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Abstract
A prominent paradigm for graph neural networks
is based on the message-passing framework. In
this framework, information communication is
realized only between neighboring nodes. The
challenge of approaches that use this paradigm is
to ensure efficient and accurate long-distance com-
munication between nodes, as deep convolutional
networks are prone to oversmoothing. In this pa-
per, we present a novel method based on time
derivative graph diffusion (TIDE) to overcome
these structural limitations of the message-passing
framework. Our approach allows for optimizing
the spatial extent of diffusion across various tasks
and network channels, thus enabling medium and
long-distance communication efficiently. Further-
more, we show that our architecture design also
enables local message-passing and thus inherits
from the capabilities of local message-passing
approaches. We show that on both widely used
graph benchmarks and synthetic mesh and graph
datasets, the proposed framework outperforms
state-of-the-art methods by a significant margin.+

1. Introduction
Designing efficient and scalable architectures for learning
on graphs is a central problem in machine learning with
applications in a broad range of disciplines, including data
mining (Li et al., 2019b; Zhang et al., 2019), recommenda-
tion systems (Zhang et al., 2019), text classification (Yao
et al., 2019), image analysis and matching (Sarlin et al.,
2020) and even molecular property prediction (Wieder et al.,
2020) among myriad others.

A very wide variety of graph neural network (GNN) ap-
proaches have been proposed over the past several years
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(see, e.g., (Zhou et al., 2020; Wu et al., 2020) for recent
surveys), ranging from spectral methods, spatial or con-
volutional designs, recurrent graph neural networks, or
graph auto-encoders as well as many other hybrid tech-
niques. A particularly prominent and widely-used category
of approaches is given by the convolutional graph neural
networks, and especially those based on message-passing,
following the design introduced in (Kipf & Welling, 2017)
and extended significantly in many follow-up works, e.g.,
(Li et al., 2018b; Zhuang & Ma, 2018; Chamberlain et al.,
2021b; Thorpe et al., 2021).

The key strengths of convolutional graph neural networks,
as introduced in (Kipf & Welling, 2017), include their sim-
plicity and computational efficiency, their ability to be com-
posed with other neural networks as well as their ability to
generalize across different graphs (i.e., learning weights that
could be applied on unseen graphs). As a result, the orig-
inal GCN approach (Kipf & Welling, 2017) is still highly
effective and is widely used in many applications.

Nevertheless, a prominent limitation of message-passing ap-
proaches, such as GCN and related methods is oversmooth-
ing, which implies that such networks tend to be difficult
to train beyond a small number of layers (Oono & Suzuki,
2019). Furthermore, since typical message-passing oper-
ators only ensure communication between nodes within a
1-hop neighborhood, this means that message-passing ap-
proaches can hinder long-distance information propagation,
which can limit their utility in scenarios, where such long-
range communication is important.

In this work, we demonstrate that a simple modification to
the standard GCN design can be used to enable information
propagation across possibly distant nodes within a shallow,
one layer graph neural network, which does not have the
oversmoothing issues of traditional deep GNNs. Our design
inherits most of the advantages of standard message-passing
methods, including computational efficiency, their domain
independence, and their ability to generalize across different
graphs.

Key to our approach is our use of learnable time diffu-
sion which allows information propagation on the graph

+Our implementation is available at https://github.
com/maysambehmanesh/TIDE
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while being able to optimize the communication extent in a
task-dependent manner. Our method is inspired by recent
approaches in surface learning (Sharp et al., 2022) that have
introduced the notion of learnable time diffusion as a way
to replace convolution for information sharing when learn-
ing on surfaces. However, unlike the method presented in
(Sharp et al., 2022), which explicitly aimed at robustness
to changes in connectivity and used standard heat diffusion,
we base our approach on learnable time-derivative diffusion.
As we demonstrate in this work, this allows us to retain the
advantages of the message-passing framework, and ensure
both local (1− 2 hop neighborhoods) and possibly global
(n-hop neighborhoods, up to the whole graph) information
communication in a single an efficiently learnable architec-
ture. To summarize, our key contributions include:

1. We introduce time-derivative diffusion as an effective
mechanism for information propagation within graph
neural networks.

2. We propose an architecture based on time-derivative
diffusion, which enables both local and global infor-
mation propagation, in a differentiable manner, while
generalizing the standard message-passing framework.

3. With this mechanism at hand, we develop a simple and
scalable architecture that outperforms strong baselines
on several benchmarks.

Our method is particularly useful on either sparsely labeled
graphs or in scenarios where longer dependencies are impor-
tant to capture global structures on graphs. Our method is
easy to train and does not require a significant computational
overhead in either learning time or memory footprint. Fi-
nally, while we focus on the GCN and derived architectures,
we believe that the use of learnable time-derivative diffu-
sion can be a broadly useful tool in graph neural networks
and can, in the future, be combined with other architecture
designs.

2. Related Work
Graph neural networks The key goal of Graph Neural
Networks (GNNs) is to compute the representation of all
unlabeled nodes or edges. To achieve this, many network
designs employ a message-passing approach to exchange
information of each node or edge with its neighbors until
reaching the equilibrium state (Scarselli et al., 2009). Based
on the approach, GNNs can perform convolution using two
types of models: spatial or spectral. Spatial GNNs perform
message passing directly by considering neighborhood struc-
ture in the graphs (Wu et al., 2020). Below we list several
well-known spatial GNNs: GraphSage uses an aggregation
function to represent each node by aggregate results of its
neighborhood (Hamilton et al., 2017), Message Passing

neural network (MPNN) runs K-step message-passing it-
erations to let information propagate further (Gilmer et al.,
2017), and Graph Attention Networks (GAT) use an atten-
tion mechanism to combine different contributions of neigh-
boring nodes (Veličković et al., 2017). One of the most
prominent models for message passing is the Graph Con-
volutional Network (GCN) (Kipf & Welling, 2017). GCN
simplifies ChebNets architecture (Defferrard et al., 2016)
by using filters operating on the 1-hop neighborhoods of
the graph. Within GCN, the features from the neighbors get
passed to the node by convolution layers.

