
Seeing Sound, Hearing Sight: Uncovering Modality
Bias and Conflict of AI models in Sound Localization

Yanhao Jia1, Ji Xie1, S Jivaganesh1, Hao Li2, Xu Wu1,3, Mengmi Zhang1†

1 Nanyang Technological University, Singapore
2 Peking University, China 3 Shenzhen University, China

† Corresponding author; address correspondence to mengmi.zhang@ntu.edu.sg

Abstract

Imagine hearing a dog bark and instinctively turning toward the sound—only to
find a parked car, while a silent dog sits nearby. Such moments of sensory conflict
challenge perception, yet humans flexibly resolve these discrepancies, prioritizing
auditory cues over misleading visuals to accurately localize sounds. Despite the
rapid advancement of multimodal AI models that integrate vision and sound,
little is known about how these systems handle cross-modal conflicts or whether
they favor one modality over another. Here, we systematically and quantitatively
examine modality bias and conflict resolution in AI models for Sound Source
Localization (SSL). We evaluate a wide range of state-of-the-art multimodal models
and compare them against human performance in psychophysics experiments
spanning six audiovisual conditions, including congruent, conflicting, and absent
visual and audio cues. Our results reveal that humans consistently outperform AI
in SSL and exhibit greater robustness to conflicting or absent visual information
by effectively prioritizing auditory signals. In contrast, AI shows a pronounced
bias toward vision, often failing to suppress irrelevant or conflicting visual input,
leading to chance-level performance. To bridge this gap, we present EchoPin, a
neuroscience-inspired multimodal model for SSL that emulates human auditory
perception. The model is trained on our carefully curated AudioCOCO dataset, in
which stereo audio signals are first rendered using a physics-based 3D simulator,
then filtered with Head-Related Transfer Functions (HRTFs) to capture pinnae,
head, and torso effects, and finally transformed into cochleagram representations
that mimic cochlear processing. To eliminate existing biases in standard benchmark
datasets, we carefully controlled the vocal object sizes, semantics, and spatial
locations in the corresponding images of AudioCOCO. EchoPin outperforms
existing models trained on standard audio-visual datasets. Remarkably, consistent
with neuroscience findings, it exhibits a human-like localization bias, favoring
horizontal (left–right) precision over vertical (up–down) precision. This asymmetry
likely arises from HRTF-shaped and cochlear-modulated stereo audio and the lateral
placement of human ears, highlighting how sensory input quality and physical
structure jointly shape precision of multimodal representations. All code, data, and
models are available here.

1 Introduction

Sound source localization (SSL) is the task of identifying the spatial origin of a sound within a
visual scene. It plays a fundamental role in both biological perception [1] and artificial intelligence
(AI) [2], enabling systems to connect what they hear with what they see. In natural environments,
visual inputs interact with auditory cues, often dominating or recalibrating sound perception—a
phenomenon exemplified by classic cross-modal illusions [3]. In practice, accurate SSL is critical for
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Figure 1: (a) Sound source localization challenge in naturalistic images. In the multi-source
scenario (orange panel), multiple objects in the scene—such as pedestrians, birds, cars, and trucks
(highlighted by yellow boxes)—emit sounds, whereas in the single-source scenario (red panel), only
one object, a telephone (red box), produces sound. In both settings, the task is to localize all sounding
objects based on two-channel stereo audio. To allow systematic and controllable benchmarking
of human and AI performance, we focus on the single-source localization task (red panel), which
remains challenging due to scene clutter, occlusions, and ambiguous visual cues. (b) Depth-aware
stereo audio synthesis. In the 3D simulator, a human listener (interaural distance: 0.17m) is placed
at the origin, facing the RGB image on the screen. This image and its depth image are aligned in the
same direction. Using a spatial audio renderer and audio from our library, stereo audio of the target
car (red box) in the RGB image can be synthesized (see Sec 2.1).

real-world systems such as autonomous vehicles anticipating hazards [4], assistive technologies for
visually impaired users [5], and robots operating in human-centered environments [6, 7, 8, 9, 10].
These applications demand robust auditory inference under noisy, cluttered, and ambiguous sensory
conditions. Consider a real-life example in Fig. 1a depicting a busy traffic intersection: cars honk,
people converse, birds chirp, and an ambulance siren approaches from behind a building. Humans
must rapidly detect and localize the siren despite competing sounds, partial visual occlusion, and
environmental noise. Such everyday scenes highlight the challenges of SSL: resolving ambiguous
visual or auditory cues, handling conflicting signals across modalities, and focusing attention on the
most relevant source amidst distractions. Building AI systems capable of performing SSL tasks in
these conditions remains an open problem.

Recent AI research has developed multimodal models for SSL [11, 12, 13, 14, 15, 2, 16]. Methods
such as contrastive learning [17, 18, 19] aim to align audio-visual embeddings by maximizing the
similarity between matching pairs and minimizing it between mismatched ones. Other approaches
leverage cross-modal attention [20, 21, 22] in transformer architectures [23, 24] to allow sound
features to dynamically query relevant visual regions. Some works [25, 26, 27] also incorporate
object priors, leveraging knowledge of what typically makes sound to guide localization. However,
despite these advances [28], little is known about how such models behave when the modalities
conflict or when biases emerge—such as favoring visual cues over auditory ones.

To address this gap, we systematically evaluate model behavior under six controlled audio-visual
conditions: (1) Congruent — audio and visual cues align in both semantics and location; (2)
conflicting visual cues, where the visual scene misleads localization; (3) absent visual cues, where the
sounding object is completely occluded in the visual scene; and (4) vision-only and (5) audio-only
conditions, where either vision or audio is entirely omitted. Moreover, similar to the cocktail party
problem [29, 30], we further extend the single-source stereo audio to (6) the multi-instance SSL [31],
where multiple instances of the same semantic category are present, potentially distracting the model
from correctly localizing the target instance. These manipulations allow us to probe how models
resolve cross-modal ambiguity and characterize their reliance on each modality. To benchmark these
model behaviors, we additionally conduct human behavioral studies under the same experimental
conditions. Results show a clear performance gap: humans consistently outperform AI models in
handling both congruent and incongruent conditions.

