
UICOMPASS: UI Map Guided Mobile Task Automation via Adaptive
Action Generation

Anonymous ACL submission

Abstract

Mobile task automation is an emerging technol-001
ogy that leverages AI to automatically execute002
routine tasks by users’ commands on mobile003
devices like Android, thus enhancing efficiency004
and productivity. While large language models005
(LLMs) excel at general mobile tasks through006
training on massive datasets, they struggle with007
app-specific workflows. To solve this problem,008
we designed UI Map, a structured representa-009
tion of target app’s UI information. We fur-010
ther propose a UI Map-guided LLM-based ap-011
proach UICOMPASS to automate mobile tasks.012
Specifically, UICOMPASS first leverages static013
analysis and LLMs to automatically build UI014
Map from either source codes of apps or byte015
codes (i.e., APK packages). During task execu-016
tion, UICOMPASS mines the task-relevant in-017
formation from UI Map to feed into the LLMs,018
generates a planned path, and adaptively ad-019
justs the path based on the actual app state and020
action history. Experimental results demon-021
strate that UICOMPASS achieves a 15.87%022
higher task executing success rate than SOTA023
approaches. Even when only APK is available,024
UICOMPASS maintains superior performance,025
demonstrating its applicability to closed-source026
apps.027

1 Introduction028

Automating mobile tasks is crucial as it has the029

potential to significantly enhance user experience,030

particularly in situations where manual interaction031

with devices is inconvenient or unsafe—such as032

for people with disabilities or drivers who need to033

focus on the road. However, modern mobile apps,034

despite offering valuable functionalities, often fea-035

ture complex user interfaces that impose significant036

difficulties for mobile task automation.037

There are two primary approaches to automating038

mobile tasks. The first relies on predefined tem-039

plates to create customized workflows for specific040

tasks. Tools like Siri Shortcuts (Shortcuts, 2025)041

and Google Assistant Routines (Routines, 2025) 042

allow users to design automation sequences across 043

apps, services, and device settings, which can be 044

triggered with a tap or voice command. While 045

this method offers flexibility, it requires manual 046

setup of each workflow, making it time-consuming 047

and cumbersome—particularly for complex or fre- 048

quently updated tasks—limiting its accessibility 049

and scalability. The second approach leverages the 050

powerful understanding capabilities of LLMs (Wen 051

et al., 2024; Ran et al., 2024; Lee et al., 2024; 052

Wang et al., 2024a; Guan et al., 2024) and vi- 053

sual language models (VLMs) (Wang et al., 2024b, 054

2025, 2024b, 2025; Song et al., 2024; Zhang et al., 055

2024c). These tools automate mobile tasks using 056

exploration-based methods that gather UI infor- 057

mation and predict the next UI action. Although 058

achieving promising results, these blind-exploring 059

methods have two key limitations: (1) a lack of 060

knowledge about the app’s global UI structure and 061

functional logic leads to inefficient task execution, 062

and (2) exploration can trigger many irrelevant ac- 063

tions on the user’s device, which is unsafe. 064

To address the limitations of blind exploration 065

in existing tools, inspired by navigation systems 066

that rely on maps to improve driving efficiency, we 067

propose UI Map, a high-level UI structure of the 068

target app. We design UI Map to outline app activi- 069

ties (corresponding to screens), UI elements, and 070

their syntactic and semantic interrelations—similar 071

to how a map includes cities and intersections. By 072

offering high-level guidance, UI Map helps LLMs 073

better understand the global app’s UI structure, 074

make more informed decisions, and avoid ineffi- 075

cient or irrelevant actions, thereby enhancing the 076

effectiveness of task automation. 077

In this paper, we propose UICOMPASS, an 078

approach that automatically generates UI Maps 079

and leverages them to facilitate task execution. 080

UICOMPASS first creates UI Map by combining 081

static program analysis and LLMs. Initially, static 082

1

analysis processes the target application to gener-083

ate an initial UI Map by analyzing either source084

codes or byte codes (i.e., APK packages), support-085

ing both open-source and closed-source apps. How-086

ever, static analysis may overlook certain key ele-087

ments and relationships, and struggle with under-088

standing the semantics of UI components. Hence,089

UICOMPASS uses LLMs to enrich UI descriptions090

and incorporate missing elements. Since UI Map is091

automatically generated, this process doesn’t add092

extra workload for developers, simplifying the inte-093

gration of UICOMPASS into the existing workflow.094

Subsequently, UICOMPASS leverages UI Map to095

automate mobile tasks. For a given task, UICOM-096

PASS initially identifies and extracts a task-specific097

sub-graph from UI Map, which is then analyzed098

by LLM to devise an initial path for task comple-099

tion. Since UI Map is statically derived from the100

application code (e.g., source code or bytecode),101

it might not accurately reflect the app’s dynamic102

behaviors. Therefore, UICOMPASS employs an103

adaptive UI action generation strategy. This inno-104

vative approach dynamically modifies the planned105

execution path in response to the current state of the106

application and the ongoing progress of the task,107

enabling efficient and accurate task completion.108

We conducted experimental evaluations of109

UICOMPASS on DroidTask (Wen et al., 2024)110

and AndroidWorld (Rawles et al., 2025) dataset.111

UICOMPASS achieved task success rates of 68.27%112

(14.48% improvement) with DeepSeek-V3 as back-113

end LLM and 78.62% (15.87% improvement) with114

Qwen-Max. In terms of time efficiency, while115

UICOMPASS incurs higher per-step overhead, it116

achieves time savings by reducing the total number117

of steps required for task completion. Given that118

unrelated steps may lead to unpredictable behavior,119

which is undesirable from a user perspective, we120

argue that this trade-off remains justified. Ablation121

studies show that UI Map and the adaptive replan-122

ning modules are effective in enhancing the agent’s123

mobile task execution capability.124

Our contributions can be outlined as follows:125

• We propose to automate mobile tasks with the126

guidance of UI Map, a high-level UI structure of127

target application.128

• We developed UI Map generation approaches129

based on either source code or APK bytecode,130

and an adaptive action generation strategy.131

• Experimental results show UICOMPASS achieves132

15.87% (source code-based) and 11.73% (byte 133

code-based) improvement over state-of-the-art 134

approaches in terms of task success rates. Our 135

tool and experimental results are open available 1. 136

2 Background and Related Work 137

In this section, we will provide an introduction to 138

Android programming and mobile task automation. 139

2.1 Background of Android App Code 140

At the highest level, every Android app declares its 141

activities (each representing a single screen) and 142

the partial transfer relationships between its activ- 143

ities in the AndroidManifest.xml file. An activ- 144

ity is organized by lifecycle states (e.g., created, 145

resumed) governing their visibility and interaction 146

logic. The vast majority of interactive UI elements 147

(e.g., Button, TextView) and their static attributes 148

(such as @+id/submit_button) are defined in 149

XML layout files. Developers assign specific func- 150

tionality to these elements by adding event listeners 151

(such as setOnClickListener) within the code. 152

App structure, behavior, and interaction logic 153

are crucial for tasks. While LLMs learn general 154

patterns, they lack app-specific knowledge. Thus, 155

extracting implementation logic from code has the 156

potential to enhance LLMs’ app task capabilities. 157

2.2 Mobile Task Automation 158

Mobile task automation aims to complete a user- 159

described task T (expressed in natural language 160

without specific instructions) on the device. The 161

agent needs to determine the actions to be per- 162

formed based on the given task. 163

Traditional tools (e.g., Siri, Google Assistant) 164

rely on rigid templates, limiting their ability to 165

handle complex tasks and requiring significant de- 166

veloper effort. Supervised (Burns et al., 2022; Li 167

et al., 2020; Sun et al., 2022; Xu et al., 2021) or 168

reinforcement learning (Humphreys et al., 2022; Li 169

and Riva, 2021; Toyama et al., 2021) demanded 170

extensive training data and costs while remaining 171

inflexible for real-world mobile scenarios. 172

LLMs (Wen et al., 2024; Ran et al., 2024; Lee 173

et al., 2024; Zhang et al., 2023b, 2024a; Wang 174

et al., 2024c; Zhang et al., 2024b) and visual mod- 175

els (Zhang et al., 2023a) (such as multimodal mod- 176

els (Wang et al., 2024b, 2025; Song et al., 2024; 177

Zhang et al., 2024c; Li et al., 2025; Yan et al., 2023; 178

1https://anonymous.4open.science/r/
UICompass-B193/

2

https://anonymous.4open.science/r/UICompass-B193/
https://anonymous.4open.science/r/UICompass-B193/

