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Abstract

Existing imitation learning methods decouple perception and action, which over-
looks the causal reciprocity between sensory representation and action execution
that humans naturally leverage for adaptive behaviors. To bridge this gap, we intro-
duce Action-Guided Diffusion Policy (DP-AG), a unified representation learning
that explicitly models a dynamic interplay between perception and action through
probabilistic latent dynamics. DP-AG encodes latent observations into a Gaussian
posterior via variational inference and evolves them using an action-guided SDE,
where the Vector—Jacobian Product (VJP) of the diffusion policy’s noise predictions
serves as a structured stochastic force driving latent updates. To promote bidirec-
tional learning between perception and action, we introduce a cycle-consistent
contrastive loss that organizes the gradient flow of the noise predictor into a co-
herent perception—action loop, enforcing mutually consistent transitions in both
latent updates and action refinements. Theoretically, we derive a variational lower
bound for the action-guided SDE, and prove that the contrastive objective enhances
continuity in both latent and action trajectories. Empirically, DP-AG significantly
outperforms state-of-the-art methods across simulation benchmarks and real-world
URS manipulation tasks. As a result, our DP-AG offers a promising step toward
bridging biological adaptability and artificial policy learning. Code is available on
our project website: https://jingwangl8.github.io/dp-ag.github.io/|

1 Introduction

Imitation learning (IL) enables agents to replicate expert behavior from demonstrations. Direct
mapping methods, such as [Codevilla et al.,[2018, Mandlekar et al., 2022} [Florence et al., 2022], learn
a direct mapping between observations and actions. In contrast, generative models such as Diffusion
Policy (DP) [Chi et al.}2023]] and flow-matching methods [Hu et al., 2024} Zhang et al., 2025] model
action distributions to improve continuity across time steps. Vision-Language-Action (VLA) [Kim
et al., [2024, Black et al., 2024|] improves perception by leveraging Vision-Language Models (VLMs)
to interpret environmental cues and high-level instructions. Despite progress, existing methods treat
observation features as static during each action sequence generation (extracting them from a single
time-point observation and holding them fixed while generating a short sequence of actions), thus
overlooking the opportunity for the intermediate action feedback to refine perception.

Robust decision-making relies on a continuous interplay between perception and action [O’regan and
No¢l, 2001]]. Humans naturally embody this principle by dynamically refining their environmental
understanding through feedback from their own actions [Brooks, 1991]]. Motivated by this, we propose
Action-Guided Diffusion Policy (DP-AG), a representation learning framework for IL that explicitly
models the perception—action interplay through probabilistic latent dynamics. We build upon DP
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Figure 1: Use of Observation Features. (a) Conventional methods map observation features directly
to actions. (b) DP models action distributions through incremental denoising from white noise,
conditioned on observation features. (¢) DP-AG refines observation features via noise predictions,
establishing a mutually reinforcing cycle between perception and action.

because it models the continuity within each short-horizon action sequence, where intermediate
action feedback can be derived from its noise predictions at each diffusion step. DP-AG first
grounds observation features in a Gaussian posterior via variational inference, capturing uncertainty
from observation inputs. To enable dynamic perception, we introduce an action-guided stochastic
differential equation (SDE) in which latent features evolve across diffusion steps, driven by action-
conditioned noise predictions. Here, the Vector—Jacobian Product (VIP) from the diffusion model
acts as a structured stochastic force that shape feature evolution.

Although raw observations contain all available information, their usefulness for policy learning
depends on how they are internally represented. Unlike static encoders that keep features fixed over
an entire action sequence generation, DP-AG continuously refines them using action feedback. This
process mirrors active perception in biological agents, where even if the external scene remains
unchanged, sensory inputs are reinterpreted in the context of ongoing actions. This captures the
essence of Act to See, See to Act: the same observation is continually reinterpreted as actions unfold,
where see refers to the evolving latent representation refined through action feedback rather than new
external sensing. As shown in Figure [T} DP-AG conditions latent evolution on action-guided noise,
using the continuity of action diffusion to keep perceptual dynamics aligned with the denoising of
actions. A cycle-consistent contrastive loss ensures that latent evolution remains coherent with action
diffusion, preventing excessive drift and reinforcing the perception—action loop. Combined with
variational inference, these components yield a principled and adaptive representation that produces
smoother, more context-aware trajectories, as confirmed by both synthetic and real-robot experiments.

Theoretically, DP-AG introduces an action-guided latent SDE, derives a principled variational lower
bound, and rigorously proves that the proposed cycle-consistent contrastive loss enforces continuous
and coherent trajectories in both perception and action spaces. Empirically, DP-AG consistently
outperforms state-of-the-art methods in success rate, convergence speed, and action smoothness,
achieving gains of 6% in Push-T and 13% in Dynamic Push-T benchmarks, and delivering at least
23% higher manipulation success and approximately 60% smoother actions on real-world URS robot
tasks compared to the baseline DP. Our contributions are summarized below:

* We propose a novel observation representation learning that establishes a closed perception—action
loop by refining latent observation features via VJP-guided noise predictions derived from DP.



* We formulate an action-guided latent SDE, derive a variational lower bound, and prove that
cycle-consistent InfoNCE enforces mutual smoothness in both latent and action trajectories.

* We validate the effectiveness of DP-AG in both simulation and real-world scenarios, demonstrating
consistent and significant improvements in task success rate, convergence speed, and smoothness
of generated actions compared to state-of-the-art methods.

2 Related Work

2.1 Imitation Learning

IL provides an alternative to reinforcement learning (RL) by removing the need for explicit reward
signals [Sutton et al.| [1999,|Osa et al.| 2018]]. Existing methods include Behavioral Cloning (BC) [Bain
and Sammut, |1995, [Mandlekar et al., [2022} [Florence et al.,[2022], which learns the mapping from
observations to actions, and Inverse RL [Arora and Doshil [2021]] that infers implicit rewards from
expert demonstrations. Recent work [Kim et al., 2024, Black et al., 2024 extends BC by incorporating
VLMs into the perception pipeline, pushing robotic manipulation toward near-human capabilities.
However, existing methods decouple perception and action: the observation feature is frozen during
each action sequence generation, without adapting to the evolving action refinements. This constraint
often leads to abrupt or discontinuous motions. In contrast, we propose a perception—action interplay
where latent continuity and action smoothness reinforce each other, yielding more coherent behavior.

2.2 Generative Models in Policy Learning

Generative models have shown promise in modeling continuous action trajectories. DP [[Chi et al.|
2023 leverages Denoising Diffusion Probabilistic Models (DDPMs) [[Ho et al., 2020] to iteratively
refine action predictions using diffusion models. Policy-guided diffusion [Jackson et al., 2024]
generates synthetic trajectories aligned with a target policy for offline RL, while Diffusion-QL [Wang
et al.}2023]] uses diffusion models to learn expressive Q-functions. Recently, flow-matching meth-
ods [Lipman et al., 2023} |Hu et al., 2024, Zhang et al., 2025|] model actions as deterministic flow
ordinary differential equations (ODEs), achieving faster inference without comprising generation
quality. Building on these, DP-AG extends action-space continuity of DP into the latent observation
space, forming a dynamic perception-action loop that further enhances action smoothness.

2.3 Latent Observation Modeling in Agent Control

Modeling latent observations for control has been explored through planning and generative meth-
ods. PlaNet [Hafner et al.l [2019]] and Dreamer [Wu et al., 2023]] use variational autoencoders
(VAEs) [Kingma et al.} 2014] to simulate future states for RL. Embed to Control [Watter et al.,|2015]]
uses VAEs to learn latent states from images for control policy design. In contrast, DP-AG closes
the perception-action loop by reparameterizing latent observations with VJP-guided noise from DP,
extending variational inference to capture action-guided evolution.

3 Preliminaries

In imitation learning, the goal is to learn a policy mg(a¢|o;) that replicates expert behavior, where
o¢ and a; denote the observation and action at a static time point £. An encoder f, extracts static
features z; = fy(0¢), which are held fixed while the policy generates the corresponding a;, meaning
there is no feedback from action generation to perceptual features within the same short-horizon.
Given an expert demonstration dataset D = {(o¢, a;)}, standard BC minimizes the supervised loss:

Lpc(0,%) = E(o, a)~p [|ITo(fy(0r)) — at||§] . (D

Rather than the direct mapping, DP models the conditional distribution py(a|z;) as a denoising
diffusion process. Starting from white noise € ~ A (0, I), actions are generated over K denoising
steps using a learned noise predictor €y, conditioned on observation features.

K
ar=a) =af =Y g(k)-eo(af, z, k), @)
k=1

where af is the white noise, g(k) is a noise schedule, and €y predicts the noise at diffusion step k.
The diffusion model is trained by minimizing the noise matching objective [Ho et al.||2020]:

Lop(0,%) = E(o, a,)~D,k~td(1,K) [||Ea(af, fu(o), k) — €3] . 3)
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Figure 2: Method Overview. While Diffusion Policy (DP) generates actions from static observation
features, our DP-AG establishes a dynamic perception—action loop by guiding feature evolution via
the VJP of DP’s predicted noise. To reinforce interplay, a cycle-consistent contrastive loss aligns
noise predictions from static and evolving features, enabling mutual perception—action influence.

Through the progressive refinement of noisy actions, DP estimates the continuity underlying discrete
expert actions, which allows the policy to generate smooth transitions based on discrete observations.

To leverage this continuity for perception, we introduce DP-AG, which extends DP by propagating
action refinement into the latent observations through Vector—Jacobian Products (VJPs) of noise
predictions, enabling features to evolve dynamically alongside actions throughout diffusion. Although
we instantiate DP-AG with DDPMs, the method generalizes to other generative families such as score-
based diffusion [[Song et al.,|2021] and flow matching [Lipman et al.|[2023]], provided that intermediate
action refinements are available (see Appendix [A]for extending DP-AG to flow matching).

4 Our Approach

We propose Action-Guided Diffusion Policy (DP-AG), a latent generative model that explicitly
captures the dynamic interplay between perception and action. As illustrated in Figure 2} DP-AG
extends static variational inference by introducing an SDE over observation features, where latent
representations evolve under action-guided VJPs of the diffusion noise predictions rather than being
driven by static white noise. This replaces random perturbations with structured stochastic forces
that align uncertainty in the latent dynamics with the task’s perception—action structure. To further
reinforce this interplay, we introduce a cycle-consistent contrastive loss that enforces agreement
between action noise predictions conditioned on static and evolving latents, thereby closing the
perception—action loop and enabling coherent updates throughout the diffusion process. Note that,
this interplay is modeled within each action sequence generation a;, occurring between time points ¢
and ¢ + 1 across the K diffusion steps that connect them.

4.1 Latent Observation Modeling via Variational Inference

In real-world settings, observations are high-dimensional and noisy, which makes it impractical to
rely on deterministic representations. To model this inherent uncertainty, we begin by constructing a
variational posterior over observation features:

q¢(zt|or) = N(u¢(zt),a§(zt)), 4

where f14(2;) and ai(zt) capture the mean and variance of observation features. Sampling latent
observations via the reparameterization trick [Kingma et al.,|2015]]:

2t :H¢(Zt)+o'¢(zt)®e; ENN(071)7 )



provides a stochastic encoding of these features, which ensures that the policy can reason about
uncertainty in sensory inputs. However, it still treats perception as static: once extracted, observation
features remain fixed during the corresponding action generation and cannot adapt to refinements.

