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Figure 1. GarmentDreamer is a garment synthesis framework for customizing simulation-ready high-quality textured garment meshes from
text prompts.

Abstract

Traditional 3D garment creation is labor-intensive, in-
volving sketching, modeling, UV mapping, and texturing,
which are time-consuming and costly. Recent advances in
diffusion-based generative models have enabled new possi-
bilities for 3D garment generation from text prompts, im-
ages, and videos. However, existing methods either suffer
from inconsistencies among multi-view images or require
additional processes to separate cloth from the underlying
human model. In this paper, we propose GarmentDreamer,
a novel method that leverages 3D Gaussian Splatting (GS)
as guidance to generate wearable, simulation-ready 3D
garment meshes from text prompts. In contrast to using
multi-view images directly predicted by generative models
as guidance, our 3DGS guidance ensures consistent opti-
mization in both garment deformation and texture synthe-
sis. Our method introduces a novel garment augmentation
module, guided by normal and RGBA information, and em-
ploys implicit Neural Texture Fields (NeTF) combined with
Variational Score Distillation (VSD) to generate diverse ge-
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ometric and texture details. We validate the effectiveness of
our approach through comprehensive qualitative and quan-
titative experiments, showcasing the superior performance
of GarmentDreamer over state-of-the-art alternatives1.

1. Introduction
The creation of 3D digital garments is crucial in graphics
and vision, driven by their extensive applications in fash-
ion design, virtual try-on, gaming, animation, virtual real-
ity, and robotics. Nevertheless, the conventional pipeline
for 3D garment creation which encompasses sketching and
modeling, followed by UV mapping, texturing, shading and
simulation using commercial software [11, 38, 53] demands
substantial manual effort. This process results in significant
time and labor costs.

With the advancement of diffusion-based generative
models [36, 41], 3D garment generation from text and im-
ages has flourished. Two primary methods have emerged.
The first method, as explored in prior works [16, 35], starts
by reconstructing 2D sewing patterns and subsequently

1Demos and codes are available at https://xuan-li.github.
io/GarmentDreamerDemo/
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generating 3D garments from these patterns. The second
method involves generative models that directly predict the
distribution of 3D target shapes based on image and text
inputs[46, 52, 55, 65]. However, the former approach ne-
cessitates a vast amount of paired training data between
sewing patterns and corresponding text or images [35]. The
latter approach, while simpler, encounters issues such as
multi-view inconsistency [46] and lacks high-fidelity de-
tails, which requires additional post-processing for down-
stream simulation tasks [26, 31, 32, 64]. Thus, generating
simulation-ready, textured garments with high-fidelity de-
tails remains challenging.

Recognizing the advantages and limitations of both tra-
ditional pipeline and modern generative models, our goal is
to create high-fidelity, simulation-ready textured garments
with appropriately placed openings for the head, arms, and
legs. We aim to achieve details comparable to that of the
traditional pipeline. In this paper, we focus on full-piece
garment generation without relying on 2D sewing patterns,
which is sufficient for many graphics applications.

To achieve our goals, we leverage image/text-
conditioned diffusion models. Several challenges revealed
by prior methods must be addressed: (1) Many avatar
generators [20, 33, 62] directly produce fused cloth-human
models with watertight meshes. They require separation
from humans and complex modifications to introduce
openings for the head, arms, and legs for downstream tasks.
(2) While some high-quality non-watertight garments
are generated by deforming template meshes guided by
multi-view images [46], predicting unsigned distance fields
(UDF) via diffusion models [65], or optimizing meshes
through differentiable simulators [32], these approaches
often lack detailed and realistic geometrical features or
complex textures. This limitation stems from the inherent
challenges in 3D shape diffusion. (3) Deforming garment
geometry solely based on multi-view images predicted
by diffusion models can lead to inconsistency [8]. Ad-
ditionally, refining textures in UV space can result in
over-saturated, blocky artifacts [5, 55].