Hoscilowicz et al., 2024; Zhu et al., 2025; Chris-179

tianos et al., 2025; Ma et al., 2024))excel in mobile180

task automation due to their advanced understand-181

ing and reasoning capabilities. However, their de-182

cisions often follow general practices rather than183

app-specific considerations, necessitating the provi-184

sion of app-specific information to enable tailored185

decision-making. Existing approaches have devel-186

oped exploration-based frameworks that systemat-187

ically investigate app user interfaces and archive188

exploration outcomes to facilitate subsequent ac-189

tion generation. However, due to an insufficient190

understanding of the app, these methods generate a191

large number of trial actions that are unacceptable.192

3 Method193

Figure 1 presents the UICOMPASS framework,194

which completes tasks in three steps: UI Map gen-195

eration (Section 3.1), path planning (Section 3.2),196

and adaptive action generation (Section 3.3).197

3.1 UI Map Generation198

To enable the LLM to understand the usage logic of199

an app quickly, we propose UI Map, a graph used200

to describe the app’s UI and interaction logic. Just201

as maps in a navigation task, the UI Map serves to202

assist LLM in swiftly identifying potential paths203

prior to the execution of a task. Formally, UI Map204

is defined as G = (V,E), where V represents the205

set of nodes and E represents the set of edges. The206

node set V is partitioned into two distinct subsets:207

• Activity Nodes Na: represent the set of activ-208

ities in the app. Each node is associated with209

an attribute asum, describing the functionality210

summarization of this activity.211

• Element Nodes Nel: represent basic elements212

like Button, Textfield, CheckBox, and etc. Each213

node is associated with two attributes astatic and214

adyn, specifying its static features (e.g., id) and215

dynamic features (e.g., jump to setting activity216

when this button is clicked), respectively.217

The set of edges E is composed of two types:218

• Containment Edges Ec: for any u ∈ Na and219

v ∈ Nel, (u, v) ∈ Ec if u contains v.220

• Transition Edges Et: edge (s, t) ∈ Et, if there221

is a transition path from a source activity s ∈ Na222

to target activity t ∈ Na.223

Figure 2 depicts a portion of the UI Map for the 224

app Gallery generated by UICOMPASS. With this 225

structure, each activity node contains its own se- 226

mantic attributes, such as “viewing files, adjusting 227

settings”, which helps quickly understand the func- 228

tionality. The transition edges between activities 229

(e.g., MainActivity to MediaActivity) aid in quickly 230

understanding potential paths to the target activity. 231

Each activity node is explicitly linked to a set of el- 232

ement nodes via containment edges. Each element 233

comprises static attributes (e.g., @id/media_grid) 234

and dynamic attributes (e.g., clicking this element 235

to open media in a new activity). These attributes 236

help understand the functionality of elements and 237

infer the transitions they might trigger. 238

To automatically generate UI Map, UICOMPASS 239

first statically analyzes the target application to ex- 240

tract G’s nodes and edges. However, considering 241

traditional static program analysis may miss some 242

important nodes/edges (Rountev and Yan, 2014) 243

and struggles to model dynamic behavior, we pro- 244

pose to integrate static program analysis with LLM. 245

As a complement strategy, LLM infers the implic- 246

itly defined nodes/edges in the code and extract dy- 247

namic program behaviors, which can help UICOM- 248

PASS generate a comprehensive UI Map. 249

Static analysis for UI Map. In the first phase, 250

static analysis is utilized to construct the initial UI 251

Map by parsing three key components of the An- 252

droid app: AndroidManifest.xml file, layout files, 253

and code. The details of how each component con- 254

tributes to the UI Map are as follows: 255

1) AndroidManifest.xml File: This essential 256

XML document describes all activities Na and 257

partial transition edges Et between activities. 258

2) Layout Files: Layout files define the visual 259

structure of UI elements for an activity. By an- 260

alyzing these files, UICOMPASS initializes the 261

set of element nodes Nel, extracts their static 262

attributes astatic, and links them to the corre- 263

sponding activity. Once an activity is associated 264

with a layout, all its UI elements are assigned to 265

that activity. 266

3) Code Analysis: Source code or bytecode from 267

APK files is also utilized to expand the activ- 268

ity transition edges Et and containment edges 269

Ec. For activity transition edges Et, UICOM- 270

PASS focuses on functions startActivity() 271

and startActivityForResult() and per- 272

forms data flow analysis to obtain the source 273

3

Planned PathFocusing Stategy

2 UI Path Planning 3 Adaptive UI Action Generation

1 UI Map Generation
UI Map

Code

Layout

Manifest

LLM AnalysisStatic Analysis

Call graph

Inheritance
Tree

Semantic
Enhancement

Map
Enhancement

Map
Construction

Entity
RecognitionFile Parsing

Code
Analysis

Task

UI Map
Update

Project

Perception Adaptive Replaning Action Generation

Enhance

Executed Path

Planned Path
Element

List

Task

Activity Element
Contain Transfer

Figure 1: The overall workflow of UICOMPASS

MainActivity

MediaActivity

SplashActivity

ViewPagerActivity

Summary:The SplashActivity is
the entry point for the app...

Summary:The ViewPagerActivity is designed to display a
collection of media files ... such as viewing files...

Static: @+id/directories_grid...

Dynamic:[click]opens the MediaActivity
for the selected directory.

Static: @+id/media_grid...

Dynamic:[click]opens the selected
media file in a new activity for
viewing.

Figure 2: Part of the UI Map of the app named Gallery.

activity s and the target activity t, adding274

a directed edge (s, t). For containment275

edges Ec, UICOMPASS analyzes the lay-276

out loading functions setContentView() and277

LayoutInflater.inflate() and identifies278

the layout files specified in their parameters,279

thereby inferring the containment relationships280

between activities and elements.281

LLM-based Semantic Enrichment. To address282

the limitations of static analysis in building a com-283

prehensive UI Map, we use an LLM to semantically284

enrich the initial static graph. The LLM’s strong285

code understanding enables it to handle complex286

scenarios like third-party, implicitly defined rela-287

tions, and custom elements. To improve the LLM’s288

comprehension, UICOMPASS performs call graph289

and data flow analyses, and builds an activity in-290

heritance tree. Following the topological order of291

the call graph and providing crucial information292

such as called custom method summaries and vari-293

able definitions/declarations (highly useful for link-294

ing element IDs and event handlers), UICOMPASS295

prompts the LLM to perform the code analysis296

tasks, ultimately yielding four key outputs:297

1) Custom method summaries: generate natural298

language functionality description of methods.299

2) Semantically enriched UI element nodes: 300

generates element’s dynamic properties adyn by 301

understanding the event handlers of elements. 302

3) Enhanced activity transition edges (Et): un- 303

cover potential activity transition edges. 304

4) Enhanced containment edges (Ec): com- 305

plement containment edges by leveraging the 306

LLM’s semantic understanding capabilities. 307

Additionally, UICOMPASS performs functional 308

summarization of activity nodes in the UI Map. To 309

capture inherited behaviors, it processes activities 310

in topological order based on the inheritance tree. 311

For each activity, the LLM combines summaries 312

from its own class and parent class summaries to 313

generate a comprehensive activity’s functional sum- 314

mary asum. This LLM-driven step enhances the 315

initial UI Map, making it semantically richer. 316

3.2 UI Path Planning 317

Just as in navigation task, the navigation system 318

offers possible routes for reference while the actual 319

driving process is decided by the driver according 320

to real world situations. Inspired by this, UICOM- 321

PASS also provides the initial path planning and 322

adjust it based on the state of the app during the 323

actual execution. 324

UICOMPASS generates a planned path in natu- 325

ral language rather than specific actions. Actions 326

typically include an action type (e.g., click, input), 327

an element locator (e.g., element ID), and parame- 328

ters (e.g., input text). However, locating elements 329

from the static UI Map can be challenging because 330

1) some elements lack specific location informa- 331

tion; 2) some elements are dynamically loaded. For 332

4

Activity:
com.simplemobiletools.applauncher.activities.SettingsActivity.
Instructions:
3. In the SettingsActivity, locate the 'Color Customization' section.
4. Click on the 'Customize Colors' option.
5. Select the 'Light' theme from the available options.
6. Confirm the selection to apply the light theme.

UI Path:
Activity:
com.simplemobiletools.applauncher.activities.MainActivity.
Instructions:
1. Open the app and navigate to the MainActivity.
2. Click on the 'Settings' menu item in the options menu.

Figure 3: The generated UI path for task “Change theme
color to light” in the “App Launcher” app.