4.2 Action-Guided Latent Evolution through Stochastic Differential Equations

To capture continuity from action diffusion, we model latent observation evolution using a SDE,
where the drift is guided by action refinement. At each step k, the latent feature z; evolves as:

dzF = VIP(aF, z) dt + oy(2:) dWs, (6)
where the drift term VIP(aF, z;) is computed from the action noise prediction:
~k k T
VIP(aF, z) = (869(‘g’zt’ )) eo(aF, 21, k). %)
2t

This follows stochastic adjoint sensitivity methods [Li et al., 2019]], which show that VJP-based
updates efficiently propagate gradients through SDEs without computing full Jacobians; modern
autodiff frameworks make these computations practical with negligible overhead.

Beyond efficiency, the VIP serves as a task-driven attentional force, guiding latent features toward
the parts of the observation that most effectively reduce uncertainty in predicting the next-step action
noise. Because its drift is computed from the DP’s instantaneous noise prediction, latent evolution
is phase-aligned with action diffusion: moving forward during noise addition and reversing during
action denoising. Unlike stochastic adjoint methods that separate forward evolution from backward
updates, leaving latent features fixed during action inference, DP-AG’s VJP delivers immediate
feedback-driven updates at every diffusion step. This mechanism preserves the full Jacobian structure
in real time, keeps latent perception features phase-aligned with ongoing action diffusion, and captures
the instantaneous sensitivity between actions and observation features.

Thus, instead of a static variational posterior, we reparameterize with an action-guided noise term:
sk ~k
Zy = po(2e) +vog(2e) © VIP(GY, 24), (8)

where 7 controls VIP strength (see ablation studies in Appendix [H.4]for its effect). This formulation
allows the latent observations to evolve with the action refinements; the variational lower bound for
the corresponding optimization is detailed in Section[5.1]

4.3 Cycle-Consistent Contrastive Learning

While VJP-guided SDEs enable dynamic latent evolution, they do not guarantee coherent alignment
with the action diffusion, which is significant for achieving perception—action interplay. To bridge
this gap, we introduce a cycle-consistent contrastive loss that aligns noise predictions with evolving
latent dynamics at each diffusion step k:

* g =€y (&f, zt, k) is the noise prediction conditioned on the static latent z; at the step k;

» & = ep(a¥, ZF, k) is the noise prediction conditioned on the VIP-guided latent Z¥ at the step k.

An InfoNCE [Chen et al.,[2020] loss promotes the similarity of matched pairs while pushing apart
mismatched ones within the same mini-batch (see Appendix [H.6|for temperature parameter tuning):

exp (sim (e}, &}) /7

Z log (€i24) /7) : ©)
> j2i XD (s1m <€k,€k) /7')

where sim(u, v) = W is cosine similarity, with 7 as the temperature and B the mini-batch size.

Our contrastive loss enforces cycle consistency between perception and action: noise predictions
conditioned on static latents guide continuous latent updates via VJP, and the refined latents improve
subsequent noise predictions. Unlike MSE-based objectives that rigidly match features, the con-
trastive loss promotes a clustering effect: it pulls evolved features toward their static counterparts
to preserve semantic grounding, while pushing them away from features of other observations to
maintain task-relevant distinctions. This bounded adaptation keeps updates semantically meaningful,
enabling smooth refinement without arbitrary drift and reinforcing coherence in both latent and action
trajectories (see Section[5.2]for theory and Section [6.1] for empirical validation).



4.4 Training Objective
The overall training objective combines three components: noise matching from DPs, variational
optimization for latent evolution, and contrastive loss for the perception-action interplay:

Lpp-ac = Lpp + AcontLeont + AKLLKL- (10)

Jointly optimizing these terms enables DP-AG to co-evolve perception and action, resulting in more
adaptive policies (see Appendix [H.5]for ablation studies on hyperparameter tuning).

4.5 Intuitions Behind DP-AG

We now explain why DP-AG works in practice. A static encoder yields a one-shot representation
of the observation that stays fixed during action generation, forcing the policy to commit to an
interpretation before actions unfold. DP-AG instead refines the latent representation step by step,
guided by feedback from the evolving action sequence. Think of driving a car: the view through the
windshield may remain unchanged, yet the driver’s focus shifts as they act, paying more attention to
the curve’s edge while turning, or to nearby cars when accelerating.

The VJP supplies both the direction and magnitude of this latent drift: it points features toward the
adjustments that most reduce action uncertainty, with larger updates when the model is less confident
and smaller ones when it is certain. Meanwhile, the cycle-consistent contrastive loss anchors these
adaptations, keeping updated features aligned with their static counterparts and preventing excessive
drift. Together, this action-driven refinement and bounded consistency yield smoother, more stable,
and context-aware trajectories, as confirmed in our experiments.

5 Theoretical Insights
5.1 Action-Guided Variational Lower Bound

To learn a dynamic latent observation that evolves with the action diffusion, we define a posterior
q¢(ZF |24, aF) conditioned on both the static latent 2, and the denoised action ¥ at step k.

Variational Objective. The marginal likelihood of the observed noise throughout the diffusion is:
log p(ex] ) = log. [ p(Ewl) p(a0) dat. (an
Applying Jensen’s inequality with the posterior, we obtain the ELBO:
log plerlze) = Eq, (s, a) [log p(Ek|ZF)] — KL (g6 (2|20, a5) || (2 |20)) - (12)

Maximizing the ELBO encourages ZF to capture action-driven updates while staying close to the
prior conditioned on z;. Full derivation of the ELBO is provided in Appendix [B]

Likelihood Term. The likelihood term p(£x|ZF) models the distribution of action noise conditioned
on the evolving latent Z, and can be optimized using a noise matching loss similar to DP:

Lin = E (o, a)p imui1,5) [0 (@l 2, k) — €l|3] - (13)

This likelihood term encourages absolute accuracy in noise prediction but overlaps with the contrastive
loss that emphasizes relative similarity (see the detailed ablation in Appendix [H.3). To avoid
redundancy and instability, we use only the contrastive loss.

Kullback-Leibler Divergence Term. The variational posterior is modeled as:

0o (%12, a7) = N (s (21, a7), 05 (21, 7)), (14)
while the conditional prior can be modeled as a Gaussian distribution:
p(Er2) = N (2. 1), (15)

which encourages the evolved latent to stay near the static latent initially encoded from the observation.
The Kullback-Leibler (KL) divergence thus becomes (derivation of Equation [I6]is in Appendix [C):
d

~ . N 1
KL (25|20, 08) 1| p(3F120) = 5 3 (03, + (o = 20)* = 1= loga? ), (16)
i=1

where d is the latent dimension, and /14(-) and log ai(-) are parameterized by a separate linear layer.

6
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Figure 3: Regression results on irregular spirals. Left: Trajectories and latent dynamics predicted
by the Base Flow. Right: The VIP-Guided Flow continuously refines latents through output-guided
corrections, which results in smoother and more coherent trajectories in both output and latent spaces.

5.2 Contrastive Similarity Promotes Latent-Action Continuity

In this section, we theoretically demonstrate that minimizing our cycle-consistent InfoNCE loss leads
to smooth and coherent transitions in both latent and action spaces. The key insight is that minimizing
the contrastive loss enforces strong similarity between static and dynamic noise predictions; under
Lipschitz continuity, this similarity tightly bounds the drift in latent dynamics.

Noise Similarity Lower Bound. We first show that minimizing the contrastive loss imposes a lower
bound on the similarity between noise predictions ¢}, and £},. Proof of Lemma is in Appendix @

Lemma 1 (Noise Similarity Lower Bound). For unit-normalized vectors €}, and £}, and a temperature
7 > 0, if the InfoNCE loss satisfies L on < « for some small constant v, then for eachi € {1, ..., B},
the similarity between corresponding pairs is bounded accordingly:

sim (g},8},) >7(In(B-1)—a)—1. (17)
——
positive pair similarity

Continuity Induced by Noise Alignment. We then demonstrate that the lower bound on the noise
similarity provides an upper bound on the latent drift, meaning that the contrastive alignment also
leads to smooth transitions in the latent space. Proof of Theorem I]is in Appendix [E]

Theorem 1 (Continuity Upper Bound). Suppose €q(+) is L-Lipschitz with respect to z, and that Zf +1

evolves via the VIP of €g. Then under the contrastive constraint L., < o, we have:
255 = 27113 < L?|leo(ag, 21, k) — ealag, 25, k)13 < 2L°2 —7In(B—1) + 7). (18)

Together, Lemma [I| and Theorem [T] establish a theoretical connection between minimizing our cycle-
consistent contrastive loss and promoting temporal continuity in both latent and action trajectories.

6 Empirical Evaluations
6.1 Latent and Action Continuity on an Irregular Time-Series Regression

To empirically validate DP-AG’s ability to improve latent and action continuities, we conducted
experiments on the irregular spiral dataset, originally introduced in the neural ODE evaluations [[Chen
et al.,|2018]|. This dataset is designed to evaluate continuous-time dynamics under irregular sampling,
making it well-suited for evaluating the impact of the VJP-guided evolution on latent dynamics.

Dataset. Following [Chen et al.| 2018]], the dataset contains 1,000 samples of 2D spiral trajectories,
with half following a clockwise pattern and the other half counterclockwise, each sampled at 100
irregular time points. The spiral exhibits continuous radial growth with Gaussian noise (o0 €
[0.02,0.1]) added to simulate real-world variability with randomly assigned angular velocities.

Method. We compare two models:

* Base Flow: An LSTM with 128 hidden units and 2 layers is used to extract discrete latent features
zt, followed by a Multi-Layer Perceptron (MLP) to predict the regression output yg(z; ).

* VJP-Guided Flow: Augmenting the base flow with a VJP-guided SDE, where the latent feature
T
Z; evolves according to: dz; = (aygi(f")) yo(z¢) dt + 04 (2) dW, with the base drift 4 (2;) and

z

base log-variance log 0'3) (z¢) are each predicted by a separate linear layer.
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Figure 4: Benchmark simulation environments include Robomimic, Franka Kitchen, Push-T, and
Dynamic Push-T, with task and dataset details provided in Appendixﬁ

Table 1: Target coverage score on Push-T and Dynamic Push-T tasks. img and kp refer to the
observation modalities: RGB images or 2D keypoints.

Type Method Push-T ‘ Dynamic Push-T
img kp ‘ img
LSTM-GMM [Mandlekar, 2022] 0.69+0.02 0.67£0.03 0.34£1.24
Mapping IBC [Florence, 2022] 0.7540.02 0.9040.02 0.5240.98
BET [Shafiullah, 2022] 0.80+0.02 0.79 £0.02 0.58+1.35
Flow FlowPolicy [Zhang, 2025] 0.85+0.01 0.88+0.01 0.53£0.88
AdaFlow [Hu, 2024] 0.87+£0.02 0.91+0.01 0.67+0.79
Diftusion DP [Chi, 2023] 0.87+0.04 0.95+0.03 0.65+0.85
DP-AG (ours) 0.93+0.02 0.99-+£0.01 0.80£0.53

Both models are trained for 100 epochs with Adam optimizer (learning rate 10~2 and batch size 32).

Results. As shown in Figure[3] VIP-Guided Flow generates smoother and more coherent trajectories
than the Base Flow, reducing the MSE from 0.0095 to 0.0052 (a 45.3% improvement). Importantly,
latent visualizations show that while the Base Flow yields scattered latent states, VIP guidance shapes
a structured latent manifold aligned with output predictions. This illustrates our perception-action
interplay: predictions provide gradient feedback that dynamically refines latent embeddings through
the VJP. As a result, latent embeddings and predictions evolve in synchrony, enhancing continuity in
both representation and regression, which is consistent with our theoretical findings in Theorem [I]

6.2 Experiments on Simulation Benchmarks

‘We then evaluate our DP-AG on the simulation benchmarks, illustrated in Figure[é—_ll

Robomimic. Robomimic [Mandlekar et al,[2022] is a large-scale benchmark for robotic manipulation
consisting of five tasks with nine datasets: Can (ph/mh), Square (ph/mh), Transport (ph/mh), Tool
Hang (ph), and Lift (ph/mh). Here, ph denotes proficient human demonstrations, and mh indicates a
mix of proficient and non-proficient demonstrations.