Spectral GNNs perform convolution by transforming node
representations into the spectral domain using the graph
Fourier transform (Wu et al., 2020). GNN-ARMA (Bianchi
et al., 2021) uses an autoregressive moving average (ARMA)
filter to capture the global graph structures. To imple-
ment an efficient convolution on the graph, (Xu et al.,
2019; Behmanesh et al., 2022) consider the convolution
via wavelet transform instead of Fourier transform by taking
the graph wavelet as a set of bases of spectral GNN.

A common problem on graph neural networks is their over-
smoothing behavior, which hinders their expressive power
when increasing the number of layers, (Li et al., 2018a).
Multiple approaches have tried to solve this issue, e.g., by us-
ing different co-training strategies (Li et al., 2018a), chang-
ing the architecture by adding different kinds of residual
connections (Li et al., 2019a), a PageRank-based propaga-
tion schema (Klicpera et al., 2018) or a separate analysis
of propagation and representation of the features (Liu et al.,
2020).

Learned diffusion / learned ODEs A stepping stone in
deep neural networks was interpreting these as neural ordi-
nary differential equations (ODE) (Chen et al., 2018). This
idea has been further expanded in numerous works such as
(Dupont et al., 2019; Finlay et al., 2020; Li et al., 2020; Liu
et al., 2019). For graph neural networks, this interpretation
has been applied in various works, for instance in (Avelar
et al., 2019; Poli et al., 2019; Xhonneux et al., 2020). Ad-
ditionally, ODEs have not only been used for graph neural
networks but also for shape learning. In geometric learn-
ing, Sharp et al. introduced a diffusion on shapes with the
learnable time parameter t (Sharp et al., 2022).

Graph diffusion process GRAND (Chamberlain et al.,
2021b) is a prominent graph diffusion work that interprets
graph convolution networks as a solution to the heat diffu-
sion equation. This work forms the basis for models such
as GRAND++ (Thorpe et al., 2021), which uses an addi-
tional source term, and BLEND (Chamberlain et al., 2021a),
which uses additional Beltrami features. However, in these
models, the diffusion time is treated as a fixed hyperpa-
rameter and is not learnable. This limits the flexibility and
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adaptability of such models to different graph structures.

Long range dependency Commonly-used message-
passing GNNs do not accommodate long-distance commu-
nication, which limits their expressivity to a small neigh-
borhood around the node. In (Alon & Yahav, 2020) a
novel explanation for training is introduced to prevent over-
squashing in GNNs from long-range patterns in the data. In
(Abu-El-Haija et al., 2019), these relationships are learned
by repeatedly mixing feature representations of neighbors
at various distances.

3. Background, Motivation & Overview
Our work builds upon the successful paradigm in graph
neural networks based on message passing. Methods within
this framework, pioneered by the GCN architecture (Kipf
& Welling, 2017) and its variants (Bianchi et al., 2021;
Chen et al., 2020) are based on two key components. First,
an information message passing operator L is assembled,
typically using a normalized Laplacian or adjacency matrix.
Second, this operator is used, jointly with a non-linearity
function σ, to construct a single layer of the graph neural
network with learnable linear weights W . Such layers can
then be stacked into a deep multi-layer network by iterating
the action of a single layer and using separate learnable
weights at each level.

Given a graph consisting of n nodes, let U ∈ Rn×m be a
matrix of m scalar fields u ∈ Rn representing, for example,
some feature values at the nodes. The most basic variant of
this approach can be summarized via the following formula:

NW(U) = Lk ◦ Lk−1... ◦ L1 ◦ L0(U). (1)

Here U is some set of input features, Lk is the kth layer of
the neural network, and W denotes the set of all learnable
weights, which are composed of weights associated with
every layer. In particular, a typical layer Lk has the form:

Lk(U) = σ
(
LUW k

)
. (2)

where σ is some non-linearity, W k is a matrix of learnable
weights at layer k and L is a message passing operator. For
example, L can be the standard graph Laplacian matrix or
the normalized adjacency matrix with self-loops as used in
(Kipf & Welling, 2017).

While simple and efficient, this approach has several key
drawbacks. Perhaps the most prominent limitation is the
well-known oversmoothing effect of the basic graph neural
network architecture. This effect implies that networks of
the type described in Eq. (1) tend to saturate very quickly,
even for small to moderate k. In other words, it is difficult
to build networks that are both easy to train and have a
significant depth.

Since the most commonly-used message-passing operators
such as the graph Laplacian or its normalized variants only
enable information propagation within the 1-hop neighbor-
hood of each node, this means that standard graph neural
networks do not easily enable long-distance information
communication, which can limit their utility in practice.
Unfortunately, simple strategies such as expanding the re-
ceptive field size of the message passing operator also have
limited success.

Motivation Our work aims to address the issue raised
above and is inspired by recent approaches that exploit prop-
erties of the diffusion process to enable communication on
both graphs (Chamberlain et al., 2021b; Thorpe et al., 2021)
and more general domains (Sharp et al., 2022). Specifically,
in (Chamberlain et al., 2021b) the authors showed that in-
formation propagation within a graph neural network can
be formulated from the perspective of anisotropic diffusion,
which furthermore encompasses and generalizes the stan-
dard message-passing formulation. However, in that work,
the diffusion time was still used as a fixed hyperparameter
(set to 1).

On the other hand, with the computer graphics community
(Sharp et al., 2022) it has recently been shown that diffu-
sion with a learnable time parameter can be used to enable
information propagation on geometric domains. Moreover,
this process can adapt the receptive field size of different
channels from local to global depending on the task. In
particular, rather than using message passing, the key idea
in (Sharp et al., 2022) is to ensure information propagation
by using the diffusion equation:

∂u

∂t
= −∆u, (3)

where ∆ is a positive semi-definite Laplacian operator. The
solution to the diffusion equation is given by the heat opera-
tor:

u0 → ut, where ut = Ht(u0) (4)

Thus, the idea advocated in (Sharp et al., 2022) is to use
Eq. (4) to build a layer, where each signal u is propagated
for some task-dependent, learnable time t. Notably, the
heat operator Ht has a closed form expression and is given
by the operator (matrix) exponential Ht = exp(−t∆) and
can moreover be approximated using the Laplacian spectral
basis for efficient computation.