instance, contact lists in a contact app are gener-333

ated after data loads. Asking the LLM to generate334

concrete actions could lead to invalid locators, dis-335

rupting execution. Thus, UICOMPASS first creates336

a high-level plan using natural language instruc-337

tions to outline necessary steps, and then generates338

concrete actions according to runtime UI states.339

UICOMPASS generates a UI path by analyzing340

the relationship between the task and UI Map us-341

ing LLM. To avoid overwhelming the LLM with342

excessive information, especially when the UI Map343

is large, UICOMPASS employs a focusing strategy.344

First, it summarizes all activities in the UI Map and345

identifies those relevant to the task. Then, it builds346

a partial graph of these focused activities and com-347

putes the shortest paths from the entry activity to all348

of them, further expanding the focus set to include349

intermediate activities. If the graph is small, all350

activities are considered focused to ensure compre-351

hensive understanding. Specific prompt is provided352

in Appendix B.2. Finally, UICOMPASS generates a353

UI path I by referring to the partial UI Map. I com-354

prises multiple action blocks, with each containing355

an activity ID activity i and a list of instructions Ii,356

indicating executing Ii in activity i. Formally,357

I = {(activity1, I1), · · · , (activitym, Im)}358

For instance, Figure 3 illustrates the UI path for359

the task “Change theme color to light” in the “App360

Launcher” app. To complete this task, the gener-361

ated UI path: open the MainActivity, click the362

setting button to transition to SettingActivity,363

and select Light theme.364

This two-layer design helps UICOMPASS more365

intuitively understand the activities it will go366

through and the actions it needs to perform.367

UICOMPASS can determine whether the current368

path is incorrect from a global perspective by judg-369

ing whether the current activity matches the activ- 370

ity in the UI Path. At the same time, the specific 371

instructions assist UICOMPASS in quickly identify- 372

ing what the current operation should be. 373

3.3 Adaptive UI Action Generation 374

To generate concrete UI actions, we propose an 375

adaptive mechanism that combines initial natural 376

language instructions with real-time program states. 377

It operates in a loop with three stages: Perception, 378

Adaptive Replanning, and Action Generation, up 379

to a maximum number of iterations. 380

Perception: UICOMPASS first runs the target 381

app and captures its screen information s in XML 382

format, which details the UI elements and their 383

static properties, such as IDs, text, and positions. 384

This runtime screen information s is then aligned 385

with the UI Map to determine the corresponding ac- 386

tivity node ns. Subsequently, s and ns are merged 387

into s′, combining the full element list from s with 388

the dynamic attributes adyn from ns. 389

Adaptive Replanning: The UI path I obtained 390

from Section 3.2 may not precisely model App’s 391

behaviors because of dynamically loaded elements. 392

Hence, UICOMPASS conducts an adaptive replan- 393

ning according to both UI Map and dynamic app 394

states. Specifically, given s′ and history instruc- 395

tions that have been executed, LLM is prompted to 396

update UI path I, and return the most appropriate 397

next instruction in. When in is empty, it signifies 398

that the LLM considers the task to be completed 399

successfully. UICOMPASS consolidates this entire 400

process into a single interaction with the aim of 401

reducing the number of interactions and thereby 402

shortening the time required for decision-making. 403

Specific prompt and examples can be found in Ap- 404

pendix B.3. 405

Action Generation: Given that instructions are 406

expressed in natural language and thus not directly 407

executable, UICOMPASS must translate them into 408

concrete actions. Specifically, UICOMPASS con- 409

verts the elements mentioned in in to candidate 410

executable actions based on their types, such as 411

‘scroll’, ‘click’, or ‘input’. If an action type is ‘in- 412

put’, UICOMPASS will prompt the LLM to provide 413

the specific input value. For each action in the 414

candidate list, LLM is provided with the static and 415

dynamic attributes of the element to facilitate the 416

LLM’s deeper understanding of its functionalities 417

and enable more informed decision-making. We 418

provide prompt and examples in Appendix B.4. 419

Once LLM selects a specific action, UICOMPASS 420

5

converts it into the corresponding Android Debug421

Bridge (ADB) command for execution.422

4 Experiments423

We evaluated UICOMPASS’s performance experi-424

mentally.425

4.1 Experimental Settings426

Datasets. We evaluated UICOMPASS and baseline427

tools on DroidTask (Wen et al., 2024) and Android-428

World (Rawles et al., 2025) dataset, which are com-429

monly used to evaluate mobile task automation. We430

obtained 145 tasks from 12 different apps in Droid-431

Task and 44 tasks from 9 apps in AndroidWorld.432

We primarily filtered out tasks that were unsup-433

ported by baseline tools or no longer executable.434

Selection criteria are detailed in Appendix A.2.435

Baseline Methods. We chose AutoDroid (Wen436

et al., 2024), Guardian (Ran et al., 2024) and437

Mobile-Agent-v2 (Wang et al., 2024b) as base-438

line tools for experimental comparison. Both Auto-439

Droid and Guardian utilize LLMs and exploration-440

based mechanisms to facilitate task execution.441

Mobile-Agent-v2 uses a Multi-agent architecture442

and VLM to assist in task completion.443

Model Selection. Considering both cost effi-444

ciency and performance, we selected DeepSeek-445

V3 (DeepSeek-AI et al., 2025), Qwen-Max (Bai446

et al., 2023a), and Qwen-VL-max (Bai et al.,447

2023b; Qwen, 2025) as models for the evaluation.448

Metrics. Following existing work (Wen et al.,449

2024; Ran et al., 2024), we measure the following450

metrics: 1) Success Rate (SR): The ratio of suc-451

cessfully completed tasks to the total number of452

tasks. 2) Average Completion Proportion (ACP):453

The proportion of the executed action sequence454

that matches the prefix of the ground truth action455

sequence. 3) Correct Termination Rate (CTR): The456

rate of successfully stopping exploration when the457

task is completed. 4) Success Rate Penalized by458

Path Length (SPL): A metric that evaluates the459

rate that is calculated by the ground truth action460

sequence length divided by the actual action se-461

quence length.462

4.2 Overall Results of Task Completion463

We implemented two versions of UICOMPASS that464

extract UI Map from source code and byte code,465

respectively. The experimental results are shown in466

Table 1. Across experiments conducted with three467

models, two datasets, and four metrics, UICOM-468

PASS’s two versions achieved the best performance469

in 20 out of a total of 24 metric results. In terms 470

of SR, UICOMPASS’s Source code version showed 471

an average improvement of 13.52% compared to 472

AutoDroid (the best-performing baseline), while 473

its byte code version exhibited an average increase 474

of 13.44%. In contrast, the Guardian and Mobile- 475

Agent-v2 have trouble to understand app-specific 476

information, leading to a comparatively lower task 477

execution accuracy. In terms of ACP, CTR and SPL 478

metrics, UICOMPASS also outperforms almost all 479

the baseline tools. UICOMPASS outperforms exist- 480

ing tools since UI Map facilitates task understand- 481

ing. Taking the task “Disable showing the dial pad 482

button on the main screen” as an example, exist- 483

ing tools attempt to operate the main activity to 484

disable the dial pad. However, this task is config- 485

ured within the Settings activity. UI Map enables 486

UICOMPASS to accurately comprehend the task’s 487

intent with efficiency. Overall, the experimental 488

findings indicate that UICOMPASS, leveraging a 489

UI Map-based approach, can effectively enhance 490

the performance of mobile task automation. 491

Comparative analysis of different dataset: On 492

the AndroidWorld dataset, performance was de- 493

graded compared to DroidTask across all evalu- 494

ated tools. For instance, the success rate (SR) de- 495

creased to 37.21% for UICOMPASS (Byte code) 496

and 41.86% for UICOMPASS (Source code). This 497

performance decrease can be attributed to several 498

key factors in the AndroidWorld dataset: (1) tasks 499

often include more detailed and specific require- 500

ments, (2) there are more complex multi-step ac- 501

tions such as deleting multiple data items in a single 502

task, and (3) tasks require deeper understanding, 503

such as identifying duplicate data items. 504

Comparative analysis of different models. To 505

investigate the impact of different LLMs on tools’ 506

performance, we conducted a comparative analysis 507

between DeepSeek-V3 and Qwen-Max. Our ex- 508

periments reveal two key insights: 1) Model selec- 509

tion significantly impacts tool performance, where 510

stronger LLMs (e.g., Qwen-Max) yield higher task 511

completion rates (+10.35% for UICOMPASS and 512

+8.96% for AutoDroid vs. DeepSeek-v3). Due 513

to enhanced reasoning and contextual understand- 514

ing—a capability of Qwen-Max, UICOMPASS ef- 515

fectively completes more tasks then DeepSeek-v3. 516

2) UICOMPASS demonstrates consistent superior- 517

ity across all metrics (SR/ACP/CTR/SPL) than Au- 518

toDroid, which conclusively establishes UICOM- 519

PASS’s model-agnostic robustness. 520

Comparative analysis of different apps. To 521

6

Benchmark Methods
DeepSeek-v3 Qwen-Max Qwen-VL-Max

SR↑ ACP↑ CTR↑ SPL↑ SR↑ ACP↑ CTR↑ SPL↑ SR↑ ACP↑ CTR↑ SPL↑

DroidTask

AutoDroid 53.79% 71.72% 76.92% 15.87% 62.75% 77.71% 64.35% 17.92% 56.55% 74.24% 68.29% 17.02%
Guardian 45.20% 71.83% 0.0% 1.70% 53.10% 75.78% 2.59% 1.94% 40.69% 64.41% 0.00% 1.53%
Mobile-Agent-v2 - - - - - - - - 13.79% 26.17% 60.00% 4.63%
UICOMPASS(Byte code) 63.44% 80.63% 60.86% 20.34% 74.48% 85.16% 75.00% 22.08% 72.41% 83.62% 61.90% 19.31%
UICOMPASS(Source code) 68.27% 81.96% 80.80% 20.92% 78.62% 87.07% 76.31% 24.15% 73.79% 82.79% 68.22% 20.76%

AndroidWorld

AutoDroid 25.58% 57.47% 63.63% 1.12% 20.93% 53.93% 33.33% 1.48% 16.28% 48.44% 28.57% 0.85%
Guardian 18.60% 31.99% 0.00% 0.18% 20.93% 35.40% 11.11% 0.41% 18.60% 37.29% 0.00% 0.16%
Mobile-Agent-v2 - - - - - - - - 6.81% 22.94% 33.33% 0.47%
UICOMPASS(Byte code) 37.21% 48.86% 50.00% 2.15% 37.21% 46.15% 62.50% 2.28% 31.82% 45.85% 42.85% 1.39%
UICOMPASS(Source code) 30.23% 41.86% 53.84% 1.62% 30.23% 43.37% 69.23% 1.92% 41.86% 66.24% 55.56% 2.18%

Table 1: Effectiveness of Task Completion (Red indicates 1st place, blue indicates 2nd place).

