experimental data. This capability streamlines
many routine tasks of physics research while main-
taining rigorous accuracy.

Knowledge Transfer and Generalization (Liu
et al., 2024a). LLMs demonstrate exceptional abil-
ity to transfer knowledge across related domains, a
crucial capability in physics where insights from
one field often inform developments in another.
This generalization ability can accelerate hypothe-
sis generation and theoretical developments.
Autonomous Research Planning (Boiko et al.,
2023). Through their capability to decompose com-
plex problems and design experimental approaches,
LLMs can function as autonomous research assis-
tants. They can plan and execute sophisticated
physics simulations, manage experimental work-
flows, and analyze results, particularly valuable in
fields like fluid dynamics and particle physics.

2.2 Methodology Taxonomy

In this survey, we divide current applications of
LLMs in physics into four main categories based
on how they utilize LLMs (Figure 2):

LLM as Generic Encoder. 1.1LMs demonstrate
strong representation learning capabilities with
strong generalization due to their massive parame-
ters (Ren et al., 2024; Cai et al., 2024; Bogdanov
et al., 2024). This category employs LLMs as fea-
ture extractors of generic input to generate outputs
in the required formats for both classification and
regression tasks in physics. These models are typi-
cally trained in an end-to-end manner.

LIM as Language Generator. The most direct
application of LLMs is their ability to generate
meaningful responses to textual inputs (Wei et al.,
2022). This category either uses general-purpose
commercial LLMs such as GPT and LLaMA se-
ries, or enhances their physics domain knowledge
through fine-tuning on domain-specific corpus.
LIM as Auxiliary Module. A range of physics
problems do not require text outputs, but they can
still benefit from textual information such as knowl-

edge databases and human guidance (Zhou et al.,
2024a). This category uses LLMs to interpret and
incorporate such information into existing compu-
tational frameworks.

LLM as Autonomous Agent. LLLMs exhibit strong
capabilities in autonomous planning for compli-
cated tasks such as knowledge discovery (Mudur
et al., 2024; Du et al., 2024). After planning, these
approaches typically enable LLMs to interact with
external tools such as servers and software, and au-
tonomously analyze their outputs to generate final
solutions. We classify LLM applications into these
four categories in Appendix C.

2.3 Applications & Organization

In this survey, we focus on four principal physi-
cal areas including physical simulation (Sec. 3),
physics knowledge discovery (Sec. 4), physical
reasoning (Sec. 5), and physics education (Sec.
6), which aligns with our organization. For every
area, we provide more detailed categorization for
a clear understanding (see Figure 3). Afterwards,
we will summarize the benchmark and datasets in
the domain in Sec. 7. Finally, we will point out the
challenges in this area and provide several future
directions as a guidance in Sec. 8.

3 LLMs for Physical Simulation (Table 1)

Physical simulation aims to infer the behavior of
physical systems according to established rules
such as conservation laws (Leyli-Abadi et al.,
2022). A direct solution is to use computational
software (Dickinson et al., 2014) with numerical
solvers to generate trajectories. Alternatively, data-
driven approaches (Huang et al., 2024b) usually
train deep networks such as graph neural networks
to model system dynamics in the hidden space for
trajectory generation. Accordingly, current works
on LLMs for simulation can be roughly divided
into code generation approaches and trajectory gen-
eration approaches (Wang et al., 2024a).

Code Generation Approaches. Following the first
line, these approaches aim to achieve automatic
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Figure 3: An overview of the taxonomy of LLM applications in physics.

code generation with human instruction (Pandey
et al., 2025). For example, Ali-Dib and Menou
(2024) have evaluated the performance of GPT-4
in generating simulation codes in physics-related
domains. It has been found that in most cases,
GPT-4 cannot solve the problem with their codes
with extensive errors and unnecessary lines. LLM
agents (Wang et al., 2024b) are popular in this line
due to their ability to execute the code and ana-
lyze the feedback. FoamPilot (Xu et al., 2024a)
utilizes retrieval-augmented generation (RAG) to
build an agent framework for fire dynamics sim-
ulation, which enhances the understanding of the
FireFOAM code and then generates proper config-
urations for source code based on users’ requests.
OpenFORAMGPT (Pandey et al., 2025) is also an
LLM agent for fluid dynamics, which leverages the
strong GPT model O1 for better performance. It
also follows the RAG procedure to integrate do-
main knowledge, which can greatly facilitate engi-
neering efforts. PINNsAgent (Wuwu et al., 2025)
is another agent framework that utilizes LLMs to
identify the best configuration for PDE solving. It
incorporates both characteristics of PDEs and a

tree-based search strategy for automatic PDE solv-
ing without human heuristics.