While numerous SSL datasets [32, 33, 34] exist, they often suffer from limitations that hinder robust
multimodal alignment in AI models. Typically, these datasets [35, 36, 37, 38, 39, 40, 41] consist
of scenes with a single, large, centrally placed sounding object, making them vulnerable to visual
shortcut learning, where models perform well without truly integrating audio information [42, 43].
Others [44, 45, 46] are constructed by pairing unrelated images and sounds from independent
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datasets [47, 48, 49, 50, 51, 52, 53, 54, 55], leading to weak cross-modal entanglement. More
recent efforts [56, 57, 58] synthesize audio based on physics-informed rules [59, 60] or generative
AI models [61, 62], but they still frequently rely on mono audio, neglecting the richer spatial cues
provided by stereo audio signals.

Inspired by neuroscience findings highlighting the role of inter-channel differences in spatial
hearing [63], we propose a method that leverages 3D simulation engines to generate stereo audio from
images by integrating separate image and sound datasets. Unlike neuroscience approaches that require
physically setting up microphones in real-world spaces, which is both time-consuming and costly,
our simulation-based method offers a scalable and efficient alternative for producing spatialized
audio paired with complex visual scenes. With this method, we contribute a large-scale AudioCOCO
dataset, comprising 28,224 image-audio pairs with ground truth annotations. By simulating stereo
audio that adheres to physical principles of sound propagation and spatial cues, AudioCOCO provides
realistic and diverse audio-visual scenes.

Human sound localization relies on a cascade of acoustic transformations shaped by the ear, head,
and torso. Direction-dependent spectral notches introduced by the pinna help resolve elevation and
front–back ambiguities [1, 64, 65]. These cues are formalized in the Head-Related Transfer Function
(HRTF), which encodes interaural time (ITD) and level differences (ILD) alongside fine-grained
spectral features. At the cochlea, sounds are further decomposed into frequency-selective channels
that preserve ITD/ILD while transforming HRTF-induced modulations into neural representations.

To model these biological mechanisms, we introduce EchoPin, a neuroscience-inspired model for
SSL. EchoPin pre-processes stereo audio using Head-Related Transfer Function (HRTF)–based
filtering and cochleagram representations derived from Equivalent Rectangular Bandwidth (ERB)
filters. These designs capture the tonotopic organization and temporal dynamics of the auditory
periphery [66, 67] more faithfully than conventional mel-spectrograms [68, 69, 70]. EchoPin then
employs dual encoders to jointly process audio and visual inputs, trained with contrastive learning on
our AudioCOCO dataset. Experimental results suggest that EchoPin outperforms existing models.
Notably, without any human behavioral supervision, EchoPin reproduces a human-like horizontal
localization bias [71], an emergent property that was not prominent in previous AI systems. We
attribute this to EchoPin’s 3D stereo audio pipeline, which integrates interaural spacing, HRTF
filtering, and ERB-based cochlear processing to jointly enhance sensory fidelity and multimodal
alignment. We highlight our key contributions below:

1. We introduce a unified framework to systematically benchmark audio-visual localization models
under modality conflicts, absence, and misalignment. We propose a scalable pipeline that synthesizes
two-channel stereo audio for static images via 3D simulation, and construct a large-scale, naturalistic,
and spatially grounded audio-visual dataset, named as AudioCOCO.

2. We design and conduct psychophysics experiments to assess human strategies in resolving
audio-visual conflicts, providing a strong baseline for AI-human comparison. We provide a detailed
analysis of modality conflicts and biases in existing SSL models and humans, highlighting key
performance and behavioral differences under challenging multimodal conditions.

3. We introduce EchoPin, a neuroscience-inspired model trained on our curated AudioCOCO dataset.
It features a dual-encoder architecture that processes stereo audio–visual pairs. The stereo audio is
pre-processed using HRTF-based spatial filtering and cochlear-inspired frequency decomposition.
Experimental results show that precise audio–visual alignment emerges from high-fidelity sensory
inputs and biologically grounded ear-structure priors. EchoPin not only achieves superior localization
accuracy but also exhibits human-like localization biases, favoring horizontal over vertical precision.

2 Experiments

2.1 AudioCOCO dataset

Image selection. We use the MSCOCO [47] dataset for its broad coverage of everyday objects and
apply our selection criteria below to all images from the standard training and test sets. From its
dataset annotations, we manually select 12 audible object categories encompassing humans, animals,
vehicles, and electronic devices. Recognizing that larger objects may be easier to detect and localize,
we further categorize sounding objects by their relative size in the image. Object size is defined
as the ratio of the object’s segmentation mask area to the total image area, independent of their

3



a. Congruent b. Conflicting Vcue c. Absent Vcue

d. Audio Only e. Vision Only f. Multi-instance Center fixation 
for 500ms

Time

h. Click the mouse to locate the 
sound within 20 secs 

Figure 2: Overview of congruent and manipulated vision-audio conditions in our UniAV
framework and task schematic. An example of the vision-audio congruent condition (a) is shown,
where a dog sound is played (black box) with a matching visual source. Visual and auditory
modifications for the other five experimental conditions (b-f) are also displayed. See Sec 2.2 for
more details. (h) Each trial began with a fixation cross (500 ms), followed by the presentation of
an image-audio pair from either of the six conditions (a-f). Participants were instructed to use the
computer mouse to click on the perceived location of the sound source within 20 seconds.

real-world scale. We define three size bins: Size1 (0–5%), Size2 (5–15%), and Size3 (15–30%).
Objects occupying more than 30% of the image are excluded, as they make the localization task
trivially easy. To maintain class balance, we limit the number of images per object size per category
to 150 within each training or test set. For experimental control, each image contains only one
target sounding object, without any other instances of the same category. For the multi-instance
SSL (Sec 2.2), we select 150 images per object size per category, each containing 2–5 instances of
the same semantic category, with exactly one designated as the sounding target. See Supp Fig. S1,
Supp Fig. S2, and Supp Fig. S3 for the distribution of image counts by category and their target
spatial locations in both the training and test sets. After applying the selection criteria, we randomly
sample 4,953 qualified images from the MSCOCO training set for training, and 5,500 images from
the official test set—comprising 2,840 single-object and 2,660 multi-object scenes—for testing.