Note

App
Lau

nch
er

Cale
nd

er

Cam
eraCloc

k

Con
tac

ts
Diale

r

File
man

ag
er

Galle
ry

Mess
ag

er

Musi
cPl

ay
er

Vo
ice

Re
cod

er
0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

DroidTask Dataset

Aud
ioR

eco
rde

r

Osm
an

d

Re
tro

 Musi
c

Ex
pe

nse
Mark

or

Broc
col

i

Mess
en

ge
r

Draw

Cale
nd

ar

AndroidWorld Dataset

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

Figure 4: Success Rate across Different Apps

1 2 3 4 5 6 7 8 9 10
Path Length

0

10

20

30

40

N
um

be
r o

f S
uc

ce
ss

fu
lly

 C
om

pl
et

ed
 T

as
ks

DroidTask Dataset

1 2 3 4 5 6 7 8 9 10
Path Length

0

2

4

6

8

10
AndroidWorld Dataset

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

Figure 5: Success Rate across Different Path Length.

further explore UICOMPASS’s performance across522

different apps, we present comparative experi-523

mental results in Figure 4. Our cross-app anal-524

ysis considers Qwen-VL-Max as base model, as525

Mobile-Agent-v2 requires VLMs. Experiment re-526

sults shows that UICOMPASS (either source code527

or bytecode version) outperforms all baselines in528

84% (16/19) of apps. AutoDroid performs best529

on AppLauncher and Broccoli, and Mobile-Agent-530

v2 outperforms all tools on Osmand. This may531

be because: 1) Mobile-Agent-v2’s vision module532

is optimized for map apps like Osmand, enabling533

direct coordinate clicks. 2) the failure of UICOM-534

PASS to parse elements from third-party libraries535

causes incomplete UI Map, which leads to infe-536

rior performance compared to AutoDroid on two537

apps. Nonetheless, UICOMPASS performs robustly538

in most apps, demonstrating strong generalization.539

Comparative analysis of different path540

lengths. We evaluate tools’ performance with dif-541

ferent task difficulties, with path length as a com- 542

plexity metric. As shown in Figure 5, for simple 543

tasks (1–2 steps), all the baseline tools and UICOM- 544

PASS perform consistently good, with UICOM- 545

PASS produces slightly better results. However, 546

when automating medium-level complex tasks (3–6 547

steps), both Guardian and Mobile-Agent-v2 ’s 548

performances are much worse than UICOMPASS. 549

For longer tasks (7–10 steps), AutoDroid and 550

Guardian complete only 1 and 2 tasks, respectively, 551

whereas Mobile-Agent-v2 fails entirely. In con- 552

trast, UICOMPASS still complete 7 tasks. All tools 553

failed to complete tasks that required more than 10 554

steps, so these tasks are not included in the figure. 555

The evaluation results show that as tasks become 556

more complex, UICOMPASS consistently achieves 557

strong performance, while the performance of base- 558

line tools drops significantly. 559

Comparison of source code and bytecode. 560

Compared to the bytecode version, the source code 561

version of UICOMPASS generally performs better 562

on 9 apps. This is primarily because bytecode, af- 563

fected by obfuscation, loses semantic information. 564

In contrast, source code retains more semantic de- 565

tails, enabling UICOMPASS to better understand 566

the app’s logic and plan more accurate execution 567

paths. However, in certain apps, e.g., Clock, the 568

bytecode version may have an advantage. For ex- 569

ample, bytecode includes compiled third-party li- 570

braries, which may contain UI design or Activity 571

logic that is not included from the app’s source 572

code. 573

4.3 Analyzing Decision-Making Efficiency 574

To objectively compare the efficiency of different 575

tools, we focus exclusively on measuring the dura- 576

tion of their decision-making phases (denoted as 577

time_d). In UICOMPASS, this phase corresponds 578

to the Adaptive Replanning process. Other phases 579

(e.g., action execution) are susceptible to external 580

noise factors such as device performance fluctua- 581

7

Guardian AutoDroid UICompass
Average Step Time (s) 0.89 4.21 5.49

Step Efficiency 30 4.65 3.43
time_davg 26.91 19.6 18.9

Table 2: Time Efficiency Comparison.

Config UI Map Adaptive SR↑ ACP↑ CTR↑ SPL↑
C-1 × × 37.24% 64.57% 60.00% 1.77%
C-2 ✓ × 42.75% 64.43% 66.67% 15.00%
C-3 × ✓ 55.86% 72.62% 53.84% 17.66%
C-4 ✓ ✓ 68.27% 81.96% 80.80% 30.85%

Table 3: Ablation Results of UICOMPASS on DroidTask

tions and UI loading latency. These extrinsic varia-582

tions could otherwise obscure the genuine dispar-583

ities in tools’ strategic capabilities. To ensure a584

fair comparison, we only analyzed tasks that were585

successfully completed by all tools except Mobile-586

Agent-v2 , denoted as task∩. We excluded Mobile-587

Agent-v2 due to its low number of completed tasks.588

Therefore, the average decision time of valid tasks589

(denoted as time_davg) can be calculated using the590

following formula:591

time_davg =
1

|task∩|
∑

t∈task∩

time_dt (1)592

We evaluated all three tools on 41 identical593

tasks, measuring both task completion efficiency594

time_davg and step efficiency (averaged steps per595

task). As shown in Table 2, UICOMPASS demon-596

strated superior step economy, requiring only 3.43597

steps/task (mean) – 1.22 fewer than AutoDroid598

(4.65 steps) and 2.1 fewer than Guardian (5.53599

steps). In terms of time, although UICOMPASS600

took longer for each decision-making step, its use601

of fewer steps resulted in less average time spent602

per task overall. Although Guardian consumes min-603

imal time per interface (as it only outputs action604

indices without requiring the LLM to generate any605

reasoning content), the excessive number of steps606

substantially impacts its average decision time. For607

users, an agent performing a series of irrelevant608

actions on an app could pose significant risks.609

4.4 Ablation Study610

To evaluate the effectiveness of UI Map and the611

adaptive replanning, we further conducted ablation612

experiments. When UI Map is omitted, UICOM-613

PASS generates an initial UI path based solely on614

the remaining information. When adaptive replan-615

ning is disabled, UICOMPASS follows the UI path616

strictly in its original sequence.617

The effectiveness of UI Map. The experimental 618

results in Table 3 demonstrate that UI Map signifi- 619

cantly improves task automation performance, both 620

with (Config C-2 and C-4) and without (Config C-1 621

and C-3) UI Map. Specifically, task success rates 622

(SR) increased by 5.51% and 12.41% respectively, 623

proving that global information effectively guides 624

task execution. Task termination (CTR) accuracy 625

improved by 6.67% and 26.96%, attributable to 626

optimized initial route planning; Concurrent im- 627

provements in ACP and SPL metrics indicate the 628

system enhances completion rates while reducing 629

redundant exploration steps. 630

The effectiveness of adapting. The experimen- 631

tal results demonstrate that UI Map’s Adapting 632

module significantly enhances task completion ca- 633

pabilities: Task success rates improved by 18.62% 634

(Config C-3 over C-1) and 25.52% (Config C-4 635

over C-1), while ACP metrics increased by 8.05% 636

and 17.53% respectively. This confirms the ef- 637

fectiveness of adaptive replanning in dynamically 638

adjusting execution paths based on real-time appli- 639

cation states. The CTR decreased by 6.16% (Con- 640

fig C-3 over C-1) but increased by 14.13% (Config 641

C-4 over C-1), indicating that UI Map’s guidance 642

is more crucial for recognizing task completion. 643

The substantial performance gap observed between 644

C-2 and C-4 stems from the gap of static code and 645

dynamic runtime behaviors. A representative case 646

occurs when the application dynamically skips on- 647

boarding screens while the predicted path continues 648

to include these unnecessary instructions. These 649

findings compellingly demonstrate the importance 650

of the adaptive model in UICOMPASS. 651

5 Conclusion 652

In this paper, we propose a method for mobile task 653

automation using a UI Map extracted from the code, 654

called UICOMPASS. UICOMPASS leverages LLM 655

and static analysis to analyze the code and gener- 656

ates the UI Map. UICOMPASS can then use this 657

UI Map and the given task to generate an initial UI 658

path. During task execution, we introduce adaptive 659

replanning that combines action history and UI to 660

continuously replan the UI path. Through extensive 661

experiments, we demonstrate the effectiveness of 662

UICOMPASS in task completion capability, achiev- 663

ing state-of-the-art performance. 664

8

Limitation665

Although our work demonstrates UICOMPASS666

achieves excellent performance, it still has some667

limitations. 1) The integrity of the UI Map based668

on code analysis is insufficient. Due to the complex669

implementation of programs (such as dynamically670

loaded elements), code parsing is hard to obtain671

all elements and their functionalities, leading to672

the possibility that the UI Map may miss some673

elements. These missing elements affect the task674

success rate of UICOMPASS. Although UICOM-675

PASS uses adaptive replanning to mitigate this is-676

sue, we will still further explore better methods677

to obtain a more complete UI Map in the future.678

2) UICOMPASS only uses the UI Map of a single679

app as a reference. When facing cross-app tasks,680

UICOMPASS relies on LLM to infer the actions681

that should be performed on other apps. This lim-682

its the performance of UICOMPASS in cross-app683

tasks. In the future, we will explore how to com-684

bine the UI Maps of multiple apps to help improve685

the performance of cross-app tasks.686

References687

Jinze Bai, Shuai Bai, and etc. 2023a. Qwen technical688
report. arXiv preprint arXiv:2309.16609.689