Trajectory Generation Approaches. The second
line aims to directly generate the trajectories either
in the text form (Luo et al., 2025a; Gruver et al.,
2023; Xu et al., 2024b) or by collaborating with the
other data-driven models (Zhou et al., 2024b,a; Lor-
sung et al., 2024; Zou et al., 2024). LLM4DS (Luo
et al., 2025a) systematically utilizes prompt engi-
neering to describe the states of dynamical systems
with interactions considered and then generate the
future prediction in an auto-regressive fashion. It
builds a benchmark to demonstrate the potential of
LLMs in dynamical system modeling. To enhance
the performance, several works train Transformer-
based models with massive data (Hao et al., 2024;
Herde et al., 2024), resulting in general-purpose
foundation models for PDEs. Another solution
is to incorporate textual guidance into non-LLM
data-driven models. ICON-LM (Yang et al., 2023)
makes the attempt by incorporating extended text
descriptions and trains the model to derive numeri-
cal predictions from both the input data and accom-
panying captions. Unisolver (Zhou et al., 2024b)



leverages the strengths of both data-driven and
physics-informed approaches, enhancing the gen-
eralization ability of LLMs across PDE scenarios
by conditioning on comprehensive physical infor-
mation. M-FactFormer (Lorsung et al., 2024) en-
hances the capabilities of LLMs in PDE surrogate
modeling by integrating textual information into
neural operators. FLUID-LLM (Zhu et al., 2024)
projects multiple snapshots into spatio-temporal
signals, which are then fed into pre-trained LLMs
along with a decoder to output the future predic-
tions. UPS (Shen et al., 2024) proposes an FNO-
Transformer architecture that leverages pre-trained
LLMs to warmup the Transformer model and em-
ploys explicit alignment strategies to mitigate the
modality gap. Text2PDE (Zhou et al., 2024a) is
a diffusion model for physics simulation, which
includes a prompt of text-based instruction includ-
ing physical phenomenon description to guide the
generation process. POD-LLM (Zou et al., 2024)
aligns spatio-temporal signals after orthogonal de-
composition and text-based prompt data by patch
reprogramming, and then adopts frozen LLMs and
trainable head to generate future trajectories. How-
ever, dissenting voices still persist in recent works.
For instance, DASHA (Xu et al., 2024b) argues
that it is consistently possible to train simple super-
vised models that can match or even outperform
the latest foundation models.

4 LLMs for Physics Knowledge Discovery
(Table 2)

Physics knowledge discovery aims to identify un-
known principles and laws such as PDEs based on
experimental observations in physical science. Pre-
vious works usually incorporate physics-informed
neural networks (PINN) (Stephany and Earls, 2024;
Chen et al., 2021; Stephany and Earls, 2022) with
regression methods to recover the underlying laws.
However, these approaches usually require com-
plicated optimization calculations and efforts of
domain experts (Stephany and Earls, 2024). In
contrast, LLMs can achieve autonomous knowl-
edge discovery with strong reasoning and plan-
ning skills (Du et al., 2024). Recent approaches
can be divided into two groups based on whether
they interacted with external tools, i.e., tool-use
approaches and tool-free approaches.

Tool-use Approaches. Physics knowledge discov-
ery can be understood as a search problem with
alternative proposals and evaluation in an LLM

agentic framework. In particular, they usually uti-
lize LLMs to generate several potential proposals
based on prompts about domain knowledge and
previous trajectories. Then, they execute external
tools such as simulation software and source codes
to validate the guess with feedback alternatively.
For example, (Du et al., 2024) utilize the reasoning
capacity of LLMs to achieve automatic equation
discovery by combining genetic algorithms and
score-based optimization, which accelerates the
search process of PDEs and ODEs. SGA (Ma et al.,
2024) adopts a bi-level framework where LLMs
put forward hypotheses based on observation while
simulation is done to provide feedback as guidance.
SGA has been evaluated on both constitutive law
discovery and molecule design. ICSR (Merler et al.,
2024) utilizes LLMs to refine the skeletons based
on the fitness scores for symbolic regression as an
optimization loop and utilize optimization methods
for coefficients. LLM-SR (Shojaee et al., 2024)
further proposes to utilize LLMs to generate source
codes based on the equation skeletons, which can
evaluate the hypotheses automatically.