Audio selection. Prior work often pairs MSCOCO images with external audio datasets like
VGGSound [49] or FSDnoisy18k [50], but these audio sources often lack spatial and temporal
consistency. For example, moving sound sources (e.g., a dog running across the video frames)
cause spatial shifts that make them unsuitable for generating realistic stereo audio on static images.
Additionally, recordings may include background noise or mixed sounds from multiple objects,
reducing semantic clarity and overall quality. To address these issues, we apply three filtering steps to
the VGGSound videos, retaining 3,533 clips from the standard training set and 727 clips from the
standard test set that contain high-quality audio, spatially and semantically aligned with the visual
content. See Supp Sec. S1, Supp Fig. S4, and Supp Fig. S5 for detailed filtering steps and results.

Next, we randomly pair the selected MSCOCO images with high-quality audios from VGGSound to
construct the AudioCOCO dataset. The dataset comprises 9,360 audio–image pairs in the training set
and 18,864 pairs in the test set, which are further divided into six experimental conditions (Sec. 2.2).

Depth-aware stereo audio synthesis. To generate spatialized stereo audio for their corresponding
sounding objects on static images, we employ Unity [72] as our 3D simulation engine, which allows
us to control precise object locations and simulate realistic stereo sound based on the spatial layout of
visual scenes. As illustrated in Fig. 1b, we define a Cartesian coordinate system within Unity. The
listener is positioned at the origin (0, 0, 0). The computer screen displays the image to listener, is
placed parallel to the x–z plane and aligned along the positive y-axis, with a fixed physical distance
of 0.76 meters from the listener in the human psychophysics experiment (Sec 2.3). To estimate the
depth of objects within the 2D image, we utilize the DepthAnything model [73], which outputs a
relative depth map with values ranging from 0 to 10. However, without access to the original camera
intrinsics of MSCOCO images, determining absolute scene scale in Unity is nontrivial. To address
this, we normalize the depth values dp of the image as dnorm

p = dp,max − dp where dp,max are the
maximum depth values in the image. Sound loudness decreases logarithmically with distance from
the listener. To maintain sound amplitudes within a comfortable and perceptible range, we rescale
the normalized depth by 0.5. The final y-coordinate in Unity yu for the sounding object is computed
as yu = dnorm

p /2 + 0.76. For the x and z coordinates of the sounding object in Unity, we map the
object’s pixel location from the 2D image to the physical dimensions of the monitor. Given that the
display has a resolution of 90 pixels per inch, we compute xu = xp/90 and zu = zp/90, where xp

and zp are the pixel coordinates of the target object’s center in the image.
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Once the sounding object’s 3D position (xu, yu, zu) is established in Unity, we place a static
audio source at this location. Using an interaural distance of 0.17 meters, reflecting the typical
distance between human ears, Unity simulates realistic two-channel stereo sound based on the spatial
relationship between the listener and the sound source. This procedure allows us to synthesize
spatially grounded, depth-aware stereo audio for each image-sound pair.

2.2 Experimental conditions in the AudioCOCO test set

As shown in Fig. 2, the AudioCOCO test set includes six experimental conditions, totaling 18,864
image–audio pairs to systematically probe modality biases and conflicts in humans and AI models.
Each condition contains 2,900 pairs, except MultiInstLoc, which includes 4,364. All models are
trained only on congruent conditions to evaluate generalization, while these six conditions are used
exclusively for testing.

Audio-visual Congruent (Congruent) represents the ideal scenario where both the audio semantics
and localization align perfectly with the corresponding visual target’s semantics and location. This
should serve as the upper bound for performance in both humans and AI models. For instance, as
shown in Fig. 2(a), a dog sound is played at the same location as the dog in the image.

Conflicting Visual Cue (ConflictVcue) examines the scenario where the semantics of both the visual
and audio cues belong to the correct category but are spatially misaligned. In Fig. 2(b), a dog sound is
played at the location of a cat, while the silent dog is visually present at a different location. Among
all the image-audio pairs in Congruent condition, we randomly choose an object from a non-target
category as the sound source. We do not limit the distance between the distractor and the target.

Absent Visual Cue (AbsVcue) explores the case when a target sound is present but the visual scene
contains non-relevant objects, and no visual cue matches the sound. For instance, in Fig. 2(c), a dog
sound might be played on the cat, but no dog is visually present. From the image-audio pairs in
the congruent condition, we randomly select a target sound to play at a randomly selected sounding
object in the scene where no relevant objects aligning with the semantics of the sound source exists.
This condition is more stringent than Conflicting Visual Cue, as it lacks any visual cues altogether.

Audio Only (AOnly) represents the extreme case where no meaningful visual information is provided,
and the sound source is randomly placed anywhere within the image. The image could be a blank
gray image with pixel values set to 128 (Fig. 2(d)) or a Gaussian noise image with a mean of 0 and a
standard deviation of 1. For example, a dog sound could be randomly played on the left side of a
pure gray background.

Vision Only (VOnly) exploits multi-modal biases or priors. In this condition, only visual scenes are
provided to the AI models, and they must localize the sounding object despite the absence of any
meaningful sound. The audio could either be completely silent or filled with random Gaussian noise
(mean 0, standard deviation 1). For example, the same visual stimulus as in the congruent condition
is presented, but the dog sound is replaced with silence or noise (Fig. 2(e)).

Multi-Instance Localization (MultiInstLoc) follows the same motivation as the cocktail party
problem [29] and features several objects of the same category, but the audio corresponds to only
one specific instance, testing localization accuracy in a multi-instance scenario. For example, as
illustrated in Fig. 2(f), a dog sound is played at the location of the left dog, while both dogs are
visually present in the scene. This condition follows the same setup as the Congruent condition, but
is more challenging due to the presence of multiple visually relevant objects. We selected images
from the test set of the MSCOCO dataset, where the number of object instances within a given image
is restricted to between 2 and 5 for the target category.