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,690
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,691
and Jingren Zhou. 2023b. Qwen-vl: A versatile692
vision-language model for understanding, localiza-693
tion, text reading, and beyond. arXiv preprint694
arXiv:2308.12966.695

Max Brunsfeld and Contributors. 2025. Tree-sitter: An696
incremental parsing system for programming tools.697
Accessed: 2025-02-01.698

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha699
Kumar, Kate Saenko, and Bryan A Plummer. 2022.700
A dataset for interactive vision-language navigation701
with unknown command feasibility. In European702
Conference on Computer Vision, pages 312–328.703
Springer.704

Filippos Christianos, Georgios Papoudakis, Thomas705
Coste, Jianye Hao, Jun Wang, and Kun Shao.706
2025. Lightweight neural app control. Preprint,707
arXiv:2410.17883.708

DeepSeek-AI, Aixin Liu, Bei Feng, and etc.709
2025. Deepseek-v3 technical report. Preprint,710
arXiv:2412.19437.711

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao712
Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,713
Rui Yan, and Shuo Shang. 2024. Mobile-bench: An714

evaluation benchmark for llm-based mobile agents. 715
Preprint, arXiv:2407.00993. 716

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, 717
Feiyue Ni, Ruihua Song, and Chenyi Zhuang. 2024. 718
Intelligent agents with llm-based process automa- 719
tion. In Proceedings of the 30th ACM SIGKDD Con- 720
ference on Knowledge Discovery and Data Mining, 721
pages 5018–5027. 722

Jakub Hoscilowicz, Bartosz Maj, Bartosz Kozakiewicz, 723
Oleksii Tymoshchuk, and Artur Janicki. 2024. Click- 724
agent: Enhancing ui location capabilities of au- 725
tonomous agents. Preprint, arXiv:2410.11872. 726

Peter C Humphreys, David Raposo, Tobias Pohlen, Gre- 727
gory Thornton, Rachita Chhaparia, Alistair Muldal, 728
Josh Abramson, Petko Georgiev, Adam Santoro, and 729
Timothy Lillicrap. 2022. A data-driven approach 730
for learning to control computers. In International 731
Conference on Machine Learning, pages 9466–9482. 732
PMLR. 733

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan 734
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and In- 735
sik Shin. 2024. Mobilegpt: Augmenting llm with 736
human-like app memory for mobile task automation. 737
In Proceedings of the 30th Annual International Con- 738
ference on Mobile Computing and Networking, pages 739
1119–1133. 740

Hongxin Li, Jingfan Chen, Jingran Su, Yuntao Chen, 741
Qing Li, and Zhaoxiang Zhang. 2025. Autogui: Scal- 742
ing gui grounding with automatic functionality anno- 743
tations from llms. Preprint, arXiv:2502.01977. 744

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason 745
Baldridge. 2020. Mapping natural language instruc- 746
tions to mobile ui action sequences. In Proceedings 747
of the 58th Annual Meeting of the Association for 748
Computational Linguistics, pages 8198–8210. 749

Yuanchun Li and Oriana Riva. 2021. Glider: A rein- 750
forcement learning approach to extract ui scripts from 751
websites. In Proceedings of the 44th International 752
ACM SIGIR Conference on Research and Develop- 753
ment in Information Retrieval, pages 1420–1430. 754

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024. 755
Coco-agent: A comprehensive cognitive mllm 756
agent for smartphone gui automation. Preprint, 757
arXiv:2402.11941. 758

Qwen. 2025. Introducing qwen-vl. 759

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan 760
Cao, Ying Zhang, Wei Yang, and Tao Xie. 2024. 761
Guardian: A runtime framework for llm-based ui 762
exploration. In Proceedings of the 33rd ACM SIG- 763
SOFT International Symposium on Software Testing 764
and Analysis, pages 958–970. 765

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, 766
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice 767
Li, William Bishop, Wei Li, Folawiyo Campbell- 768
Ajala, Daniel Toyama, Robert Berry, Divya Tya- 769
magundlu, Timothy Lillicrap, and Oriana Riva. 770

9

https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2410.17883
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2402.11941
https://arxiv.org/abs/2402.11941
https://arxiv.org/abs/2402.11941
https://qwenlm.github.io/blog/qwen-vl/

2025. Androidworld: A dynamic benchmarking771
environment for autonomous agents. Preprint,772
arXiv:2405.14573.773

Atanas Rountev and Dacong Yan. 2014. Static refer-774
ence analysis for gui objects in android software. In775
Proceedings of Annual IEEE/ACM International Sym-776
posium on Code Generation and Optimization, pages777
143–153.778

Google Assistant Routines. 2025. Automate daily rou-779
tines & tasks with google assistant.780

Apple Shortcuts. 2025. Run shortcuts with siri, the781
shortcuts app or siri suggestions.782

Skylot. 2025. Jadx: Dex to java decompiler. Accessed:783
2025-02-01.784

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma,785
and Zhongmin Cai. 2024. Visiontasker: Mobile task786
automation using vision based ui understanding and787
llm task planning. In Proceedings of the 37th Annual788
ACM Symposium on User Interface Software and789
Technology, UIST ’24, page 1–17. ACM.790

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,791
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards792
multi-modal conversational agents on mobile gui.793
In Proceedings of the 2022 Conference on Empir-794
ical Methods in Natural Language Processing, pages795
6699–6712.796

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-797
orghe Comanici, Amelia Glaese, Zafarali Ahmed,798
Tyler Jackson, Shibl Mourad, and Doina Precup.799
2021. Androidenv: A reinforcement learning plat-800
form for android. arXiv preprint arXiv:2105.13231.801

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang,802
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,803
and Jitao Sang. 2024a. Mobile-agent-v2: Mo-804
bile device operation assistant with effective navi-805
gation via multi-agent collaboration. arXiv preprint806
arXiv:2406.01014.807

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming808
Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao809
Sang. 2024b. Mobile-agent-v2: Mobile device op-810
eration assistant with effective navigation via multi-811
agent collaboration. Preprint, arXiv:2406.01014.812

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,813
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.814
2024c. Mobile-agent: Autonomous multi-modal mo-815
bile device agent with visual perception. Preprint,816
arXiv:2401.16158.817

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong818
Mao, Qinmin Wang, Tianchen Min, Wei Chen, and819
Shoufa Chen. 2024d. Mobileagentbench: An effi-820
cient and user-friendly benchmark for mobile llm821
agents. Preprint, arXiv:2406.08184.822

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian 823
Jin, Siheng Chen, and Yanfeng Wang. 2025. Fedmo- 824
bileagent: Training mobile agents using decentral- 825
ized self-sourced data from diverse users. Preprint, 826
arXiv:2502.02982. 827

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, 828
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, 829
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm- 830
powered task automation in android. In Proceedings 831
of the 30th Annual International Conference on Mo- 832
bile Computing and Networking, pages 543–557. 833

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam- 834
pagna, Larry Heck, James Landay, and Monica Lam. 835
2021. Grounding open-domain instructions to auto- 836
mate web support tasks. In Proceedings of the 2021 837
Conference of the North American Chapter of the 838
Association for Computational Linguistics: Human 839
Language Technologies, pages 1022–1032. 840

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, 841
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong, 842
Julian McAuley, Jianfeng Gao, Zicheng Liu, and 843
Lijuan Wang. 2023. Gpt-4v in wonderland: Large 844
multimodal models for zero-shot smartphone gui nav- 845
igation. Preprint, arXiv:2311.07562. 846

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, 847
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei 848
Lin, Saravan Rajmohan, et al. 2024a. Large language 849
model-brained gui agents: A survey. arXiv preprint 850
arXiv:2411.18279. 851

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin 852
Chen, Zebiao Huang, Bin Fu, and Gang Yu. 2023a. 853
Appagent: Multimodal agents as smartphone users. 854
Preprint, arXiv:2312.13771. 855

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu, 856
Ming He, and Jianping Fan. 2024b. Mobileexperts: 857
A dynamic tool-enabled agent team in mobile devices. 858
Preprint, arXiv:2407.03913. 859

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, 860
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang. 861
2024c. Android in the zoo: Chain-of-action-thought 862
for gui agents. Preprint, arXiv:2403.02713. 863

Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, and Yan 864
Lu. 2023b. Responsible task automation: Empow- 865
ering large language models as responsible task au- 866
tomators. arXiv preprint arXiv:2306.01242. 867

Zichen Zhu, Hao Tang, Yansi Li, Dingye Liu, Hongshen 868
Xu, Kunyao Lan, Danyang Zhang, Yixuan Jiang, Hao 869
Zhou, Chenrun Wang, Situo Zhang, Liangtai Sun, 870
Yixiao Wang, Yuheng Sun, Lu Chen, and Kai Yu. 871
2025. Moba: Multifaceted memory-enhanced adap- 872
tive planning for efficient mobile task automation. 873
Preprint, arXiv:2410.13757. 874

