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ABSTRACT

Despite recent progress in time-series foundation models, challenges persist in
improving representation learning and adapting to diverse downstream tasks. We
introduce a General Time-series Model (GTM), which advances representation
learning via a novel frequency-domain attention mechanism that captures time-
granularity-aware features—an aspect overlooked in prior research. We further
propose a novel pre-training strategy that unifies reconstruction and autoregressive
objectives through a hybrid masking mechanism. Our pre-training strategy, com-
bined with 2D positional encoding and span shuffling, enhances the robustness and
generalization of representations. GTM is established as the first generative-task-
agnostic model for time-series analysis, enabling seamless adaptation to various
generative tasks without any task-specific modifications. Extensive experiments
demonstrate that GTM consistently outperforms SOTA models on various gen-
erative tasks and achieves strong classification results with minimal adaptation.
Furthermore, GTM exhibits clear scaling behavior, with accuracy improving as
model size and pre-training data increase.

1 INTRODUCTION

Foundation Models (FMs) have achieved remarkable success in NLP and CV, owing to their ability
to learn rich representations from large-scale data and transfer effectively to diverse downstream
tasks(Bommasani et al) 2021). However, extending these benefits to Time Series (TS) analysis
remains challenging due to two major obstacles: (i) limited expressiveness of scalar, temporally
indexed sequences, and (ii) wide heterogeneity of downstream tasks. Such obstacles complicate
unified representation learning and adaptation.

Recent advances in Time-Series Foundation Models (TSFMs) fall into two main categories: (1)
Forecasting-only FMs, which are tailored for forecasting tasks and leverage temporal features such as
lag covariates and adaptive patches(Rasul et al.} 2023} Ekambaram et al.| [2024; |Shi et al.| 2024); and
(2) Multi-task FMs, which employ autoregressive modeling, masked autoencoders, and contrastive
learning to support multi-task adaptation(Liu et al., 2024bj |[Zhang et al., 2024} |Dong et al., [2024;
Goswami et al.|[2024). While these models have improved feature extraction and generalization, they
still require task-specific changes, especially for generative tasks, and rarely explore new perspectives
beyond typical time-domain features.

In multi-task TS analysis, downstream tasks are generally categorized as either generative (e.g.,
forecasting, imputation, anomaly detection), which require modeling the underlying data distribution,
or discriminative (e.g., classification), which focus on mapping TS inputs to categorical labels.
Although recent TSFMs can handle multiple generative tasks(Liu et al.| [2024b; Zhang et al.,[2024)
or adapt across both categories tasks(Dong et al.| 2024} (Gao et al., 2024), they typically require
modifications at the token, pre-training, or projection header levels to achieve such flexibility. To
date, no TSFM can adapt to all generative tasks in a truly task-agnostic manner without such changes.

In this work, we present a comprehensive analysis of large-scale, multi-domain TS data using Fast
Fourier Transform and 2D Kernel Density Estimation to estimate the joint probability distributions of
amplitude-frequency and phase-frequency at various temporal granularities. As shown in Figure|[T}
these distributions differ significantly across time granularities, highlighting a critical but unexplored



Under review as a conference paper at ICLR 2026

Density

00

S x1g402 g4 o
o Frg 38 0%

10203050
030075
i ey s 10

"0 iy 12

e, 00
2 11) 15

Rk 006
G, D08 T
iy 010 o 7 a00 0%

(a) 4-s amp (b) 5-min amp (c¢) 1-hour amp

0.00 0.0
e 02

Freg rene 06
(11,08

O 001
Frg

Qene,, 0.06

""Cy(/;,, 0.08

2
Frogye, 3 ~.
Guen 4
It Vg s 7

(e) 4-s phase (f) 5-min phase (g) 1-hour phase (h) 1-day phase

Figure 1: Amplitude and phase-frequency joint dist. for TS data with varying granularities.

dimension in TS representation learning. This empirical observation directly informs our model
design, motivating the development of frequency-domain network modules tailored to capture such
multi-granularity representations.

Building on these insights, we propose a General Time Series Model (GTM), which explicitly
incorporates time granularity as a key factor for robust TS representation. To enable effective
adaptation to generative tasks, we introduce a novel pre-training framework that unifies reconstruction
and autoregressive objectives via a hybrid masking strategy. Our framework combines random
and controlled consecutive tail masking, 2D positional encoding, and span shuffling. This design
empowers GTM to learn robust and generalizable representations, allowing seamless adaptation to a
wide range of generative tasks without any task-specific modifications.

Our main contributions are:

e We design GTM, a TSFM built with a novel Fourier attention mechanism to capture distributional
differences across temporal granularities, substantially improving TS representation quality.

* We propose a unified pre-training framework that integrates hybrid masking, 2D positional encod-
ing, and span shuffling, jointly optimizing reconstruction and autoregressive objectives to enhance
robustness and generalizability. This establishes GTM as the first generative-task-agnostic TSFM.

» Extensive experiments demonstrate that GTM consistently outperforms state-of-the-art baselines
across a variety of benchmarks, offering scalable and cost-effective performance suitable for
industrial applications.

2 RELATED WORKS

We focus on TSFMs trained from scratch. Additional literature survey can be found in Section B}

Early Attempts. Early models, inspired by NLP and CV, adapted techniques for TS tasks, forming
the foundation of TSFMs. For example, TimesNet transforms 1D time series
into 2D feature maps using CNNs to capture multi-periodicity patterns, while adding task-specific
projection headers for diverse generative tasks. Similarly, PatchTST enhances pre-
trained Transformers for forecasting by learning Channel Independent(CI), inter-patch representations.
Despite their progresses, these models fall short of TSFM standards due to the lack of large-scale
pretraining and effective adaptation across diverse tasks.

TSFM for Forecasting. A primary line of research focuses on improving forecasting performance

across a variety of domains. Lag-Llama (Rasul et al.| 2023) and GPHT both

utilize decoder-only architectures to model temporal dependencies, with Lag-Llama incorporating
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lagged covariates and timestamp features, while GPHT employs a hierarchical backbone for long-
term forecasting across arbitrary time horizons. TimesFM (Das et al.| 2024) pushes the boundaries
by utilizing a stacked Transformer pretrained on O(100B) data points, learning domain-invariant
representations. Other works, such as GPD (Yang et al.;,|2024) and UTSD (Ma et al.,|2024), explore
the use of diffusion models for capturing cross-domain correlations, improving robustness in diverse
forecasting tasks. MOIRAI (Woo et al., 2024) and TTMs (Ekambaram et al., 2024)) focus on
multivariate time series forecasting, with MOIRAI tackling cross-frequency learning through a
masked Transformer architecture and TTMs emphasizing the learning of cross-channel correlations.
Finally, TIME-MOE (Shi et al.l2024) introduces a MOE design that offers flexibility and supports
multi-resolution forecasting. Despite these advancements, most models primarily focus on modeling
temporal dependencies and do not fully exploit richer, multi-domain information (e.g., frequency-
domain features) that could enhance the ability to address more complex forecasting tasks.

Multi-task TSFM. Recent work has greatly advanced the adaptability of TSFMs for diverse tasks.
UP2ME (Zhang et al.,|2024) combines Masked AutoEncoder pretraining with Graph Transformer
fine-tuning for flexible adaptation. Timer (Liu et al.| |2024b) adopts an autoregressive, causal-attention
framework, pretraining on unified sequences to improve generalization. For discriminative tasks,
TimeSiam (Dong et al, [2024)) applies Siamese contrastive learning, while LPTM (Kamarthi &
Prakash| [2023)) fuses Transformer and GRU modules to extract robust tokenized representations
from heterogeneous data. UniTS (Gao et al.,|2024) introduces task tokenization within a dual-tower
Transformer, supporting both generative and classification tasks. Overall, Mask reconstruction
and contrastive learning are oriented towards representation learning: they captures intra-sequence
patterns and inter-sequence similarities respectively, with downstream adaptation typically achieved
by replacing the projection head. Predictive pretraining, on the other hand, focuses on modeling
long-term temporal dependencies to forecast multi-step future outcomes, making it particularly suited
for predictive downstream tasks. However, due to the absence of a unified pretraining objective, these
models require task-specific modifications at the tokenization (e.g., UniTS), pre-training strategy (e.g.,
Timer), or model level (e.g., UP2ME, TimeSiam, LPTM) to achieve strong downstream performance.

3 METHOD

3.1 DESIGN OVERVIEW

We denote a TS by X = [X.; : ¢ € [C],t € [T]], where C and T are the number of variables and
timestamps, respectively. We pre-train our model, GTM, from scratch on the large-scale UTSD-12G
dataset (Liu et al.l [2024b)), which covers diverse application domains. Figure E] shows the overall
architecture:

Input Embedding: We apply Reversible Instance Normalization (Kim et al., |2022), Channel
Independence (CI), patching (Nie et al., [2023)), and masking (Du et al.,|[2022) to transform raw TS
data into univariate masked token sequences. Each token is further enriched with linear and positional
embeddings before entering the backbone.

N-stack Decoder-only Backbone: GTM uses a decoder-only Transformer backbone to generate
outputs autoregressively. To capture both temporal and frequency-domain information, we retain a
temporal self-attention module and design the Fourier attention module (details in Section [3.2).

Output Projection: A unified linear projection layer, followed by instance denormalization, produces
outputs autoregressively for both pretraining and downstream tasks.