To address these challenges, we introduce Garment-
Dreamer, a 3DGS [22] guided garment synthesis method
for simulation-ready, wearable garments featuring diverse
geometry and intricate textures. We first leverage diffusion
models and physical simulations to obtain a smooth gar-
ment template and generate corresponding Gaussian kernels
via Score Distillation Sampling (SDS) loss [55]. Subse-
quently, we exploit the estimated normal map and RGBA
information from 3DGS as guidance in our garment aug-
mentation module to deform meshes using a coarse-to-fine
optimization approach. In the coarse stage, we refine gar-
ment contour together with neck, arm, waist, and leg open-
ings, and then in the fine stage, multi-scale details are cre-
ated under the proposed guidance. Compared with guid-

ance from generated multi-view images, multi-view consis-
tent guidance extracted by Gaussian kernels creates more
high-quality geometry and texture details. An implicit Neu-
ral Texture Field (NeTF) is then reconstructed and subse-
quently augmented by Variational Score Distillation (VSD)
loss to offer high-quality garment textures. Compared with
baking Gaussian kernels into a UV map directly, our tex-
ture extraction strategy offers more consistent results. Our
contributions include:
• A novel 3D garment synthesis framework that integrates

diffusion models with 3D Gaussian Splatting (3DGS) to
generate wearable garments from text prompts.

• A new garment mesh deformation module using normal-
based and RGBA-based guidance provided by 3DGS in
course-to-fine stages to generate diverse garments with
geometrical details.

• An effective texture reconstruction and fine-tuning strat-
egy utilizing implicit Neural Texture Fields (NeTF) to
generate high-quality garment textures.

• Comprehensive qualitative and quantitative experiments
to evaluate the superior performance of GarmentDreamer
as compared to prior methods.

2. Related Work
Diffusion-based 3D Generation For 3D generation,
many work distill 2D pre-trained diffusion models via
SDS loss [41, 69] and Variational Score Distillation (VSD)
[59, 67], or exploit 3D diffusion models to directly generate
3D representations such as point cloud [37], Neural Radi-
ance Fields (NeRF) [18, 50], mesh [36, 42], SDF [10, 49],
Unsigned Distance Field (UDF) [65], DMTets [47], and 3D
Gaussian Splatting (GS) [55, 63]. To capture rich surface
details and high-fidelity geometry of generated 3D shapes,
normal maps [20, 30, 34, 36], depth maps [43], pose priors
[66], skinned shape priors [23] have been adopted as guid-
ance modules for 3D digital avatar [21, 32, 62], garment
[16, 46], and scene synthesis tasks [27, 54, 56].
3D Garment Synthesis Traditional 3D garment creation
usually begins with 2D sewing patterns in commercial fash-
ion design software, necessitating significant labor and time
costs [46]. To automate 3D garment generation, learning-
based methods have been employed to infer garment shapes
from text prompts, images, and videos [4, 6, 12, 16, 17,
24, 32, 35, 46, 48, 52, 61, 65, 68]. However, many meth-
ods focused on clothed human synthesis [6, 19, 57, 61, 68]
typically generate garments fused together with digital hu-
man models, which restricts them to basic skinning-based
animations and requires nontrivial work to separate the gar-
ments from the human body. In contrast, our work fo-
cuses on separately wearable geometry. Other closely re-
lated works include [32] which also generates high-quality
simulation-ready clothes at the expense of creating clothing
templates by artists and precise point clouds by scanners.
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Figure 2. Starting with text prompts, we first generate a garment template mesh Ft using a diffusion model. We then optimize a 3DGS
using the template Ft and text T as guidance. The template mesh Ft is refined in a two-stage process guided by 3DGS, utilizing RGBA,
normal map, and mask losses to achieve the final shape Fg with enriched geometric details. Finally, we reconstruct and optimize an implicit
texture field Φ via VSD, producing high-quality textured garment meshes suitable for downstream simulation/animation tasks.

Some recent methods [16, 35] generate non-watertight
garments with sewing patterns, while ours generates a one-
piece cloth similar to Sarafianos et al. [46]. Although one-
piece 3D clothing is not suitable for manufacturing, it is still
sufficient for many graphics downstream tasks. Note that
[46] develops methods to improve multi-view consistency
in image generation similarly to [36], while our method mit-
igates this challenge through a novel 3DGS guidance.