On the other hand, the architecture design of the approach
in (Sharp et al., 2022) 9s focused on ensuring robustness
to significant discretization changes, especially on triangle
meshes. This means that the connectivity structure of the
underlying graph is not explicitly relied upon. In contrast,
within graph neural network applications, the connectivity
structure is often crucial and is a major source of useful
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information, which, in part, also explains the success of
message-passing approaches.

Our main goal thus is to combine the local accuracy and
sensitivity to the graph structure of message-passing ap-
proaches, with the ability to learn the receptive field size and
ensure global information propagation without oversmooth-
ing, enabled by diffusion with learnable time parameters.

Overview To achieve these goals, we propose a novel
model, which combines learnable diffusion with message
passing in a single principled framework while being ef-
ficient and achieving accurate results on a wide range of
benchmarks.

Our method is based on the diffusion equation, Eq. (3), sim-
ilar to the approach in (Sharp et al., 2022). However, rather
than using diffusion itself to ensure information propagation
on the graph, we propose to use time-derivative diffusion.
That is, rather than using Eq (4) to propagate information
on a graph within a graph neural network, we propose to
use the following time derivative formulation instead:

u0 → −∂ut

∂t
, where ut = Ht(u0). (5)

Our key idea, therefore, is to use Eq. (5) to enable infor-
mation communication in a graph within a graph neural
network. Despite a relatively simple change, as we demon-
strate below, this formulation has several distinguishing
characteristics. First, conceptually, time-derivative diffusion
is closely linked to wavelets, since, for example, it is well
known that the derivative in time of the heat kernel, which is
simply a Gaussian in Euclidean space, corresponds exactly
to the Mexican hat wavelet (Hou & Qin, 2012; Kirgo et al.,
2021). Moreover, and more importantly, as we demonstrate
below, unlike standard diffusion, a time-derivative-based
formulation allows us to retain the power of local message-
passing approaches while, at the same time, enabling long-
distance communication without oversmoothing.

4. Method
4.1. Time Derivative Diffusion

As mentioned above, in the continuous setting, the diffusion
process is described as the solution of the heat equation,
Eq. (3): d

dtut = Lut, In this equation, L is the appro-
priately chosen Laplacian (or the Laplace-Beltrami oper-
ator on non-Euclidean domains). The solution to the dif-
fusion equation is given by the heat operator Ht, so that
ut = Ht(u0) = exp(−tL)u0. Importantly, the heat opera-
tor Ht is differentiable with respect to t, which was recently
used in (Sharp et al., 2022) to use the diffusion equation
with a learnable time parameter t as a way to replace convo-
lution and enable long-range communication in the context
of learning on curved surfaces.

As anticipated earlier, our key idea is to also use the diffu-
sion process for information propagation. However, instead
of using the heat operator as in (Sharp et al., 2022) we
exploit time-derivative diffusion as a communication mech-
anism within graph neural networks. Taking the negative
derivative of the heat operator with respect to t we obtain:

−∂ut

∂t
= Lut = Tt(u0) = L exp(−tL)u0, (6)

where Tt(u) = LHt(u) is the time derivative diffusion op-
erator. We propose to use Eq. (6) to diffuse information
between the nodes. Specifically, we construct a single layer
of our model that we call TIDE, within a graph neural net-
work as follows:

LTIDE
k (U) = σ

(
Tt(U)W (k)

)
=σ

(
L exp(−tkL)UW (k)

)
.

(7)

Here k is the layer index, L is the Laplacian operator, and
W (k) is the matrix of learnable weights associated with
layer k.

Observe that our definition is similar to the standard
message-passing layer defined in Eq. (2). However, cru-
cially, our layer also includes the use of the diffusion opera-
tor exp(−tkL) and in our resulting neural network architec-
ture we make both the weight matrix W k and the layer-wise
time parameter tk learnable parameters.

Our layer, as defined in Eq. (7) has two major properties:

1. First, by making the time tk a learnable parameter, we
allow the network to optimize the spatial extent of the
diffusion and thus enable potentially global communi-
cation across graph nodes.

2. By using time-derivative diffusion instead of stan-
dard diffusion, we allow the network to revert to stan-
dard message-passing whenever necessary. Indeed, as
shown below, our layer strictly generalizes the stan-
dard GCN layer, by simply setting t = 0. Moreover,
since we start neural network training by initializing
all learnable parameters (including the learnable time
in Eq. (7)) around zero, the resulting network can opti-
mize the spatial extent of its output, only when neces-
sary.

We utilize the augmented normalized adjacency matrix from
(Kipf & Welling, 2017) as the basis for diffusion in the
following manner:

L̃ := D̃− 1
2 ÃD̃− 1

2 . (8)

Here Ã ∈ Rn×n is the adjacency matrix with self-loops
(binary or weighted) and D is the degree matrix with D̃ii =∑

j Ãij .
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Figure 1. Influence of different values of the time parameter t in Eq. (7) on the spatial extent of the output of time-derivative diffusion.
Note how for larger time values, the spatial support increases.

To provide intuition behind our approach, we illustrate in
Fig. 1 the spatial extent of the output of time-derivative
diffusion, and thus of our layer LTIDE defined in Eq. (7)
depending on the time parameter t. Observe that for small
values of t, the support is local and the output of LTIDE is
concentrated at the center node. However, for larger time
values, the spatial support increases, thus facilitating distant
communication between nodes. Crucially, as mentioned
above, in our framework, we let the time parameter t be a
learnable variable, which allows the network to optimize it
in a task-dependent manner.

Remark 1: When the diffusion time tk is set to 0, the
diffusion block is equivalent to a GCN layer. This fol-
lows directly from the properties of the operator exponen-
tial. Indeed, when tk = 0, we know that exp(−tkL) is
simply the identity operator I. Thus, at t = 0 we have
LTIDE
k (U) = σ

(
LUW k

)
= Lk(U) as defined in Eq. (2).

which is one GCN layer, since we use the graph Laplacian
operator L in both cases.