3.2 N-STACK DECODER-ONLY BACKBONE

We design an N-stack decoder-only backbone that jointly models temporal and frequency patterns
in TS data. Each decoder block consists of a standard temporal self-attention layer followed by a
Fourier attention module, which incorporates frequency-domain information via FFT. To enable
granularity-aware frequency modeling, we represent time granularity as a quintuple: (day, hour,
minute, second, millisecond). For example, the ETTm dataset (Wu et al.,|2021) is encoded as [0, O,
15, 0, 0]. We also introduce five learnable key embeddings, each for a typical granularity. Attention
weights are computed by taking the dot product of the query with each key, followed by softmax
normalization, and used to combine five corresponding frequency learning matrices. In addition, a
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Figure 2: GTM model architecture for pre-training. Left: TS data pass through three key com-
ponents—input embedding, N-stack Transformer backbone, and output projection—to generate
reconstruction results autoregressively. Lower right: Patching and masking using both full and
causal attention mechanisms, adapted from the NLP field and optimized for TS pre-training. Upper
right: A novel Fourier attention module designed to learn representation of TS data with varying
granularities. Pseudo-code of GTM architecture and pre-training strategy is provided in Algorithmm

global frequency learning module operates in parallel to capture patterns not tied to any specific time
granularity. This module is always active and complements the granularity-specific modules.

Temporal & Fourier Attention. Given the embedded input H;,, € RNtwota:XP_where Ny is the
total number of masked and reconstructed patches and D is the embedding dimension—the temporal
self-attention module computes

Hryepavouw = Self_Attention(Qp, Kj, Vi) € RNwotarxD (D

where Q) = HmW}f2 ,K;, = H,, W;f{ ,and Vj, = HmWfY are linear projections with learnable
weight matrices. Next, a column-wise FFT transforms each temporal patch into the frequency domain:

Hypr = FET(Hremawout)- )

To capture frequency-specific patterns, we design six frequency-domain modules: five low-rank
modules for five granularities, parameterized by {A;, B;}?_,, and one global module with full
connection Wyy. The time granularity is encoded as a quintuple and embedded into a query vector
q; = qWJf2 . Five learnable key vectors Ky represent the corresponding granularities. Fourier
attention weights are computed as

KT
o = SoftMax =y , 3)
sk
and used to aggregate the outputs of the five low-rank modules:
5
Hrouieras = Y i(Ai B;) Heer + Wi Hrr. “
i=1
The final output is obtained by applying the inverse FFT:
Hout = iFFT(HFourierAtt) S RNtOtalXD- (5)

This process is repeated for IV stacked decoder-only layers, with each layer taking the output of the
previous layer as input:

H{;) = GTM Decoder(H), H{Y =H{; ", ©)
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where n € [N] and Hi(i) = H,,.
Output Projection: A unified linear projection maps the backbone output to patch-level predictions:

Xout = Wiinproj - HY )

out

where L,, is the patch length. This enables GTM to support various generative tasks without further
architectural changes.

3.3 PRE-TRAINING FRAMEWORK

We divide each time series into overlapping patches using CI and patching (Nie et al.| 2023). For
each variable, the series is split into overlapping windows of length L and stride 7, as X; =
[Xcixrs - Xeixr+L—1], then divided into N, patches. Inspired by GLM (Du et al.| 2022), we use
a hybrid masking strategy:

* Randomly sample /¢ patch spans (each a consecutive group of patches).

* Randomly permute the sampled spans, and pad learnable vectors [START] and [END]
tokens to form input and target sequences.

* Replace each span with a single [MASK] token to create a corrupted input.
* Apply a controlled proportion of consecutive [MASK] tokens to at the tail.

Specifically, we introduce a hyperparameter pred_ratio to flexibly control the probability of applying
consecutive tail masking. As an example, for each training instance, a random variable r ~ /(0, 1)
is sampled and a corrupted input can be constructed as follows:

[X1,..., XN, &, [MASK],..., [MASK]], ifr < pred_ratio

Xp crpt — k
RandomMask(X p), otherwise

where k = |V, |, and « representing the tail masking ratio. This approach smoothly unifies mask
reconstruction and autoregressive forecasting within the same pre-training objective, enabling the
model to learn both general representations and future prediction capabilities. Based on this strategy,
we can get:

Xin = [XPCrp17 [S]a So’(l)a ) [S]a SU(Z)] (8)
Y = [56(1)7[E]7"'7SJ(Z)7[E]] (9)

where X p., denotes the masked input, o(-) is a random permutation. The pre-training objective is
to autoregressively reconstruct all masked patches by minimizing MSE:

P(Xout) = [ [ P(Xouti| X Perpts Soj<i) (10)

1
Lossyrsp = Y] > 1 Xouti — wil® (In

Before feeding to the backbone, we apply trainable linear embedding and 2D positional encoding (Du
et al., |2022), ensure that the backbone model is aware of the length of the masked span when
generating output patches:

Hin = Weminn + WlD_pos + WQD_pos (12)

We employ full attention for masked reconstruction and causal attention for autoregressive generation,
effectively preventing information leakage.

3.4 FINE-TUNING FOR DOWNSTREAM TASKS

Due to its unified architecture and pre-training strategy, GTM achieves robust representations and
supports all generative downstream tasks without task-specific modifications—except for minor
preprocessing (e.g., removing masking and 2D positional encoding). This versatility enables GTM to
deliver high-precision results across diverse time series applications (see Sec. ).
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Table 1: Avg. MSE & MAE forecasting results. Results are averaged over varying prediction lengths.
Bold & underline indicate the best & 2nd-best results respectively. See full results in Table[’lE]

Models GTM GPT4TS |UniTS-PMT| TTM_E | PatchTST | TimesNet | DLinear |FEDformer|Autoformer| Informer

dataset |MSE|MAE|MSE|MAE |MSE| MAE [MSE |[MAE |MSE |MAE |MSE |MAE |MSE |MAE |MSE | MAE|MSE|MAE| MSE |MAE
ETThl |.404 | .429 | .427 | .426 | 461 | 454 |.402| - |[.413|.434 |.458 | .450 | .422| .437 | .428 | .453 | .473 | .476 |1.040| .795
ETTml |.339|.376 |.352|.383 | - - 1.350| - ].352.382.400 | .406 | .357 | .378 | .382| .422 | .515 | .493 | .961 | .734
weather |.225|.266 |.237 | 270 | .243| 273 | .234| - |.225].263 |.259 | .287 | .246| .300 | .332|.375 |.335| .379 | .634 | .548
traffic | .385|.266 | .414 | .294 | 494 | 313 |.385| - |.390.263|.620 |.336|.433|.295|.603 | .372 | .616| .383 | .764 | 416
Electricity| .161 | .254 | .167 | .263 | .184 | 282 |.158 | - |.159].252|.192| .295 |.166| .263 |.207 | .321 |.214 | .326 | .311 | .397

4 EXPERIMENTS

We conduct extensive experiments to evaluate GTM primarily on generative tasks, while also
extending to discriminative tasks, to demonstrate its advanced representation learning and seamless
multi-task adaptability. Across all tasks, GTM is compared with state-of-the-art baselines (see
Appendix [B.2.2). We further analyze the benefits of large-scale pre-training, generalization in
zero-shot and few-shot settings, and perform ablation and scalability studies. Finally, we assess the
computational overhead of GTM’s key components as well as its overall model efficiency. Additional
results on hyperparameter sensitivity analysis are provided in Appendix and[B.3.8] confirming
GTM'’s cost-effectiveness and industrial applicability.

4.1 DATASETS DESCRIPTION

We use the large-scale public TS dataset UTSD-12G for pre-training, ensuring no downstream
task-related data is included to prevent leakage. We conduct experiments on five widely used public
datasets for forecasting and imputation (Wu et al., 2021}, five popular labeled datasets for anomaly
detection (Su et al.,[2019; [Hundman et al.,|2018; Mathur & Tippenhauer, 2016} Abdulaal et al., 2021),
and ten standard datasets for classification (Bagnall et al.l [2018)). The detailed statistics of these
public datasets are provided in Appendix [B.2.1]

4.2 LONG-TERM FORECASTING

For long-term forecasting, we select representative baselines and cite their results respectively. These
SOTA models include the LLM-enhanced model GPT4TS(Zhou et al., [2023)), the multi-task TSFM
UniTS-PMT(Gao et al.,[2024), the task-specific TSFM 1T M g, TimesNet(Ekambaram et al., 2024;
Wau et al., [2023)), the Transformer-based models PatchTST, FEDformer, Autoformer, Informer(Nie
et al.l [2023; [Zhou et al., 2022; Wu et al., 20215 |[Zhou et al., [2021)), and the MLP-based model
Dlinear(Zeng et al., [2023). We focus on baselines that align closely with our experimental settings,
excluding models that require pre-training and fine-tuning on the same datasets for downstream
tasks. The long-term forecasting lengths includes T € {96, 192, 336, 720} time points. We use MSE
and MAE as evaluating metrics. Notablely, GTM directly utilizes pre-trained model without any
modifications. As shown in Table [[, GTM outperforms all SOTA models, achieving the highest
total number of best- and 2nd-best-place results across tests with varying forecasting lengths, while
PatchTST ranks second. Full results, additional baseline comparisons with SOTA TSFMs Sundial
and Time-MOE, and error bar analysis with 95% confidence intervals and more experiments on
extended challenging, real-world datasets are provided in Appendix

4.3 IMPUTATION

We use the same publicly available datasets in forecasting tasks and follow the protocol pro-
posed by (Zhou et all 2023) for imputation tasks. To align with benchmark settings, we apply
point-wise missing ratios for interpolation, and directly use pre-trained model for fine-tuning, only
omitting the patching process. The point-wise imputation baselines include GPT4TS, TimesNet,
PatchTST, FEDformer, Informer and Dlinear. We conduct the task with varying missing data ratios
of {12.5%, 25%, 37.5%, 50%} at the time-point level. Table 2] demonstrates that, even without patch
preprocessing, GTM achieves significant performance improvements. Compared to the second best
model, GTM gets a 23.1% reduction in MSE, 12.1% in MAE for ETTh1 data, and 25.0% reduction
in MSE, 8.6% in MAE for ETTm1 data. More details are in Appendix[B.3.2]
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Table 2: Avg. MSE & MAE results of Imputation. Results are averaged over varying data missing
ratios at the time-point level. Bold and underline denote the best and the 2nd-best results, respectively.
Full results are listed in Table[22]

Models | GTM | GPT4TS | TimesNet | PatchTST | DLinear | Fedformer | Informer
Dataset | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE|MSE MAE| MSE MAE

ETThl [0.053 0.152]0.069 0.173]0.078 0.187]0.115 0.224]0.201 0.306|0.117 0.246|0.161 0.279
ETTml |0.021 0.096|0.028 0.105|0.027 0.107|0.047 0.140{0.093 0.206|0.062 0.177|0.071 0.188
weather |0.030 0.054|0.031 0.056|0.030 0.054|0.060 0.144]0.052 0.110|0.099 0.203|0.045 0.104
Electricity | 0.086 0.202|0.090 0.207|0.092 0.210|0.072 0.183|0.132 0.260|0.130 0.259|0.222 0.328

Table 3: The F1 scores for the anomaly detection tasks.