Garment Refinement Garment refinement involves di-
versification [23], draping [12], wrinkle generation [7, 40],
stylization [46] and other techniques to enhance diversity
and realism. Traditional methods optimize energy or geo-
metric constraints to directly edit meshes [3, 51]. Recent
learning-based approaches modify latent geometry and tex-
tures, potentially with conditioned diffusion [12, 16, 23,
52], and decode latent features to generate refined meshes.
To modify garment meshes from text prompts, Textde-
former [14] represents mesh deformation through Jaco-
bians and exploits global CLIP features as guidance. Gar-
ment3DGen [46] deforms garment geometry using 2D im-
age guidance. However, these RGB-based or CLIP-based
methods have a tendency to prefer modifying 2D textures
over 3D geometric structures. On the other hand, Surf-
D [65] edits garment geometry with sketch conditions but
lacks texture synthesis. Kim et al. [23] utilize normal maps
as references to carve clothed humans. Worchel et al. [60]
exploit neural deferred shading results to modify mesh sur-
faces. Inspired by these works [23, 60], our approach ex-
plores both normal maps and RGBA image features with
neural deferred shading to guide mesh deformation, creat-
ing realistic garment geometry and textures that can be di-
rectly applied to downstream simulation/animation tasks.

3. Method
Fig. 2 overviews our method. Given text T , Garment-
Dreamer generates wearable textured garment meshes Fg

with neck, arm, waist, and leg openings. Starting with T ,
we generate garment template Ft based on predicted UDFs
in § 3.1. In § 3.2, we optimize a 3DGS representation based
on T and Ft and then design a 3DGS-guided two-stage
training to refine Ft into the final garment shape Fg , in-
creasing the mesh diversity and introducing geometric de-
tails. Finally, we generate high-quality textures by optimiz-
ing an implicit Neural Texture Field (NeTF) Φ augmented
with variational SDS loss in § 3.3.

3.1. Garment Template Mesh Generation
Human clothing generation can utilize strong inductive bi-
ases, as garments within the same category tend to have
similar topology and overall orientation. Thus, it is reason-
able to warm-start our optimization using a template and
modify it. The starting point is to generate a template mesh
Ft from text T . Using meshes from Cloth3D [1] and Sew-
Factory [35], we train a mesh diffusion model on a dataset
containing 15 different categories of garments, each with
over 100 meshes, which is sufficient for generating com-
mon template garment meshes. Leveraging the efficiency
and effectiveness of generation in latent space [45], we rep-
resent the geometry information of the garment mesh in a
compact vector form by extracting its latent code.

Simulation-based Preprocessing A straightforward ap-
proach to obtaining the garment latent space is to train an
autoencoder with high-quality garment meshes [65]. How-
ever, through experiments, we found the autoencoder strug-
gles to capture high-frequency geometric details, such as
overly dense wrinkles. Additionally, some meshes in the
dataset exhibit self-intersections due to these noisy details,



resulting in unsatisfactory reconstruction. We believe these
high-frequency details are not only challenging for the au-
toencoder to learn but also redundant for the purpose of
template generation. Recognizing that we only need a
warm-start template and will obtain geometric details in
later phases, we propose a simulation-based data prepro-
cessing step that involves smoothing the garment meshes
using a physics-based cloth simulator. Specifically, we set
the rest bending angle between every two adjacent triangles
to zero. By minimizing the bending energy in quasi-static
Finite Element Method (FEM) simulation steps [28, 29] to-
gether with a Neo-Hookean stretching energy, each garment
mesh transforms to a rest state with minimal high-frequency
wrinkles, without altering the overall characteristic shape.

Garment Latent Space To encode the 3D garment tem-
plate meshes Ft into latent space, we utilize the Dynamic
Graph CNN (DGCNN) [58], producing a 64-dimensional
garment latent code γ. To reconstruct the garment geom-
etry from the latent code, we employ a Multilayer Percep-
tron (MLP) with Conditional Batch Normalization [13] as
the decoder. This decoder processes the latent code along-
side a set of query points, which are sampled from the in-
put meshes and their surroundings during training, and ran-
domly sampled in a canonicalized space during testing. The
decoder then predicts the UDF values for these points. We
use both distance loss and gradient loss as suggested by
De Luigi et al. [12] in training the autoencoder.