From this simple result, we can conclude that our network
is at least as expressive as a GCN model. Moreover, the
weights of a message-passing model, such as GCN, can
be directly translated into the model based on Eq. (7), by
using the same per-layer weight matrices and setting t = 0
in the latter. This simple flexibility allows our approach to
increase the spatial support of every layer, only when it is
useful for the underlying task.

Computation of the diffusion As computing the matrix
exponential of large graph Laplacian matrices is both com-
putationally expensive and numerically unstable (Moler &
Van Loan, 2003), in our approach, we use spectral acceler-
ation for the computation, as done in (Sharp et al., 2022).
The key advantage of this formulation is that after a single
pre-computation step, which calculates the Laplacian eigen-
basis, the heat operator (and thus diffusion) for any time t
can be calculated by elementwise exponentiation.

The eigenvector problem of the Laplacian can be formulated
as follows: Lϕi = λiϕi, where ϕi is the ith eigenvector of
L and λi the corresponding eigenvalue sorted in ascending
order by magnitude. After pre-computing the Laplacian
eigenvectors and stacking the first l vectors as columns of
the matrix Φ, the heat operator can then be obtained as
follows:

Ht(u) = Φ

e−tλ0

e−tλ1

. . .

⊙Φ⊤u, (9)

where Φ = [ϕi] ∈ RV×l and ⊙ denotes the Hadamard
product (elementwise multiplication). In other words, we
first project the signal u onto the basis given by Φ via
u → ΦTu. We then multiply (in an element-wise manner)
each coefficient i by exp(−tλi) where λi is the eigenvalue
corresponding to the ith eigenvector and then convert back
to the standard basis by pre-multiplying by Φ.

By this low-rank basis projection of the operator, some
information is lost. To compensate for information loss,
we introduce the operator P = I −ΦΦT . For any signal
u, note that H0(u) + Pu = u holds. By incorporating the
original signal mapped by P into the spectral approximation
of the heat operator Ht(u), we can efficiently compensate
for lost information. The modified heat operator is defined
as H̃t(u) = Ht(u) + βPu. After simplifying and replacing
the learnable scaling parameter 1− β with α, the modified
heat operator becomes:

H̃t(u) = Φ

e−tλ0

e−tλ1

. . .

⊙ αΦ⊤u

+ βu (10)

Note that Eq. (10) is differentiable with respect to t, which
is essential in our setting, as t is learnable. We thus define
T̃t(u) := LH̃t(u) in Eq. (7) and make both α and β in
Eq. (10) learnable. Note that this spectral approximation is
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Figure 2. The framework of the proposed model. The network processes data from left to right. Our architecture is composed of several
time derivative diffusion blocks for information propagation and aggregation, as well as of the input/output layers to convert to the
appropriate input and output dimensions.

only one possibility for computing time derivative diffusion
and in Section A.8 we show that the diffusion equation can
also be implemented with the Euler method.

4.2. Time Diffusion Analysis

The main contribution of our model is learnable time dif-
fusion. In the following, we briefly overview the relation
between diffusion time and the size of the neighborhood in
the information propagation through the graph. The diffu-
sion Eq. (4) by the operator exponential Ht = exp(−tL)
can be defined through its expansion as a Taylor series. For
K-hop diffusion, this series can be truncated to bound the
diffusion to a K- hop neighborhood as follows:

uK
t =

K∑
k=0

(−t)k

k!
Lku (11)

Therefore the signal gets diffused only within the K-hop
neighborhood. A simple bound on the difference between
diffusion computed purely by looking at the K-hop neigh-
borhood and diffusion computed over the entire graph can
be obtained as:∥∥ut − uK

t

∥∥ ≤
∞∑

k=K+1

| − t|kCk

k!
(12)

where u is a normalized signal and C is the biggest eigen-
value of L (see also Appendix A.1).

Remark 2: When considering the minimization of∥∥ut − uK
t

∥∥ it is possible to minimize this term by either
decreasing t or increasing K.

Therefore, intuitively, one can think of the diffusion time t
to correspond to the size of the neighborhood over which in-
formation is propagated. The smaller the time t, the smaller
the neighborhood that can be used to to locally approximate

diffusion over time t. Since in our architecture t is learned
by the network, we interpret it as enabling an optimizable
receptive field that can be adapted for different tasks and
channels of the graph neural networks.

4.3. Architecture

In Fig. 2 we show a schematic view of the proposed TIDE
network architecture. Our network architecture is composed
of three main parts: one Input layer, one or more Time
Derivative Diffusion block(s), and one Output layer. A
residual connection is adopted in each diffusion block to
increase the accuracy and training performance, as shown
in Appendix A.7. The network first processes each node
feature individually with a linear layer. Subsequently, the
diffusion unit processes the graph features. In each diffu-
sion block, the network diffuses the node features of fixed
D channels. In the TIDE-m model, each channel has its
own learnable time parameter while in the TIDE-s model
a learnable parameter t is common for all D channels. Fi-
nally, the output linear layer converts the learned output to
the expected output dimensions.

5. Experiments
We compare our methods to strong baselines on typical node
classification benchmarks and present novel long-distance
communication experiments.