Models | GTM | UP2ME | GPTATS | TimesNet PatchTST FEDformer DLinear | Autoformer | Informer
Dataset |F1(%) | F1(%) | F1(%) | F1(%) | F1(%) | F1(%) | F1(%) | F1(%) | F1(%)

MSL | 82.53 - 82.45 81.84 78.70 78.57 84.88 79.05 84.06
SMAP | 77.57 - 72.88 69.39 68.82 70.76 69.26 71.12 69.92
SWaT | 94.78 | 93.85 94.23 93.02 85.72 93.19 87.52 92.74 81.43
SMD | 85.47 | 83.31 86.89 84.61 84.62 85.08 77.10 85.11 81.65

PSM | 9543 | 97.16 97.13 97.34 96.08 97.23 93.55 93.29 77.10

Average | 87.01 | - | 8672 | 8524 | 8279 | 8497 | 8246 | 8426 | 78.83

Table 4: The Accuracy results of Classification tasks

Dataset/Model GTM | UNITS-SUP | UNITS-PMT | GPT4TS | TimesNet | iTransformer
EthanolConcentration | 34.2 / / 342 35.7 28.1
FaceDetection 69.9 65.4 58 69.2 68.6 66.3
Handwriting 34.8 / / 32.7 32.1 242
Heartbeat 71.5 63.9 65.4 77.2 78 75.6
Japanese Vowels 92.1 92.2 90.3 98.6 98.4 96.6
PEMS-SF 88.4 83.2 82.7 87.9 89.6 87.9
SelfRegulationSCP1 | 92.5 / / 93.2 91.8 90.2
SelfRegulationSCP2 | 60 48.9 57.2 59.4 57.2 54.4
SpokenArabicDigits | 99.2 96.8 95.5 99.2 99 96
UWaveGestureLibrary | 89.3 82.2 85.3 88.1 85.3 85.9
Best Count | 5 | 0 | 0 | 2 | 3 | 0

4.4 ANOMALY DETECTION

For anomaly detection, we fine-tune the pre-trained GTM model in a self-supervised manner via data
reconstruction, without any task-specific modifications. Following a standard approach (Xu et al.,
2018)), points with reconstruction errors above a threshold are labeled as anomalies. We compare
GTM against baselines, including the multi-task TSFMs (UP2ME, TimesNet), the LLM-enhanced
model (GPT4TS), transformer-based models (PatchTST, FEDformer, Autoformer, Informer), and the
MLP-based model (DLinear). As shown in Table[3] GTM achieves the highest F1 score across all
baselines, with improvements ranging from 0.33% (over GPT4TS) to 10.38% (over Informer). We
also report results on the TSB-AD datasets, using various widely used measures (Liu & Paparrizos,
2024), along with broad coverage of TSFM:s testing results. See Appendix [B.3.3]for details.

4.5 CLASSIFICATION

Although GTM is designed as a generative-task-agnostic foundation model, it can be smoothly
extended to discriminative tasks such as classification. As outlined in Section [I] we adapt only
the output projection layer to map TS inputs to categorical labels, while keeping the rest of the
model architecture unchanged. Following this approach, we fine-tune our pre-trained GTM on 10
widely-used classification datasets (Bagnall et al.| [2018]), using accuracy as the evaluation metric. As
shown in Table ] GTM achieves the highest number of best-(5) and second-best(4) results compared
to SOTA multi-task TSFMs.
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Table 5: Zero-shot capability (MSE) of GTM compared to SOTA TSFMs.

Dataset | GTM | TIMER-1B | MOIRAI-S | MOMENT | TimesFM | CHRONOS-S1

ETThl | 0.407 0.438 0.441 0.674 0.414 0.571
ETTm1 | 0.593 0.690 0.562 0.670 0.354 0.632
weather | 0.172 0.181 0.195 0.255 - -
ECL |0.187 0.192 0.212 0.744 - -
Traffic | 0.542 0.458 0.616 1.293 - -
Average [0.380 | 0392 | 0405 | 0.727 | - -

4.6 EFFECTIVENESS OF PRE-TRAINING

By pre-training on large-scale TS data spanning multiple temporal granularities, GTM is able to learn
richer and more diverse patterns. We first demonstrate the effectiveness of pre-training through GTM’s
generalization ability in zero-shot and few-shot settings. Table [5|shows that, compared to 5 SOTA
TSFMs: Timer, MOIRAI-S(Woo et al.| [2024), MOMENT (Goswami et al., [2024])), TimesFM(Das
et al.}2024) and Chronos-S1(Ansari et al.,2024), GTM ranks first on average MSE across 5 datasets
with a forecasting length of 96 in zero-shot. In few-shot testing, Fig. 3] shows GTM outperforms
TimesFM across 4 forecasting lengths on ETTh1 data, achieving better performance with only 10%
of the data for fine-tuning, improving results with the largest MSE reduction of 7.53%.

- GT™M 428 436 E A0 3852387392 01 4
TimesFM 348 .349
339 =
H
wn 20
2 0.3 225.231.233
: .161 .163 .165
192 336 ETThl ETTml Weather Traffic Electricity
forecast length Datasets

Figure 3: GTM VS. TimesFM in few-shot on  Figure 4: Average results of long-term forecast-
ETThl dataset, 10% samples for fine-tuning. ing in ablation test.

We also compare the fine-tuned GTM pre-trained on UTSD datasets with the baseline GTM, which
is trained directly on task-specific datasets with random initialization. This further highlights the
benefits of pre-training across various tasks. Tables[6]and[7] present the average performance of both
models across all datasets, covering forecasting tasks with varying prediction lengths and imputation
tasks with different missing data ratios. The results show that, for forecasting, fine-tuned GTM
consistently outperforms the baseline GTM in every comparison. It achieves a reduction in MSE
ranging from 0.5% to 7.8% and a reduction in MAE ranging from 0.8% to 8.0%. Similarly, for
imputation, fine-tuned GTM also outperforms the baseline GTM, achieving an MSE reduction of
1.2% to 11.7% and an MAE reduction of 0.5% to 14.2%. More details are provided in Appendix
B34 For anomaly detection, Table [§] shows that with pre-training, the fine-tuned GTM model
achieves performance gains across all test datasets, with an average increase of 1.2% in F1-score
compared to the baseline GTM model.

4.7 ABLATION TESTS

We conduct a series of ablation experiments on long-term forecasting tasks for different prediction
lengths to evaluate the effectiveness of key components in the GTM model. We use a baseline version
of the GTM model without the frequency domain analysis module and compare it with an advanced
version that lacks the time granularitiy-aware modules. By also comparing both with the complete
GTM model, we gain insights into the impact of these key design elements.

Fig. ] shows the average forecasting results for each dataset. The complete GTM model outperforms
all other models in every test. The advanced GTM model ranks second. This demonstrates that
the combination of temporal and frequency domain analysis, especially, the time granularity-aware
modules helps the GTM model effectively learn distribution representations from TS datasets with
varying time granularities. More details of ablation tests are listed in Appendix
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Table 6: Avg. results of forecasting results com-
pared with GTM model w/o pre-train. Tabl¢24]
shows full results in Appendix [B.3.4]

Table 7: Avg. Imputation results compared with
GTM model without pre-training. Table25]in
Appendix [B.3.4] shows the full results.

Models | GTM  |GTM no pretrain Models | GTM |GTM no pretrain
dataset | MSE MAE|MSE MAE dataset | MSE MAE| MSE MAE
ETThl |0.404 0.429|0.435 0.447 ETThl ]0.053 0.152|0.055  0.156
ETTml1 [0.339 0.376/0.351 0.389 ETTm1 [0.021 0.096/0.023  0.100
weather [0.225 0.266(|0.244  0.289 weather [0.030 0.054(/0.034  0.063
traffic  [0.385 0.266|0.387  0.268 Electricity|0.086 0.202(0.087  0.203
electricity |0.161 0.254|0.163  0.256 electricity |0.161 0.254]0.163  0.256
o4 — dim=256 Table 8: Anomaly detection results compared
S dim=512 with GTM model without pre-training
0.43 \’*ﬂ\,\r\r\r —— dim=768
. Models | GTM | GTM no pretrain
g 042 dataset | FL(%) | F1(%)
MSL 82.53 81.92
0.41 — SMAP 77.57 76.48
T SWaT 94.78 94.66
1 SMD 85.47 82.11
0401 < 5 . PSM 95.43 95.42
Model Layers Average | 87.15(+1.2%) | 86.11
Figure 5: Analysis on model scalability (Ettm1).
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Figure 6: Data scalability analysis. GTM achieves better results with larger pre-training datasets.