2.3 Human psychophysics experiment

We conducted in-lab psychophysics experiments on the AudioCOCO test set with 14 participants,
collecting a total of 2,100 trials. All the experiments are conducted with the subjects’ informed consent
and according to protocols approved by the Institutional Review Board of our institution. Every
experiment lasted approximately 40 minutes. The experimental setup is schematically illustrated
in Fig. 2(h). Each trial began with a fixation cross displayed for 500 milliseconds, followed by
the presentation of an image and audio pair drawn from one of the six experimental conditions
(see Sec 2.2). The 6-second audio clip paired with the image stimulus continuously loops until
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Figure 3: Overview of our neuroscience-inspired EchoPin model. EchoPin takes as input a static
image paired with a two-channel stereo audio signal. The stereo waveforms are first filtered using
the Head-Related Transfer Function (HRTF) to simulate sound filtering by the pinnae, and then
converted into cochleagrams to mimic auditory processing in the human cochlea. The audio and
visual streams are independently processed through dedicated encoders. During training, semantic
alignment between the two modalities is enforced using a contrastive loss applied to paired audio and
visual embeddings, while localization alignment is achieved by regressing the predicted sound source
location (indicated by a red triangle) from the multimodal feature similarity map to the ground-truth
location (red bounding box).
the trial concludes. Participants were instructed to use a computer mouse to click on the perceived
location of the sound source within a time limit of 20 seconds, while wearing stereo headphones
throughout the experiment. All trials were randomly sampled, and their presentation sequences were
shuffled to minimize order effects. If participants failed to respond within the allotted 20 seconds,
the trial automatically ended, and the next trial commenced. Instead of relying on the pre-rendered
image-audio pairs, we conducted an audio calibration procedure at the start of the experiment to
account for individual differences in auditory perception. To achieve this, we implemented real-time
stereo audio synthesis in Unity. Following calibration, an audio validation task was conducted to
ensure successful calibration and adequate spatial hearing accuracy from the participants. See Supp
Sec. S2 and Supp Fig.S6 for additional details on the human psychophysics experiments.

2.4 Our neuroscience-inspired EchoPin model

We introduce EchoPin, a neuroscience-inspired model for SSL (Fig. 3). The model takes image–audio
pairs as input and emulates the human auditory periphery to decompose sounds in raw waveforms
into frequency components. These representations are then aligned with visual features through a
dual-encoder architecture for auditory and visual processing.

In human auditory neuroscience, incoming sound waveforms are directionally shaped by the
pinna, head, and torso. These spectral transformations encode elevation-specific notches and
interaural differences, which are essential for resolving front–back and vertical ambiguities [1].
For implementation, we use pre-measured Head-Related Transfer Functions (HRTFs) from human
ears, developed in Unity simulations and based on the extensive KEMAR dummy head dataset [74].
KEMAR is equipped with microphones in the ear canals to capture how sounds from different
directions are filtered by the head and pinnae. The dataset includes left and right ear impulse
responses recorded from a Realistic Optimus Pro 7 loudspeaker positioned 1.4 meters from KEMAR,
covering 710 spatial positions with elevations from −40◦ to +90◦.

Next, the HRTF-filtered time-domain sound waveform is passed through a cochlear-inspired frequency
decomposition, converting it into a cochleagram using the PyCochleagram library [74]. The
cochleagrams are constructed via Equivalent Rectangular Bandwidth (ERB) filterbanks, capturing the
tonotopic and temporal resolution of sound across frequency channels. This representation retains key
auditory features, including pitch, timbre, and spatial cues. The resulting 10-second stereo waveform,
sampled at 16 kHz, is transformed into cochleagrams, yielding a tensor of size 66 × 160,000 × 2,
where the dimensions correspond to 66 ERB filters (after truncating 10 high-frequency channels
for efficiency), 160k temporal samples, and two binaural channels. The binaural channels are first
integrated using 1D convolution kernels to merge information across ears and then fed into the
dual-encoder architecture of IS3 [45], allowing separate audio and visual processing streams.

During training, we initialize all weights from the pre-trained IS3 model, except for the first
1D-convolution layer in the audio encoder described above, and then optimize all parameters
end-to-end using supervised learning. Two losses in the IS3 [45] model are employed: (i) a
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Triplet loss to enforce semantic alignment by pulling matched audio–visual embeddings closer
than mismatched ones, and (ii) a CIoU loss to penalize spatial deviation between predicted and
ground-truth sounding-object bounding boxes. This combination enables EchoPin to jointly capture
what is sounding and where it is located. See Supp Sec. S3 for extra implementation details.

Model variants of EchoPin. To study the effects of design components in EchoPin, we introduce
two model variants: EchoPin-M (Mono) averages the two HRTF-filtered stereo channels into a single
time-domain waveform, allowing us to examine the impact of mono versus stereo audio on SSL
tasks. EchoPin-S (Stereo) uses the HRTF-filtered stereo waveforms as input, but processes them with
standard mel-spectrograms instead of cochleagrams. Comparing these variants with the full EchoPin
model allows us to examine how stereo structure captured by the pinnae and frequency-specific
cochlear modulation affect SSL performance. See Tab. 1(b) and Sec. 3 for results and discussion.

2.5 Baseline methods and evaluation metrics

We benchmark EchoPin and the state-of-the-art multimodal models, including SSLTI [75], LVS [44],
FNAC [43], CAVP [42], AVSegformer [23], IS3 [45], ImageBind [76], and LanguageBind [33], using
the same stimuli as in our human psychophysics experiments. While humans can leverage the pinna,
head, and torso to encode elevation-specific auditory cues, models lack these physical structures.
To ensure fair comparisons across models and with human participants, all AudioCOCO audios are
HRTF-filtered to approximate human auditory processing, and these filtered sounds are used for all
model evaluations. In the main text, we provide brief overviews of IS3 [45] and a random baseline,
and report their performance alongside our proposed EchoPin model. Detailed descriptions of the
other models and their extended experimental results are provided in Supp. Sec. S3.

IS3 [45] is a dual-stream architecture with 2D CNNs, which processes visual and monaural auditory
inputs separately using dedicated encoders before fusing the features for contrastive learning
during training. IS3 also includes an Intersection-over-Union (IoU) loss and a semantic alignment
loss to improve localization accuracy during supervised training. The model is trained on the
FlickrSoundNet [58] and VGG-Sound [49] datasets. Random is a chance model that randomly
selects a location on the image as the predicted sound source location. It serves as a lower bound for
SSL without using any audio-visual information.