Setup For a fair comparison, we set similar values for the
common hyperparameters in all baselines. For this purpose,
we use 64 channels in the hidden layer and a dropout prob-
ability of 0.5. All models are trained with a maximum of
500 epochs with a learning rate of 0.01. In our approach
we choose the highest validation accuracy to determine the
number of diffusion blocks used. More implementation
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Table 1. Comparison of the accuracy of proposed models on several benchmarks with baseline methods (mean±std).
Model Cora Citeseer Pubmed CoauthorCS Computer Photo Ogbn-arxiv
GCN (Kipf & Welling, 2017) 83.30±0.36 68.23±0.91 76.78±0.31 90.17±0.50 81.01±0.65 91.71±0.67 65.91±0.12
GAT (Veličković et al., 2017) 81.83±0.42 69.19±0.53 75.49±0.43 90.15±0.35 80.25±0.52 91.57±0.41 54.23±0.22
GRAND (Chamberlain et al., 2021b) 80.71±0.86 68.06±0.18 74.61±0.25 90.59±0.21 72.96±0.49 84.17±0.34 59.29±0.12
GCNII (Chen et al., 2020) 79.94 ± 1.11 70.27±0.32 76.59±0.7 84.27±0.80 32.63±8.6 57.41±3.6 49.87±0.37
ACM (Luan et al., 2022) 81.83±0.12 69.03±0.02 73.3±0.63 91.50±0.13 77±0.65 92.42±0.29 66.23±0.42
DiffusionNet (Sharp et al., 2022) 80.96±0.50 70.00±0.91 73.09±0.15 89.52±0.22 74.72±0.66 87.17±0.26 54.79±0.16
TIDE-m 84.47±0.43 70.32±0.68 77.59±0.04 89.86±0.30 82.11±0.03 91.33±0.47 67.86±1.10
TIDE-s 84.31±0.36 70.24±0.80 77.24±0.62 90.21±0.12 83.01±0.02 92.06±0.51 68.43±0.35

details are described in Appendix A.2.

5.1. Node Classification

In the first experiment, we consider the standard node clas-
sification problem on a variety of benchmarks with different
properties, described in Appendix A.3, and compare the
performance of our proposed models, TIDE-m and TIDE-s,
with several baselines. For the experimental setup we follow
the methodology of (Chamberlain et al., 2021b).

Table 1 reports the mean accuracy and standard deviation
of 10 different runs of our proposed models equipped with
baselines. An ablation study for different numbers of blocks
of the architecture is provided in Appendix A.4. The re-
sults obtained from most models are almost similar to their
published numbers, except for GRAND (Chamberlain et al.,
2021b) which only achieves the reported numbers after fine-
tuning the hyperparameters. In addition, we also include
a baseline “DiffusionNet”, which shares a similar design
to our approach but uses the standard heat diffusion like
in (Sharp et al., 2022) in the diffusion block instead of our
time-derivative diffusion.

As can be seen in Table 1, the TIDE models outperform
baselines in most benchmarks. This comparison demon-
strates the ability of the TIDE model to take advantage of
global communication. We note that while TIDE-m has
more learnable time parameters making the network more
flexible, these additional parameters can lead to overfitting,
making TIDE-s more accurate in some scenarios.

Most importantly, we observe a significant improvement
compared to GCN (Kipf & Welling, 2017), which forms the
basis of our approach. This demonstrates the effectiveness
of incorporating time derivative diffusion as a communi-
cation mechanism and suggests the potential of applying
the TIDE method in combination with other graph neural
network techniques in future research.

5.2. Long Range Communication

As highlighted in Section 3, message-passing GNNs suffer
from oversmoothing, typically when using more than 2-hop
information propagation or more layers (Oono & Suzuki,

2019). In most cases, message-passing GNNs can apply two
different layers for 2-hop neighbors without oversmoothing.
Although this local information seems to be sufficient for
some small-scaled citation graphs, for larger benchmarks
long-distance communication can be useful. To demonstrate
the effectiveness of long-range communication, we present
two experiments on synthetic graphs.

In the first experiment, a synthetic graph for each bench-
mark is obtained by setting feature vectors of nodes that
are not in the labeled training set to the zero vector. This
scenario ensures that the final node labels are only calcu-
lated by using the information computed via the message
passed from the labeled nodes and not inferred by the linear
parts of the model. As seen in Table 7, Appendix A.5, the
average distance between unlabeled and labeled nodes is
long enough to enforce long-distance communication.

Table 2 shows the results of this experiment. This table
further highlights the long-range communication capability
of the proposed models, where TIDE models outperform
the other GNNs in almost all datasets. Additional details
are provided in Appendix A.5.

The second scenario is generated by the graphs introduced
in (Karimi et al., 2018), which consists of 5000 nodes that
are randomly partitioned into the train, validation, and test
data with equal sizes. Inspired by the network with two
groups and a homophily parameter h in this paper, we gen-
erate 10 different graphs by changing the h in the range
0.0 to 0.9, with interval 0.1. The parameter h indicates the
likelihood of a node forming a connection to a neighbor
with the same label. Therefore, as h increases, nodes pre-
fer to connect with nodes of the same label, and thus with
smaller h the long-range dependency communications will
be prominent. The accuracies of all baselines against the
homophily parameter are shown in Fig. 3. As shown in
the figure, with a smaller h, long-range communication be-
tween nodes is more necessary. The proposed TIDE-m and
TIDE-s models perform significantly better than the base-
lines with local message passing. Note also that although
all models perform better as h increases, our approaches
are the best-performing ones across every value of h. The
Appendix A.6 includes additional experiments conducted
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Table 2. Comparing different methods in the setting where feature vectors of unlabeled nodes are synthetically set to zero.
Model Cora Citeseer Pubmed CoauthorCS Computer Photo Ogbn-arxiv Average
GCN (Kipf & Welling, 2017) 57.87 40.16 41.21 46.93 59.82 74.09 56.65 53.82
GAT (Veličković et al., 2017) 56.19 40.73 45.26 50.59 53.14 66.74 42.47 50.73
GRAND (Chamberlain et al., 2021b) 52.79 41.45 40.83 24.71 17.58 24.39 55.58 36.76
DiffusionNet (Sharp et al., 2022) 60.05 60.08 42.56 25.4 19.28 30.12 35.77 39.04
TIDE-m 76.85 61.45 41.98 49.78 57.6 78.49 57.75 60.56
TIDE-s 77.46 60 41.95 40.90 60.21 77.4 57.27 59.31
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Figure 3. The accuracies of all baselines against the homophily
parameter.

on graphs with different homophily rated.