Franka Kitchen. Franka Kitchen [Gupta et al., |2020] is a simulation benchmark with a 9-DoF
Franka arm performing four household tasks (t1, t2, t3, and t4) per trajectory, using 566 human
demonstrations across 7 interactive objects. Available through platforms like Gymnasium—Roboticsﬂ

Push-T. Push-T 2023] is a manipulation task adapted from IBC [Florence et al.| [2022]],

where a circular end-effector pushes a T-shaped block to a target location. Both the block and
end-effector start at random positions. Observations consist of either RGB images (img) or a set of
nine 2D keypoints (kp) outlining the T block’s shape, along with the position of the end-effector.

Dynamic Push-T (Ours). Many IL benchmarks are nearly saturated: they are deterministic, scripted,
and lack diversity, often solvable without closed-loop feedback [Jia et al.,2024]]. To evaluate real-time

1https ://robotics.farama.org/envs/franka_kitchen/franka_kitchen/
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Table 2: Success rates across Robomimic and Franka Kitchen tasks. ph: proficient human demos;
mh: mixed-quality demos; t1 to t4 denote task IDs in Franka Kitchen.

Type Method Lift Can Square  Transport ToolHang Franka Kitchen
ph mh ph mh ph mh ph mh ph tl 2 3
LSTM-GMM [Mandlekar, 2022] 1.00 1.00 1.00 0.98 0.82 0.64 0.88 0.44 0.68 1.00 0.90 0.74 0.34
Mapping IBC [Florence, 2022] 0.94 0.39 0.08 0.00 0.03 0.00 0.00 0.00 0.00 099 0.87 0.61 0.24
BET [Shafiullah, 2022] 1.00 1.00 1.00 1.00 0.76 0.68 0.38 0.21 0.58 0.99 0.93 0.71 0.44
Flow FlowPolicy [Zhang, 2025] 0.98 095 098 098 0.86 0.90 0.88 0.82 0.85 0.96 0.86 0.95 0.87
AdaFlow [Hu, 2024] 1.00 1.00 1.00 0.96 0.98 0.96 0.92 0.80 0.88 0.99 0.89 0.92 0.83
Diftusion DP [Chi, 2023] 1.00 1.00 1.00 1.00 0.98 0.98 1.00 0.89 0.95 1.00 1.00 1.00 0.99
DP-AG (ours) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.98 1.00 1.00 1.00 1.00
Comparison of Training Convergence: DP vs. DP-AG (Push-T) Comparison of Training Convergence: DP vs. DP-AG (Can)
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Figure 5: Convergence Plots. Training action MSE over epochs on Push-T and Robomimic Can.

adaptability, we propose Dynamic Push-T, which augments Push-T with a moving ball that bounces
unpredictably and intermittently interferes with manipulation. Since the ball’s trajectory varies in
each episode, the agent must adapt online, blocking or avoiding the ball while pursuing the main
objective. This develops a dynamic and unscripted challenge that evaluates true adaptability beyond
replaying demonstrations. Details of this benchmark are provided in Appendix [F}

Baselines and Evaluation Metrics. We compare DP-AG against IL baselines that include direct
mapping (LSTM-GMM [Mandlekar et al.,[2022], IBC [Florence et al.,[2022], BET [Shafiullah et al.|
2022]), diffusion-based (DP [[Chi et al., 2023]]), and flow-matching methods (AdaFlow [Hu et al.,
2024]], FlowPolicy [Zhang et al.,|2025]]). Results are from either our reimplementation or the original
papers, averaged over 5 training seeds and multiple evaluation seeds (50 for Push-T/Kitchen, 22
for Robomimic, 50 for Dynamic Push-T). We use success rate as the main metric, with target area
coverage for Push-T variants. Additional implementation details are in Appendix [G]

Results. Tables [I] and 2] show that DP-AG consistently outperforms baselines across Robomimic,
Franka Kitchen, Push-T, and Dynamic Push-T, achieving near-perfect success on static tasks and
the highest coverage on dynamic ones. These gains come from enforcing smooth latent and action
trajectories, which are especially important in Dynamic Push-T. DP-AG also converges faster than
DP (Figure 5| with additional plots in Appendix[[). Ablation results are provided in Appendix [H} and
computational analysis is detailed in Appendix

6.3 Real-World Evaluation on UR5 Robot Arm

To evaluate the real-world performance of our DP-AG, we deploy DP and DP-AG policies onto a
URS robotic arm in three visuomotor manipulation tasks: Painting, Candy Push, and Peg-In-Hole
Insertion (Figure [6). These tasks are designed to evaluate different aspects of perception—action
interplay and the policy’s ability to generalize from partially observable inputs. The details (dataset,
training, etc.) of the real-world manipulation experiments are provided in Appendix [J|

Painting (Planar Precision). The robot is tasked with tracing heart-shaped and circular-shaped
paths using a paintbrush. This task requires smooth and continuous motion to avoid over-painting or
streaking. Our DP-AG improves both path fidelity and smoothness compared to DP.

Candy Push (Object-aware Adaptation). The end-effector pushes small candies into a designated
goal area. Object positions are randomized across trials. DP-AG’s latent evolution allows it to adapt to
variations in candy layouts and locations, which results in fewer collisions and smoother trajectories.

Peg-in-Hole (3D Visual Reasoning). The robot must insert a circular peg into a vertical hole using
only RGB inputs from scene and wrist cameras, without explicit depth sensing, requiring the policy



Candy Push

__—}

Figure 6: Real-world evaluation on a URS robot arm across three manipulation tasks.

Table 3: Performance on Real-World URS Tasks. Mean and standard deviation are reported.

Task Method  Success Rate (%)  Smoothness (Avg. Jerk) ToU (%) Time to Complete (s)
Painting DP - 0.083 £0.014 68.9 £ 5.2 49.5+ 4.1
DP-AG - 0.032 £+ 0.009 92.1+34 18.0+ 3.2
Candy Push  DP 65.0 £ 8.4 0.107 £ 0.016 - 24.0+ 3.9
DP-AG 90.0 £ 5.5 0.039 +£0.011 - 9.5+2.6
Peg-in-Hole  DP 0.0+ 0.0 0.096 £ 0.017 - -
DP-AG 85.0+ 6.0 0.036 + 0.008 - 13.0+2.1

to infer 3D geometry from indirect cues. Baseline DP offers no mechanism to adapt when the hole is
slightly misaligned. Upon contact, it repeatedly executes the same ineffective motion, failing in all
trials. In contrast, DP-AG leverages action feedback: each blocked step triggers a VIP-guided latent
update that sharpens sensitivity to contact-region cues (e.g., rim alignment). Over a few refinements,
the same RGB inputs are reinterpreted to expose geometry cues sufficient for correction, enabling
successful insertions under occlusion and unseen perturbations.

Evaluation. We evaluate our DP-AG against DP on the three tasks, each repeated over 20 trials. For
Painting, we report IoU between the painted and target shapes; for Candy Push and Peg-In-Hole, we
report success rate. Moreover, we measure trajectory smoothness via average jerk and task completion
time. As shown in Table 3] DP-AG consistently outperforms DP across all metrics. Notably, the
largest gain occurs in the peg-in-hole task, where DP-AG’s dynamic latent updates help infer 3D
information from 2D observations, which is an ability DP lacks due to its static features.

7 Conclusion

We introduce DP-AG, a representation learning framework that closes the perception—action loop
in diffusion policies. By evolving latent observations through an action-guided SDE, DP-AG
transforms diffusion noise gradients into structured perceptual updates via VIPs. A cycle-consistent
contrastive loss aligns static and evolving latents, enabling continuous and bidirectional coupling
between perception and action throughout diffusion. We derive a principled ELBO and prove that
contrastive alignment enforces mutual continuity in latent and action trajectories. Empirically, DP-AG
achieves state-of-the-art performance, especially under partial observability and dynamic conditions,
demonstrating that perception—action interplay is significant for effective and adaptive policy learning.

Broader Impacts. DP-AG advances imitation learning by modeling dynamic perception-action
interplay, enabling smoother and more context-aware robotic manipulation and reducing the risk of
failure or unintended motions. This capability is particularly valuable in safety-critical domains such
as automation, manufacturing, and assistive robotics, where robust decision-making is significant for
effective human-robot collaboration. However, relying on expert demonstrations can introduce biases
or suboptimal behaviors into the policy. To mitigate these risks, it is important to rigorously validate
the quality and diversity of demonstration data to minimize unintended actions.
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Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper discusses the limitations of the proposed work in the Broader
Impacts section.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the paper provides the full set of assumptions and a complete and correct
proof for each theoretical result in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper. More importantly, the paper provides the sufficient details of the conducted
real-world experiments including dataset collections and model implementation. The code
is also provided in the supplement materials.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper provides open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in sup-
plemental material. The code and data are available on our project website: https:
//jingwang18.github.io/dp-ag.github.io/l

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper specifies all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results for all experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper reports error bars suitably and correctly defined or other
appropriate information about the statistical significance for all experiments including the
real-world experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: Yes, the paper provides sufficient information on the computer resources (type
of compute workers, memory, time of execution) needed to reproduce each experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in the Broader Impacts section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as
any important, original, or non-standard components. LLMs are used solely for language
refinement.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Extension to Flow Matching Models

While we demonstrate DP-AG built upon DDPMs (as in DP), the proposed perception-action interplay
can be extended to alternative generative models that produce smooth action trajectories, such as flow
matching models [Lipman et al.|[2023| Black et al., 2024} Zhang et al., 2025].

Background on Flow Matching. Flow matching formulates action generation as solving an ordinary
differential equation (ODE) that deterministically transforms a sample from a known base distribution
(e.g., Gaussian) to the target data distribution. Given a continuous time variable ¢ € [0, 1], the action
a(t) evolves according to:
da(t)

dt = Ue(a(t)vztat)7 (19)
where vg denotes a learned velocity field conditioned on observation features z;. The goal is to match
the score of the intermediate marginal distribution p;(a) at time ¢ by minimizing a regression loss.
Unlike diffusion models, flow matching generates continuous evolution directly without stochastic
perturbations.

Action-Guided Latent Evolution with Flow Matching. To extend DP-AG to flow matching models,
we leverage the structure of the learned velocity field vy to guide the latent dynamics. To be specific,
at each time ¢, we define the evolution of the observation feature z; through a VIP-guided ODE:

dzy _ (Ovg(a(t), 2, )
dt - 6Zt

where vy (a(t), 2, t) serves as the action-conditioned driving force, and the VIP propagates this force
back to update the observation feature Z;. This setup follows our DP-AG formulation for DDPMs but
replaces the stochastic increments from noise predictions with deterministic updates guided by flow
matching dynamics.

"
) ve(at), z1,1), 20)

Training Objective. Similar to the DP-AG framework, we introduce a variational posterior
44 (2|2, a(t)) over the evolved latents and formulate a ELBO:

Lerpo = Eqy [log pe(ve(a(t), Zt,t))] — KL (qg(Ze|2t, a(t))|[p(Ze]21)) 5 2D

where p(Z;|z;) is the base distribution, e.g., isotropic Gaussian centered at z;. Moreover, the
cycle-consistent contrastive loss can be formulated between the velocity fields vg(a(t), 2+, t) and
vg(a(t), Z¢, t) to promote the consistent evolution between the action and the latent trajectories.

Discussion. The flow matching extension has several benefits:

* Deterministic evolution improves sample efficiency compared to stochastic DDPM training.

* The continuous latent trajectories can be directly controlled via vg, which simplifies the interpreta-
tion.

 The perception-action interplay remains: smoother latent evolution produces more coherent actions,
and better action flow, in turn, improves the latent dynamics.