Latent Diffusion Building upon the garment latent space,
we train a latent diffusion model to predict the latent code
γ conditioned on the garment category specified in the text
prompt T , such as a skirt or T-shirt. Using the garment de-
coder alongside a set of query points, we obtain the garment
UDF field. Finally, the desired garment template mesh Ft

is extracted from the predicted UDF using MeshUDF [15].

3.2. Garment Geometry Deformer
While the template mesh from the previous step provides a
basic structure, it lacks detailed geometry and is constrained
by the dataset’s limited diversity. Our next step is to intro-
duce greater diversity and enrich the mesh with more ge-
ometric details. To achieve this, we first generate appro-
priate guidance models to enhance the mesh. While prior
work has utilized multi-view image generators, they suffer
from risks of inconsistency [8]. To mitigate these risks, we
turn to 3DGS representations. We utilize a two-stage train-
ing process to optimize the geometry of a garment based on
the multi-view guidance of 3DGS. In the first, coarse stage,
masks are used to refine the garment’s contour. The second,
fine stage uses RGB renderings and normal maps to add lo-
cal details. This 3DGS-guided process applies various dis-
placements to the garment surface without compromising
wearability, significantly enhancing the diversity and intro-
ducing fine geometric details for better visual quality.

3.2.1 3D Gaussian Generation
We adopt 3DGS [22] to guide the deformation of garment
geometry, which exploits 3D anisotropic Gaussian kernels
to reconstruct 3D scenes with learnable mean µ, opacity
σ, covariance Σ, and spherical harmonic coefficients S.
We utilize the garment template mesh Ft with the same
text prompt T offering color, material, and pattern descrip-
tions to generate 3D Gaussian kernels for further guid-
ing geometry refinement and texture generation. Similar
to the query points used in the garment latent code de-
coder, the initial 3D Gaussians are randomly sampled at
the surroundings of the template mesh surface. We opti-
mize Gaussian kernels using SDS loss [41] with a frozen
2D diffusion model ϕ conditioning on text prompts T .
The rendered image is produced by a differentiable ren-
derer g with the parameters of 3DGS θ, notated as x =
g(θ). The formula for computing the gradient to guide
the updating direction of θ is: ∇θLSDS(ϕ,x = g(θ)) ≜
Et,ϵ

[
w(t) (ϵ̂ϕ (zt; T , t)− ϵ) ∂x

∂θ

]
, where ϵ̂ϕ (zt; T , t) is the

score estimation function, predicting the sampled noise ϵ̂
given the noisy image zt, text prompt T , and noise level t;
w(t) is a weighting function. We render RGB images and
masks of Gaussian kernels from 24 views for garment ge-
ometry deformation. The masks are generated using a step
function with an empirical threshold ϑ applied to the opac-
ity σ ∈ [0, 1] of each Gaussian kernel.

3.2.2 Coarse Stage
The objective of the coarse stage is to deform the mesh to
align with the overall shape of the 3DGS. To achieve this,
given the template mesh Ft and a camera view Ci, we use
a differentiable rasterizer to generate the mask and use the
following mask loss to guide the contour optimization:

LM(v) =
1

|I|
∑
i∈I

MSE(RM (Ft, Ci),Mi), (1)

where the optimization variable v is the concatenation of
all vertex positions, I is the set of camera views, RM is the
differentiable contour rasterizer empowered by Nvdiffrast
[25], and {Mi} is the ground truth mask guidance.

Optimization under merely LM is stochastic and unsta-
ble. One reason is that the vertices inside the masks can
move freely without changing the output mask. Consider-
ing that the template mesh is smooth, we can maintain the
smooth surface and stabilize the deformation process dur-
ing the coarse stage by imposing constraints on the surface
curvature. This is achieved through a normal-consistency
loss LNC and a Laplacian loss LL:

LNC(v) =
1

N

∑
j∼k

(1−nj ·nk)
2, LL(v) =

1

M

∑
j∼k

wjk∥vj−vk∥2,

(2)
where ni,nj are adjacent face normals, N is the number of
adjacent face pairs, vi,vj are adjacent vertex positions, M



is the number of adjacent vertex pairs, and {wjk} are the
Laplacian edge weights.