5.3. Geometric Graphs

One weakness of traditional graph neural networks is the
capability of node classification on geometric graphs. The
authors of (Bouritsas et al., 2022) mention that typically
graphs neural networks have problems operating on regular
graphs, such as grids, triangle meshes, etc. To evaluate
the performance of our approach on such data, we build a
synthetic dataset based on the FAUST (Bogo et al., 2014)
collection of shapes represented as triangle meshes. We
convert the meshes into graphs, by simply using the graph
structure of the triangle mesh (i.e., using vertices of the
mesh as graph nodes and edges of the faces as graph edges).
For the graph features, we will use the heat signature kernel
(HKS) (Sun et al., 2009) with dimension 5. We develop
three different synthetic settings: in single train and test
nodes are on the same single graph,with a random 0.2, 0.3,
0.5 split for train, validation, and test, respectively. In the
multi setting, we train the networks on the FAUST training
set, which consists of 80 graphs, and tested on the FAUST
test set, consisting of 20 test shapes. In the mixed setting,
we train on the FAUST training set and tested on SHREC’07
four legged setting.

T 

Ground Truth GCNGRAND TIDE-m TIDE-s

Figure 4. Qualitative example of labeling on one FAUST shape.
Note in particular how the other algorithms completely fail to label
the upper leg and upper arms.

Table 3. Testing the transfer capabilities of the graph networks on
different datasets. single, multi and mixed.

Model single multi mixed
GCN (Kipf & Welling, 2017) 69.21 65.90 65.83
GRAND (Chamberlain et al., 2021b) 78.46 69.54 46.32
TIDE-m 94.11 87.90 81.22
TIDE-s 91.73 88.18 87.14

We emphasize that for all baselines, we only use the graph
structure of the shapes for learning and feature propagation,
and ignore the node coordinates in 3D. As we can see in
Table 3 our approach outperforms the baselines GCN and
GRAND by a very significant margin in this scenario. Note
also that we evaluate the generalization capabilities of our
method, by evaluating meshes retrieved from the entirely
different four legged SHREC’07 (Giorgi et al., 2007) dataset.
Fig. 4 shows a qualitative result in the single scenario. We
can see that for example, ours is the only method that is
capable to recover the thigh as well as the upper arm.

5.4. Computation Cost

The computation of TIDE can be divided into three dis-
tinct parts: preprocessing (pre), training with derivative
evaluation (train), and inference evaluation (infer). The
preprocessing step includes the computation of Laplacian
and eigendecomposition, which is executed only once on
the CPU. For training and inference, TIDE utilizes stan-
dard linear algebra operations such as matrix multiplication
and computation of the heat equation, which are efficiently
executed on a GPU.
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Table 4. Comparison of the runtime performance of TIDE and
baseline methods on graphs of varying scales: Cora (2485 nodes),
CoauthorCS (18333 nodes), and Ogbn-arxiv (169343 nodes). The
reported runtime values are in seconds.

Model
Small
(Cora)

Medium
(CoauthorCS)

Large
(Ogbn-arxiv)

pre 0.5966 5.5038 213.79
GCN train 0.1217 0.1488 0.2411

inference 0.0452 0.0736 0.107
pre – – –

GAT train 0.0345 0.039 0.0921
inference 0.024 0.0256 0.0414
pre 0.5492 5.9851 209.19

GRAND train 1.5322 1.8333 2.9816
inference 0.9646 0.5536 1.5923
pre* 0.5650 5.5306 214.19

DiffusionNet train 0.0974 0.1131 0.1437
inference 0.0375 0.0554 0.0679
pre* 0.5650 5.5306 214.19

TIDE-m train 0.1188 0.1656 0.2551
inference 0.049 0.0726 0.1099
pre* 0.5650 5.5306 214.19

TIDE-s train 0.0975 0.1649 0.2344
inference 0.0415 0.0747 0.0996

* Pre-processing times are the same for these approaches.

We conducted experiments to evaluate the runtime perfor-
mance of TIDE and compared it with several baseline meth-
ods on graphs of varying sizes, including small, medium,
and large-scale graphs. The results of these experiments are
summarized in Table 4.

According to the results presented in Table 4, the TIDE
model performs comparably to spectral methods such as
GCN and DiffusionNet in terms of runtime performance,
while significantly outperforming the GRAND model. Nev-
ertheless, the runtime performance achieved by the GAT
models outperforms all the methods since it allows the
model to selectively attend to relevant nodes in the graph
and also shares parameters across all nodes. These results
highlight the efficiency of TIDE, which achieves runtime
performance comparable to other state-of-the-art methods.

5.5. Ablation Studies

We present ablation studies for Residual Connection and
Diffusion Time in appendices A.7 and A.9, respectively.

6. Conclusion, Limitations & Future work
In this work, we introduced a novel neural network archi-
tecture for graph learning. Our key idea is to use time
derivative with a learnable time parameter to augment the
message-passing component of graph neural networks and
enable long-range communication efficiently. Our method is
similar in efficiency to the strong GCN baseline, and scales
well to large problem sizes, as no parameters depend on the

number of nodes, and no expensive integration needs to be
calculated during training.

As we build TIDE upon the standard message-passing
paradigm, our approach is well-situated within the
Weisfeiler-Lehman 1 category. As such, our current method
cannot distinguish certain non-isomorphic graphs outside
of this category. Nevertheless, we believe that the idea
of time-derivative diffusion can be incorporated into other
frameworks, such as recent methods with WL-3 expressive
power. Moreover, it will also be interesting to extend our
method to anisotropic diffusion for information communi-
cation, while maintaining efficiency and differentiability of
the time parameter. We leave this as an exciting direction
for future work.
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A. Appendix
A.1. Threshold for Diffusion

The Taylor series for the diffusion equation is defined by:

ut = e−tLu =

∞∑
k=0

1

k!
(−tL)ku =

∞∑
k=0

−tk

k!
Lku (13)

Intuitively, for any t ̸= 0, this series propagates information from the whole graph, as no factor in front of the power of the
Laplacians is 0.
Eq. (12) can be derived simply as follows:

∥∥ut − uK
t

∥∥ =
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∞∑

k=K+1

(−tL)ku

k!