Thus, DP-AG extends beyond DDPMs, which provide a flexible framework for integrating with
generative-model-based policy learning under both stochastic and deterministic dynamics.

B Derivation of DP-AG Variational Lower Bound

In this section, we show the full derivation of our ELBO using Jensen’s inequality:
log p(ex|zt) > By, (z)z, a6 08 p(ERIZ)] — KL (g6 (3|20, a7) | (3| 21)) (22)
where g4 (ZF|2, aF) is the variational posterior approximating the true posterior.

We start from the exact marginal:

plexlz) = / p(Eul2)p(2E ) d2b 23)
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Inserting the variational posterior g, (2F|2;, a¥) via importance sampling:

p(ek|zt>=/q¢(zt\zt, aby LEREORG) o g [p(g"'zf)p(zfz”] (24)

a6 (Zf |24, af) a6 (|20, 07
Thus, we have:
P(Ex|Zr)P(Z |2t)
Ll LA (25)
ag (2|2, ag)
Since log(+) is a concave function, by Jensen’s inequality:

logE,, [X] > Eg, [log X], (26)

log p(ek|zt) = log By, [

P(Ek |Zr )1”(27: |Zt)

for any non-negative random variable X. Here, X =
qd)(zt |z¢.af)

is clearly non-negative because
all densities are non-negative.

Thus, applying Jensen’s inequality to our case gives:
= |5k (5k = |5k ( 5k
p(Er|Z7)p(Z5 |2 p(Er|Zy )p(ZF |2
1OgEq¢ |: ( ‘thk) (fk| t):| ZEqd) |:10g< ( |~tk) (fk| t)>:|
a6(Z¢ |2, a7) a6(Z¢ |2, a)
a0 (10 P(ERIZ) +log p(3|21) — log s (57 |24, )]
= E » [log p(Ex|ZF)] + Eq, [log p(Z|20)] — Eq, [log ap (¢ |21, a7)]
= Eq, [logp(Er|Zf)] — KL (go(2F |21, a5) || p(3F|20)) -
27
Thus, we have proven:
log p(ek|zt) > By, 351z, a6 [log p(EIZ)] — KL (g6 (3|20, af) || p(3|20)) - (28)

O

C Derivation and Intuition for the KL Divergence Term in Equation [16|

To regularize the latent evolution Z¥ and preserve semantic consistency with the observation-encoded
latent z;, we introduce a KL divergence between a variational posterior and a conditional prior. This
section provides a step-by-step derivation and intuition for the expression in Equation [16]

Formulation. The variational posterior is defined as a Gaussian distribution:

06 (3F |20, 1) = N (g (21, af), ding (05 (21, af))), (29)
where both the mean and log-variance are predicted by linear layers. The conditional prior is set to:
p(Ef|z) = N (2, D), (30)

which enforces that the evolved latent remains close to its observation-driven anchor z; unless strongly
influenced by the action.

KL Between Diagonal Gaussians. The KL divergence between two diagonal Gaussians N (u,, X;)
and N (pp, X)) is given by:

1 ¢ oni | (g — tpi)? 9q.i
KL(QHP)=§Z JT"’f_l_lOgT ) (31)

i=1 Pt Tp,i Ip,i

where d is the dimensionality of samples drawn from Guassians. Substituting 1, = pg (21, ay),
o4 = 04(z1,af), pp = 2, and 3, = I, we obtain:

—_

d
KL(qg(2f |20, af) | p(F|21)) =3 > (03 + (gi — 24)> — 1 —logol ;) , (32)
=1

where d is now the latent dimension, and all quantities are computed element-wise.

Intuitions. Each term in the KL expression serves a distinct regularization role:
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* (ug,i — 214)%: penalizes deviation of the evolved latent mean from the observation-encoded static
latent.

. oi ;- penalizes over-dispersion and encourages confident latent representations.

* log ai ;- rewards expressive uncertainty when needed, balancing the previous term.

This KL divergence term acts as a geometric constraint to preserve alignment with the observation-
anchored latent space, while still allowing dynamic evolution based on the action. Combined with

our contrastive loss (Equation [J)), it stabilizes training by maintaining local continuity and global
discriminability.

D Proof of Lemmal[]

Following the theoretical work on the InfoNCE loss [Parulekar et al.| 2023, [Wang et al., 2024], we
derive the lower bound for the positive key alignment:

Lemma (Noise Similarity Lower Bound). For unit-normalized vectors 5}; and 5};, and a temperature

7 > 0, if the InfoNCE loss satisfies Lcony < o for some small constant o, then for eachi € {1,..., B},
the similarity between corresponding pairs is bounded accordingly:
sim (g},&},) >7(In(B—-1)—a)—1. (33)
————

positive pair similarity

Proof. Recall that the InfoNCE loss is defined as:

Lo — 1 i log exp (sim (g,£}) /7) . (34)
B i—1 Zj# exp (sim (E};,Ef;) /T)

To simplify the notations, let s;; = sim(c, &1 ) and s,; = sim(e},, &) for j # i. We define:

exp(sii /T
pi = (—/) (35)
Zj;éi exp(sij/T)
The loss constraint L oy < « implies:
1B B
-5 Zlogpi <a = Zlogpi > —Ba. (36)
i=1 i=1
Taking exponential at both sides, we have:
B
Hpi > exp(—Ba). 37)
i=1

To derive a lower bound on s;;, we need the denominator } -, ,; exp(s;;/7) to be as small as possible.

Since s;; > —1 (unit vectors), the denominator is minimized when all s;; = —1. Thus, we have:
> exp(si;/T) = (B — 1) exp(—1/7), (38)
J#i
and (53)7) ) )
exp(si /T Sii +
i = , 39
Pi= 1B " 1yexp(—1/7) B—leXp< T ) (39

Assume that p; is equal across all ¢ to maximize the product under the constraint by Arithmetic
Mean-Geometric Mean (AM-GM) inequality [Tan and Xie, [2020]:

B 1/B
pi = (Hm) > exp(~Ba)'/? = exp(~a). (40)
=1
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Substituting into Inequality [39] we have:

1 Sy + 1
—a) <p; < . 41
exp( a)_pz_B_leXp< . ) 1)
Focusing on the inequality:
1 si+1
—a) < . 42
exp( a)_B_leXp< . ) (42)
Multiply both sides by B — 1:
i +1
(B —1)exp(—a) <exp (S a > . (43)
T
Take the natural logarithm of both sides:
i+ 1
In (B — 1 exp(~a)) < *F (44)
T
Simplify the left-hand side:
In(B - 1)+ In(exp(—a)) =In(B - 1) — a. (45)
Thus: 1
mB-1)—a< L (46)
T
Multiply through by 7:
T(In(B—1) —a) < s + 1. 47)
Finally, we have the lower bound for s;;:
sii > m(In(B—-1) —a) — 1. (48)
Thus, we have proved: o
sim (52,52) >7(In(B-1)—a)-1. (49)
O
E Proof of Theorem [1]
sk+1

Theorem (Continuity Upper Bound). Suppose €q(-) is L-Lipschitz with respect to z, and that Z;
evolves via the VJP of €g. Then under the contrastive constraint L., < o, we have:

25T — 28113 < L?||eo(af, 20, k) — eo(ar, 27, k)3 < 2L*(2 — 7In(B — 1) + 7a).  (50)

Proof. We split the proof into two steps:

Step 1: Lipschitz continuity of ¢y relates latent updates and noise difference. Taking the vector-
Jacobian product (VIP) approximation for the drift of the SDE evolution, the update of Z at each
step satisfies:

1257 = Zll2 o VIP(ay, 20), (51
where, under the Lipschitz continuity assumption, the VJP depends linearly on the local noise gradient
structure.

Assuming proper normalization of the step size in the SDE discretization (absorbed into the L-
Lipschitz constant), we have:

12 = 2Fll2 < Llleo(at, zi, k) — eo(ag, 27, k)|l (52)
Squaring both sides yields:
1254 = 2715 < L llea(af, 2, k) — eo(ar, 2, k)3 (53)

Step 2: Contrastive loss bounds the noise difference. From Lemmam when Leont < «, the cosine
similarity between €}, and £}, is bounded below:

sim (e},,&},) > 7(In(B—1) —a) — 1. (54)
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Recall that cosine similarity between two unit-norm vectors u, v satisfies:
|u —v||3 = 2(1 — sim(u, v)). (55)
Thus, applying this relation to € and €j, we obtain:
llea(af, ze, k) — ea(af, 25, k)||5 = 2 (1 — sim (ea(af, 21, k), eo(ar, 2, k))) - (56)
By plugging in the lower bound on similarity from Lemmal[I] we get:
llea(af, ze k) — ea(af, 28, k)||3 < 2(2 — 7In(B — 1) + 7). (57)
Thus, combining Step 1 and Step 2, we can conclude that:

127 = 2813 < L?|lealar, 20, k) — ealar, 2, B)l3 < 2022 —7In(B —1) +7a).  (58)

This completes the proof. O

F Robotic Manipulation Benchmarks

This ablation section details the tasks and corresponding datasets for four robotic manipulation
benchmarks for simulation: Robomimic, Franka Kitchen, Push-T, and Dynamic Push-T. Each
benchmark contributes unique tasks and datasets to evaluate various aspects of robotic manipulation,
from precision and coordination to adaptability in dynamic environments. Below, we describe each
task, its objectives, and the associated datasets, highlighting their roles in our empirical evaluations.
Robomimic Benchmark. Robomimic is a comprehensive benchmark for robotic manipulation with
five tasks: Can, Square, Transport, Tool Hang, and Lift. These tasks are designed to evaluate a
range of manipulation skills that include pick-and-place, precision assembly, multi-arm coordination,
and basic object manipulation. Each task includes expert demonstrations collected via proficient
human (PH) teleoperation, with additional mixed human (MH) datasets, resulting in nine datasets
total. The datasets are structured in HDF5 format, containing observations, actions, rewards, and other
metadata, and are available online (https://github.com/ARISE-Initiative/robomimic).

Table 4: Summary of Robomimic Tasks and Datasets

Task PH Demos MH Demos Key Skills Tested

Can 200 300 Pick-and-place

Square 200 300 Precision manipulation
Transport 200 (2 operators) 300 Multi-arm coordination
Tool Hang 200 300 Precision grasping, insertion
Lift 200 300 Basic object manipulation

Can. The Can task involves picking up a can and placing it in the correct bin, testing pick-and-place
skills. The dataset includes two variants:

* Proficient Human (PH): 200 demonstrations collected by a single proficient operator using the
RoboTurk platform (https://roboturk.stanford.edu/).

* Mixed Human (MH): 300 demonstrations from six operators of varying proficiency, introducing
variability in demonstration quality.

The PH dataset provides high-quality demonstrations, while MH introduces real-world variability.

Square. The Square task, also known as Square Nut Assembly, requires fitting a square nut onto
a square peg (and potentially a round nut onto a round peg). The scene includes two colored pegs
(square and round) and two nuts on a tabletop, with randomized nut locations at episode start
(https://robosuite.ai/docs/modules/environments.html). This task evaluates precision
manipulation. The dataset includes two variants:

* Proficient Human (PH): 200 demonstrations collected by a proficient operator via RoboTurk.

* Mixed Human (MH): 300 demonstrations from operators of varying proficiency.
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These datasets test algorithms on precise manipulation with both expert and varied human inputs.

Transport. The Transport task involves transporting an object using two robotic arms, which requires
multi-arm coordination. It is noted for its complexity, with observation spaces including shoulder and
wrist views per arm, indicating a dual-arm setup (https://robomimic.github.io/study/). The
dataset includes two variants:

* Proficient Human (PH): 200 demonstrations collected by two proficient operators working
together (https://www.tensorflow.org/datasets/catalog/robomimic_ph).
* Mixed Human (MH): 300 demonstrations from varied operators.