10

https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2405.14573
https://support.google.com/assistant/answer/7672035?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/assistant/answer/7672035?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/assistant/answer/7672035?hl=en&co=GENIE.Platform%3DAndroid
https://support.apple.com/en-gb/HT209055
https://support.apple.com/en-gb/HT209055
https://support.apple.com/en-gb/HT209055
https://github.com/skylot/jadx
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2410.13757
https://arxiv.org/abs/2410.13757
https://arxiv.org/abs/2410.13757

Appendices875

A Further Experimental Details and876

Extended Investigations877

In this section, we provide further elaboration on878

our experimental details and present additional879

experiments to demonstrate the performance of880

UICOMPASS. Finally, we illustrate the execution881

process of UICOMPASS on a specific task to facil-882

itate understanding of adaptive UI action genera-883

tion.884

A.1 Implementation Detail885

We implement UICOMPASS by using the following886

key components.887

• Decompilation: We use JADX (Skylot, 2025)888

to decompile APKs into Java code. This en-889

ables direct analysis of app byte code.890

• Program Analysis: We leverage Tree-891

Sitter (Brunsfeld and Contributors, 2025) to892

parse Java code and Kotlin code. From these893

parsed result, we extract call graphs, data894

flows, and inheritance trees.895

The bytecode version enables easier analysis of896

third-party libraries, but at the cost of increased897

analysis overhead. Following the source code ver-898

sion, we restrict analysis to the current project’s899

code (filtered by package names). For potential900

third-party activities, we limit analysis to the activ-901

ity class level.902

A.2 Detail of Benchmark.903

We selected DroidTask (Wen et al., 2024) as the904

benchmark dataset, which include 12 open-source905

apps and 149 tasks. DroidTask covers all projects906

and tasks presented in (Wang et al., 2024d)’s study.907

During evaluation, four tasks were found to be no908

longer executable, resulting in a final total of 145909

usable tasks.910

We also selected AndroidWorld (Rawles et al.,911

2025) as another benchmark. AndroidWorld com-912

prises 116 distinct tasks across 20 real-world apps.913

However, 28 of these tasks involve system appli-914

cations, for which APKs are unavailable. An addi-915

tional 26 tasks are question-answering based, mak-916

ing them incompatible with all baseline tools in917

our experiments. Furthermore, 18 tasks were ex-918

cluded due to reasons such as inaccessible login re-919

quirements, redundancy with other tasks, or being920

vision-only tasks (e.g., image recognition). After921

this filtering process, our final experimental dataset 922

consists of 44 tasks from 9 applications. 923

We hope to conduct experimental comparisons 924

between the source code version and the byte ver- 925

sion of UICOMPASS to uncover more interesting 926

findings. Several other datasets (Deng et al., 2024) 927

were not included due to the non-open-source na- 928

ture of their apps. 929

A.3 Experimental Evaluation Methods. 930

To ensure a fair comparison of each tool, we manu- 931

ally annotated the experimental data. The three au- 932

thors of the paper first familiarized themselves with 933

the applications and referred to the ground truth 934

provided in DroidTask (Wen et al., 2024) and An- 935

droidWorld (Rawles et al., 2025). For the execution 936

results of each tool on each application, we con- 937

ducted separate analyses and ultimately engaged 938

in discussions. Different tasks may have multiple 939

implementation approaches. Therefore, for the exe- 940

cution results of each tool, we analyze and evaluate 941

the shortest path chosen to complete the task when 942

calculating the experimental results. In addition, 943

during the experiments, we prepared the data re- 944

quired for each task in advance to ensure that the 945

task was executable. For each task, we conducted 946

three trial runs. Successful attempts were recorded 947

for performance analysis. For failed tasks, only 948

the most successful attempt (e.g., highest comple- 949

tion progress) among three trials is recorded, while 950

others are discarded. 951

A.4 Detail of Experimental Results on Task 952

Completion 953

As presented in Table 4, the experimental results 954

reveal significant disparities in the task completion 955

performance of various tools across different ap- 956

plications and datasets. In the DroidTask dataset, 957

UICOMPASS (source code) and UICOMPASS (byte 958

code) demonstrate a distinct advantage, success- 959

fully completing a larger number of tasks in mul- 960

tiple applications such as SimpleNote and Cam- 961

era. Within the AndroidWorld dataset, the number 962

of tasks completed by all tools is generally lower, 963

yet UICOMPASS still stands out with relatively 964

better performance in certain applications. Over- 965

all, UICOMPASS (source code) accomplishes 125 966

tasks, while UICOMPASS (byte code) completes 967

119 tasks. These figures are significantly higher 968

than those of other tools, such as Guardian (66 969

tasks) and Mobile-Agent-v2 (23 tasks), thereby 970

11

Table 4: Number of Tasks Completed by Different Tools Across Applications

Dataset Application Total AutoDroid Guardian Mobile-Agent-v2 UICOMPASS (Byte code) UICOMPASS (Source code)

DroidTask

SimpleNote 13 6 2 1 7 9
AppLauncher 5 5 1 2 6 6
Calender 16 4 5 0 6 7
Camera 15 10 8 4 12 13
Clock 11 8 6 2 11 8
Contacts 14 6 6 0 10 10
Dialer 15 11 9 4 13 13
Filemanager 15 8 6 3 12 14
Gallery 9 5 4 0 7 6
Messager 14 7 6 2 9 11
MusicPlayer 9 5 4 2 7 8
VoiceRecoder 9 7 2 1 8 5

AndroidWorld

AudioRecorder 2 0 0 0 1 2
Osmand 3 0 0 2 0 0
Retro Music 4 1 0 0 1 1
Pro Expense 5 0 0 0 2 3
Markor 11 1 3 1 4 4
Broccoli 5 4 0 0 3 3
Messager 4 0 3 0 1 3
Draw 1 0 0 0 1 1
Calender 9 1 1 0 1 1

Total 19 189 89 66 23 119 125

shows the efficiency and superiority of UICOM-971

PASS in task completion.972

A.5 Case Study973

We analyze a representative DroidTask case (Fig. 6)974

demonstrating UICOMPASS’s effectiveness, par-975

ticularly its UI Map-guided process and adaptive976

instruction replanning in real-world scenarios.977

The task in this example is “Set app theme to978

light and save it,” and the six images on the right979

side of Figure 6 depict the correct steps generated980

by UICOMPASS. The task requires navigating to981

the “Customize colors” module in Settings (Steps982

1-3) and switching the theme to light before saving983

(Steps 4-6). This example presents a challenge984

for the existing mobile agent. While the content985

of tasks shows that it is a setting operation, users986

face confusion because the settings activity neither987

directly displays theme color options nor makes it988

clear that ’Customize colors’ (Step 3) can modify989

theme colors.990

UICOMPASS generates the initial UI path using991

the UI Map (shown in the top-left of Figure 6). Due992

to the complexity of the application, the UI path993

generated by UICOMPASS is not entirely correct.994

In this example, we can see that most of the UI path995

generated by UICOMPASS are correct, except for996

the “Select the ‘Theme’ option” being missing and997

“Confirm the theme selection” being mistakenly998

included. As shown in the final instructions (as999

shown in the bottom left of Figure 6), UICOMPASS1000

uses the adaptive replanning mechanism to correct1001

the errors in the initial UI path based on the actual 1002

execution context. Therefore, the initial UI path 1003

generated by the UI Map, combined with the adap- 1004

tive replanning mechanism, can effectively guide 1005

the LLM to complete tasks in the target application. 1006

B More Details and Example of Prompts 1007

In this section, we will detail several of the most 1008

important prompts used in the interaction between 1009

UICOMPASS and the LLM in this paper. We will 1010

provide the templates and specific examples for 1011

these prompts to facilitate understanding. 1012

B.1 The Prompt for the Semantic Enhance for 1013

UI Map via LLM 1014

Following UICOMPASS constructs the initial UI 1015

Map using static analysis techniques, UICOMPASS 1016

further enhances it by leveraging an LLM. This 1017

enhancement primarily aimed to enable UICOM- 1018

PASS to extract information from more complex 1019

programming scenarios and augment the UI Map 1020

with semantic information to facilitate understand- 1021

ing, thereby making the enhanced UI Map more 1022

robust. Table 5 presents the prompt template em- 1023

ployed in this stage. During this process, UICOM- 1024

PASS first provides the source code of a method 1025

along with its contextual information, including 1026

variable definitions and assignments, as well as 1027

summaries of the methods it calls. Given that this 1028

stage processes each method according to the topo- 1029

logical order of the call graph, the summaries of the 1030

methods called by the current method are already 1031

12

1 2

4 5 6

3Initial instructions:
 1. Open the app and navigate to the main interface.
 2. Go to the settings menu from the toolbar.
 3. Locate the theme customization option.
 4. Select the 'light' theme option.
 5. Confirm the theme selection.
 6. Save the changes.

Final instructions:
1. Open the app and navigate to the main interface.
2. Go to the settings menu from the toolbar.
3. Locate the theme customization option.
4. Select the 'Theme' option.
5. Select the 'light' theme option.
6. Click the 'Save' button to save the theme changes.