Tool-free Approaches. An alternative solution is to
build a map between the input and target values in
a learnable manner. Here, the input can be of any
form and these approaches utilize the Transform-
based architecture due to its effectiveness. (Cai
et al., 2024) utilize the Transformer architecture
to predict the integer coefficients with the consid-
eration of highly complicated relationships across
different terms in theoretical high-energy physics.
RydbergGPT (Fitzek et al., 2024) also follows the
Transformer architecture with the input of interact-
ing Hamiltonian, which outputs the qubit measure-
ment probabilities in quantum physics. Several ap-
proaches leverage LLMs to directly output source
codes for knowledge discovery. Meta-design (Arlt
et al., 2024) utilizes LLMs to generate Python
codes for a wide range of quantum states, and it
adopts abundant synthetic data to train the LLM
for the generalized ability of scientific discovery
in physics. (Liu et al., 2024d) generate simulation
data using the fire simulation toolkit, which is uti-
lized to fine-tune the popular chemical language
model MolLFormer. After training, MoLFormers
are adopted to predict the target properties with
physical prior induced. (Liu et al., 2024d) directly
input the observation of a dynamical system into
the LLM, but leverage LLM’s probabilistic output
instead of the text output to discover the evolu-



tion laws based on the Markov processes. These
approaches froze the parameters of LLMs and uti-
lize the reasoning ability of LLMs with in-context
learning for knowledge discovery. In comparison,
MLLM-SR (Li et al., 2024) is a multi-modal frame-
work, where a branch is involved in analyzing the
observation data such as images and videos, and
another branch is adopted to provide requirements.
The whole framework is trained with instruction
tuning (Zhang et al., 2023; Peng et al., 2023).

5 LLMs for Physical Reasoning (Table 3)

Physical reasoning (Meadows et al., 2024; Kumar
et al., 2023) refers to solving complicated research-
oriented physics tasks and answering questions
with necessary calculations. As LLMs have a
strong reasoning ability for providing accurate an-
swers and solutions with analysis in various do-
mains (Wei et al., 2022), they can be applied to
the physical domain as well. Current research can
be generally divided into training-free approaches
and fine-tuning approaches according to whether
LLMs are trained in the domain-specific corpus.

Training-free Approaches. The first line of re-
search is close to evaluation, which prepares
physics-related question-answering (QA) datasets
and instructions and feeds them to commercial
LLMs. For example, Meadows et al. (2024) build
a carefully designed dataset with extensive nota-
tions in the domain of physics and have validated
the limit of current LLMs in understanding physics
content. MyCrunchGPT (Kumar et al., 2023) is
a scientific machine learning platform, which is
adopted from ChatGPT to enhance the applicabil-
ities for users. The platform demonstrates strong
ability in handling examples on fluid mechanics.
Pan et al. (2025) evaluate the calculation perfor-
mance of LLMs in quantum physics. With the
enhancement of correction steps, GPT-4 can ef-
fectively obtain the final Hartree-Fock Hamilto-
nian in a range of cases, which demonstrates the
strong potential of LLMs in quantum many-body
physics. SciPhy-RAG (Anand et al., 2023b) lever-
ages the retrieval-augmentation generation mod-
ule to enhance the question-answering ability of
LLMs. They also fine-tune the LLMs with instruc-
tion tuning, which achieves enhanced performance
on physical reasoning benchmarks. Similarly, sev-
eral models further utilize agent frameworks en-
hanced with external tools for complicated tasks
such as code generation. LLMPhy (Cherian et al.,