The datasets evaluate coordination and robustness in multi-arm cooperation tasks.

Tool Hang. The Tool Hang task requires hanging a tool (e.g., a hook), which involves precise
grasping and insertion. The dataset includes two variants:

* Proficient Human (PH): 200 demonstrations collected by a proficient operator via RoboTurk.

* Mixed Human (MH): 300 demonstrations from operators of varying proficiency.

These datasets evaluate on high-precision tasks.

Lift. The Lift task involves lifting an object, a simple manipulation task that benefits less from large
datasets compared to complex tasks. The dataset includes two variants:

* Proficient Human (PH): 200 demonstrations collected by a proficient operator via RoboTurk.

* Mixed Human (MH): 300 demonstrations from operators of varying proficiency.

The datasets provide a baseline for evaluating basic manipulation skills.
Table [ provides a summary of the Robomimic tasks and their corresponding datasets.

Franka Kitchen Benchmark. Franka Kitchen is a simulation benchmark where a 9-DoF Franka
arm operates in a kitchen environment, performing four household tasks per trajectory. The tasks
involve manipulating objects to achieve a desired goal configuration, which include:

* Open the Microwave: The robot opens the microwave door.

* Move the Kettle: The robot repositions the kettle to a target location.

* Flip the Light Switch: The robot toggles a light switch to turn on a light.

* Slide Open the Cabinet Door: The robot slides open a cabinet door.

The benchmark is hosted on platforms like Gymnasium-Robotics (https://robotics,

farama.org/envs/franka_kitchen/) and uses datasets from D4RL (https://github.com/
Farama-Foundation/D4RL).

Table 5: Summary of Franka Kitchen Tasks and Datasets

Task Description Dataset Key Skills Tested

Open Microwave Open the microwave door 566 trajectories  Object interaction, door
manipulation

Move Kettle Reposition the kettle 566 trajectories  Object repositioning

Flip Light Switch Toggle the light switch 566 trajectories  Switch manipulation

Slide Cabinet Door  Slide open the cabinet door 566 trajectories  Sliding mechanism inter-
action

Datasets. The Franka Kitchen dataset consists of 566 trajectories, each completing all four tasks,
collected via human teleoperation across seven interactive objects (a microwave, a kettle, an overhead
light switch, a sliding cabinet, a hinged cabinet, a top burner, and a bottom burner) (https://
minari.farama.org/datasets/D4RL/kitchen/index.html). The dataset evaluates the ability
to sequence and execute multiple subtasks in a realistic kitchen environment. Table [5] provides a
summary of the Franka Kitchen tasks and their corresponding datasets.
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Push-T. Push-T is a manipulation task adapted from Implicit Broadcast Communication (IBC), where
a circular end-effector pushes a T-shaped block to a target location. The block and end-effector start
at random positions, which can be defined by different evaluation seeds. Observations are either RGB
images (img) or nine 2D keypoints (kp) outlining the T block’s shape and the target location, as well
as the end-effector’s position (https://paperswithcode.com/task/robot-manipulation).

Dataset: The Push-T dataset includes 62,500 push interactions across 200 evaluation seeds, designed
to evaluate the pushing dynamics and perception in a controlled setting.

Dynamic Push-T. We extend the Push-T task by introducing a moving orange ball that travels at
100 units per second within a 500-unit square. The ball bounces off both the walls and the end-
effector, occasionally disrupting the T-shaped block. The agent must simultaneously block these
disturbances while pushing the block to the target, requiring it to maintain stable control under
dynamic interference. This setting explicitly evaluates latent continuity and adaptability: abrupt
latent shifts can destabilize interactions, whereas smooth latent evolution enables the agent to adapt
effectively to changing dynamics.

Dataset: Similar to the Push-T dataset, we include 62,500 push interactions across 200 evaluation
seeds, specifically designed to evaluate robustness and adaptability in dynamic and unpredictable
environments. Table [6] provides a summary of the Push-T and Dynamic Push-T tasks and their
corresponding datasets.

Table 6: Summary of Push-T and Dynamic Push-T Tasks and Datasets

Task Description Dataset Key SKkills Tested
Push-T Push T-shaped block to target 62,500 pushes Pushing dynamics and per-
ception
Dynamic Push-T  Push T-shaped block with 62,500 pushes Adaptability and disturbance
moving ball disturbance handling

G Implementation Details

Our DP-AG builds on the Diffusion Policy (DP)[Chi et al.l |2023]], with two key modifications: (1) we
add two linear heads for predicting the base drift 14 (z;) and log-variance log 0’2 (z¢) from the static
latent features, and (2) we incorporate VJP-guided SDE for latent evolution without introducing extra
learnable parameters.

For observation encoding, we use a ResNet-18 [He et al.l | 2016] backbone for image-based tasks. We
adopt the same conditional U-Net architecture from DP [Chi et al.,|2023|] to predict diffusion noise.
During training, we apply random cropping with task-specific sizes as in DP, while a center crop is
used at inference. To maintain dynamic consistency, no color jitter or random flipping is applied. An
MLP is used to encode the agent’s proprioceptive inputs. For key-point-based tasks, we follow the
original DP setup and use fully connected networks.

We also apply action normalization scales each action dimension independently to [—1, 1] to ensure
compatibility with the DDPM denoising process, where predictions are clipped within this range at
each step. For positional control tasks, actions use 6D rotation representations. Velocity control tasks
use 3D axis-angle representations, which follow standard practice.

We train the model using the iDDPM algorithm [Nichol and Dhariwal, |2021]] with 100 diffusion steps.
All models are trained for 300 epochs on vision-based tasks and 200 epochs for key-point-based tasks.
For learning rate scheduling, we use a cosine annealing schedule with a linear warmup of 500 steps.
Batch sizes are set to 64 for image-based tasks and 256 for key-point-based tasks. Optimization
uses AdamW with a learning rate of 1 x 10~* in all experiments. All hyperparameters not directly
related to DP-AG extensions (e.g., diffusion step count, augmentation, action normalization) are kept
identical to DP for a controlled and fair comparison. For inference, we maintain the same number of
diffusion denoising steps as training to avoid introducing a distributional shift.
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H Ablation Studies

H.1 Latency and Computational Cost Analysis

We evaluate the computational overhead introduced by our DP-AG compared to the original DP
by measuring both training time per epoch, the inference latency, and the total training time to
convergence. The computation analysis is conducted on the Push-T benchmark. Experiments are
conducted on an Nvidia RTX 4090 GPU with 24GB VRAM. Table [/| summarizes the detailed
computational cost comparison between the DP baseline and our DP-AG.

Training Time per Epoch. On the Push-T benchmark, the average training time per epoch increases
slightly from 114.2 seconds for DP to 119.5 seconds for DP-AG, corresponding to an overhead
of 4.6%. This increase is expected because VJP computation requires additional backward-mode
automatic differentiation through the noise predictor. However, the extra cost remains moderate,
largely due to the relatively small dimensionality of the latent observation space.

Inference Latency. At inference time, the VIP computations are omitted entirely. Our DP-AG simply
operates with the latent features extracted from the observation encoder at inference. As a result,
inference latency remains virtually unchanged: 145.3 milliseconds per action sequence generation for
DP versus 146.5 milliseconds for our DP-AG, a marginal 0.8% difference. This negligible overhead
ensures that DP-AG maintains real-time responsiveness for high-frequency robotic control while
improving the smoothness and consistency of action generation.

Training Efficiency and Total Time to Convergence. Although our DP-AG introduces a minor
increase in per-epoch training time, it significantly accelerates convergence. On the Push-T bench-
mark, DP requires approximately 200 epochs to converge, whereas DP-AG achieves comparable
performance within only around 100 epochs. This effectively reduces the number of required training
epochs and the total training time by nearly 50%. To be specific, DP completes training in about 6.2
hours, while DP-AG completes training in approximately 3.5 hours, which results in a net saving of
2.7 hours. Thus, despite the slight per-epoch overhead, our DP-AG achieves faster overall training
and improved sample efficiency.

Summary. Therefore, while DP-AG introduces additional VJP computations, modern autodiff
frameworks (e.g., PyTorch) execute them efficiently, leading to negligible runtime overhead. As
shown in Table [/} DP-AG incurs only a minor 4.6% increase in per-epoch training time but delivers
nearly 50% higher training efficiency. Inference latency remains virtually unchanged: DP-AG sustains
real-time control on the URS5 robot while producing smoother trajectories, lower jerk, and faster
task completion. These results demonstrate that the added computation does not hinder deployment
or responsiveness, and that our perception—action interplay both improves DP and substantially
accelerates training, making DP-AG well suited for real-world applications where rapid retraining
and real-time control are important.

Table 7: Computational cost comparison between DP and DP-AG on Nvidia RTX 4090 (Push-T).

Model One Epoch Time (s) Epochs to Converge Total Training Time (h) Inference Latency (ms)
DP 114.2 ~200 ~6.2 145.3
DP-AG (Ours) 119.5 ~100 ~3.5 146.5

H.2 Effect of Cycle-Consistent Contrastive Loss

To evaluate the importance of the cycle-consistent contrastive loss in our DP-AG, we conduct an
ablation study by removing this component while keeping the rest of the architecture unchanged.
This allows us to isolate the role of cycle consistency in enforcing mutual smoothness between latent
evolution and action refinement during training.

Setup. We compare two variants on the Push-T benchmark:

* DP-AG (full model): Includes the cycle-consistent contrastive loss between static and VIP-guided
noise predictions.

* DP-AG w/o Contrastive: Removes the contrastive term from the training objective, relying only on
the diffusion loss and KL regularization.
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Figure 7: Comparison of training convergence on the Push-T benchmark for DP-AG with and without
cycle-consistent contrastive loss.

Both variants are trained under the same settings; and the action MSE is evaluated across training
epochs. We repeat the experiments with 5 different initialization seeds for training.

Results. As shown in Figure |/| and Table || removing the cycle-consistent loss leads to slower
convergence, higher final training action MSE, and reduced target coverage scores. To be specific, the
model without contrastive loss requires approximately 3 times more epochs to converge compared to
the full DP-AG; the final success rate drops from 93% to 85% on the Push-T benchmark; and the
training action MSE remains consistently higher throughout training, which indicates less accurate
action generation.

Analysis. Without the contrastive alignment between evolving and static latents, VJP-guided per-
turbations can drift away from the optimal action refinement trajectory, which degrades both latent
continuity and action smoothness. The cycle-consistent loss is important in closing the perception-
action loop, which can ensure that latent evolution remains tightly coupled with action denoising
across diffusion steps.

Table 8: Effect of cycle-consistent contrastive loss on Push-T benchmark.

Model Epochs to Converge Converged Train Action MSE Score
DP-AG (full) 100 65.8 0.93
DP-AG w/o Contrastive 300 183.5 0.85

H.3 Likelihood Supervision vs. Contrastive Loss

In Section[5.1] we derive a noise regression objective from the variational lower bound, which serves
a similar role to our cycle-consistent contrastive loss. To evaluate the necessity of the contrastive loss,
we replace it with the likelihood-based noise regression objective defined in Equation [T3}

Lin =Eo, .a,)~p, eou(ri) [[lo(af, 2, k) — €ll3] . (59
Experimental Setup. We compare three variants:

* Cycle-Consisteny Contrastive: Uses the proposed cycle-consistent contrastive 1oss Lcon only.

e MSE-Only: Replaces Ly with the noise regression loss £y y.

* Combined: Combines both objectives: £ = Leon + L1H-

All models are trained with 5 random seeds on the Push-T benchmark. We report the mean and

standard deviation of validation accuracy over 100 epochs.