Predicting target sound locations. For IS3, EchoPin, and other 2D CNN–based models, feature
maps from the final layers of the visual and audio encoders are extracted, and cosine similarity is
computed between them to generate a similarity heatmap. The predicted sound location is taken as
the point with the highest activation on this heatmap. See Supp. Fig. S7 for an illustration of how
transformer-based baselines predict target sound source locations.

Evaluation metrics. To disentangle spatial localization from semantic alignment between visual and
audio modalities, we define two metrics: Audio Accuracy (A-Acc) measures whether the model
or human localizes the true sound source regardless of matching semantics. A-Acc = 1 if the peak
activation falls within the bounding box of the sounding object; 0 otherwise. Vision Accuracy
(V-Acc) measures alignment with visual semantics. V-Acc = 1 if the peak activation falls within any
object of the correct category, even if it might not be the actual sound source, such as in MultiInstLoc
conditions. In VOnly condition, V-Acc = 1 if the activation overlaps with any object from the 12
sound-emitting categories in AudioCOCO.

To robustly evaluate model performance, we consider three complementary factors that could influence
results in Supp Sec. S5. First, A-Acc can be biased by object size, so we introduce a chance-corrected
A-Acc (Supp Tab. S5; Supp Tab. S1). Second, human clicks may fall near but not inside the target,
so we treat clicks within a thresholded radius as correct in Supp. Tab. S2. None of these metric
variants alter the conclusions. Finally, we evaluate the predicted target object bounding boxes by
all the models using corrected Intersection over Union (cIoU, [77]), where EchoPin continues to
outperform other baselines (Supp Sec. S5 and Supp Tab. S3).

3 Results

We report results from both human participants and AI models across all experimental conditions
and object sizes. For brevity, the main text focuses on comparisons between humans and the two
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Figure 4: Object size matters for humans and
AI models in the congruent condition. Accuracy
increases with object sizes for both humans
and AI models, with humans outperforming AI
models, especially for small targets. Here and in
subsequent figures, error bars represent Standard
Error Mean (SEM).
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Figure 5: ConflictVCue and AbsVCue hurt SSL
performance for both humans and AI models.
The accuracy of humans and AI models under
ConflicVcue and AbsVcue conditions is shown
for object size 2, with results from the congruent
condition included for comparison. See Supp
Tab. S4 for the results on object sizes 1 and 3.
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report the proportion of trials (object size 2)
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Figure 7: AI models show a bias towards
objects that emit sounds, even in the absence
of sound or in the presence of noisy sound.
The V-Acc of AI models is presented in the
VOnly condition, where either no sound or only
noisy sound is present. Despite the lack of
auditory cues, V-Acc of AI models on object
size 2 remains higher than random (dark gray).

best-performing models, IS3 and EchoPin. Additional qualitative analyses for all other models are
presented in Supp. Tab. S4.

Object size matters for humans and AI. As illustrated in Fig. 4, human A-Acc steadily increases
with object size, suggesting that larger sounding objects are easier for humans to localize. EchoPin
exhibits a similar trend, with A-Acc rising substantially from 11.2% to 76.0% as object size grows.
Across all object sizes, EchoPin consistently outperforms IS3 and the other models. This difference
likely arises because IS3 is trained on datasets biased toward large, centered objects, whereas
AudioCOCO provides a wider range of object sizes and spatial locations. While both humans and AI
models perform above chance for large objects, only humans and EchoPin maintain strong, consistent
performance across all object sizes, including smaller ones—performance that IS3 fails to achieve.

Conflict cues harm more than the lack of cues for AI. As shown in Fig. 5, both the ConflictVCue
and AbsVCue conditions impair SSL performance in humans compared to the congruent conditions.
While humans and EchoPin still perform significantly above chance, IS3 drops to near-chance
levels under the ConflictVCue condition. This suggests that humans and EchoPin are more robust
in SSL tasks involving conflicting or missing visual cues, whereas IS3 relies heavily on visual
information. Notably, unlike humans, EchoPin shows a greater performance decline when visual cues
are conflicting but not when they are absent, indicating that it is more easily misled by incongruent
visual information yet remains stable in the absence of such cues.

AI fails when there are only auditory cues but humans can. As shown in Supp. Fig. S8,
humans achieve above-chance A-Acc even without visual information (e.g., gray or Gaussian noise
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(a) Multi-Instance Localization (b) Overall Performance
Acc(%) Rand IS3 CAVP AVSeg EchoPin Human Acc(%) Rand IS3 EchoPin-M/S EchoPin

A-
Acc

Size1 1.6 4.8 2.9 2.5 4.5 25.7
Mono

Size1 1.6 3.0 3.6 -
Size2 9.1 7.9 7.5 7.3 24.1 36.4 Size2 9.4 13.9 15.8 -
Size3 21.3 22.4 20.4 20.2 47.1 38.6 Size3 19.8 28.7 31.4 -

V-
Acc

Size1 8.4 11.9 10.5 11.2 37.5 60.9
Stereo

Size1 1.6 - 5.3 9.7
Size2 17.8 24.1 23.0 23.7 53.8 82.8 Size2 9.4 - 17.0 31.3
Size3 26.2 40.9 39.5 40.9 64.2 89.1 Size3 19.8 - 35.2 47.6

Table 1: Multi-instance SSL remains a challenging task for both humans and AI models. The
table (a) on the left summarizes the audio and visual localization accuracy of humans and AI models
under the multi-instance condition across all object sizes. For AI models, both input data quality
and the use of stereo audio substantially impact SSL performance. Table (b) on the right
summarizes the average A-Acc across the Congruent, ConflictVcue, AbsVcue, and AOnly conditions
for models trained with either mono or stereo audio. The second-to-last column shows the results of
EchoPin-M (Rows 1–3) and EchoPin-S (Rows 4–6). See Sec. 2.4 for details on these variants. (–)
indicates that the results are not applicable due to the model configurations. In both tables, best is in
bold and the second best is underlined.

backgrounds), confirming that they can perform SSL based solely on auditory cues. However,
their performance remains lower than in the congruent condition, indicating that congruent visual
information facilitates SSL. Similar trends are observed in IS3 and EchoPin, with EchoPin consistently
outperforming IS3 under both AOnly conditions (gray or Gaussian background). Interestingly,
both humans and EchoPin perform better with gray than Gaussian backgrounds, suggesting that
incongruent visual noise can distract attention and interfere with SSL, whereas a neutral (gray)
background minimizes interference.