2024) iteratively generates source codes to infer the
important physics attributes and layout parameters
from a series of given observations and provide
feedback using a physical simulator. After infer-
ring the physics model, LLMPhy can widely solve
a wide range of reasoning questions such as pre-
dicting steady-state poses. Mudur et al. (2024)
build LLM agents which can interact with physics
tools including simulation software COMSOL Mul-
tiphysics, and thus effectively solve physics reason-
ing problems. LP-COMDA (Liu et al., 2024b) is
a physics-information LLM agent for power con-
verter modulation design. The agent can analyze
the requirements from humans and then interact
with a physics-informed surrogate model for opti-
mal results. Physics Reasoner (Pang et al., 2024)
is an agentic framework for physical reasoning,
which consists of three agents for problem anal-
ysis, formula retrieval and guided reasoning, re-
spectively. With the enhanced reasoner focused
on formula understanding, it can generate proper
source codes for execution.

Fine-tuning Approaches. The second line
is to fine-tune LLMs using domain-specific
datasets for better understanding of physics fields.
MechGPT (Buehler, 2024) is a fine-tuned LLM
using a domain-specific mechanics and materials
dataset of question-answer pairs, which can effec-
tively solve a range of tasks including knowledge
retrieval and creative applications. Xiwu (Zhang
et al., 2024c¢) is an LLM applied to high energy
physics, which is trained on a carefully designed
dataset from effective collection and cleaning tools.
This customized LLM can outperform the strong
GPT-4 on code generation and question answering
in the field of high energy physics. Grezes et al.
introduce astroBERT (Grezes et al., 2021), which
is trained on a huge dataset of astronomy papers
in recent years. The authors have further devel-
oped an entity recognition tool to further enrich
the astronomy dataset. PhysBERT (Hellert et al.,
2024) is a text embedding model based on BERT,
which is trained on a huge dataset of over 100,000
physics publications and has shown superior abil-
ity of physics-related problem solving. AstroL-
LaMA (Nguyen et al., 2023) is a foundation model
trained on the corpus of astronomy containing over
300,000 abstracts of publications, which has shown
state-of-the-art performance on paper summariza-
tion. AstroLLaMA-chat (Perkowski et al., 2024) is
a chatbox version based on AstroLLaMA, which



can greatly facilitate research in the domain of as-
tronomy. Jadhav and Farimani (2024) combine
LLMs and the finite element method to generate
mechanical design automatically. The finite ele-
ment method can provide the feedback of the cur-
rent design while an LLM agent can improve the
design based on the feedback. Lu et al. (2024)
fine-tune the LLMs using a dataset of metasur-
face geometry. This work validates that LLMs
can achieve lower error compared with traditional
machine learning methods with the potential of
detecting hidden patterns in the data.

6 LLM:s for Physics Education (Table 4)

Compared with research-oriented physical reason-
ing, physics education primarily focuses on an-
swering educational questions (Kieser et al., 2023;
Lu et al., 2024) and developing interactive sys-
tems (Latif et al., 2024), which we will introduce
separately. These approaches usually adopt the
commercial LLMs including ChatGPT due to the
interactive characteristics.

Educational Question Answering (QA). These
works usually adopt commercial LLMs to solve the
reasoning and concept problems in physics educa-
tion. In addition to QA on force concept inventory,
Kieser et al. (2023) use ChatGPT to simulate com-
prehension as well as preconceptions from different
students. West (2023) demonstrate that GPT-4 can
achieve promising grades in introductory physics
courses, which bring in performance increment
compared with GPT-3.5. Lu et al. (2024) fine-tune
the LLMs using a dataset of metasurface geometry.
This work validates that LLMs can achieve lower
error compared with traditional machine learning
methods with the potential of detecting hidden pat-
terns in the data. Pranav Gupta (Gupta, 2023) has
explored the performance of GPT-4 and GPT-3.5
on Physics GRE and found that LL.Ms have diffi-
culty in generating accurate answers.

Interactive Systems. These works focus on enhanc-
ing the teaching experiment with advanced robot
systems and chatboxs. For example, PhysicsAs-
sistant (Latif et al., 2024) is a robot system built
on YOLOvVS8 and GPT-3.5-turbo for K-12 physics
education. Their experiments have found that the
proposed system can achieve comparable perfor-
mance compared with GPT-4 but with high effi-
ciency. NewtBot (Lieb and Goel, 2024) is a physics
education LLM-based chatbox that can serve as
a personalized tutor to release the burden of sec-

ondary teachers. Students have been found to have
a better experience than the standard GPT model
with personalized feedback input. Polverini and
Gregorcic (2024) demonstrate a series of examples
to emphasize the importance of prompt techniques
on LLMs and how to maximize the functionality
of LLMs for physics education.