Results. As shown in Figure[8] the contrastive-only variant not only converges faster but also achieves
the best validation accuracy. Although MSE yields smoother convergence, it lacks the structural
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Training Dynamics: Contrastive vs. Regression Noise Supervision

0.95 -
0.90 -
>
|9
C 0.85
3
Q
¥
< 0.801
c
o
©
< 0.751
g
0.70 —— Contrastive Loss
MSE Noise Regression
0.65 4 —— Combined (Contrastive + MSE)
0 20 40 60 80 100

Epoch

Figure 8: Validation accuracy during training with contrastive loss vs. MSE noise regression on the
Push-T benchmark. Contrastive loss achieves faster convergence and better performance but with
slightly more variance during training.

benefits of noise alignment that contrastive learning offers. The combined objective does not improve
performance over the contrastive-only variant and sometimes results in unstable training, likely due to
conflicting optimization signals between absolute and relative supervision. These results validate that
the contrastive alignment provides stronger inductive bias for learning dynamic consistency between
static and VJP-guided latents, while the likelihood term, though informative, introduces redundancy.
We thus omit the likelihood objective from our final model.

H.4 Effect of VJP Strength

In this section, we study how the strength of the VJP-guided perturbations affects the performance
of our DP-AG. Recall that the VJP acts as a stochastic “force” that shapes the evolution of latent
observation features based on the diffusion process that refines the action generation. While moderate
VIP guidance helps structure latent trajectories coherently, overly weak or strong guidance may
destabilize training or restrict flexibility.

Setup. We introduce a scaling factor ~y applied to the VJP term during latent updates in Equation
dzy =~ - VIP(aF, 2;) dt + 04(2) AW, (60)

We evaluate the following settings: v € {0.0, 0.5, 1.0, 2.0, 5.0}, where v = 1.0 is our default
setting. We repeat the experiments with 5 different initialization seeds for training.

Results. The results are presented in Figure[9]and Table[9] We observe that:
» Without VJP guidance, latent features remain static during diffusion, effectively reducing our
DP-AG to a standard DP.

* Moderate VJP strength (y = 0.5, 1.0) achieves the best results, which tradeoff a balance between
encouraging latent evolution and maintaining stability.

* High VJP strength (v = 2.0, 5.0) leads to unstable latent evolution, where the updated trajectories
deviate excessively from the static latent features, ultimately degrading policy performance.

H.5 Effect of KL Loss Hyperparameter
In this section, we investigate the effect of varying the KL divergence coefficient Ak, on the per-
formance of our DP-AG using the Push-T benchmark. While 5-VAE [Higgins et al.,[2017] tunes

KL regularization to promote disentanglement, in our case, the KL term stabilizes the action-guided
latent evolution without affecting its ability to adaptively track action refinements.
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Figure 9: Effect of the VJP strength ~ on the Push-T benchmark.

Table 9: Effect of VJP strength v on Push-T benchmark.

vy Final Train Action MSE Score Latent Behavior
0.0 75.3 0.87 static

0.5 58.3 0.93 smooth

1.0 65.8 0.93 smooth

2.0 71.2 0.90 over-reactive
5.0 241.5 0.85 unstable

Setup. We train DP-AG on the Push-T benchmark with the following Ak values: {0, 0.5, 1.0, 2.0,
4.0,5.0, 10.0}. All other training configurations remain unchanged across experiments. We repeat
the experiments with 5 different initialization seeds for training.

Results. The results are presented in Figure [T0] and summarized in Table [I0] We observe the
following trends:

» Without KL regularization (Akr, = 0), latent evolution becomes less stable, causing updates to drift
excessively from the static latent and resulting in lower target coverage scores.

Effect of KL Loss Weight on Push-T Score
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Figure 10: Effect of KL loss weighting Ak on the target coverage score for the Push-T benchmark.
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Table 10: Effect of KL loss hyperparameter Ag;, on Push-T benchmark.

AKL Converged Train Action MSE Score Latent Stability

0 123.1 0.89 slightly unstable

0.5 86.6 0.91 stable

1.0 65.8 0.93 stable

2.0 91.3 0.91 slightly over-constrained
4.0 78.3 0.92 over-constrained

5.0 168.8 0.88 over-constrained
10.0 324.5 0.82 severely over-constrained

Effect of Temperature on Contrastive Loss (Push-T)
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Figure 11: Effect of temperature 7 in the cycle-consistent contrastive loss on Push-T benchmark
performance.

* Small KL values (Ag. = 0.5, 1.0) achieve the best trade-off between flexibility and stability, which
leads to the best performance.

* Moderate to large KL values (AxL = 2.0, 4.0, 5.0) begin to over-regularize the latent space, which
limits its ability to adapt to action refinements.

* Strong KL regularization (Axp = 10.0) severely restricts latent evolution, which causes underfitting
and significantly lower target coverage score.

Analysis. These results suggest that the KL regularization in our DP-AG should not be viewed through
the lens of promoting disentanglement, as in 5-VAE. Instead, it acts to anchor the VJP-guided latent
dynamics toward stable yet adaptive evolution.

H.6 Effect of Contrastive Loss Temperature Parameter

In this section, we investigate the influence of the temperature parameter 7 in the cycle-consistent
contrastive loss on the performance of our DP-AG. As in self-supervised learning settings [[Chen
et al.| 2020]], the temperature parameter controls the sharpness of similarity scores between a query
and its positive pairs in the contrastive learning. A low 7 enforces highly sharp alignment, while a
high 7 leads to smoother matching across samples.

In our DP-AG, unlike its usage for self-supervised learning, our contrastive loss is designed to enforce
cycle consistency between perception and action noise predictions during latent evolution. To evaluate
the impact of the temperature parameter on this novel perception-action interplay, we vary 7 across a
broad range: T € {0.01, 0.1, 0.2, 0.5, 0.8, 1.0, 1.5}. We repeat the experiments with 5 different
initialization seeds for training.

Results. Figure|l1|presents the results, with a summary provided in Table We observe:
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* Very low temperature (7 = 0.01, 0.1) could overly sharp alignment that causes unstable training
and brittle latent evolution.

* Moderate temperatures (7 = 0.2, 0.5) improve stability compared to 7 = 0.01, but still do not
fully leverage latent adaptability.

* High temperature (7 = 0.8) achieves the best performance, which yields the highest success rates
and smoothest latent evolution.

* Very high temperature (7 = 1.5) could weaken cycle consistency, which leads to performance
degradation.

Table 11: Effect of temperature 7 on cycle-consistent contrastive loss (Push-T benchmark).

T Converged Train Action MSE Score Stability
0.01 433.8 0.82 brittle

0.1 2434 0.85 unstable
0.2 186.9 0.90 improved
0.5 103.1 0.92 stable

0.8 65.8 0.93 best stability
1.0 96.3 0.92 slightly diffuse
1.5 105.5 0.89 diffuse

Analysis. In our DP-AG, a higher temperature (e.g., 7 = 0.8) provides better flexibility for aligning
noise predictions during latent evolution, allowing dynamic perception refinement while maintaining
cycle consistency. Extremely low 7 values over-constrain the model, while excessively high values
(7 > 1.0) can weaken the noise prediction alignment.

H.7 Comparison with Input Perturbation Smoothness

To evaluate whether the stability achieved by DP-AG could be reproduced by alternative smoothness
regularization, we compared against baselines that enforce consistency under input perturbations.
For each observation, we generated a perturbed version by adding Gaussian noise, then minimized
MSE or cosine similarity between their predicted action noise scores. Table[I2]reports results on the
Push-T benchmark. Action smoothness is quantified as normalized inverse jerk (higher is smoother).

Results. DP-AG clearly outperforms perturbation-based baselines, achieving higher success rates
and smoother action sequences. This demonstrates that contrastive regularization not only enforces
smoothness but also preserves semantic alignment, leading to superior policy performance.

Table 12: Comparison of DP-AG with input perturbation smoothness baselines on Push-T.

Method SR (img) SR (kp) Smoothness (img 1) Smoothness (kp 1)
Perturbation MSE 0.85 0.92 0.83 0.87
Perturbation Cosine 0.88 0.95 0.86 0.92
DP-AG (Contrastive Loss) 0.93 0.99 0.91 0.95

I More Comparisons of Training Convergence

In this section, we compare the training convergence behavior between the baseline DP and our
DP-AG in Robomimic Lift and Square tasks. Training convergence is evaluated by measuring the
MSE between predicted and ground-truth actions over training epochs.

Setup. Both the baseline DP and our DP-AG models are trained under the same settings, which use
the same dataset splits, optimizer configurations, and diffusion schedules, etc. Training is conducted
on an Nvidia RTX 4090 GPU with a batch size of 64, and convergence is measured by tracking the
action MSE over 300 epochs for each method.

Results. The convergence curve for the Robomimic Square task is shown in Figure[12] and the curve
for the Robomimic Lift task is shown in Figure These results demonstrate that the action-guided
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Comparison of Training Convergence: DP vs. DP-AG (Square)
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Figure 12: Training action MSE over epochs on Robomimic Square.
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Figure 13: Training action MSE over epochs on Robomimic Lift.

perception updates in our DP-AG not only improve the policy performance but also enhance the
training dynamics. By dynamically refining latent features through VJIP-guided evolution, DP-AG
accelerates the denoising process, which leads to more sample-efficient and stable training compared
to the static latent used in the baseline DP.

J Real-World Manipulation Experiments on URS Robotic Arm

We conduct real-world manipulation experiments using the Universal URS robotic arm (https!
//www.universal-robots.com/products/urbe/)), a 6-degree-of-freedom platform widely
adopted in both industrial and research contexts for its versatility and reliability. In this section, we
compare the performance of our proposed DP-AG against the baseline Diffusion Policy (DP) across
three visuomotor tasks: Painting, Candy Push, and Peg-in-Hole Insertion. These tasks are specifically
designed to evaluate the perception—action interplay, testing each policy’s ability to generalize from
limited sensory inputs (e.g., RGB images) to precise motor control commands. All evaluations are
conducted in a controlled real-world setting, allowing us to evaluate each method’s effectiveness,
robustness, and potential for the real-world deployment in practical robotic applications.

Dataset Collection. We prepared task-specific datasets for Painting, Candy Push, and Peg-in-Hole
Insertion to support our real-world experiments using the URS robotic arm. Each dataset was collected
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via kinesthetic teaching using a teach pendant. Human operators manually guided the robot through
the desired trajectories, while synchronized visual and proprioceptive data were recorded in real time.

RGB images were captured at 30 frames per second (FPS) using two calibrated cameras: one fixed
in front of the workspace and another mounted on the robot wrist to provide egocentric views.
Simultaneously, robot joint states and Cartesian end-effector poses were recorded at 100 Hz via the
URS5’s internal API. To ensure alignment between visual and action modalities, timestamps from
both the camera streams and robot sensors were synchronized using a shared system clock. Each
trajectory thus consisted of time-aligned sequences of images and robot poses.

For the Painting task, we collected 100 trajectories by having the operator trace either heart-shaped
or circular paths on a horizontal plane. Ground-truth 2D target contours were predefined, and the
demonstrations were guided to closely follow these shapes. The Candy Push task involved 80 trials
where small candy objects were randomly placed within a 20cm x 20cm area. The human operator
manually guided the robot to push each candy toward a designated target area marked on the table
surface. Success or failure labels were assigned based on whether all candies reached the target area
within a tolerance threshold. In the Peg-in-Hole Insertion task, 50 demonstrations were gathered
by inserting pegs into variable hole positions, with occlusion and visual ambiguity intentionally
introduced. Success was defined as full insertion without slippage or bounce-back. All demonstrations
were segmented and temporally synchronized with the image streams using trajectory timestamps.
Each dataset was then split into 80% of the trajectories for training and 20% for evaluation.