4.8 SCALABILITY ANALYSIS

FMs generally adhere to scaling laws, where their accuracy and capabilities scale predictably with
both model size and training data(Kaplan et al.,2020). This is crucial for FM design and deployment.
To explore the scalability of GTM, we pre-trained the model with increasing model size (layers and
dimensions) and data size, conducting forecasting tests on various downstream tasks for evaluation.
Fig. [5]shows the average forecasting results on the ETThI dataset for various forecasting lengths,
including T € {96,192, 336, 720} time points, using pre-trained models with different number of
layers and embedding dimensions. The results indicate that GTM follows scaling laws, achieving a
better MSE with deeper and wider models. However, when the depth of the model is insufficient,
increasing the width (embedding dimension) may not improve the performance. We also pre-trained
GTM on different scales of the UTSD dataset and evaluated its forecasting performance for various
forecasting lengths on the ETTh1 and Weather datasets with fine-tuning. Fig. [6| shows that GTM
performs better with larger pre-training datasets, as evidenced by the average MSE results, consistent
with the expected data scaling laws.
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Table 9: Comparison of model parameters and efficiency

Model Parameter | Training Speed | Inference Speed | Training Mem | Inference Mem
GTM 35.73M 0.290s/iter 0.165s/iter 8324.00MB 1250.00MB
Time-Moe(base) | 50.00M 0.840s/iter 0.095s/iter 1812.48MB 226.70MB
GPT-2(6)-768 82.28M 0.104s/iter 0.054s/iter 5230.00MB 2566.00MB
FEDformer-768 | 30.75M 0.467s/iter 0.172s/iter 9535.00MB 1880.19MB
TimesNet-768 | 42.21M 1.849s/iter 0.547s/iter 35871.00MB | 1904.18MB
Table 10: Analysis of model inference latency Table 11: Analysis of model inference latency
and computational overhead in critical modules. across different frequency modules. F.A. de-
F.A. denotes Fourier Attention module. notes Fourier Attention module.
Inference | FFT+iFFT| FA. Low-rank Inference| F.A.
GPU  |Channel (s/item) | (s/item) |(s/item) modules Channel (s/item) |(s/item)
1 0.043 0.0007 | 0.033 | 1 0.030 | 0.020
A100 7 0.044 0.0007 | 0.034 7 0.030 | 0.020
862 0.142 0.0009 | 0.103 10 1 0.060 | 0.049
1 0.041 0.0007 | 0.031 7 0.061 0.050
RTX4090| 7 0.041 0.0007 | 0.031 20 1 0.092 | 0.080
862 0.144 0.0009 | 0.107 7 0.094 | 0.081

4.9 COMPUTATIONAL OVERHEAD AND EFFICIENCY ANALYSIS

We compare GTM with four reproduced baseline models, including three TSFMs: Time-MOE(base),
GPT-2(6)-768, TimesNet-768, and one deep learning model: FEDformer-768, in terms of model size
and efficiency. As shown in Table[9] GTM achieves suitable trade-offs for industrial deployment: it
ranks second in parameter size(35.7M), training speed(0.290s/iter for batchsize 128), and inference
memory(1.25GB), and retains competitive performance in inference speed(0.165s/iter) and training
memory(8.32GB), demonstrating both efficiency and applicable for real-time deployment.

We further break down the computational overhead of the Fourier Attention module and FFT/iFFT
operations. Table [T0|presents latency measured on both A100 and RTX4090 GPUs. For univariate
data (1440 input points, 96 prediction length), GTM achieves a total inference latency of just
0.043s/item, with FFT/iFFT and Fourier Attention modules introducing only marginal overhead.
Similar results are observed for the multivariate case(ETT and Traffic data), confirming GTM’s
low-latency and capable for sub-second real-time streaming applications. We provide more model
efficiency scale analysis with significantly longer prediction lengths in Appendix |B.3.8|

Finally, we assess the impact of the number of low-rank modules in the Fourier Attention on inference
latency. Table[IT]shows that increasing the number of modules provides finer-grained distribution
representation across temporal granularities, with only a gradual and sub-linear increase in processing
time. Even when using 20 modules, latency remains below 0.1s/item, easily satisfying real-time sub-
second application requirements. This demonstrates that GTM flexibly balances model expressiveness
and computational efficiency.

5 CONCLUSION

Large-scale TS analysis poses distinct challenges compared to LLMs, particularly in learning effective
universal knowledge and building models for multi-task settings. In this paper, we propose GTM,
a general framework for TS analysis that utilizes a decoder-only architecture. GTM incorporates
granularity-aware attention mechanisms in both the temporal and frequency domains to improve TS
representations. Furthermore, we introduce a blank infilling pre-training strategy specifically designed
for multi-task time series analysis, unifying all generative downstream tasks. Experimental results
show that GTM either matches or outperforms SOTA methods across all generative TS analysis
tasks. Additionally, our findings demonstrate that GTM adheres to scaling laws, achieving better
performance with larger model sizes and more extensive pre-training datasets. However, challenges
and limitations still exist in the design of TSFM, such as the lack of large-scale datasets and the
absence of consistent benchmark models and settings. A detailed discussion of future work and
limitations is provided in Appendix [B.6|for further enhancement.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs were used only occasionally to help polish the writing (propose new words, grammar and
spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were
developed and carried out entirely by the authors. The authors have full responsibility for the final
text.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

B.1 ADDITIONAL RELATED WORK

LLM Empowered TSFMs: This line of works follow the paradigm that freeze LLM encoder
backbones while simultaneously fine-tuning/adapting the input and projection heads for forecasting,
and notable ones include Time-LLM(Jin et al.| 2024), LLM4TS(Chang et al.| 2024), GTPATS(Zhou
et al.| 2023)), UniTime(Liu et al., 2024al), Chronos(Ansari et al.,2024) and Tempo(Cao et al.,|[2024).
This effectiveness of this paradigm is currently in debating in the sense that some works present
promising results while the latest ablation studies show the counterpart (Tan et al.l 2024)).

Table |[12] highlights the key distinctions between our approach and existing SOTA models. First,
whereas prior TSFMs primarily rely on temporal information from discrete scalar values, our method
uniquely integrates both temporal and frequency-domain features through a Fourier attention mecha-
nism that captures time granularity-aware representations. Second, previous models often require
downstream task-specific customization at the token, pre-training strategy, or model level. In contrast,
our approach introduces a hybrid masking-based pre-training strategy that unifies reconstruction and
autoregressive objectives, enabling generative-task-agnostic adaptation without additional modifica-
tions.

B.2 DETAILS OF IMPLEMENTATION AND EXPERIMENTAL SETTINGS
B.2.1 DATASETS DESCRIPTION

We use the UTSD-12G dataset, released by (Liu et al., 2024b), for pre-training. The Unified
Time Series Dataset (UTSD) includes seven domains: Energy, Environment, Health, IoT, Nature,
Transportation, and Web, with varying sampling frequencies. It contains up to 1 billion time points
and hierarchical structures, supporting large-scale time series model research. The overall statistics
of UTSD-12G is shown in Table [13]

For downstream tasks such as long-term forecasting and imputation, we conduct experiments on five
widely used public datasets from (Wu et al.,2021): ETTh, ETTm, Weather, Electricity, and Traffic.
For anomaly detection, we utilize five popular datasets: SMD (Su et al.|[2019), MSL, SMAP (Hund
man et al., [2018)), SWaT (Mathur & Tippenhauer, 2016), and PSMAbdulaal (Abdulaal et al., [2021).
For classification, we select ten standard datasets from Bagnall et al.| (2018): EthanolConcentration,
FaceDetection, Handwriting, Heartbeat, Japanese Vowels, PEMS-SF, SelfRegulationSCP1, SelfReg-
ulationSCP2, SpokenArabicDigits, and UWaveGestureLibrary. Dataset statistics for these tasks
are summarized in Tables [T4[15] andI6] Among these datasets, the ETTm dataset represents the
longest-range testing scenario, spanning over 725 days and containing up to 69,680 time points at a
15-minute sampling interval.

B.2.2 BASELINE MODEL SELECTION

We summarize the baseline models in TabldT7] We classify these models into four categories, includ-
ing LLM-enhanced models for TS analysis, MLP-based models, Transformer-based models, and
TSFMs. The TSFMs are further divided into two sub-categories: task-specific foundation models and
multi-task foundation models. Since each model has its own design goals and experimental settings,
it is challenging to align them all for reproducing their best results presented in papers. Therefore, we
follow established protocols from previous works and select typical models as benchmarks for each
downstream task, ensuring a fair comparison of GTM with SOTA results.

16



Under review as a conference paper at ICLR 2026

Table 12: Comparison between GTM and SOTA time series foundation models trained from scratch.
The models are characterized by their approach to representation learning, ability to handle down-
stream tasks, and adaptability to multi-task scenarios. The list of the abbreviation of the table is:
Temporal Domain: T. D., Frequency Domain: F. D., Anomaly Detection: AD., Inference Adaption:
Inf. Ad.

| Time Series Features | Downstream Tasks | Adaptability
|T.D. F.D. Time Gran. |Forecasting AD. Imputation CLF.|W/o Inf. Ad.