Figure 6: A successful case on DroidTask demonstrates the effectiveness of UICOMPASS’s UI Map and adaptive UI
action generation.

available. Based on this information, UICOMPASS1032

prompts the LLM to accomplish our intended ob-1033

jectives (as demonstrated in the [Target] paragraph).1034

As shown in the main text, UICOMPASS requests1035

the LLM to provide a summary of the method, the1036

dynamic attributes of the involved elements, activ-1037

ity transition relationships, and layout relationships.1038

Considering that many applications reuse layouts1039

through fragments, we still account for fragment1040

scenarios. If a fragment is attached to an activ-1041

ity, then all elements within the layout correspond-1042

ing to that fragment are added to the activity. Fi-1043

nally, UICOMPASS instructs the LLM to output1044

the information according to a specified output for-1045

mat, which facilitates subsequent processing by1046

UICOMPASS.1047

B.2 The Prompt for the UI Path Planning1048

The main purpose of the prompt in the UI path1049

planning stage is to guide the LLM in generating a1050

possible execution path for a given application and1051

target task t.1052

Table 6 shows the template for the prompt at this1053

stage, which illustrates how UICOMPASS converts1054

the UI Map into easily understandable text format.1055

Within the template, UICOMPASS first informs the1056

LLM about the information that will be provided,1057

and specifies the expectation that the LLM should1058

generate a UI path capable of completing the task.1059

Subsequently, the UI Map is converted into a text1060

format. In this part, UICOMPASS first provides1061

all activity nodes Na within the application, and1062

then elaborates on the information for each Activity.1063

For each activity, UICOMPASS provides three key1064

pieces of information: 1) the name of the activity1065

and the functional summary asum, which helps1066

the LLM quickly understand the activity; 2) the1067

activities that can be navigated to from the current1068

activity, clarifying relationships between activities; 1069

and 3) information about all elements contained 1070

within that activity. As illustrated by the prompt 1071

example for this stage in Table 7, UICOMPASS 1072

displays not only the static properties of elements 1073

(such as tag and id), which helps quickly identify 1074

element types, but also provides dynamic property 1075

information. This significantly assists the LLM in 1076

understanding element functions and determining 1077

their relevance to the task. Finally, UICOMPASS 1078

clearly defines the specific task requirements and 1079

provides an output example, requesting the LLM 1080

to output in the specified format. 1081

The prompt at this stage effectively extracts and 1082

organizes the key information about app UI inter- 1083

action, enabling the LLM to quickly generate ef- 1084

fective UI paths. 1085

B.3 The Prompt for the UICOMPASS’s 1086

Adaptive Decision Making. 1087

The adaptive decision-making component of 1088

UICOMPASS is responsible for adjusting the 1089

planned path (represented as an instruction list) and 1090

determining the next instruction. Table 8 presents 1091

the prompt template for this component. Initially, 1092

the ‘Background’ section introduces the task to 1093

be executed to the LLM. It informs the LLM that 1094

UICOMPASS will provide a UI path for the task 1095

t but notes that potential errors may exist, requir- 1096

ing the LLM to identify and correct them. Subse- 1097

quently, essential information is provided, includ- 1098

ing UI path I, screen S′, and history A. In the 1099

history section, UICOMPASS furnishes the history 1100

of executed actions and the history of instructions. 1101

This facilitates the LLM’s assessment of the task 1102

completion status from both action and instruction 1103

perspectives. Finally, UICOMPASS specifies the 1104

desired output data and its corresponding explana- 1105

13

Table 5: Prompt Template for Semantic Enhance for UI Map via LLM

System
You are an Android source code analysis assistant.

User
[Background]
You are an Android analyst. I will give you a method from the class {Class name}.
Here is the method from the given Android source code:
{Method}
[Method Variable Context]
{Global variable definition and assignment}
[Invoked Method Summary]
Here is the explanation of the method named {Method name} that is called within the given method:
{Description of these methods}
[Target]
Based on your analysis, please provide the following information:
1. **Method Summary:** Provide a concise summary of the functionality of this method. Describe
what the method does.
2. **Dynamic Attributes of UI Element Analysis:** Identify all **UI elements** present in this
method. For each identified UI element, provide the following information:
* **Type:** (e.g., Button, TextView, ImageView, MenuItem)
* **ID:** (if available, e.g., R.id.button_login)
* **Function:** Describe the effects of interacting with or the execution related to this UI element
(e.g., UI update, navigation to a new activity, data modification, triggering a function call).
3. **Activity Transfer Relationship:** Summarize any activity transfer relationships in the code.
4. **Activity-Fragment Relationships:** Identify and describe any dependencies or relationships
between activities and fragments within the code (e.g., a fragment being added, replaced, or associated
with an activity using ‘FragmentTransaction‘).
5. **Layout Relationships:** Identify any relationships between activities or fragments and XML lay-
out files (starting with ‘R.layout‘) or menu files (starting with ‘R.menu‘). Specify which layout files are
inflated or referenced by which activities or fragments (e.g., using ‘setContentView()‘, ‘LayoutInflater‘,
‘FragmentTransaction.replace()‘).
Output Example
{Output Example}

tion to the LLM, and requires the LLM to gener-1106

ate the output in the designated format. Table 91107

offers a concrete example of a prompt. It can be1108

observed that UICOMPASS provides substantial rel-1109

evant information to aid the LLM in understanding1110

the task execution state. As demonstrated by the1111

LLM’s response in Table 10, the screen informa-1112

tion supplied by UICOMPASS effectively assists1113

the LLM in recognizing that the interface display1114

indicates the task objective is complete (e.g., the1115

font size has been adjusted). Based on the histori-1116

cal information, the LLM can further infer that all1117

instructions have been completed and accurately1118

determine that the next instruction should be ‘none’,1119

signifying the task’s conclusion. From the template,1120

example, and the LLM’s response, the effectiveness1121

of the prompt design for UICOMPASS’s adaptive 1122

decision-making module is evident. 1123

B.4 UICOMPASS Action Selection Prompt 1124

Table 11 presents the prompt template used by 1125

UICOMPASS for selecting corresponding candidate 1126

elements based on a given instruction In and task 1127

t. Inspired by the design of the Guardian tool, we 1128

designed the prompt template for selecting action 1129

candidates. UICOMPASS automatically identifies 1130

the type of each element and analyzes the possible 1131

actions that can be performed on it based on its 1132

type and properties. These actions are then added 1133

to an action candidate list. Consequently, in the 1134

prompt, UICOMPASS lists all available action can- 1135

didates. This list may include dynamic attributes to 1136

14

Table 6: Prompt Template for UI Path Planning in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I need to execute a target task within the application. Could you assist in designing the step-by-step
instructions to achieve it? I will provide you with the UI Map for the application. The UI Map is a
graph used to describe the application’s user interface and interaction logic. Your task is to speculate
on what instructions are used to execute the given task.
[UI Map]
Here is the UI Map of this app:
Activity list:
Na

Information about these activities:
Activity name:
{Activity name}
The summary of {Activity name}: {asum}
This activity can be transferred to other activities: Et.t,
{Nel}

[Task Description]
Based on the aforementioned application information, our goal is to execute the task: {t}
[Output Example]
Here’s a reference output example. Based on this format, list all activities involved in the task and the
corresponding instructions per activity. Output must adhere to the following JSON format.
{Output Example}

describe the element’s functionality. For instance,1137

the element at index 4 in table 12 might indicate1138

its ability to open a new window. Subsequently,1139

UICOMPASS provides the current task t and the1140

instruction In to be executed, explicitly stating the1141

required output format. The LLM is only required1142

to output a single number, such as 4, corresponding1143

to the index in the candidate list. Suppose none of1144

these candidate elements is related. In that case, the1145

LLM should output "index-none", indicating that1146

no relevant element is present on the current user in-1147

terface, in which case UICOMPASS will perform a1148

return operation. For input actions, UICOMPASS’s1149

handling them is similar to Guardian’s design - it1150

will query the LLM again for the text to be input.1151

Table 12 provides a concrete example, illustrating1152

that we provide various attributes of the element1153

along with the actions to be executed. The element1154

attributes information is extracted from the XML1155

interface description obtained from the Android1156

device. This information can reflect the element’s1157

state during execution (e.g., selected=true indicates1158

it is selected), which is crucial for UICOMPASS to1159

determine whether the task has been successfully1160

completed. 1161

C License and Terms for Derived 1162

Artifacts 1163

Use of Existing Artifacts: 1164

• Guardian Tool: Licensed under Apache 2.0, 1165

which imposes no restrictions on intended use. 1166

Our application of Guardian for developing a 1167

mobile automation tool is consistent with its 1168

open-source purpose. We confirm there are no 1169

specified use restrictions in Guardian’s orig- 1170

inal license or documentation that our usage 1171

violates. 1172

• AndroidWorld Dataset: Released under 1173

Apache License 2.0, permitting free use. Our 1174

usage complies with all license requirements. 1175

• DroidTask Dataset: Licensed under MIT Li- 1176

cense, allowing free use. 1177

• Tree-sitter: Utilized under MIT License, 1178

which permits free use in our project with 1179

minimal restrictions. 1180

15

• JADX: Used under Apache-2.0 license, com-1181

patible with our project’s licensing and usage1182

requirements.1183

Derived Artifact Compliance:1184

• Our tool is released under the same Apache1185

License 2.0 (full text included in the repos-1186

itory’s LICENSE file), maintaining compat-1187

ibility with all incorporated components’ li-1188

censes.1189

16

Table 7: Prompt Example for UI Path Planning in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I need to execute a target task within the application. Could you assist in designing the step-by-step
instructions to achieve it? I will provide you with the UI Map for the application. The UI Map is a
graph used to describe the application’s user interface and interaction logic. Your task is to speculate
on what instructions are used to execute the given task.
[UI Map]
Here is the UI Map of this app:
Activity list:
SplashActivity, MainActivity, WidgetConfigureActivity, AboutActivity,
CustomizationActivity, SettingsActivity,

Information about these activities:
Activity name:
com.simplemobiletools.notes.pro.activities.MainActivity

The summary of com.simplemobiletools.notes.pro.activities.MainActivity: "The
activity serves as the main interface for managing notes, including creating,
editing, deleting, and viewing notes. It supports various note types (text..."