Training and Implmentation Details. The training procedure and implementation closely follow
those used in the simulation benchmark experiments. We build our training pipeline on top of the DP
framework, incorporating two core changes in our DP-AG: (1) two separate linear projection heads
are added to map the static latent features z; to the drift term 114 (2;) and log-variance log o (2¢ ), and
(2) latent evolution is guided using a Vector—Jacobian Product (VJP)-driven stochastic differential
equation (SDE), implemented without introducing new trainable parameters.

We extract visual features from RGB frames using a pre-trained ResNet-152 encoder. Proprioceptive
inputs, including joint angles and velocities, are processed through a two-layer MLP. For diffusion
noise prediction, we use the same conditional U-Net architecture as in the simulation experiments,
where white noise serves as input and observation features act as conditioning signals. During
training, we apply random cropping with sizes tuned per task; at evaluation time, we apply center
cropping for consistency. No color jitter or random horizontal flipping is used, as such augmentations
may disrupt the temporal consistency critical for dynamics modeling.

Actions are normalized to the [—1, 1] range per dimension to align with the denoising diffusion
process, and outputs are clipped to stay within bounds. Peg-in-Hole tasks use 6D continuous rotation
representations to avoid gimbal lock, while Candy Push and Painting use 3D axis-angle vectors for
velocity control. Training follows the iDDPM objective with 100 diffusion steps. Each policy is
trained for 200 epochs with a batch size of 64, using AdamW optimization and a cosine learning rate
schedule with a 500-step warmup and a base learning rate of 1 x 1074,

Evaluation Metrics. We evaluated each policy using 20% held-out trajectories per task, with each
trial repeated 20 times. Four task-specific metrics were used to evaluate performance: success rate,
smoothness (average jerk), IoU (for Painting), and time to complete.

* Success Rate (%): Measures how often the robot completes the task correctly among all trials. In
Candy Push, a trial is successful if all candies are pushed into the target zone. For Peg-in-Hole,
success means the peg is fully inserted. We report mean and standard deviation over 20 trials to
demonstrate consistency under variations like random object positions or occlusions.

* Smoothness (Average Jerk): Captures the quality of motion based on jerk (the rate of change of
acceleration). It is derived from the end-effector’s position data (recorded at 100 Hz) using finite
difference approximations. For a position sequence {1, z2, ..., z,} at uniform time intervals At,
average jerk is computed as:

Velocity (first derivative):

{Ei+1 — X;
o iy 61
v A7 (61)
Acceleration (second derivative):
g = VLTV Tiv2 — 2Tip1 + @i (62)

At At?
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Jerk (third derivative):
Qi1 — G T3 — 3Ty + 301 — X

JiE A ING

Average jerk across the trajectory:

(63)

1 n
A Jerk = — | - 64
verage Jerk = — Z Il7:11 (64)

i=1

Lower jerk values indicate smoother movements, which are especially important in tasks like
Painting and insertion.

¢ Intersection over Union (IoU in %): Used only in Painting, IoU evaluates how well the painted
shape matches the ground-truth contour (i.e., heart, circle), which is calculated as:

Intersection Area
JToU= —F————. 65
° Union Area (©5)

A higher IoU means better adherence to the intended shape.

* Time to Complete (s): Records how long it takes to finish the task, which evaluates the efficiency
alongside accuracy and smoothness. Faster times, particularly in Candy Push, suggest better
adaptation to object dynamics.

These tasks evaluate perception-action interplay and generalization from partially observable inputs.
Painting demands smooth motion, where jerk and IoU are important. Candy Push tests adaptation to
varying layouts, with success rate and time as the key indicators. Peg-in-Hole requires 3D reasoning
from 2D data, where success rate and jerk highlight stability. The dataset split ensures robust training
and evaluation, consistent with the standard practice. In future work, we plan to explore sim-to-real
transfer for our DP-AG, enabling real-world deployment with minimal or no additional data collection
or model retraining.

K Visualizations of Action-Guided Latent Evolution

To clarify the semantic meaning of the latent drift in our DP-AG and why it matters for action predic-
tion, we visualize how observation latents evolve under action guidance on the Push-T benchmark.
The key question is: “If the end-effector must move toward its desired future state, how should the
latent representation of the current scene be adjusted?” In DP-AG, the answer is given by the VJP,
which nudges the latent toward features that are most predictive of the next action. This latent drift
is not arbitrary. It is shaped by the policy’s uncertainty: when the action head is confident, updates
are small; when the action is ambiguous, the latent is pulled toward features that disambiguate the
correct motion. Thus, drift is expected to improve prediction by refining perception precisely where
it is action-relevant.

To make these refinements interpretable, we decode the evolving latents with a lightweight VAE.
This choice directly addresses the concern of whether latent drift has semantic meaning: decoded
frames expose what the policy is implicitly “re-seeing” as actions unfold. If latent evolution were
meaningless noise, decoded frames would be incoherent; instead, we observe structured changes that
align with the intended push trajectory.

K.1 Decoded Reconstructions and Policy Attention.

Implementation. Let 2z, be the static latent from the encoder. At each VIP step k, we update zj,
with an action-aligned perturbation normalized to fixed step size. A lightweight VAE, trained only
on static latents and then frozen, decodes each zj to an image 2. Gradients are never propagated
back through this decoder. To reveal the policy’s evidence, we also compute Grad-CAM on the (x, y)
end-effector head and overlay it on the decoded frames.

Visualization. Figure [14|shows that the decoded VJP-evolved latents yield localized and coherent
changes: the end-effector (blue gripper) shifts step by step toward its actual future position, while
the background remains stable. Grad-CAM overlays (Figure [I5) confirm that these same regions
receive the strongest policy attention. Notably, the static latent (k = 0) contains no future cue,
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Figure 14: Decoded VJP-evolved observation latents. Columns are independent episodes. The top
row (k=0) decodes the static latent. Rows k=1, ..., 5 decode the latent after each VIP step.
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Figure 15: Policy evidence on decoded frames. Grad-CAM from the end-effector (z, y) head of the
policy is overlaid on the same reconstructions as Flgure@
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Figure 16: Grad-CAM (control view). Spatial evidence of the policy without reconstructions.

whereas the evolved latents (k¢ > 1) highlight the precise spatial displacements the policy will execute.
This demonstrates that the action-guided latent drift has both semantic meaning (visible in decoded
images) and functional value (aligned with the policy’s attention).

Together, the two figures demonstrate that VJP-induced latent drift produces interpretable image-
space refinements and that these refinements are spatially aligned with the policy’s own predictions.
This coupling connects perceptual updates directly to the end-effector objective, demonstrating how
action-guided latent evolution sharpens the visual grounding of control.

K.2 Attention-Only Policy View.

As a control, we project Grad-CAM directly onto the raw input frames without decoding (Figure
[T6). These heatmaps still trace the end-effector’s trajectory, confirming that the decoder does not
hallucinate the effect. Instead, the VAE reconstructions provide a semantic lens: they make explicit
how the evolving latent imagines the scene differently after each update.

K.3 t-SNE of Action-Guided Latent Evolution.

While decoded frames and Grad-CAM demonstrate where VJP modifies the observation in pixel
space, they do not reveal how these updates are organized in latent space. t-SNE embeddings provide a
complementary view by projecting both static and VJP-evolved latents into two dimensions, allowing
us to inspect whether action-guided updates follow structured and task-aligned trajectories rather
than random drift.

Visualization. The t-SNE embeddings in Figure [I7]show that VIP does not cause latents to scatter
randomly. Instead, each static latent (k=0, blue) serves as an anchor from which the evolved
latents (k=1,...,5) trace short, smooth, and consistently oriented trajectories. Across episodes,
these trajectories align to form clusters that correspond to motion modes, such as push direction,
indicating that VJP structures the latent space around action-relevant dynamics rather than noise.
Importantly, the cycle-consistent contrastive loss further reinforces this structure: it pulls each
evolved latent back toward its static anchor while pushing it away from unrelated samples, preserving
semantic grounding and preventing arbitrary drift. As a result, the trajectories remain compact and
discriminative, ensuring that latent evolution not only tracks action dynamics but also maintains clear
and task-relevant separation.

In summary, across decoded frames, attention overlays, and t-SNE latent embeddings, a coherent
picture emerges:

1. VJP-driven drift produces semantically interpretable refinements (decoded end-effector positional
shifts).

37



VJP-guided latent evolution (5 steps)
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Figure 17: t-SNE of static vs. evolved latents. Each static latent (blue) is paired with its VJP
trajectory over five steps ( — — red — purple — brown).

2. These refinements highlight exactly the regions that the policy deems most informative for
predicting the next action.

3. In latent space, drift follows smooth and task-aligned trajectories rather than arbitrary noise.

Together, these results demonstrate that action-guided latent evolution is not only mathematically
principled but also semantically and functionally meaningful.

L Extension to Online Mode

Although our main experiments are conducted in offline imitation learning, DP-AG is inherently
well-suited for online training. In this section, we present a streaming variant of DP-AG that remains
fully consistent with the original formulation. Its key mechanism, action-guided latent evolution via
VIJP, naturally supports the incremental refinement of perceptual features as new action-observation
pairs arrive. Below, we describe the specific modifications that enable DP-AG to function effectively
in the online regime:

Online latent evolution. At each diffusion step & € {1,..., K} between ¢ and t+1, the latent
observation is updated using the same VJP-guided rule as in the main model:

. deg(ab, 2, k)\'
3= nolz) + v0e(z) © (6"(52tt)> o a7 1, k), (66)

where v controls the step size of action-guided latent refinement. Noise predictions conditioned on
static and evolved latents are

sk:EG(&faztyk)a ék:€9(&f7gf7k)a
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and are aligned through the cycle-consistent InfoNCE loss
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The overall loss remains unchanged:
ACDP—AG = Z:DP + Acont Lcom + )\KL ‘CKL- (68)

Streaming update rule. Unlike the offline variant, which optimizes {6, ¢} over a fixed dataset, the
online version continuously updates the model as new observations arrive. At each environmental
time ¢, DP-AG both executes an action and uses the resulting transition as fresh training data:

1. Sample latent: Draw z;, ~ ¢4(z|o;) from the variational posterior of the current observation.
2. Within-step diffusion (for k. =1, ..., K):

(a) Compute the noise prediction e = eg(aF, 2, k).

(b) Update the latent via Eq. (66) to obtain zF.

(c) Compute £ and accumulate the contrastive 10ss Lqps-

(d) Accumulate the diffusion loss Lpp.

3. Action execution: After K denoising steps, decode and execute the action a; in the environment.

4. Immediate update: Use the freshly collected pair (o¢, a; ), optionally together with a short replay
buffer containing the last NV transitions, to perform a lightweight gradient update of # and ¢ on
Lpp.ac using online RMSProp [Ma et al.,[2025].

This schedule makes DP-AG online: model parameters are updated continually from streaming
interaction data, rather than only once on a static offline dataset. As a result, the policy can adapt on
the fly to distributional shifts or novel dynamics while acting.

Experimental setup. We evaluated both the offline and online variants of DP-AG on Push-T (both
image- and keypoint-based settings) and Dynamic Push-T benchmarks. Performance was measured as
the average success rate over 50 online evaluation episodes. Unless otherwise noted, hyperparameters
matched those of the offline configuration.

Table 13: Online streaming results of DP-AG compared to baselines (success rates, mean=std).

Method Push-T (img) Push-T (kp) Dynamic Push-T (img)
Diffusion Policy (DP) 0.87+0.04 0.9540.03 0.654+0.85
DP-AG (offline) 0.9340.02 0.99+0.01 0.80+0.53
DP-AG (online) 0.90+0.03 0.96+0.02 0.76+0.89

Results. As shown in Table[I3] the streaming variant of DP-AG yields slightly lower scores than
its offline counterpart, which is expected given the limited replay and noisier updates inherent to
online training. Nevertheless, it consistently surpasses the standard DP baseline by a clear margin,
demonstrating that DP-AG retains effective even under the more challenging online setting with
continual real-time updates.