∥∥∥∥∥ ≤
∞∑

k=K+1

| − t|kCk

k!
(14)

A.2. Implementation Details

The models are implemented in PyTorch, and the torch geometric library is also incorporated in addition to the standard
PyTorch. To accelerate learning, GPU acceleration is utilized, while the diffusion operator and the gradient operator are
preprocessed on a CPU using the SciPy library. The experiments are conducted on an NVIDIA A100 GPU with 40 GB of
GPU memory. Despite the fact that the model has a small number of parameters, it can be trained on any GPU.

A.3. Datasets Properties

The properties of different graph datasets used in the experiments are summarized in Table 5.

Table 5. Datasets properties

Graph #Nodes #Edges
#Node
featues #Class

Avg.
node deg.

Graph
diameter Label rate

Cora 2485 5069 1433 7 4.07 1.53 0.056
Citeseer 2120 3679 3703 6 3.47 1.44 0.057
PubMed 19717 44324 500 3 4.49 18 0.003
CoauthorCS 18333 81894 6805 15 8.93 24 0.016
Computers 13381 245778 767 10 36.73 0.16 0.015
Photos 7487 119043 745 8 31.79 0.23 0.021
Ogbn-arxiv 169343 1166243 128 40 13.67 23 1

A.4. Number of Blocks and Oversmoothing

We assess the effectiveness of our proposed models by examining the performance across different numbers of blocks
present in the architecture. Fig. 5 illustrates that the network accuracy is influenced by the dataset when the number of
blocks in the network is limited to 3 or fewer. Furthermore, we provide in Table 6 an analysis of how the test and validation
accuracies vary as the number of diffusion blocks increases. The table illustrates that the TIDE-m model performs relatively
well with up to 16 layers, and only begins to exhibit oversmoothing signs with 32 layers. We observe that our method
maintains its high performance even with an increase in the number of diffusion blocks. Furthermore, our approach appears
to be less prone to oversmoothing when compared to GCN.

A.5. Long-range Dependency

To demonstrate the capability of our model in taking advantage of long-range communication, we present further insights
into the scenario of zeroing out the test features. To perform this experiment, we followed the data distribution used in
the node classification experiment to determine the train, validation, and test data. In Table 7, we summarize the average
and max distances between unlabeled nodes and the closest labeled one of each graph. According to these statistics in
Table 7, the mean distance in each graph is quite far, which led to the fact that information aggregation is not possible
by simply averaging from the neighbors. Therefore, long-range communication assumes paramount importance in this
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Figure 5. Performances of the proposed models (TIDE-s and TIDE-m) by choosing the different number of blocks.

Table 6. Performance of TIDE-m on the validation and test subset with 1, 2, 4, ..., 32 diffusion blocks
Dataset Model 20 23 24 25

Cora TIDE-m (test) 84.47±0.0 78.63±0.36 78.38±0.86 40.61±8.2
TIDE-m (val) 82.49x0.41 78.74±1.1 78.08±1.1 40.55±9.2
GCN (test) 72.57±0.23 74.03±0.42 57.11±0.78 27.78±0.44
GCN (val) 74.51±0.39 75.04±0.19 55.32±0.24 32.99±0.89

Citeseer TIDE-m (test) 70.48±0.23 66.85±0.34 65.73±0.57 55.73±4.9
TIDE-m (val) 71.97±0.2 67.30±0.36 66.47±0.0 52.20±5.2
GCN (test) 61.05±0.43 57.23±0.34 56.55±0.23 22.43±0.81
GCN (val) 63.23±0.81 58.01±32 58.62±0.92 19.25±0.54

particular scenario. As shown in Table 7, the average distance between unlabeled nodes and labeled ones is more than 1
on all datasets, and even on Citeseer, the average distance is 2.91 which this value intelligibly reveals the reason for the
significant improvement of TIDE compare with GCN in Table 2. Therefore, the 1-hop neighborhood of nodes becomes
ineffective since it yields a vector of zeros. The table demonstrates that for Photo, Computer, and Ogbn-arxiv the mean
distance is smaller than a 2-hop neighborhood. In these metrics, although the accuracy of TIDE is better than other baselines,
we would expect a smaller accuracy increment, which is indeed the case. In addition, Table 2 shows that with the bigger
mean and max distance, TIDE outperforms previous methods. It is worth noting that the limited percentage of labeled
data in Pubmed (0.29%) leads to a strong possibility of overfitting, and making conclusions difficult to interpret. As a
consequence, we can conclude that the ability of the TIDE model to communicate over long-distances is evidenced by the
0-node label experiment.

Table 7. Statistics of graphs with zeroing out the test feature. These statistics are the average and max distances between each unlabeled
node and its closest labeled one on each graph. They reflect the long-range dependency among nodes in this scenario.

Graph Average distance Max distance
Cora 2.39 9
Citeseer 2.91 13
Pubmed 3.54 9
CoauthorCS 2.41 7
Computer 1.79 5
Photo 1.55 5
Ogbn-arxiv 1.63 10

A.6. Experiments on Graphs with Different Homophily Rates

In order to conduct a more comprehensive analysis, we investigate the performance of our proposed model on a series of
heterophilic graphs, introduced in (Lim et al., 2021). These graphs exhibit varying levels of homophily and sizes, which are
delineated in Table 8. The homophily rate h denotes the degree to which nodes in the graph connect with similar nodes
(homophily) versus nodes with dissimilar nodes (heterophily).
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Table 9 indicates that the proposed model achieved the best accuracy in six out of eight graphs. By comparing the results of
the proposed model with the baselines, we can conclude that the proposed model outperforms the baselines on heterophilic
graphs. Specifically, for larger graphs such as Snap-patents with a higher heterophily ratio, the proposed models achieved
significantly higher performance scores than the baselines. This suggests that the proposed model is more effective in
capturing the long dependency in heterophilic graphs, which is an important finding that can inform the development of
more effective models for real-world scenarios.

Table 8. Dataset properties. The parameter h[0, 1], represents the edge homophily ratio. When h → 1 the graph exhibits high levels of
homophily, whereas h → 0, the graph displays strong levels of heterophily.