PatchTST, Lag-Llama, GPD
GPHT, TimesFM, MOIRAL | v X X v X X X X
UTSD, TTMs, TIME-MOE

TimeSiam, LPTM | v X X | v X X v X
TIMER, UP2ME | v x x | Vv v v x| X
UniTS | v  x x | v v v T
GTM(ours) | v v v | v v v v v
Table 13: Statistics of UTSD-12G dataset
Domain | Dataset Number | Time Points | File Size | Freq.
Energy 3 175.06M 4334M | [4 sec, 30 min, Hourly]
Environment 3 31.54M 286M [Hourly]
Health 9 289.72M 2685M [1ms, 2ms, 4ms, 8ms]
IoT 1 165.4M 2067M [20ms]
Nature 11 241.4M 2227M | [33ms, Hourly, 3h, Daily]
Transport 1 3.13M 72M [Hourly]
Web 1 116.49M 388M [Daily]

Table 14: Statistics of datasets for forecasting & imputation

Dataset | Length | Dimension | Frequency

ETTh 17420 7 1 hour
ETTm 69680 7 15 min
Weather | 52696 21 10 min
Electricity | 26304 321 1 hour
Traffic 17544 862 1 hour

B.2.3 EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

Pre-training In the pre-training stage, we trained our GTM model on the UTSD-12G dataset (Liu
et al.}2024b)). During data preprocessing, we defined a lookback window of 1440 timestamps and
split the raw data into overlapping samples with a stride 7 = 192. We then generated 15 patches with
a patch size L,, = 96. To enable the model to learn both reconstruction and forecasting objectives,
for each training instance, we empirically set the hyperparameter pred_ratio to 0.3, and masked
the last 30% of the sequence (tail masking) with probability pred_ratio. For other critical model
hyperparameters, we set the batch size to 1024 and the learning rate to 1 x 10~°, using Adam as
the optimizer with a cosine annealing learning rate decay. We trained for 30 epochs with an early
stopping mechanism, and the decay steps were proportional to the number of training epochs. In
the model backbone, we set the number of layers (N-stack) to 12 and the feature dimension to 768.
The Fourier Knowledge Attention layer consisted of 5 attention modules, each with a low-rank
matrix parameterized by AB, where A € R3%°%1 B € R1*385 We provide pseudo-code of GTM
architecture and pre-training strategy in Algorithm[I] Finally, we implemented the GTM model in
PyTorch (Paszke et al.,[2019)) and trained it on 6 NVIDIA A100 40GB GPUs.

Fine-tune We present experimental settings for three generative downstream tasks.

* Long-term Forecasting For long-term forecasting, we directly reuse the pre-trained GTM
model without any special adaptations, only removing the masking process. We dy-
namically choose look-back window in range [96, 1440] and forecast future time points
T € {96,192, 336, 720}. The results are compared with the best-performing results SOTA
models presented in papers or source codes.
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Table 15: Statistics of datasets for anomaly detection

Dataset | Training size | Validation size | Test size | Dimension | Frequency | Anomaly rate

MSL 46653 11664 73729 55 1 min 10.5%
SMAP 108146 27037 427617 25 1 min 12.8%
SMD 566724 141681 708420 38 1 min 4.2%
SWaT 396000 99000 449919 51 1 sec 12.1%
PSM 105984 26497 87841 25 1 min 27.8%

Table 16: Statistics of datasets for classification

Dataset [ Train Cases | Test Cases | Dimensions [ Length [ Classes
EthanolConcentration | 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 9
PEMS-SF 267 173 963 144 7
SelfRegulationSCP1 | 268 293 6 896 2
SelfRegulationSCP2 | 200 180 7 1152 |2
SpokenArabicDigits 6599 2199 13 93 10
UWaveGestureLibrary | 120 320 3 315 8

Table 17: Selected SOTA baseline models for downstream tasks comparison.

Task | Method Types | Method
| LLM-Enhanced for TS | GPT4TS
| MLP-based | DLinear
. PatchTST, FEDformer,
Forecasting ‘ Transformer-based ‘ Autoformer, Informer
| task-specific foundation model | TTMs UTSD
‘ multi-task foundation model ‘ Uans-%I{rls{elsjﬁle”{S-PMT,
| LLM-Enhanced for TS | GPT4TS
| MLP-based | DLinear
Anomaly Detection ‘ Transformer-based ‘ ?&igg%i?ﬁ?gﬁg’
| task-specific foundation model | /
| multi-task foundation model | TimesNet, UP2ZME
| LLM-Enhanced for TS | GPT4TS
| MLP-based | DLinear
Imputation Transformer-based Pgtgtlé}‘osr}*ﬁ ggigffgrrlr; :rr ’
| task-specific foundation model | UTSD
| multi-task foundation model | TimesNet UP2ME
| LLM-Enhanced for TS | GPTATS
| MLP-based | /
Classification | Transformer-based | iTransformer
| task-specific foundation model | /

| multi-task foundation model | UniTS-SUP, UniTS-PMT, TimesNet

e Imputation To align with benchmark settings, we follow the protocol proposed by
(Zhou et al., [2023) for imputation tasks. We use point-wise missing ratios of
{12.5%, 25%, 37.5%, 50%} at the time-point level for interpolation, omitting the patch-
ing process. For all other aspects, we reuse the settings from the pre-training stage.
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Algorithm 1 GTM pre-train strategy

Require: : Input look_back time series x, © € RL*C: 1ook_back window length L, number of

I e T e T =SS

R AN A S ol e

channels or variables C'; number of patches V,,; patch length L,,; no. of masked patch V,,,; no.

of reconstruction patch label N,.,; no. of total patches Niotq1 = Nppp + Npp; patch embedding

dimension D.

> CI and Patching:

P = Patch(CI(z))

> Masking:

Xin = [Perpt, Sin]

> Embedding:

HY = Embedding(X;y,)
fori =1to N do

> Temporal attention:

H;i;}mtto“t = SelfAttention(H;L_l)

> Fourier attention:
n
HO

U

: end for

: > Output Projection:

. Xouws = MLP(HY,)
: return X, ,;

. = Fourier Attention(H} ! 4iout)

> P e RN»xLr

> in c R(Nmp""Nrp)XLp

> HZOTL c RNt,otal xD
> through GTM blocks

n—1 Niotar XD
> Hrpom attour € RV

> H”

; € RNtotar XD
U

> X,ut € RNtotar X Lp

* Anomaly Detection We use a common adjustment strategy (Xu et al.,[2018};|Su et al.| [2019;
Shen et al.,|2020) for anomaly detection: if an anomaly is detected at any time point in an
abnormal segment, all anomalies in that segment are considered detected. This approach is
based on the fact that detecting one abnormal point usually triggers an alert for the entire
segment in real-world scenarios. We calculate F1-scores for each datasets to evaluate the
results. the As we do in other generative tasks, we directly reuse the GTM model settings
from the pre-training stage.

* Classification For discriminative tasks such as classification, we replace the projection head
to output class label probabilities instead of future time step predictions, while keeping
the rest of the model architecture unchanged to ensure smoothly adaptation. We employ
cross-entropy loss, aiming to minimize the divergence between the predicted and true class
distributions, which is equivalent to maximizing the log-likelihood of the correct label.
Model performance is evaluated using accuracy, enabling direct comparison between GTM
and SOTA TSFMs.

B.3 FULL RESULTS

Due to space limitations in the main body of the paper, we provide the full experimental results in
this section, to complement the discussion in section 4}

B.3.1

FORECASTING

Table T8 demonstrates the full results of long-term forecasting. it shows that GTM outperforms all
the SOTA models, achieving the best result in 21 and second best in 22 out of total 50 tests. The
second best model PatchTST, achieves the best in 14 and second best in 15.

We further conduct error bar analysis by running 10 independent trials for long-term forecasting tasks.
The 95% confidence interval for each metric is calculated as

sud
NG

error_bar = .025, n—1 X
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Table 18: Full results of MSE and MAE for long-term forecasting. We conduct experiments for
different length T' € {96,192,336,720}. Bold and underline numbers denote the best and the
2nd-best results, respectively.

Models |

| GIM

| GPT4TS |UniTS-PMT| TTMg

‘ PatchTST ‘ TimesNet ‘ DLinear ‘FEDformer‘Autoformer‘ Informer

Dataset | T' [MSE MAE|MSE MAE|MSE MAE |[MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 .360 .398 |.376 .397|.390 411 |.363 370 400 |.384 .402|.375 .399|.376 .415|.435 .446|.865 .713
192|.397 .422|.416 .418]|.432 .438 |.394 413 429|436 429 |.405 .416|.423 .446|.456 .457|1.008 .792

ETThl [336|.420 .437|.442 .433|.480 .460 |.403 422440 |.491 469 |.439 443 |.444 462 |.486 .487 [1.107 .809
720(.438 457 |.477 .456|.542 .508 |.449 447 468 |.521 .500 |.472 .490|.469 .492|.515 .517 |1.181 .865
Avg|.404 429 |.427 .426|.461 454 |.402 413 434|458 450 |.422 437 |.428 453|473 .476 [1.040 .795

96 |.282 .341|.292 .346| - - 293 293 346 |.338 .375|.299 .3431.326 .390|.510 .492|.672 .571
192].325 .366|.332 372 | - - ].335 333 .370|.374 .387|.335 .365|.365 .415|.514 .495|.795 .669

ETTml |336|.353 .385|.366 .394| - - 364 369 3921410 411].369 .386(.392 .425|.510 .492(1.212 .871
720(.396 .410|.417 421 | - - ].408 416 420 |.478 .450|.425 .421|.446 .458|.527 .493 |1.166 .823
Avg|.339 .376|.352 .383| - - 1.350 352 .382|.400 .406 |.357 .378|.382 .422|.515 .493|.961 .734

96 |.147 .197|.162 .212|.157 206 |.154 149 198 |.172 .220|.176 .237|.238 .314|.249 .329 |.300 .384
192/.192 .241|.204 248 |.208 .251 |.207 194 241|.219 .261|.220 .282.325 .370|.325 .370 |.598 .544

weather [336(.250 .291 |.254 .286|.264 .291 |.250 245 282 |.280 .306 |.265 .319.351 .391|.351 .391|.578 .523
720(.310 .334|.326 .337|.344 344 |.324 314 .3341.365 .359|.323 .362|.415 .426 |.415 .426 (1.059 .741
Avg|.225 .266|.237 .270|.243 273 | .234 1225 .263 |.259 .287|.246 .300|.332 .375|.335 .379 |.634 .548