7 Datasets and Benchmarks (Table 5)

In this section, we briefly introduce the bench-
marks and datasets in these aforementioned four
tasks, which can provide a guidance to facilitate
researchers in this area.

Physical Simulation. Ali-Dib and Menou (2024)
propose a benchmark to evaluate the ability of
LLMs to solve complex physics problems that re-
quire computational simulations. They test LLMs
on PhD-level to research-level tasks in physics,
using widely used simulation tools such as RE-
BOUND (celestial mechanics), MESA (stellar
physics), Dedalus (1D fluid dynamics), and SciPy
(non-linear dynamics). They construct 50 origi-
nal problems, avoiding common textbook exam-
ples to ensure that LLMs must generalize beyond
memorized training data. The study evaluates the
performance of LLMs based on correctness in cod-
ing, physics reasoning, necessity, and sufficiency
of the generated solutions. Luo et al. (2025a) es-
tablishes a comprehensive benchmark LLM4DS to
evaluate LLLM’s performance across nine datasets
on dynamical system modeling. The benchmark
includes two tasks, i.e., dynamic forecasting and
relational reasoning.

Physics Knowledge Discovery. LLM applica-
tions in physics discovery (Grayeli et al., 2024)
are evaluated on symbolic regression benchmarks
including SRBench (La Cava et al., 2021) and
FSReD (Udrescu and Tegmark, 2020). For exam-
ple, SSDNC (Li et al., 2022) is a test set specifically
designed to evaluate how well symbolic regres-
sion models handle variations in numerical con-
stants while retaining the same underlying expres-
sion structure “skeleton”. Shojaee et al. (2024)
introduce a new benchmark for scientific equation
discovery that spans multiple non-trivial domains,
namely, nonlinear oscillators, bacterial growth
models, and real-world material stress—strain data.
These benchmark problems are deliberately de-
signed so that LLMs cannot merely rely on memo-
rized standard physics or biology equations such as
textbook formulas. Instead, they require genuine



reasoning and inference from the data.

Physical Reasoning. FEABench (Mudur et al.,
2024) is a benchmark designed to evaluate LLMs
and LLM agents on their ability to solve physics
problems with finite element analysis (FEA). The
study focuses on whether LLMs can reason through
natural language descriptions of problems to gen-
erate API calls, and iteratively improve solutions.
It includes two datasets: FEABench Gold consists
of 15 manually verified solvable problems, that
span across different physics domains such as heat
transfer, electromagnetism, and quantum mechan-
ics; FEABench Large consists of 200 algorithmi-
cally extracted problems. There are also several
scientific LLM benchmarks which include physics
reasoning subsets. For example, popular LLM eval-
uation benchmarks such as MMLU (Hendrycks
et al., 2021), MMLU-Pro (Wang et al., 2024d),
and GPQA (Rein et al., 2024) all contain a sub-
section of multiple choice physics questions that
require physics knowledge and reasoning skills.
SciBench (Wang et al., 2024c) includes a subset of
free-response physics problems extracted from fun-
damentals of physics, statistical thermodynamics,
and classical dynamics of particles and systems.
Similarly, JEEBench (Arora et al., 2023) contains
several free-response physics questions and their
corresponding detailed solutions. Arb (Sawada
et al.) and Scieval (Sun et al., 2024) are another
two general scientific reasoning benchmarks that
include a group of physics questions.

Physics Education. Gupta (2023) uses an actual
physics GRE test consisting of 100 multiple choice
questions across nine major physics topics includ-
ing classical mechanics, electromagnetism, quan-
tum mechanics. Each question is presented to an
LLM as an image snippet without additional text
or instructions, and the LLM responds with one of
the five options. A penalized scoring is applied for
incorrect answers. Anand et al. (2023a) introduces
a novel dataset derived from NCERT exemplar so-
lutions to explore the ability of LLMs in solving
domain-specific high school physics problems. Ini-
tially containing 766 questions with LaTeX-based
representations, the dataset was significantly ex-
panded to 7,983 questions through advanced tech-
niques, broadening its diversity and coverage.