With these proposed loss terms, the coarse stage can de-
form the mesh surface to align with 3DGS while preserving
the hole region. Furthermore, the boundaries of the hole re-
gions coincide with the boundaries of the garment rendered
by Gaussian rendering, which serves as good intermediate
results. By utilizing the deformed hole regions, we can con-
tinue to preserve the openings and the garment’s wearability
in the next deformation stage.

3.2.3 Fine Stage
While contour mask guidance optimizes the garment mesh
to match the overall shape of the generated 3DGS, it does
not encourage the generation of local geometric details
characterized by local displacement variations, as such in-
formation is not available in masks. To generate realistic
local details of garment geometry, we exploit rich visual in-
formation from the RGB renderings of 3DGS to deform the
garment mesh after the coarse stage.

Inspired by Worchel et al. [60], we propose using a neu-
ral shader module to utilize the RGB information to en-
rich geometry details, which is an implicit shading field
S(x,n,d) that maps a query position along with its nor-
mal and view direction to an RGB color. The module is
combined with the same differentiable rasterizer R to ren-
der RGB images. Given a camera view Ci with the camera
center ci, we jointly optimize the shader’s parameters θ and
garment vertices v using the following RGB loss:

LRGB(v, θ) =
1

|I|
∑
i∈I

L1(S(ṽjk, ñjk, ṽjk − ci), (Ii)jk),

(3)
where {Ii} is the ground truth RGB images rendered from
the generated 3DGS, ñ = R({nj},Ft, Ci) and ṽ =
R({vj},Ft, Ci) are rasterized vertex normals and posi-
tions, respectively.

Simultaneously, we observed that the neural shader
sometimes brings noise and unnecessary patterns from tex-
ture into geometry, like the light variations on the armor and
logos on clothes. To address this, we need to maintain the
necessary geometry details like wrinkles while removing
the noise. We propose using normal estimation models to
obtain estimated normal maps used for additional guidance,
which can capture wrinkles and the overall normal informa-
tion of the garment. The ground truth normal maps {Ni} are
inferred from the rendered RGB images from the generated
3DGS by a pre-trained normal estimator. We then use the
following normal loss to guide the geometry optimization:

LN(v) =
1

|I|
∑
i∈I

L1(R({nj},Ft, Ci), Ni), (4)

where {nj} is the set of vertex normals.

Furthermore, the normals at the garment hole regions are
not reliable since the renderings from the 3DGS at these
regions are blurry and directly applying the normal map
at the hole regions to the mesh deform process can result
in the closure of the original openings. We propose using
the coarse-stage mesh as the hole guidance to maintain the
openings. We detect the hole region by checking the dot
product between the garment surface normal and the cam-
era direction. Specifically, the hole region mask within a
rendered image is defined as

(M̃H
i )jk = ñjk · (ṽjk − ci) > 0. (5)

We use the following hole loss to maintain the holes initially
present in the template mesh after the coarse stage:

LH(v) =
1

|I|
∑
i∈I

MSE(M̃H
i ,MH

i ), (6)

where MH
i is the hole mask at the beginning of the fine

stage. However, the mask values are boolean, which are not
differentiable. We manually skip the gradient of the bina-
rization by letting

∂LH

∂{ñjk · (ṽjk − ci)}
=

∂LH

∂(M̃H
i )i,j

, (7)

which can provide correct gradient directions.
In summary, the loss function for the fine stage is the

weighted sum of LM,LNC,LL,LN,LH,LRGB. These losses
not only align the geometry with the 3DGS appearance but
also preserve the garment openings, ensuring wearability
and simulation-ready features.

3.3. Texture Synthesis
The final step of GarmentDreamer is to generate high-
quality, detailed textures for garment meshes. Directly us-
ing vertex colors from the neural shader is insufficient due
to the limited vertex count. Instead, we propose using a
Neural Texture Field (NeTF) Φ(x), which exploits a hash
grid encoder to map the xyz coordinates of any position on
the mesh to RGB, enabling high-resolution texturing. Fur-
thermore, we use UV unwrapping to map the 3D coordi-
nates to 2D UV space, forming a connection pathway of
2D coordinates - 3D coordinates - RGB. Rather than rely-
ing on vertex colors, we use the multiview images rendered
by 3DGS as guidance to fit the NeTF, ensuring high-quality
texture preservation even with a limited number of vertices.
We optimize NeTF using the following loss function:

LT(ω) =
1

|I|
∑
i∈I

L1(Φ(p̃jk), (Ii)jk), (8)

where ω is the parameters of the NeTF Φ and p̃ =
R({pj},Ft, Ci) represents the positions on the mesh that
have been rasterized.
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Figure 3. Qualitative Comparisons. While baseline methods either produce unrealistic geometric artifacts, e.g. spikes and excessive
smoothness, or non-garment textures, GarmentDreamer excels in generating high-quality, simulation-ready non-watertight garments with
detailed textures and fine wrinkle details.