96 |.351 .250|.388 .282|.465 .298 |.372 360 .249 |.593 .321|.410 .282|.576 .359 |.597 .371|.719 .391
192|.373 260 |.407 .290 |.484 .306 |.365 379 .256 |.617 .336|.423 .287|.610 .380|.607 .382|.696 .379

traffic |336(.388 .267 | 412 .294|.494 312 |.379 392264 |.629 .336 |.436 .296 |.608 .375(.623 .387 |.777 .420
720(.428 288 | 450 .312|.534 .335 |.425 432 .286 |.640 .350|.466 .315|.621 .375|.639 .395|.864 .472
Avg|.385 266 |.414 294|.494 313 |.385 390 .263|.620 .336|.433 .295|.603 .372|.616 .383|.764 .416

96 |.131 .225|.139 .238|.157 .258 |.129 129 .222|.168 .272|.140 .237|.186 .302 |.196 .313 |.274 .368
192].149 .243|.153 .251|.173 .272 |.148 147 240 |.184 .289|.153 .249|.197 .311|.211 .324 | .296 .386
Electricity|336|.166 .259 |.169 .266 |.185 .284 |.161 163 .259(.198 .300|.169 .267|.213 .328 |.214 .327 |.300 .394
720(.201 292 |.206 .297|.219 .314 |.193 2197 290 | .220 .320|.203 .301|.233 .344 |.236 .342|.373 .439
Avg|.161 .254|.167 263 |.184 282 |.158 159 .252|.192 .295|.166 .263|.207 .321|.214 .326 |.311 .397

Table 19: 95% CI error bar analysis for forecasting tasks.

Dataset ‘ pred_len ‘ MSE ‘ MSE error-bar ‘ MAE ‘ MAE error-bar

96 0.3611 +0.00093 0.3991 +0.00072
192 0.3990 +0.00099 0.4241 +0.00099
ETThl 336 0.4236 +0.00099 0.4395 +0.00099
720 0.4428 +0.00344 0.4643 +0.00265
AVG | 0.4066 +0.00157 0.4318 +0.00136

96 0.2828 +0.0014 0.3430 +0.0010

192 0.3304 +0.0022 0.3698 +0.0005

ETTml1 336 0.3580 +0.0021 0.3890 +0.0009
720 0.4040 +0.0020 0.4122 +0.0016

AVG | 0.3438 +0.0019 0.3785 +0.0010
96 0.1474 +0.00043 0.1983 +0.00050

192 0.1943 +0.00107 0.2427 +0.00115

Weather 336 0.2445 +0.00014 0.2876 +0.00021
720 0.3100 +0.00229 0.3355 +0.00115
AVG | 0.2241 +0.00099 0.2660 +0.00079

where the ¢ value is approximately 2.26 for 10 runs (n = 10). As shown in Table[I9] the error bars
for both MSE and MAE across all prediction lengths and datasets are consistently low, indicating
high reliability and stability of the reported results.
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Table 20: Full MSE and MAE results for long-term forecasting on additional SOTA TSFMs:
Time-MOE-Base and Sundial-Small. Experiments are conducted for prediction lengths T' &
{96,192, 336, 720}. Bold numbers denote the best results.

\ Models \ \ GTM ‘Time-MOE-b

Sundial-s ‘

dataset |Pred_len| MSE [MAE|MSE| MAE |MSE|MAE|

96 10.360(0.398|0.345| 0.373 |0.341|0.381
192 |0.397(0.422(0.372| 0.396 |0.381]0.408
ETThl 336 |0.420(0.437/0.389| 0.412 |0.405|0.424
720 |0.438]0.457(0.410| 0.443 |0.433]0.458
AVG |0.404|0.429|0.379| 0.406 |0.390/0.418

96 ]0.282|0.341{0.286| 0.334 |0.292|0.342
192 |0.325]0.366|0.307| 0.358 [0.337|0.376
ETTml1 336 |0.353]0.385|0.354| 0.390 (0.370/0.401
720 10.396|0.410|0.433| 0.445 0.418|0.433
AVG (0.339/0.376|0.345| 0.381 [0.354|0.388

96 10.147|0.197|0.151| 0.203 |0.158|0.206
192 10.192|0.241|0.195| 0.246 |0.205|0.253
weather 336 0.250(0.291/0.247| 0.288 |0.254|0.290
720 |0.310{0.334/0.352| 0.366 (0.315]0.336
AVG |0.225|0.266|0.236| 0.275 |0.233(0.271

96 [0.131]0.225] - - o.134]0.231
192 |0.149(0.243| - - l0.154/0.251
Electricity| 336 |0.166(0.259| - - l0.1740.271
720 0.201]0.292| - - |0.215/0.307
AVG [0.161]0.254| - - 0.169/0.265
Best Count| @12 6 | 8 | 1| 0|

To provide a comprehensive baseline comparison for long-term forecasting tasks, we further include
two recent TSFMs, Sundial-SmallLiu et al| (2025) and Time-MOE-Bas¢Shi et al| (2024), both of
which are comparable to GTM in model size and are evaluated under similar experimental settings.
Note that Time-MOE-Base was not evaluated on the Electricity dataset; therefore, best count statistics
are reported both for all tasks and for the subset where Time-MOE-Base results are available. As
shown in Table 20] GTM achieves the best performance on 13 out of 20 metrics overall, and on 8 out
of 15 metrics when directly compared with Time-MOE-Base (numbers in parentheses in the table),
slightly outperforming the Time-MOE-Base model. In contrast, Sundial-Small achieves the best
result in only one case. These results demonstrate GTM’s strong competitiveness and robustness
across diverse datasets and prediction horizons.

For more experiments on challenging, real-world datasest, we have identified two such kind of datasets
that have not yet been over exploited: one is an open PV (PhotoVoltaic) solar energy forecasting
datase(Carreira Pedro et al] (2019), and the other is the L2C (lead-to-cash) datasetSaha et al.| (2024),
which combines observations of Business Key Performance Indicators (Biz-KPIs) and IT events.
We also have reproduced two SOTA models, PatchTST and TimesNet, conducting experiments on
forecasting with various prediction length. Table [2T]shows that GTM consistently delivers SOTA
performance across both the PV and L2C datasets, achieving the best results in most test cases for
both MSE and MAE metrics. The most significant improvement of GTM over competing methods is
observed on the L2C dataset with a prediction length of 720. For MSE, GTM achieves a score of
0.7170, outperforming the second-best method (TimesNet, 1.2984) which means a 44.8% reduction.
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Table 21: Full results of MSE and MAE for long-term forecasting on PhotoVoltaic(PV) and Lead-to-
cash(L2C) datasets. Bold numbers denote the best results.

‘ Dataset ‘Pred_len‘ GT™M ‘ PatchTST ‘ TimesNet ‘

‘ ‘ ‘MSE‘MAE‘MSE‘MAE‘MSE‘MAE‘

96 |0.44630.3508]0.3516/0.3143(0.3330/0.3575
e | 240 [07692/0.5359/0.7732]0.5670/0.7345 0.5598
720 10.7170|0.5218|1.3400|0.8460 1.2984|0.8374

AVG  10.6442(0.4695(0.8216|0.5758(0.7886(0.5849

60 [0.1763/0.2504]0.2017/0.2892]0.25780.3921

oy 240 10.3030]0.3880(0.3650|0.4691(0.3655(0.4691
720 10.5476/0.5616|0.5780|0.5852(0.4928|0.5414

AVG |0.3423(0.4000(0.3816(0.4478|0.3720|0.4675

‘Best_count‘ ‘5‘6‘0‘1‘3‘1‘

For MAE, GTM attains a value of 0.5218 compared to PatchTST’s 0.8460, resulting in a 38.3%
reduction.

B.3.2 IMPUTATION

Tabld22] provides the full results of Imputation for various data missing ratios of
{12.5%, 25%, 37.5%, 50%} at the time-point level. Except for the Electricity dataset (where it
achieved second-best performance), GTM outperforms all other methods in other experiments.

B.3.3 EXTENDED ANOMALY DETECTION

Recent work by (Liu & Paparrizos, [2024) has highlighted several critical challenges in time series
anomaly detection, including flawed datasets and biased evaluation metrics. To provide a more
comprehensive evaluation of our model, we utilize the TSB-AD benchmark, which features an
extensive and carefully curated collection of datasets, widely used measures, along with broad
coverage of TSFMs testing results. Table[23|presents the mean accuracy scores across the TSB-AD-U
datasets using various evaluation metrics. Compared to SOTA TSFMs such as MOMENT, TimesFM,
Lag-Llama, Chronos, and other deep learning models, GTM achieves the best performance in 8 out of
9 metrics. These results demonstrate that GTM is highly adaptable and robust across diverse datasets
and evaluation criteria.

B.3.4 EFFECTIVENESS OF PRE-TRAINING

Forecasting Table [24] presents a detailed comparison between the pre-trained GTM model and
the GTM model without pre-training. We also conduct experiments for different length T' €
{96, 192,336, 720}. The results demonstrate that pre-trained GTM model outperforms the non-pre-
trained version, highlighting the benefit of the pre-training stage in leveraging general knowledge
from large-scale datasets.

Imputation Table [25|provides detailed results of comparison in Imputation tasks between the
pre-trained GTM model and the GTM model without pre-training. As described in Sed4.3] we also
conduct experiment for different data missing ratios of {12.5%, 25%, 37.5%, 50%} at the time-point
level. As expected, the pre-trained GTM model outperforms the non-pre-trained version in all tests,
achieving significant improvements.
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Table 22: Full results of Imputation. We conduct experiment for different data missing ratios of
{12.5%, 25%, 37.5%, 50%} at the time-point level.