8 Challenges and Future Directions

Despite the great progress, we summarize three
important challenges and potential future directions

in recent LLMs for physics:

Numerical Data. Due to the next-token prediction
mechanism, LLMs could consider each digit sepa-
rately (Requeima et al., 2024; Gruver et al., 2023;
Wang et al., 2024e). Therefore, their ability of un-
derstanding complicated numbers is quite limited,
which deteriorates their performance in physical
simulations. Towards this end, a potential solution
is to enhance the understanding of numerical data
for effective physical calculation.

Generalization Across Multiple Domains. Com-
merical LLMs are usually trained on general knowl-
edge datasets, which could limit the reasoning abil-
ity when it comes to specific domains (Hu et al.,
2023). Note that physics consists of a range of sub-
domains including electromagnetism, astrophysics
and quantum mechanics (Duque, 2024), which are
quite infrequent in general corpus. Barman et al.
(2025) point out that we should have actively fine-
tuned LLMs in the physical domains rather than
believing in universal LLMs such as GPT series.
However, fine-tuning LLMs requires extensive ef-
forts for data collection and computation. There-
fore, an efficient framework for adapting LLMs to
specific physical domains is highly expected.
Hallucination. 1LMs could generate plausible
but incorrect physics explanations during reason-
ing, especially when it comes to new domains (Ji
et al., 2023; Yao et al., 2023). This hallucination
comes from the fact that current LLMs follow the
paradigm of pattern recognition instead of human-
like understanding, which would damage the re-
liability of LLMs. In future works, researchers
need to carefully build trustworthy LLMs, which
could be achieved by introducing verification mech-
anisms with domain knowledge and external tools.

9 Conclusion

In this work, we present a comprehensive survey of
LLMs for physics, which involves four mainstream
physical tasks, i.e., physical simulation, physics
knowledge discovery, physical reasoning and phys-
ical education. We further provide a novel taxon-
omy of current works based on how they leverage
LLMs for physical problems. Besides, we intro-
duce the current benchmark datasets to facilitate
researchers. In the end, we provide challenges of
current research and potential future directions. In
summary, our work provides the first systematic
review of current progress in LLMs for physics,
which can serve as a roadmap for researchers in the
fields of LLM applications and physics.



10 Limitations

This paper mainly covers LLM applications for
physics. We also notice that there are several works
of LLM for material discovery which is highly re-
lated to physics knowledge discovery, which we
do not include in our survey. In the future, we will
expand our survey with more advanced applica-
tions in these areas to provide more comprehensive
insights for researchers in this domain.
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A Background

A.1 Large Language Models for Scientific
Research

With the rise of scientific machine learning (Hey
et al., 2020; Chang et al., 2024), LLMs have re-
ceived increasing attention in scientific research
including biology, chemistry, and medicine (Zhang
et al., 2024a,b; Luo et al., 2025b; Yan et al., 2025).
For example, in the biological domain, LLMs have
been leveraged for single-cell (Xiao et al., 2024;
Liu et al., 2023) and protein analysis, which help
researchers answer complex questions and extract
deep embeddings from textual inputs. LLMs have
also made significant contributions to the physi-
cal domain, especially in simulation and educa-
tion (Huang et al., 2024a; Latif et al., 2024). De-
spite their growing impact, there has not yet been a
comprehensive survey of LLMs for physics. This
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paper addresses this gap by providing the first sys-
tematic overview of the field.

A.2 Machine Learning for Physics Research

Machine learning has achieved great progress
in physics research across various areas includ-
ing fluid mechanics (Liang et al., 2024; Mayr
et al., 2023; Kashinath et al., 2021), high-energy
physics (Guan et al., 2021; Mondal and Mas-
trolorenzo, 2024), and quantum physics (Peral-
Garcia et al., 2024; Garcia-Ramos et al., 2024).
In fluid mechanics, data-driven approaches have
accelerated simulation processes, while in high-
energy physics, existing approaches have been de-
veloped to analyze particle collisions using collider
data. As a powerful tool, LLMs have wide appli-
cations across four key areas, i.e., simulation (Ali-
Dib and Menou, 2024), knowledge discovery (Du
et al., 2024), reasoning (Meadows et al., 2024),
and physics education (West, 2023). Our survey
provides a comprehensive overview of existing lit-
erature in these four areas to guide future research.