For better visual quality and enhanced texture details, we
utilize Variational Score Distillation (VSD) [59] to fine-tune
the implicit texture fields. This process involves forwarding
the NeTF to project a 2D image from a random view and
feeding this projected image into the VSD framework to
compute a perceptual loss. By backpropagating this loss,
we optimize the parameters of NeTF implicitly and improve
the overall texture quality. After reconstruction and fine-
tuning, we can easily query the color of any mesh point p,
which is baked onto a texture map.

4. Experiments
In this section, we conduct a thorough evaluation of Gar-
mentDreamer across various garment categories, provid-
ing both quantitative and qualitative comparisons with other
state-of-the-art 3D generation methods. We also present ab-
lation studies to highlight the effectiveness of the key com-
ponents in our pipeline. About more showcases, please see
details in supplementary material.

4.1. Comparison
We compare GarmentDreamer against several state-of-the-
art 3D generation methods: Text2Mesh [39], TextDe-
former [14], and Wonder3D [36]. Text2Mesh and TextDe-
former aim to optimize and deform an initial mesh to

Table 1. Quantitative Comparisons. Our approach outperforms
deformation-based and generative methods on both FashionCLIP
similarity score (FCSS) which is pretrained on fashion datasets
and vanilla OpenAI CLIP similarly score (CSS), supports generat-
ing openings on clothing as well as textures, and runs faster than
prior deformation-based methods.

Methods FCSS CSS Wearable Texture Runtime
Text2Mesh 0.3396 0.2655 ✓ ✓ ∼ 20 mins
TextDeformer 0.2367 0.1657 ✓ ∼ 35 mins
Wonder3D 0.3402 0.2509 ✓ ∼ 4 mins
Ours 0.3413 0.2731 ✓ ✓ ∼ 15mins

the desired shape indicated in the text prompt. We use
the same template mesh for GarmentDreamer and these
deformation-based methods to ensure fairness. To compare
our method with Wonder3D, which reconstructs 3D meshes
from single-view images, we use DALLE-3 [2] to generate
the images from text prompts as its input. To comprehen-
sively compare GarmentDreamer with these three methods,
we generate 21 distinct types of garments with each method,
including shirts, dresses, skirts, and pants.

4.1.1 Quantitative Comparison
In the absence of a standardized metric for 3D generation
quality, we focus on measuring the consistency between the
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Figure 4. Normal Comparisons. We visualize the normal maps for a better comparison of garment geometry between GarmentDreamer
and other methods. Our proposed method generates visually plausible garment meshes, featuring finer geometric details such as natural
wrinkles and smooth boundaries.

generated garments and their text prompt inputs. We render
each garment from 36 different views and compute the av-
erage CLIP similarity score between these rendered images
and the corresponding text prompts. Given that TextDe-
former does not handle textures, we render its results using
a default color. Typically, text-to-2D/3D works utilize the
vanilla CLIP model [44] for evaluating text-to-image align-
ment. However, this model is optimized for general sub-
jects and lacks specificity for garment evaluation. To ad-
dress this, we employ FashionCLIP [9], a model similar to
CLIP but fine-tuned on a fashion dataset, making it more
appropriate for our purposes.

We report the comparison results in Table. 1, includ-
ing both the FashionCLIP Similarity Score (FCSS) and the
CLIP Similarity Score (CSS). Our method outperforms all
baselines in terms of text-garment alignment. Furthermore,
our approach demonstrates faster performance compared to
the two deformation-based baselines.