This activity can be transferred to other activities: SplashActivity, AboutActivity,
SettingsActivity,

index-1: tag:MaterialToolbar, id:@+id/main_toolbar, action:toolbar,
effect:Displays the activity’s toolbar, which contains menu items for actions
like saving, searching, creating notes, and accessing settings.

index-2: tag:include, id:@+id/search_wrapper, action:include, effect:Embeds
the search bar layout, enabling search functionality within the activity.
...
[Task Description]
Based on the aforementioned application information, our goal is to execute the task: "Set app theme
to light and save it"
[Output Example]
Here’s a reference output example. Based on this format, list all activities involved in the task and the
corresponding instructions per activity. Output must adhere to the following JSON format.
{"task": "Book a flight", "UI path": [{"activity": "LoginActivity", "steps": ["1.
Input the account.", "2. Submit the login form."]}, {"activity": "MainActivity",
"steps": ["3. Search for available flights based on your preferences.", "4. Select
the flight that suits your needs."]}, {"activity": "BookingActivity", "steps": [
"5. Enter the required passenger details for booking.", "6. Make the payment for
the selected flight.", "7. Receive a confirmation of the flight booking."]}]}

17

Table 8: The prompt template for the adaptiveDecisionMaking process of UICOMPASS.

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I currently have a task {Task}, and I have a set of instructions for this task, but there may be errors in
this set of instructions that need to be adjusted based on the current user interface.
[Instrctions]
Instructions:
{I}
[Screen]
Here is the information about the screen we are currently on.
{S′}
[History]
#History information (You should refer to the historical records to identify which part of the instructions
they correspond to, consider the relationship between the current interface and the next step, and then
update the instructions accordingly.):
{Action List}
Here is the history of executed instructions:
{Executed Instructions}
[Output Explanation and Example]
Based on this information, please tell me <current state>, <finished instruction>, <error reason>,
<next_instruction>, <updated instructions>.
Note that:
+ current state: Summarize the current program state according to the given widgets.
+ finished instruction: Summarize the just-completed instruction.
+ error reason: Please analyze if there are any errors in the UI path. When the UI path is correct, the
error reason should be output as empty.
+ next_instruction: next_instruction should correspond to only one action. If not, please split the
instruction, ensuring that the next instruction corresponds to a single action. If the Task is finished,
next_instruction = none.
This is an output example:
{Output Example}
Warning:
You should tell me the updated instructions according to this format. (**Do not output any else except
the JSON format.**)

18

Table 9: The prompt example for the adaptiveDecisionMaking process of UICOMPASS.

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I currently have a task Adjust the fontsize of the Notes app to 125%, and I have a set of
instructions for this task, but there may be errors in this set of instructions that need to be adjusted
based on the current user interface.
[Instrctions]
Instructions:
{’task’: ’Adjust the fontsize of the Notes app to 125%’, ’UI_path’: [{’activity’:
’MainActivity’, ’steps’: [’1. Open the Notes app.’, ’2. Navigate to the settings
menu.’]}, {’activity’: ’SettingsActivity’, ’steps’: ["3. Locate the ’Font Size’
option.", "4. Click on the ’125%’ option to adjust the font size.", "5. Click ’OK’
to confirm the font size adjustment"]}]}
[Screen]
Here is the information about the screen we are currently on.
index-0: a View (accessibility information: Open note, resource_id "open_note",
content-desc: "Open note", text: "", selected: "false", checked: "false", text:)
to click
index-1: a View (accessibility information: Create a new note, resource_id
"new_note", content-desc: "Create a new note", text: "", selected: "false", checked:
"false", text:) to click
...
[History]
#History information (You should refer to the historical records to identify which part of the instructions
they correspond to, consider the relationship between the current interface and the next step, and then
update the instructions accordingly.):
index-0: open the target appliaction
index-1:Event(action=click, widget=a View (accessibility information: More options,
text:))
...
Here is the history of executed instructions:
index-1:"Navigate to the settings menu.".
index-2:"Locate the ’Font Size’ option.".
...
[Output Explanation and Example]
{Output Explanation.}
This is an output example:
{ "task": "Book a flight", "explanation": { "current state": "The booking is complete but not confirmed",
"finished instruction": "All booking steps are done", "error reason": "Missing confirmation click on
’Confirm’ or ’Book Now’ button", "next_instruction": "Click ’Confirm’ to finalize the booking" },
"updated_UI_path": [{ "activity": "LoginActivity", "steps": ["1. Open the application Booking"
"2. Input the account.", "3. Submit the login form."] }, { "activity": "MainActivity", "steps": ["4.
Search for available flights based on your preferences.", "5. Select the flight that suits your needs."] },
{ "activity": "BookingActivity", "steps": ["6. Enter the required passenger details for booking.", "7.
Make the payment for the selected flight.", "8. Receive a confirmation of the flight booking." "9. Click
’OK’ to confirm login"] }] }
Warning:
You should tell me the updated instructions according to this format. (**Do not output any else except
the JSON format.**)

19

Table 10: The LLM’s Answer for the Prompt in UICOMPASS’s the Adaptive Decision Making process.

LLM’s Answer:
{

"task": "Adjust the fontsize of the Notes app to 125%",
"explanation": {

"current state": "The font size adjustment is complete and confirmed",
"finished instruction": "All steps for adjusting the font size are done",
"error reason": "",
"next_instruction": "none"

},
"updated_UI_path": [
{

"activity": "MainActivity",
"steps": [

"1. Open the Notes app.",
"2. Navigate to the settings menu."

]
}, {

"activity": "SettingsActivity",
"steps": [

"3. Locate the ’Font Size’ option.",
"4. Click on the ’125%’ option to adjust the font size.",
"5. Click ’OK’ to confirm the font size adjustment"

]
}
]

}

Table 11: Prompt Template for Action Selection in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Action Candidates]
Currently we have {number} widgets, namely:
{List of candidate widget actions}
We now want to execute this instruction **{In}**, which is part of our test target is to {t}.
[Output Requirement]
Please choose only one UI element with its index, such that the element can bring us closer to our test
target.
If none of the UI elements can do so, respond with index-none.

20

Table 12: Prompt Example for Action Selection in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
Currently we have 12 widgets, namely:
index-0: a View (accessibility information: Back, text:) to click
index-1: a View (accessibility information: , resource_id "settings_nested_scrollview", content-desc:
"", text: "", selected: "false", checked: "false", text:) to vertical_scroll
index-2: a View (accessibility information: , resource_id "settings_nested_scrollview", content-desc:
"", text: "", selected: "false", checked: "false", text:) to horizontal_scroll
index-3: a View (accessibility information: , resource_id "settings_color_customization_holder",
content-desc: "", text: "Customize colors", selected: "false", checked: "false", text: Customize colors)
to click
index-4: a View (accessibility information: , resource_id "settings_change_date_time_format_holder",
content-desc: "", text: "Change date and time format", selected: "false", checked: "false", text: Change
date and time format. This element is used for: <When clicked, it triggers the display of a dialog for
changing the date and time format.>.) to click
...
We now want to execute this instruction **"3. In the SettingsActivity, locate the ’Color
Customization’ section."**, which is part of our test target to change the theme to light on
Simple-File-Manager.
Please choose only one UI element with its index, such that the element can bring us closer to our test
target.
If none of the UI elements can do so, respond with index-none.

21

	Introduction
	Background and Related Work
	Background of Android App Code
	Mobile Task Automation

	Method
	UI Map Generation
	UI Path Planning
	Adaptive UI Action Generation

	Experiments
	Experimental Settings
	Overall Results of Task Completion
	Analyzing Decision-Making Efficiency
	Ablation Study

	Conclusion
	Further Experimental Details and Extended Investigations
	Implementation Detail
	Detail of Benchmark.
	Experimental Evaluation Methods.
	Detail of Experimental Results on Task Completion
	Case Study

	More Details and Example of Prompts
	The Prompt for the Semantic Enhance for UI Map via LLM
	The Prompt for the UI Path Planning
	The Prompt for the UICompass's Adaptive Decision Making.
	UICompass Action Selection Prompt

	License and Terms for Derived Artifacts