B Difference from Existing Surveys

There have been several surveys related to our work
on scientific LLMs (Zhang et al., 2024a,b). In par-
ticular, Zhang et al. (2024a) summarize the cur-
rent progress in scientific LLMs on biological and
chemical domains, which includes textual scien-
tific models, molecular models, protein models,
genomic models, and multi-modal models. Zhang
et al. (2024b) provide an overview of LLMs for
scientific discovery, which is mostly focused on
chemistry, biology, and medicine, while only in-
cluding seven works on LLMs for physics. Luo
et al. (2025b) focus on how to leverage LLMs to
facilitate scientific research at different stages, i.e.,
hypothesis, planning, writing, and reviewing. Yan
et al. (2025) points out that multimodal LLMs can
benefit reasoning tasks in general science domains.
In summary, they almost focus on general science
with an emphasis on biological and chemical do-
mains while failing to provide an overview from
the physics perspective. Compared with these sur-
veys, we provide the first comprehensive overview
of LLMs targeting at the physical domains.

C Summary of LLM Applications for
Physics

We provide a detailed summary of LLM applica-
tions for physics in four areas, i.e., physical simula-



Table 1: LLMs for physical simulation.

Model Fndn. LLM Category Different Modalities Finetuned
ICON-LM (Yang et al., 2023) ChatGPT Auxiliary Module N Small Model
Ali-Dib and Menou (2024) GPT-4 Language Generator
FoamPilot (Xu et al., 2024a) GPT-4o0 Autonomous Agent v’

FLUID-LLM (Zhu et al., 2024) OPT-125m, OPT-2.7b Auxiliary Module Small Model
UPS (Shen et al., 2024) RoBERTa Auxiliary Module v’ Small Model
DPOT (Hao et al., 2024) Fourier Transformer Generic Encoder v’

Poseidon (Herde et al., 2024) Transformer Generic Encoder v’

Text2PDE (Zhou et al., 2024a) Claude 3.5 Sonnet Auxiliary Module v’ Small Model

POD-LLM (Zou et al., 2024) Undiscovered Auxiliary Module v’ Small Model

Unisolver (Zhou et al., 2024b) Llama3-8B Auxiliary Module v’ Small Model

M-FactFormer (Lorsung et al., 2024) Llama3-8B Auxiliary Module N Small Model
LLM4DS (Luo et al., 2025a) GPT-3.5, Llama3-70B  Language Generator
OpenFORAMGPT (Pandey et al., 2025) 0O1 Autonomous Agent
PINNsAgent (Wuwu et al., 2025) GPT-4 Autonomous Agent

Table 2: LLMs for physics knowledge discovery.

Model Fndn. LLM Category Different Modalities Finetuned
Du et al. (2024) GPT-3.5, GPT-4, Llama2-7B  Autonomous Agent v’
SGA (Ma et al., 2024) GPT-4 Autonomous Agent v’
ICSR (Merler et al., 2024) Llama3-7B Autonomous Agent v’
MLLM-SR (Li et al., 2024) Vicuna Auxiliary Module v’ Small Model
Cai et al. (2024) Transformer Generic Encoder N
RydbergGPT (Fitzek et al., 2024) Transformer Generic Encoder v’
LLM-SR (Shojaee et al., 2024) GPT-3.5, Mixtral-8x7B Autonomous Agent v’
Meta-design (Arlt et al., 2024) Transformer Language Generator v’
Liu et al. (2024d) Llama2-70B Generic Encoder
MoLFormers (Liu et al., 2024c¢) MolLFormer Generic Encoder v’

tion (Table 1), physics knowledge discovery (Table
2), physical reasoning (Table 3), and physics edu-
cation (Table 4). We summarize the categories of
these models based on our new taxonomy, whether
models involve different modalities, and whether
the model is fine-tuned.