4.1.2 Qualitative Evaluation
GarmentDreamer ensures that the garment meshes main-
tain their geometric integrity and exhibit rich, detailed tex-
tures, making them suitable for high-quality visual appli-
cations. We visualize the results of GarmentDreamer and
other baselines in Fig. 3 and Fig. 4. The meshes produced
by Text2Mesh appear distorted with spiky artifacts due to
the direct optimization of all vertex coordinates. TextDe-
former alleviates this issue by parameterizing deformation
as Jacobians, but it fails to capture high-frequency details,
causing overly smooth geometry. Wonder3D relies heavily
on input images and generates garments with closed sleeves
or necklines due to limited garment-specific knowledge. In
contrast, our method produces wearable, simulation-ready

garments with realistic textures, enabling seamless down-
stream tasks like animation and virtual try-on.

Additionally, by observing Fig. 4, it can be seen that our
method achieves the best geometric-texture alignment: for
the wrinkles of the dress and pants, as well as the armor
engraved designs, our results are not only displayed in the
texture but also reflected at the geometric level thanks to
the capability of the garment geometry deformer module.
This makes the rendered results more realistic, as can be
clearly observed from the side edges of the clothing. We
also compare with Garment3DGen [46] and WordRobe [52]
using the same text prompts; see Fig. 7. Cargo shorts gen-
erated by [52] have fewer details in grain lines, hemline,
seam allowance, and side seams than ours. Armor created
by Garment3DGen [46] aligns textures with image guid-
ance, while ours generates detailed high-quality geometric
structures.

4.2. Ablation

In Fig. 6 and Fig. 5, we ablate key components in Garment-
Dreamer, using the same 21 generated garments in § 4.1.
Hole Loss We first examine the effectiveness of the pro-
posed hole loss LH , a crucial component of our proposed
3DGS-guided mesh deformer, which ensures clean edges
of the openings and, accordingly, wearability. Without this,
mesh deformation tends to enclose the arm and head holes,
resulting in unwearable garment meshes.
Normal Loss Normal loss LN ensures noise-free meshes
with necessary geometry details. As shown in Fig. 6, for
the denim shirt and jeans, normal loss ensures clean geom-
etry. For the Spiderman shirt example, the garment surface
without normal loss guidance incorrectly represents Spider-
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Figure 5. Ablation of NeTF Enhancement. From top to bottom are the results of texture without refinement, and final textured mesh
respectively. Texture enhancement provides high-quality details in the hemline, seam allowance, grain line and wrinkles.
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Figure 6. Ablation of Hole and Normal Loss. From top to bottom
are the results of GarmentDreamer without hole loss LH , normal
loss LN , final mesh without texture respectively. Hole loss LH ,
normal loss LN offers clear openings, noise-free surface of the
generated garment mesh.

man texture as geometry structures, which is against fabric
design in reality.

NeTF Enhancement Our proposed NeTF enhancement
via VSD facilitates better capture of fabrication attributes.
As shown in Fig. 5, it could be observed that without NeTF
enhancement, the pocket of the shirt and the waistband
are blurry. In contrast, texture enhancement leads to high-
quality fabrication details, such as fold lines, grain lines,
the seam allowance of the shirt, and clear fly piece, hem-
line, seam allowance, and side seam of the jumpsuit, which
are crucial in traditional garment design.

“a medieval armor, highly detailed” 
Ours Garment3DGen

“blue denim cargo shorts” 
Ours WordRobe

Figure 7. We compare with images from Garment3DGen [46] and
WordRobe [52]. Ours show high-quality details.

5. Limitations and Future Work
There are several avenues for future research. Firstly, our
method takes minutes rather than seconds for each gener-
ation process. Improving its efficiency and scalability is
essential for large-scale garment collections. Second, inte-
grating differentiable simulators could enhance the realism
of generated garments. Furthermore, parameterizing the ge-
ometry with 2D sewing patterns could offer multiple bene-
fits: they facilitate a seamless connection to the manufactur-
ing process, ensure a closer match between real and simu-
lated clothing, and provide a more intuitive design workflow
for traditional fashion designers. Lastly, like other SDS-
based 3D generation approaches, our method bakes light-
ing effects, such as specular highlights and shadows, into
the texture, making them non-relightable and inconsistent
with physical laws. Learning Physically-Based Rendering
(PBR) materials could help separate these effects, enhanc-
ing the quality and realism of synthesized garments
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