EchoPin shows human-like asymmetry in auditory spatial precision. In neuroscience, auditory
spatial precision is known to exhibit a horizontal–vertical asymmetry: humans localize sounds more
accurately along the azimuth (horizontal) than the elevation (vertical) axis [71]. To quantify this
effect, we measured the proportion of trials where predictions fell within six degrees of visual angle
from ground-truth locations, separately for horizontal and vertical dimensions (Fig. 6). As expected,
humans showed a strong horizontal advantage, localizing targets in 86.1% of trials horizontally
but only 66.7% vertically. Remarkably, EchoPin exhibited a similar asymmetry pattern despite
being trained without any human behavioral data. In contrast, IS3, which relies solely on monaural
Mel-spectrograms, also showed asymmetry but to a much lesser degree. Although both models
have benefited from spatial filtering by the pinnae, the observed asymmetry in EchoPin arises from
its biologically grounded auditory frequency decomposition in the cochlea and its stereo audio
perception. To further validate this, we introduced an EchoPin variant, EchoPin-Ro, in which the
interaural axis was rotated by 90 degrees in Unity, effectively simulating vertically aligned ears. When
audio was re-rendered under this configuration, the model’s asymmetry was reversed, confirming the
structural origin of this effect.

AI biases toward sound-emitting objects. Previous studies [42, 45] show that AI models often
exploit visual shortcuts by favoring large or centered objects. To examine additional behavioral biases,
we evaluate models under the VOnly condition. Without meaningful sound, any object could plausibly
be the sound source. As shown in Fig. 7, models tend to localize sounds to vocal objects (e.g., people,
animals) rather than irrelevant ones (e.g., sky, trees), resulting in above-chance V-Acc. This indicates
that models encode prior knowledge of which objects typically produce sound. Furthermore, for all
the models, Gaussian noise audio input leads to lower V-Acc than the absence of audio, indicating
that even noisy audio can reduce the models’ over-reliance on visual signals.

Multi-instance SSL remains challenging for humans and AI. As shown in Tab. 1a, V-Acc is
high for both EchoPin and humans, indicating strong alignment between audio and visual semantics.
This allows them to use audio cues to identify all visual objects with matching semantics. However,
in scenes with multiple object instances, successful localization requires fine-grained SSL, beyond
semantic matching. In these cases, A-Acc drops for both humans and EchoPin. Compared to the
Congruent condition (with a single sounding object), multi-instance SSL is notably harder, as it
demands precise spatial disambiguation. Despite this, humans still perform above chance, especially
for small objects. Similarly, EchoPin achieves high A-Acc on object sizes 2 and 3. However, it still
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EchoPin IS3ConflictVCue

AbsVCue EchoPin IS3 EchoPinMultiInstLoc IS3

EchoPin IS3Congruent

Figure 8: IS3 struggles to localize sound sources, whereas humans and EchoPin perform well
across all four experimental conditions. The leftmost images (Columns 1 and 4) show the correct
localization results made by human participants. Red boxes mark the ground truth sound source
locations, while green circles indicate mouse click responses from multiple participants. The middle
columns (2 and 5) and rightmost columns (3 and 6) display heatmaps predicted by EchoPin and IS3,
respectively. Yellow triangles on the heatmaps denote the predicted sound source locations from each
model. See the colorbar for the activation values of the heatmaps.

lags behind human performance, with the gap more pronounced in small object size. Despite this,
both EchoPin and humans still perform above chance, especially for small objects. This demonstrates
an ability to localize sounds at fine spatial resolution for both humans and EchoPin. Among all
models, EchoPin performs best. It even outperforms strong baselines like CAVP and AVSeg, which
are trained on large-scale, standard audio-visual datasets.

Training data quality and stereo input are important for SSL. We report the average A-Acc
across all object sizes for Random, IS3, and the EchoPin variants under four experimental conditions
in Tab. 1b. EchoPin consistently achieves the highest performance across all conditions. Notably,
EchoPin-M surpasses IS3 despite using fewer fine-tuning examples, underscoring the importance of
high-quality training data. Moreover, EchoPin-S further improves over EchoPin-M, highlighting the
advantage of incorporating human-like stereo configurations for spatial localization.

We further visualize the predicted sound source locations from human participants, IS3, and EchoPin
in Fig. 8. EchoPin localizes sound sources more accurately and often aligns closely with human
judgments. In contrast, IS3 struggles with small or peripheral targets—for instance, it fails to localize
a dog in the top-left corner under the Congruent condition and frequently misattributes sounds to other
vocal objects (e.g., person, motorbike). Although EchoPin markedly improves SSL robustness, it is
still inferior to human performance in complex scenes. Failure cases and additional comparisons with
other baselines, such as CAVP, are provided in Supp. Sec. S4, Supp. Fig. S9, and Supp. Fig. S10.

4 Discussion
We systematically and quantitatively examine modality biases and conflicts in SSL across humans
and AI models. Our study covers six audiovisual conditions, including congruent cues, conflicting
signals, and cases with missing audio or visual input in natural scenes. Human listeners show
strong robustness: although conflicting or absent visual cues reduce performance, they can still
accurately localize even small sound sources under challenging or multi-instance conditions, and
even in the absence of visual input. In contrast, current multimodal AI models rely heavily on
vision—misattributing sounds to large, centered, and salient objects, and suffering steep performance
drops when visual cues are removed. Conflicting visuals further degrade their accuracy, with most
models performing near chance for small or visually absent sound sources.