D Summary of Datasets and Benchmarks

We provide a detailed summary of LLM for physics
datasets and benchmarks in Table 5, and believe
our work can serve as an important guidance for
researchers in both fields of LLM applications and
physics.
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Table 3: LLMs for physical reasoning.

Model Fndn. LLM Category Different Modalities Finetuned
LLMPhy (Cherian et al., 2024) GPT-01-mini, GPT-40 VLM Autonomous Agent v’
FEABench (Mudur et al., 2024) Benchmark Autonomous Agent N N
MechGPT (Buehler, 2024) OpenOrca-Platypus2-13B Language Generator N
Xiwu (Zhang et al., 2024c¢) Vicuna-1.5 Language Generator N
Meadows et al. (2024) Benchmark Language Generator
MyCrunchGPT (Kumar et al., 2023) ChatGPT Language Generator
LP-COMDA (Liu et al., 2024b) GPT-3.5 Autonomous Agent v’
AstroLLaMA (Nguyen et al., 2023) Llama2-7B Language Generator v’
AstroLLaMA-chat (Perkowski et al., 2024) Llama2-7B Language Generator v’
astroBERT (Grezes et al., 2021) BERT Language Generator v’
PhysBERT (Hellert et al., 2024) BERT Language Generator v’
(Jadhav and Farimani, 2024) GPT-4 Autonomous Agent
(Pan et al., 2025) GPT-4 Language Generator
FT-LLM (Lu et al., 2024) GPT-3.5 Language Generator v’
Physics Reasoner (Pang et al., 2024) GPT-3.5, GPT-4, Llama3-70B  Autonomous Agent
Table 4: LLMs for physics education.
Model Fndn. LLM Category Different Modalities Finetuned
Gupta (2023) GPT-3.5, GPT-4 Language Generator
PhysicsAssistant (Latif et al., 2024) GPT-3.5 Autonomous Agent
NewtBot (Lieb and Goel, 2024) GPT-3.5 Language Generator
Polverini and Gregorcic (2024) ChatGPT-4 Language Generator
Kieser et al. (2023) ChatGPT-4 Language Generator
(West, 2023) GPT-4 Language Generator
SciPhy-RAG (Anand et al., 2023b) Vicuna-7B Language Generator v’

Table 5: An overview of datasets and benchmarks.

Task Benchmark Short Description
FEABench (Mudur et al., 2024) 15 physics problems requiring numerical solutions via finite element analysis
MMLU (Hendrycks et al., 2021) Containing sub-sections on conceptu'al physics, high school physics,
and college physics problems
Physical MMLU-Pro (Wang et al., 2024d) 10.8% of MMLU-Pro problems are under physics domain
Reasoning GPQA (Rein et al., 2024) Containing 227 graduate-level multiple-choice physics problems
SciBench (Wang et al., 2024c) Containing 291 problems from 3 different physics textbooks
JEEBench (Arora et al., 2023) Containing 123 college-level physics problems
Arb (Sawada et al.) Containing 98 numerical physics problems and 31 symbolic physics problems
Scieval (Sun et al., 2024) Containing 1657 physics problem where 1165 of them are scientific calculation questions
Physical  Ali-Dib and Menou (2024) 47 problems on compu?atlonal ph}./su:s 51m1.11at10ns, 1nc1uF11ng celesthl mechanics,
Simulation stellar evolution, 1D fluid dynamics, and non-linear dynamics
LLM4DS (Luo et al., 2025a) 9 datasets focusing on dynamic forecasting and relational reasoning
. 252 symbolic regression problems, including 122 black-box real-world problems
Physics SRBench (La Cava et al,, 2021) and 130 synthetic known-form problems with ground-truth equations
Klrowledge FSReD (Udrescu and Tegmark, 2020) A symbolic regr.esser databise con‘tammg 100 ba51f: physics equ.atlons
Discovery and 20 additional “bonus” equations chosen for higher complexity
L A synthetic dataset with 100 symbolic expression skeletons
SSDNC (Li et al,, 2022) and 10 re-sampled numeric coefficients for each skeleton
Shojaee et al. (2024) Modeling nonlinear oscillators, bacterial growth, and material stress behavior
Physics Gupta (2023) 100 multiple choice GRE physics questions
Education Anand et al. (2023a) 7,983 questions augmented from 766 NCERT school physics problems
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