Graph #Nodes #Edges
#Node
featues #Class Class type h

Chameleon 2,277 36,101 2,325 5 Wiki pages 0.23
Actor 7,600 29,926 931 5 Actors in movies 0.22
Cornell 183 295 1,703 5 Web pages 0.3
Texas 183 309 1,703 5 Web pages 0.11
Wisconsin 251 499 1,703 5 Web pages 0.21
Genius 421,961 984,979 12 2 marked act. 0.618
Twitch-gamers 168,114 6,797,557 7 2 mature content 0.545
Snap-patents 2,923,922 13,975,788 269 5 time granted 0.073

Table 9. Comparison of the accuracy of proposed models on heterophilic graphs with baseline methods (mean±std).
Model Chameleon Actor Cornell Texas Wisconsin Genius Twitch-gamer Snap-patents
GCN 45.18±0.62 29.38±0.5 43.24±1.3 63.51±1.9 54.92±9.7 80.87±0.13 60.60±0.19 36.84±0.37
GAT 44.96±6.2 28.88±1.0 54.05±1.1 62.16±0.08 55.88±1.4 79.83±0.23 53.08±0.16 38.76±0.75
GRAND 50.33±0.47 35.00±0.28 55.41±1.9 67.62±1.9 64.86±1.3 82.47±0.08 59.85±0.03 38.89±0.42
DiffusionNet 53.84±1.1 34.44±0.33 56.76±0.6 62.16±0.0 62.78±2.8 82.59±0.12 55.72±1.6 30.69±0.014
TIDE-m 52.08±1.1 36.18±0.47 58.11±1.9 64.86±1.5 69.61±1.4 83.03±0.06 60.81±0.04 40.56±1.7
TIDE-s 51.75±0.47 36.64±0.47 59.46±1.9 63.81±1.9 68.63±1.4 83.01±0.06 60.40±0.13 40.75±0.58

A.7. Ablation about Residual Connection

Table 10 presents the results of the ablation study conducted on the residual connection. The findings indicate that the
combination of residual connection and diffusion is the most effective network architecture. Additionally, it is noteworthy
that utilizing solely the residual connection without the diffusion model is significantly less effective.

A.8. Direct Implicit Timestep

Matrix exponential approximations in diffusion We show that our method does not depend on the type of diffusion
approximation used. In particular, we compare the spectral approximation advocated in Section 4.1 with using the implicit
Euler scheme to simulate diffusion (Sharp et al., 2022).

Since the graph Laplacians can get fairly big, we only mention the results of the small datasets, Cora and Citeseer as shown
in Table 11. Observe that we obtain worse results using implicit Euler diffusion approximation, compared to when using
spectral approximation. In addition, the latter benefits from the operator P , which recovers some of the information. The
first approach is mathematically exact. Hence we did not introduce any signal recovery mechanism here. However, with the
huge matrices and possibility of singularities, the method is numerically less stable and results in worse results. In addition,
the spectral approximation method is more scalable to large graphs, which is why we adopt it throughout our work.

Instead of using the spectral acceleration to compute the time derivative diffusion, we can also use the implicit Euler method
as follows:

Ht(u) := L(I + tL)−1u. (15)

It requires solving a sparse linear equation system for each iteration during training and testing. The implicit version makes
this approach numerically stable compared to the direct Euler version. In PyTorch, it is possible to solve those systems and
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Table 10. Comparison of the effect of the residual connection on several benchmarks (mean±std)
Model Cora Citeseer Pubmed CoauthorCS Computer Photo Ogbn-arxiv
TIDE-m 84.47±0.43 70.32±0.68 77.59±0.04 87.07±2.10 82.11±0.03 91.33±0.47 67.86±1.10
without residual 82.44±0.57 68.79±0.57 77.76±0.33 88.47±0.15 82.01±1.2 91.76±0.11 58.80±9.50
TIDE-s 84.31±0.36 70.24±0.80 77.24±0.62 86.29±5.90 83.01±0.02 92.06±0.51 68.43±0.35
without residual 83.71±0.79 68.39±0.23 77.37±0.76 88.73±0.06 82.46±0.26 91.87±0.52 64.60±0.67
without diffusion 54.89±0.00 55.59±0.01 66.20±0.00 86.47±0.00 61.61±0.00 77.02±0.00 56.60±0.70

back-propagate through them. However, on graph datasets, the Laplacian matrix can be rather large, and it is only with CPU
memory possible to solve this equation system. Hence, its training speed is drastically reduced.

In addition, we also found that only using the low-frequency approximation of diffusion is beneficial to regularize network
training.

Table 11. Using Spectral and implicit dense methods to calculate the diffusion equation
Method Cora Citeseer
Spectral 84.47±0.43 70.32±0.68
implicit dense 82.18±0.00 68.60±0.01

A.9. Diversity of Learned Time t and Channel Analysis

The novel learning parameter of the TIDE model is time, which controls the diffusivity of the information of the node
features. Since our model tries to find optimal times for each channel, to show how its performance can change depending
on this parameter, we explore a range of [0, 2] with a step size of 0.1 to identify the optimal times for each channel. In
Fig. 6, we compare the accuracy of the TIDE-s model on four datasets at different fixed time values t. This experiment
aims to evaluate how the choice of diffusion time affects the performance of the model and to determine the optimal value
of t for this particular dataset. We can see in this figure, for diffusion time t = 0 the accuracy of our model and GCN are
approximately equivalent. However, when t is larger than zero, the best accuracy will be obtained with a specific value of
time t > 0 on each benchmark.
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Figure 6. Comparison of accuracy of four benchmarks by changing the time parameter.
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In Fig. 7 we can see the behavior of the learned time of the TIDE-m model on several sampled channels during the training
on Computer, Photo, and Ogbn-arxiv datasets. It is observed that the learned time starts from a certain initial value and then
gradually converges to an optimal value after an initial learning period.
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Figure 7. Value of time learned on channels 5, 10, 30, and 60 during the training. The green curve indicates the mean time values of these
channels.
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