We identify two primary causes of these limitations: (1) low-quality, visually biased audiovisual
datasets, and (2) monaural audio inputs lacking spatial fidelity. To overcome these issues, we curate
AudioCOCO, a high-quality dataset built through rigorous filtering and 3D physical simulation. By
integrating depth maps, HRTF-based filtering that mimics pinna effects, cochlear-inspired frequency
decomposition and modulation, and physically grounded 3D sound propagation, AudioCOCO
produces realistic, spatialized stereo audio aligned with human auditory processing. Building on this,
we introduce EchoPin, a neuroscience-inspired model trained on AudioCOCO. Despite fewer training
examples, EchoPin surpasses state-of-the-art models across all conditions and exhibits human-like
localization biases, such as stronger precision along the horizontal plane. Ablation studies confirm
the importance of both high-quality datasets and stereo auditory input for capturing spatial cues. This
work underscores the value of designing models and datasets that respect the physical constraints of
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sensory systems. Future directions include scaling AudioCOCO to incorporate temporal dynamics
from videos and improving realism in simulated sound rendering, such as the effect of refraction.
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Supplementary Material
In the supplementary material, we provide additional information of our AudioCOCO dataset in
Sec.S1 and human experiment setup in Sec.S2. Moreover, we include extra experimental results, an
ablation study, and visualization results for predicted position bias, which are discussed in Sec.S4
and Sec.S5.

S1 Details about the AudioCOCO dataset

More details on image selection. The MSCOCO 2014 dataset [47] offers annotations for 80
object categories, including both bounding boxes and segmentation masks. To ensure a fair
comparison—especially given that some model backbones are pre-trained on MSCOCO—we utilized
the MSCOCO 2014 validation set rather than the training set. From this, we selected 12 common
vocal categories frequently encountered in daily life: person, motorbike, train, boat, elephant, bird,
cat, dog, horse, sheep, cow, and keyboard. A total of 29,737 images containing at least one vocal
object were extracted to form the pool of image candidates for our dataset.

To investigate spatial distribution, we visualized the occurrence frequency of these categories across
the 29,737 images in Fig. S1b and Fig. S1a, grouping instances by three object area size bins defined
in the main draft: object size1 (0-5%), size2 (5-15%), and size3 (15-30%). For smaller object sizes,
category locations were relatively uniformly distributed across the image space. However, for larger
objects, some categories—such as bus, train, and truck—exhibited a strong center bias. To correct for
this, we filtered the dataset to ensure that no position in the final heatmap exceeded 50% in frequency.
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(a) The spatial distribution of single objects by category.
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(b) The spatial distribution of multi-objects by category.

Figure S1: The visualization results of images’ spatial distributions in the AudioCOCO test set are
presented for each object category, where the color bar indicates the frequency of object occurrences
at each spatial location within the images. Darker regions correspond to higher frequencies.
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(a) The count distribution of multi-objects by category.
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(b) The count distribution of single objects by category.

Figure S2: The visualization results of the image count distributions in the AudioCOCO test set
are presented, where blue, green, and red represent object size1, size2, and size3, respectively.
This visualization illustrates how instances are distributed across different object size categories,
highlighting the dataset’s balanced distribution in terms of object sizes.
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(a) The spatial distribution of single objects by category
for AudioCOCO’s training set.
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(b) The count distribution of single objects by category
for AudioCOCO’s training set.

Figure S3: The visualization results of the image count distribution and spatial distribution for the
AudioCOCO training set. For the count distribution, object sizes are color-coded: blue for Size1,
green for Size2, and red for Size3. This plot illustrates the number of object instances across different
size categories, confirming that the dataset maintains a balanced distribution in terms of object size.
For the spatial distribution, the heatmap reflects the frequency of object occurrences at each spatial
location in the images, with the color bar indicating frequency. Darker regions correspond to areas of
higher object density, highlighting positional biases or spread across the dataset.

Additionally, given that the image distribution over all object categories in COCO is not uniform,
we performed random sampling to cap the number of instances to 150 per category per object size
bin, promoting balanced representation within the AudioCOCO dataset. The final distributions after
filtering are shown in Fig. S2a, Fig. S2b, and Fig. S3, demonstrating that AudioCOCO achieves a
balanced dataset across object area sizes, object center positions, and categories.

More details on audio selection. To ensure that only high-quality, semantically aligned clips are
retained, we apply the following three filtering steps to the videos from VGGSound [49]. First,
we introduce Semantic Consistency (SeC) and select audios that are representative of the semantic
object categories. Specifically, we take all audio files belonging to the same semantic category,
extract audio features from the last layer of the Wav2vec [78] model, compute their pari-wise cosine
similarities based on these features, and retain the top 80% audios with the highest cosine similarity
scores. Second, to ensure the audio is free from noise or interference from unrelated sources, we
introduce Mel-Spectrogram Similarity (MSS) as a filtering criterion within each category. For each
audio clip, we compute its Mel spectrogram, average the frequency magnitudes over time, and
apply a logarithmic transformation to compress high-frequency components—yielding a compact
representation of the audio’s overall spectral structure. We then calculate the cosine similarity between
these representations and retain the top 65% of audio clips based on this MSS metric, following the
SeC criteria. Third, to ensure the stereo audio corresponds to the sounding object being centered in
the video frame, we introduce Spatial Consistency (SpC) for each audio-image pair. We compute the
Spearman correlation between the left and right audio channels; a high correlation suggests the sound
source is centrally located, producing similar waveforms in both channels. We retain the top 50% of
audio clips based on this metric from the MSS-filtered set.

For audio selection, we also enforce a minimum threshold of 20 audio clips per category. If any
filtering step results in a category falling below this threshold, that specific step is discarded, and the
previous filtering output is retained as the final result to ensure sufficient data coverage across all
categories. The final distributions after filtering are shown in Fig. S4.

S2 Details of human psychophysics experiments

All the experiments are conducted with the subjects’ informed consent and according to protocols
approved by the Institutional Review Board of our institution. Participants were instructed to use
a computer mouse to click on the perceived location of the sound source within a time limit of
20 seconds, while wearing stereo headphones (SENNHEISER MOMENTUM 4 with active noise
cancellation) throughout the experiment.
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(a) The three stages of audio filtering result for
AudioCOCO test set.
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(b) The comparison between original audio counts and
filtering audio counts for AudioCOCO test set.