Models ‘

| GTIM

‘ GPT4TS ‘ TimesNet ‘ PatchTST ‘ DLinear ‘Fedformer‘ Informer

dataset |Mask Ratio| MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

12.5% |.034 .125|.043 .140|.057 .159|.093 .201|.151 .267|.070 .190|.114 234
25% |.046 .143 |.054 156 |.069 .178 |.107 217 |.180 .292|.106 .236|.140 262
ETThl | 37.5% [.059 .163|.072 .180|.084 .196|.120 .230 |.215 .318|.124 .258.174 .293
50% |.073 .179 |07 216 |.102 215 |.141 248 | 257 347 |.165 299|215 .325
AVG |.053 .152|.069 .173|.078 .187|.115 .224|.201 .306|.117 .246[.161 279
12.5% |.015 .082[.017 .085|.023 .101|.041 .130|.080 .193|.052 .166.063 .180
25% [.019 .090 | 022 096 |.023 .101|.044 .135|.080 .193(.052 .166|.063 .180
ETTml | 37.5% [.023 .100|.029 111|.029 .111|.049 .143[.103 219 [.069 .191|.079 .200
50% [.029 .112|.040 .128|.036 .124|.055 .151|.132 .248|.089 .218|.093 218
AVG  [.021 .096 |.028 .105|.027 .107 |.047 .140|.093 .206|.062 .177|.071 .188
12.5% |.026 .046 | .026 .049|.025 .045|.029 .049 |.039 .084|.041 .107|.218 .326
25% | 030 .055|.028 .052|.029 .052|.031 .053.048 .103|.064 .163|.219 326
Weather | 37.5% |.031 .057|.033 .060|.031 .057|.035 .058|.057 .117|.107 .229 | 222 328
50% |.034 .061|.037 .065|.034 .062|.038 .063|.066 .134|.183 .312|.228 331
AVG  |.030 .054|.031 .056|.030 .054|.060 .144|.052 .110|.099 203 |.222 328
12.5% | .077 .191].080 .194 |.085 .202|.055 .160|.092 214 |.107 .237|.037 .093
25% | .084 199|.087 .203|.089 .206|.065 .175|.118 .247(.120 251 |.042 .100
Electricity| 37.5% |.090 .206|.094 211(.094 213|.076 .189|.144 276|.136 266 |.049 .111
50% |.096 215[.101 .220|.100 .221|.091 .208 |.175 .305|.158 .284|.053 .114
AVG |.086 202/.090 .207(.092 .210(.072 .183|.132 260 |.130 .259 [.045 .104

Table 23: Summary accuracy comparison of mean value on TSB-AD-U by various metrics. The

best-performing method as per each metric is marked in bold.

Models\Metrics | AUC-PR | AUC-ROC | VUS-PR | VUS-ROC | Standard-F1 | PA-FI | Eventbased-FI | R-based-FI | Affiliation-Fl
GTM 0.33 0.71 0.36 0.78 0.38 0.86 0.71 0.36 0.91
MOMENT (FT) 0.30 0.69 0.39 0.76 0.35 0.65 0.49 0.35 0.86
TimesFM 0.28 0.67 03 0.74 0.34 0.84 0.63 0.34 0.89
Lag-Llama 0.25 0.65 0.27 0.72 0.3 0.77 0.59 031 0.88
Chronos 0.26 0.66 0.27 0.73 0.32 0.83 0.61 0.33 0.88
TimesNet 0.18 0.61 0.26 0.72 0.24 0.67 0.47 0.21 0.86
FITS 0.17 0.61 0.26 0.73 0.23 0.65 0.42 0.2 0.86
AnomalyTransformer 0.08 0.5 0.12 0.56 0.12 0.53 0.34 0.14 0.77

B.3.5 ABLATION TEST

Table [26] presents the full ablation results for forecasting tasks with varying prediction lengths,
includes T' € {96, 192,336, 720} time points. The comparison involves the complete GTM model,
an advanced version of GTM without the frequency knowledge attention module, and a baseline
version that includes only the temporal analysis module. The results demonstrate that the complete
design of the GTM model effectively supports the learning of universal representations for MTS
datasets with varying time granularities.

B.3.6 SCALABILITY ANALYSIS

We present full forecasting results from the model scalability analysis using different pre-trained data
sizes in Table[27] The results demonstrate that GTM adheres to scaling laws, with pre-training on
larger datasets improving fine-tuning performance on downstream tasks across various datasets.
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Table 24: Full results of forecasting comparison between GTM and GTM w/o pre-train. We conduct
experiments for different length T € {96, 192, 336, 720}.

Models ‘ ‘ GTM ‘ GTM w/o pretrain
dataset ‘ pred_len ‘ MSE MAE ‘ MSE MAE
96 0.360 0.398 0376 0412
192 0.397 0.422 0.411 0.428
ETTh1 336 0.420 0.437 0.454  0.453
720 0.438 0.457 0.500  0.497
AVG | 0.404(+7.1%) 0.429(+4.0%) | 0.435 0.447
96 0.282 0.341 0.291 0.352
192 0.325 0.366 0.335 0.378
ETTml 336 0.353 0.385 0366  0.397
720 0.396 0.410 0.415 0.429
AVG | 0.339(+3.3%) 0.376(3.3%) | 0.351 0.389
96 0.147 0.197 0.154  0.204
192 0.192 0.241 0212 0.267
weather 336 0.250 0.291 0.275 0.323
720 0.310 0.334 0.337 0.365
AVG | 0.225(+7.8%) 0.266(+8.0%) | 0.244  0.289
96 0.351 0.250 0.353 0.252
192 0.373 0.260 0.373 0.259
traffic 336 0.388 0.267 0.391 0.270
720 0.428 0.288 0432  0.291
AVG | 0.385(+0.5%) 0.266(+0.8%) | 0.387 0.268
96 0.131 0.225 0.132  0.225
192 0.149 0.243 0.150  0.244
Electricity 336 0.166 0.259 0.170  0.262
720 0.201 0.292 0.203 0.294
AVG | 0.161(+1.2%) 0.254(+0.8%) | 0.163 0.256

B.3.7 HYPER-PARAMETER ANALYSIS

The look-back window length and patch length are two critical hyperparameters in the GTM model.
We conducted experiments with varying values for these parameters to analyze the model’s sensitivity.
Table 28] shows that performance steadily improves as the patch length increases, while Table 29
demonstrates that both MAE and MSE results are consistently enhanced as the look-back window
length is extended.

B.3.8 MODEL EFFICIENCY ANALYSIS

We further analyze model efficiency by conducting experiments with longer prediction lengths
and larger input look-back windows. As shown in Table [30} the inference time remains nearly
constant even as both the look-back window and prediction length increase by an order of magnitude.
This illustrates that GTM does not fully saturate the computational resources of the A100 GPU,
demonstrating high efficiency at the current scales and is well-suited for practical deployment in
real-world sub-second streaming applications.

From an architectural perspective, there are three mainstream output projection designs in time series
forecasting models. Below we clarify these designs and discuss their implications for flexibility and
inference efficiency:

* Flatten layer with a linear projection (direct mapping)

In this design, the backbone outputs a tensor of size [B, N, D] (batch size B, number of
patches N, feature dimension D), which is flattened and projected via a linear layer of
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Table 25: Full results of Imputation comparison between GTM and GTM w/o pre-training. We

conduct experiments for varying data missing ratios of {12.5%, 25%, 37.5%, 50%} at the time-point

level.

Models | \ GTM | GTM w/o pretrain
dataset | Mask Ratio | MSE MAE | MSE  MAE
12.5% 0.034 0.125 0.037 0.131
25% 0.046 0.143 0.048 0.146
ETThl 37.5% 0.059 0.163 0.060 0.163
50% 0.073 0.179 0.077 0.184
AVG 0.053(+3.6%) 0.152(+2.5%) | 0.055 0.156
12.5% 0.015 0.082 0.020 0.096
25% 0.019 0.090 0.019 0.091
ETTml 37.5% 0.023 0.100 0.024 0.101
50% 0.029 0.112 0.030 0.113
AVG 0.021(+8.6%) 0.096(+4.0%) | 0.023 0.100
12.5% 0.026 0.046 0.028 0.051
25% 0.030 0.055 0.029 0.056
weather 37.5% 0.031 0.057 0.032 0.060
50% 0.034 0.061 0.049 0.088
AVG 0.030(+11.7%) 0.054(+14.2%) | 0.034 0.063
12.5% 0.077 0.191 0.078 0.192
25% 0.084 0.199 0.084 0.199
Electricity 37.5% 0.090 0.206 0.091 0.207
50% 0.096 0.215 0.097 0.215
AVG 0.086(+1.2%) 0.202(+0.5%) | 0.087 0.203

shape [N, x D, L], where L is the prediction length. This approach is adopted by models
such as PatchTST, TimesNet, Crossformer, FreTS, etc..

Limitations: The output head must be reconfigured for each L, limiting flexibility for
variable-length forecasting. It is a clear disadvantage for TSFMs. Moreover, inference time
increases with larger L due to the growing size of the output head.

Autoregressive Approach In this approach, the model predicts one future value at a time:
at each step ¢, it uses its previous prediction g, together with the input history to predict
U¢. This process is repeated until the desired prediction length L is reached.

Advantage: Enables high flexibility, the same output head can generate forecasts of varying
lengths without retraining.

Limitations: Inference latency scales linearly with L (since prediction is done step by step),
and error may accumulate as the prediction length increases. For these reasons, SOTA
TSFMs rarely use this mechanism for output projection.