In summary, the online variant of DP-AG remains fully consistent with the offline model. It employs
the same VJP definition and latent update rule, with the time discretization constant absorbed
into . Cycle-consistent contrastive alignment is still applied at every diffusion step, ensuring the
perception—action loop is preserved within each [¢, t41] horizon. Moreover, both the KL regularizer
on g4 and the overall training loss Lpp.ag remain unchanged; only the optimization schedule differs,
shifting from offline minibatch training to lightweight streaming updates.

M Multimodal Decision-Making in DP-AG

DPs are inherently capable of modeling multimodal action distributions, making them well-suited for
capturing diverse strategies in complex tasks. By extending DPs with action-guided latent evolution,
DP-AG not only preserves this multimodality but amplifies it. DP-AG enhances the representation of
multiple effective strategies through two complementary components:
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* Action-conditioned latent evolution. DP-AG’s VJP-guided latent updates let the model refine
features in response to action feedback, so each sampled trajectory adapts its latent state uniquely.
This supports parallel exploration of multiple strategies by leveraging stochasticity from both the
diffusion policy and latent SDE.

* Cycle-consistent contrastive alignment. The contrastive loss keeps features for the same action
close and pushes different actions apart, organizing the latent-action space to separate and preserve
multiple plausible strategies for each task.

Experimental setup. We evaluated multimodal capability on the Franka Kitchen benchmark, which
naturally admits multiple strategies for tasks such as opening a drawer or flipping a switch. 40
successful trajectories per task were collected and encoded as key end-effector waypoints. Distances
between trajectories were computed via Dynamic Time Warping (DTW), followed by unsupervised
clustering to identify distinct modes. This procedure follows the existing work on multimodal diffu-
sion policies [Li et al.,[2024]], which demonstrated that clustering trajectories provides a principled
way to quantify behavioral diversity. We then measured (a) the number of discovered modes, (b) inter-
cluster distance (strategy distinctiveness), (c) intra-cluster variance (consistency within a strategy),
and (d) success rates across all clusters.

Table 14: Multiple strategy discovery and diversity on Franka Kitchen. Higher #Modes (1) and inter-
cluster distance (1), and lower intra-cluster variance (J), indicate better multimodal representation.

Method # Modes SR (t1) SR (t2) SR (t3) SR (t4) Inter-Cluster Dist. Intra-Cluster Var.
FlowPolicy 1.1 096 086 095 0.87 2.0 1.2
DP (Baseline) 2.8 1.00 1.00 1.00 0.99 7.1 1.2
DP-AG (Ours) 3.2 1.00 1.00 1.00 1.00 9.5 1.3

Table 15: Cluster-specific analysis of strategies discovered by our DP-AG on Franka Kitchen.

Mode ID Coverage (%) SR (t1) SR (t2) SR (t3) SR (t4) Strategy Description

1 41 1.00 1.00 1.00 1.00  Left-handed drawer pull
2 32 1.00 1.00 1.00 1.00  Right-handed drawer pull
3 27 1.00 1.00 1.00 1.00  Two-step approach / mixed arm

Table 16: Robustness to distribution shifts in Franka Kitchen (task t4).

Method #Modes SR (t4) Switch Rate (%) Comment

FlowPolicy 1.1 0.64 12 Rarely adapts, prone to failure

DP (Baseline) 2.2 0.81 35 Sometimes adapts, less reliable
DP-AG (Ours) 2.9 0.95 58 Switches to alternatives if blocked

Results. Table [14] presents the overall diversity analysis, which demonstrates that our DP-AG
uncovers and maintains on average more than three distinct strategies per task, significantly more
than FlowPolicy (1.1) and slightly more than baseline DP (2.8). These strategies are not minor
variants: the inter-cluster distance is significantly higher, confirming that the modes correspond
to distinct behaviors. At the same time, intra-cluster variance remains low, ensuring compact and
consistent execution. Table [I3] provides a cluster-specific breakdown, highlighting interpretable
strategies such as left-handed drawer pulls, right-handed pulls, and two-step mixed-arm approaches,
each achieving near-perfect success. Moreover, Table [T6| evaluates robustness under distribution
shifts. When trajectories were blocked, DP-AG preserved an average of 2.9 modes with a 58% switch
rate to alternative strategies, while DP and FlowPolicy degraded significantly.

These findings demonstrate that our DP-AG not only retains the multimodal decision-making ability
of DPs but actively encourages the emergence of more rich, diverse, and interpretable strategies.
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Its robustness to distribution shifts highlights its potential for real-world robotic applications where
flexibility and adaptability are important.

N More Experiments on Trajectory Planning

To situate our DP-AG within the broader family of trajectory generation methods, we additionally
compare it against Diffuser [Janner et al., [2022]] and Hierarchical Diffuser [Chen et al.| 2024].
Following the experimental protocol of [Chen et al., [2024]], we adopt two benchmark families: (i)
Maze2D and Multi2D tasks from D4RL, which evaluate long-horizon navigation in continuous
control environments, and (ii) the multi-stage FrankaKitchen benchmark, which evaluates robotic
manipulation requiring both skill composition and generalization to unseen states. In Maze2D and
Multi2D, an agent must reach goals in varied layouts (U-Maze, Medium, Large), with performance
measured by average return. In FrankaKitchen, policies are rolled out from diverse initial states and
evaluated by the number of sub-tasks completed within long-horizon episodes.

Experimental setup. We match the evaluation protocol of the baselines, adopting the same trajectory
segmentation and planning horizons (e.g., K = 15 for Maze2D and Multi2D, K = 4 for Gym-
MuJoCo, and horizon lengths H = 120 for U-Maze and H = 255 for Maze2D Medium). All models
are evaluated over 100 random seeds, reporting the average return or goal completion rate under
identical training, validation, and testing splits.

Table 17: Trajectory planning on Maze2D and Multi2D (long-horizon). Performance is measured by
average return (higher is better).

Environment Diffuser Hierarchical Diffuser DP-AG (Ours)
Maze2D U-Maze 1139 £ 3.1 1284 £ 3.6 142.7 + 2.9
Maze2D Medium  121.5 +2.7 135.6 = 3.0 150.2 + 2.6
Maze2D Large 123.0+ 6.4 155.8 £2.5 172.1 £ 2.2
Multi2D U-Maze 128.9 + 1.8 1441 £1.2 168.2 + 1.2
Multi2D Medium  127.2 £ 3.4 140.2 £ 1.6 153.7 £ 1.3
Multi2D Large 132.1 £5.8 165.5 £ 0.6 182.2 + 0.5
Average 124.4 145.0 161.5

Table 18: Multi-stage robotic manipulation on FrankaKitchen. Performance is measured by average
number of completed sub-tasks.

Task Diffuser  Hierarchical Diffuser DP-AG (Ours)
Partial Kitchen 56.2 +£5.4 733+ 14 822 +1.3
Mixed Kitchen 50.0 + 8.8 71.7£2.7 78.5 + 2.1
Average 53.1 72.5 80.4

Results. Across all benchmarks, DP-AG achieves the highest returns, with average improvements of
+16.5 over the Hierarchical Diffuser and +37.1 over the Diffuser in Maze2D and Multi2D (Table [T7).
These performance gains indicate that our DP-AG generates longer and higher-quality trajectories, es-
pecially in large and complex environments. In the multi-stage FrankaKitchen benchmark (Table [T8)),
DP-AG completes on average 80.4 sub-tasks, significantly outperforming both Hierarchical Diffuser
(72.5) and Diffuser (53.1), which highlights DP-AG’s effectiveness in composing diverse skills
and generalizing them to extended horizons. Together, these results indicate that the action-guided
perception-action loop in DP-AG provides clear advantages for both navigation and manipulation
tasks, beyond what trajectory diffusion alone can achieve.

O Extending DP-AG with World Models

‘World models such as DreamerV3 [Hafner et al., [2025]] and Unified World Models (UWM) [Zhu
et al.| 2025] learn to “imagine” latent trajectories by predicting future states and rewards. While
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these predictions enable long-horizon planning, the latent trajectories are typically static within
each rollout: once generated, they do not adapt to evolving action feedback. In contrast, DP-AG
continually updates latent features within each action diffusion step, guided by action-conditioned
VJPs. By combining with world models, our DP-AG gains long-horizon foresight while retaining its
intra-step refinement.

Hybrid Architecture. We integrate DP-AG into UWM by adding an intra-step feedback mechanism
on top of UWM’s diffusion transformer backbone:

* UWM Backbone. UWM jointly learns to predict actions and future visual observations by treating
them as parallel diffusion processes. This unified design allows the same model to serve flexibly as
a policy, a forward dynamics predictor, an inverse dynamics model, or a video generator, simply
by adjusting which modalities are denoised. The architecture uses ResNet-based encoders for
observations, spatiotemporal patching for latent images, shallow MLPs for actions, and transformer
layers conditioned through adaptive normalization with additional register tokens to promote
information exchange across modalities.

* DP-AG Intra-step Feedback. During action generation, DP-AG introduces a feedback signal into
UWM’s latent representations. At each denoising step, the current action prediction influences how
features are refined, ensuring that perception and action remain aligned as the sequence unfolds.
This intra-step refinement captures the core principle of DP-AG, where even a fixed observation is
reinterpreted in light of evolving actions.

* Bounded Consistency. To prevent excessive feature drift, we apply a lightweight penalty that
encourages smooth updates across steps, complemented by DP-AG’s cycle-consistent contrastive
anchor. This balance preserves stability while still enabling action-driven adaptability.

Implementation Details.

* Observation and Conditioning. Visual inputs are processed by frozen VAEs into compact latent
grids, which are patchified and combined with action tokens. Diffusion time steps for both action
and observation branches are encoded as embeddings and injected into each transformer block.

* Training Objective. UWM is trained with a coupled denoising loss over action and future-image
predictions. For action-free videos, the action branch is masked out, allowing the same objective to
learn from both robot trajectories and pure video data.

* DP-AG Integration. The action-guided feedback mechanism is applied during both imagination
and execution. At training time, refinement losses are added alongside UWM’s standard objectives;
at inference time, feedback ensures that action sampling and imagined rollouts remain tightly
coupled.

* Compute. Following UWM’s reported setup, training runs efficiently on Nvidia A100 GPUs.

Table 19: Success rate for combining DP-AG with UWM on LIBERO tasks.

Method Book-Caddy Soup-Cheese Bowl-Drawer Moka-Moka Mug-Mug Average
DP 0.78 0.88 0.77 0.65 0.53 0.71
DP-AG 0.86 0.92 0.85 0.72 0.60 0.79
UWM 0.91 0.93 0.80 0.68 0.65 0.79
UWM +DP-AG 0.94 0.95 0.87 0.75 0.70 0.84

Experimental Results on LIBERQO. Following the UWM protocol, we fine-tune each model on
the LIBERO benchmark tasks and report average success rates. As shown in Table the hybrid
model UWM + DP-AG outperforms both UWM and DP-AG alone, especially in manipulation tasks
requiring real-time adaptation (e.g., Mug-Mug). This confirms that action-guided latent updates make
world models more responsive, while world models provide long-horizon foresight to complement
DP-AG’s intra-step refinement.

Discussion. This extension highlights a conceptual bridge: world models offer look-ahead imagina-
tion of possible futures, while DP-AG provides real-time corrective adaptation from action feedback
within each imagined step. Together, they yield policies that are both farsighted and responsive,
achieving long-horizon planning while adapting online to evolving cues. We will conduct an in-depth
study on this subject in the future work.
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