Sequence to Sequence(seq2seq) aproach

Here, the model’s projection layer is designed to directly output the entire prediction
sequence of arbitrary length. In our implementation, the backbone output [B, N, D] is
processed to generate Np,..q = IV, X patchsize time points, corresponding to the look-back
window. At post-processing, outputs are truncated to the required prediction length L.
Advantages: Offers flexible output lengths, since the output head does not require specific
configuration for each L, making it highly suitable for variable-length forecasting. Inference
time is generally insensitive to L, as the whole sequence is produced in parallel. This design
explains why, in our tests (with a fixed look-back window), inference latency remains nearly
constant for different prediction lengths up to the input window length. SOTA TSFMs such
as TIMER, UP2ME, UniTS etc., adopt this approach.

Note: the distinction between the seq2seq and autoregressive approaches can sometimes
be ambiguous: for example, while TIMER follows a seq2seq implementation, its paper
describes the output generation process as "autoregressive".
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Table 26: Full results of ablation test in forecasting tasks. Experiments are conducted for varying
prediction lengths, includes T € {96, 192, 336, 720} time points.

Models ‘ ‘ GTM ‘ GTM w/o time_gran. ‘GTM w/o Freq.
dataset ‘pred_len‘ MSE MAE ‘ MSE MAE ‘MSE MAE
96 0.360 0.398 0.372 0.406 0.384 0.416
192 0.397 0.422 0.405 0.427 0.408 0.429
ETThl 336 0.420 0.437 0.428 0.437 0.433 0.443
720 0.438 0.457 0.450 0.463 0.449 0.466
AVG (0.404(3.57%, 2.42%) 0.429(2.28%,0.92%)|0.414(1.19%) 0.433(1.37%)|0.419 0.439
96 0.282 0.341 0.299 0.353 0.301 0.354
192 0.325 0.366 0.334 0.372 0.335 0.375
ETTml1 336 0.353 0.385 0.360 0.391 0.363 0.393
720 0.396 0.410 0.398 0411 0.398 0.412
AVG [0.339(2.87%,2.59%) 0.376(2.08%,1.57%)|0.348(0.29%) 0.382(0.52%)|0.349 0.384
96 0.147 0.197 0.153 0.217 0.158 0.212
192 0.192 0.241 0.206 0.254 0.208 0.258
weather 336 0.250 0.291 0.252 0.293 0.256  0.297
720 0.310 0.334 0.311 0.335 0.313 0.337
AVG ]0.225(3.43%,2.60%) 0.266(3.62%,3.27%)|0.231(0.86%) 0.275(0.36%)|0.233  0.276
96 0.351 0.250 0.355 0.253 0.359 0.256
192 0.373 0.260 0.374 0.262 0.379 0.264
traffic 336 0.388 0.267 0.389 0.270 0.393 0.271
720 0.428 0.288 0.431 0.291 0.435 0.293
AVG |0.385(1.79%,0.52%) 0.266(1.85%,1.12%)|0.387(1.28%) 0.269(0.74%)|0.392  0.271
96 0.131 0.225 0.132 0.226 0.134 0.227
192 0.149 0.243 0.150 0.246 0.152  0.248
Electricity| 336 0.166 0.259 0.168 0.262 0.169 0.264
720 0.201 0.292 0.202 0.295 0.205 0.296
AVG |0.161(2.42%,1.23%) 0.254(1.93%,1.17%)|0.163(1.21%) 0.257(0.77%)|0.165 0.259

Table 27: Full results of scalability analysis on pre-trained data size in forecasting tasks. Experiments

are conducted for varying prediction lengths, includes T' € {96, 192, 336, 720} time points.

Data_size 1G 2G 4G 12G

pred_len | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE

96 0.372 | 0.409 | 0.369 | 0.405 | 0.363 | 0.400 | 0.360 | 0.398

192 0.404 | 0.425 | 0.405 | 0.426 | 0.399 | 0.423 | 0.397 | 0.422

ETThl 336 0.427 | 0.439 | 0.423 | 0.438 | 0.422 | 0.438 | 0.420 | 0.437
720 0.448 | 0.462 | 0.445 | 0.459 | 0.441 | 0.458 | 0.438 | 0.457

avg 0.4130.434 | 0.410 | 0.432 | 0.406 | 0.429 | 0.404 | 0.429

96 0.147 1 0.197 | 0.148 | 0.199 | 0.147 | 0.198 | 0.147 | 0.197

192 0.193 1 0.244 1 0.192 | 0.241 | 0.193 | 0.242 | 0.192 | 0.241

Weather 336 0.257 1 0.295 | 0.253 | 0.292 | 0.251 | 0.291 | 0.250 | 0.291
720 0.364 | 0.361 | 0.351 | 0.352 | 0.321 | 0.340 | 0.310 | 0.334

avg 0.240 | 0.274 | 0.236 | 0.271 | 0.228 | 0.267 | 0.225 | 0.266

B.4 VISUALIZATION ANALYSIS

B.4.1

DISTRIBUTION DISCREPANCY OF TS DATASETS

We conduct measurement analysis on UTSD-12G datasets and 5 popular multi-domain datasets
for downstream tasks as described in Table [T3] and To complement the limited information
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Table 28: Performance of GTM for Different Patch Lengths.

Patch-len 8 16 32 64 96
Dataset | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
ETThl |0.426 | 0.443 | 0.416 | 0.441 | 0.422 | 0.439 | 0.413 | 0.437 | 0.405 | 0.429
ETTm1 | 0.363 | 0.402 | 0.349 | 0.381 | 0.355 | 0.388 | 0.351 | 0.379 | 0.342 | 0.377

Table 29: Performance of GTM for different look-back window lengths.

Seq-len 96 192 336 512 672 1440

Dataset | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
ETTh1 | 0.435 | 0.452 | 0.428 | 0.447 | 0.416 | 0.439 | 0.418 | 0.440 | 0.411 | 0.433 | 0.405 | 0.429
ETTml | 0.371 | 0.401 | 0.363 | 0.395 | 0.355 | 0.389 | 0.354 | 0.387 | 0.342 | 0.379 | 0.342 | 0.377

Table 30: Model efficiency analysis for varying prediction and look-back window lengths.

GPU | Channels | Lookback Len. | Pred. Len. Infe.rence FFT .+ iFFT Fourier.Attention
(s/item) (s/item) (s/item)
1 1440 96 0.043 0.0007 0.033
A100 1 2880 1440 0.043 0.0007 0.033
1 5120 2880 0.043 0.0007 0.033
1 14400 5120 0.043 0.0007 0.033

available in the temporal domain, we transform the datasets into the frequency domain using FFT.
This allows us to analyze data distribution patterns from various perspectives, including amplitude,
phase, periodicity, frequency resolution, etc.. Due to the complexity of the joint distribution, we apply
a non-parametric estimation method, specifically 2-D Kernel Density Estimation (KDE) (EqI3), to
estimate the joint probability density distribution (PDF) of amplitude-frequency and phase-frequency
for time series data with varying granularities. We use a 2-D Gaussian kernel function (EqI4)) and
2-D Scott’s rule (EqI3) as bandwidth fuction. Where n denotes number of data samples, h is the
bandwidth, o and p are standard deviation and mean of the samples. The results are presented in
Fig. [T} It reveals notable discrepancies in the joint distributions across TS datasets with different time
granularities. This observation highlights the importance of learning these distribution discrepancies
as critical knowledge in the process of building a universal representation of MTS, which has often
been overlooked in previous studies.

; 1 T—x Y-y
- Nk 13
flaw) = ; ( o ) (13)
1 (z = pa)® (Y — i)’
K(x,y) = 2mo L0y P ( 202 207 (14)

=

ol
N

(15)

hy = hy =n"5(0,0y)

B.4.2 LONG-TERM FORECASTING
To clearly present the results, we select some representative samples for visualization analysis. Figurd7]

shows the long-term forecasting results from 4 different datasets. We select 3 typical forecasting
results from 3 different dimensions of each datasets.
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Figure 7: Visualization of forecasting results.

B.5 IMPUTATION

Figurd@|illustrates the imputation results from three dimensions across four different datasets. Clearly,
GTM can effectively reconstruct the missing data, adapting to varying data patterns.

B.5.1 ANOMALY DETECTION

Figure [9] demonstrates four anomaly events detected by GTM in two datasets, along with their
corresponding anomaly scores. The results align precisely with the labeled anomalies in the data.

B.6 LIMITATIONS AND FUTURE WORK

Although GTM achieves promising results in multi-task time series analysis, several important
limitations remain. First, the current architecture is primarily effective for data exhibiting clear
periodicity or trend, while its robustness to low signal-to-noise ratio (SNR) or highly irregular time
series is not yet fully understood. Future work will focus on developing a frequency-domain time
granularity-aware learning module and expanding GTM into a comprehensive Mixture-of-Experts
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Value

Value

Value

Value

(MoE) framework with gate control mechanisms, aiming to further enhance its representation learning
capacity and adaptability to complex temporal patterns. In addition, we plan to leverage the GIFT
(Aksu et al.l 2024), a larger-scale time series dataset for pre-training and utilize GIFT-Eval for
downstream task evaluation, which will provide a more rigorous and diverse assessment of GTM’s
generalization ability. However, the absence of unified evaluation protocols and benchmarks—where
algorithms are compared under consistent pre-training datasets, hyperparameter settings and ex-
perimental conditions—remains a significant barrier to fair and reproducible research in the field.
Addressing these challenges, including improving model robustness and establishing standardized
benchmarking practices, will be crucial for advancing time series analysis and realizing the full
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Visualization of imputation results.

potential of GTM in both academic and real-world scenarios.
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(a) MSL dim6 data (b) MSL dim9 data (c) SMAP dim4 data (d) SMAP dimS5 data
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Figure 9: Visualization of anomaly_detection results.
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