Figure S4: The visualization results of audio statistics in the AudioCOCO test set demonstrate that
the audio quality across most categories has significantly improved following the filtering process.
Additionally, we ensured a balanced count distribution among all categories. These outcomes
highlight the effectiveness of our selection and refinement strategy in enhancing both the semantic
consistency and acoustic quality of the dataset.
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(b) The comparison between original audio counts and
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Figure S5: The visualization results of audio statistics in the AudioCOCO training set demonstrate
that the audio quality across most categories has significantly improved following the filtering process.
Additionally, we ensured a balanced count distribution among all categories. These outcomes
highlight the effectiveness of our selection and refinement strategy in enhancing both the semantic
consistency and acoustic quality of the dataset.

Audio calibration. Instead of relying on the pre-rendered image-audio pairs, we conducted an audio
calibration procedure at the start of the experiment to account for individual differences in height and
auditory perception. To achieve this, we implemented real-time stereo audio synthesis in Unity, which
communicates with MATLAB (hosting the human behavioral experiment) via TCP connections. The
measured delay for real-time stereo sound synthesis and presentation is within 500 milliseconds,
ensuring seamless interaction between the two systems.

During calibration, participants were presented with a white dot at a random location on the screen,
accompanied by an audio clip spatially rendered at the dot’s position. A white cross at the center
of the screen served as a spatial reference (see Supp Fig.S6). Using the keyboard’s arrow keys,
participants adjusted the perceived audio source position until the sound aligned with the white dot.
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Figure S6: The audio calibration and validation process. During calibration, the player is at a
random position close to the white dot. The red arrow represents a potential movement trajectory.
During validation, the display is divided into two equal quadrants, with the audio player appearing at
a random position three times within each quadrant.

Once satisfied, participants pressed the ESC key to confirm the alignment. This process was repeated
six times with different white dot positions.

For each calibration step t ∈ 1, 2, . . . , 6, we recorded the participants’ adjustments of the sound source
location in pixels (∆xt,∆zt). The calibration hyperparameters α and β were computed as the mean
of ∆xt and the sum of ∆zt, respectively. These hyperparameters were then applied to scale the Unity
coordinates xu and zu, correcting for individual perceptual biases in auditory localization during the
main experiment. The rationale for using the mean adjustment for ∆xt (horizontal direction) and the
sum for ∆zt (vertical direction) is based on human spatial hearing characteristics—listeners typically
localize horizontal (azimuth) sound sources with higher precision than vertical ones. This design
allows greater tolerance for variability in the vertical dimension (altitude) during calibration, ensuring
more robust alignment with participants’ perceptual expectations.

Audio validation. Following calibration, an audio validation task was conducted to ensure successful
calibration and adequate spatial hearing accuracy. Participants heard an audio clip played from one of
two possible locations on a horizontally arranged 1x2 grid displayed on the screen (see Supp Fig. S6).
They were instructed to click on the half of the screen from which they perceived the sound. This
validation procedure was repeated six times. If a participant’s spatial sound localization accuracy fell
below 83%, the calibration and validation procedures were repeated to guarantee reliable data quality
during the actual experiment.

Center fixation presentation before the visual stimulus onset. During the experiment, participants
were instructed to fixate on a central dot before each trial began. This pre-trial fixation is a standard
element in human psychophysics and cognitive neuroscience, designed to recenter attention and
minimize carry-over effects across trials. By requiring participants to begin each trial from a common
spatial and attentional baseline, this design ensures that any differences in response latency or
eye movement patterns can be attributed to the experimental manipulation, rather than lingering
attentional bias from the previous trial.

S3 More implementation details of AI models

SSLTI [75], LVS [44], FNAC [43], and IS3 [45] are SSL models based on dual-stream architectures
with 2D Convolutional Neural Networks (CNNs). Each model processes visual and auditory inputs
separately using dedicated encoders before fusing the features for contrastive learning during training.
Both encoders are based on ResNet18 [79]. Beyond standard contrastive learning, IS3 introduces an
Intersection-over-Union (IoU) loss and a semantic alignment loss to improve localization accuracy
and better alignment between audio and visual modalities during supervised training. All the models
are trained on the FlickrSoundNet [58] and VGG-Sound [49] datasets.
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Figure S7: Overview of SOTA multi-modal models for sound source localization (SSL). All
models receive paired images and mono audio inputs, where stereo signals are averaged into a
single channel. Visual and auditory inputs are processed independently through separate encoders.
For CNN-based models (indicated by blue arrows), feature maps from the final layers of each
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transformer-based models, output token sequences are obtained from both encoders. Dot products on
their token embeddings are calculated, and a heatmap is produced accordingly. During evaluation,
SSL accuracy is determined by verifying whether the location of the maximum activation on the
heatmaps (red triangles or red tokens) lies within the segmentation mask of the ground truth sounding
object (red bounding box).
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CAVP [42] is a sound source segmentation model that follows a dual-stream CNN architecture.
It uses PVTV2-B5 [80] as the visual encoder and either VGGish [81] or ResNet18 as the audio
encoder. CAVP is trained in a fully supervised manner using cross-entropy loss for segmentation
and contrastive learning to align audio-visual features. Training data includes AVSBench [35] and
VPO [42] datasets.

AVSegformer [23] is an audio-visual semantic segmentation model built on a dual-stream
transformer-based architecture. It employs SegFormer [82] as the visual backbone and Audio
Spectrogram Transformer (AST) [83] as the audio encoder to capture fine-grained cross-modal
representations. AVSegformer integrates both modality-specific and fused token embeddings through
a lightweight fusion decoder for pixel-level prediction. It is trained in a fully supervised setting using a
combination of cross-entropy loss for segmentation and audio-visual consistency loss. AVSegformer’s
training data includes three subsets of AVSBench.

ImageBind [76] and LanguageBind [33] are large-scale, multi-modal transformer models with
billions of parameters. These models are trained with contrastive learning objectives across six
modalities: image, audio, video, text, depth, thermal, and IMU, and embed these into a shared
representation space. Both models use a Vision Transformer(ViT) [84] for visual encoding and
AST [83] for audio encoding. ImageBind is trained on large-scale datasets including LAION [85, 86],
SSv2 [87], and K400 [88]. LanguageBind builds on the pre-trained encoders from ImageBind and
further fine-tunes them on the VIDAL-10M [33] dataset.

Implementation details of AI models. All eleven models—except EchoPin-S and EchoPin—take
paired image and mono audio inputs, processing each modality independently through dedicated
visual and audio encoders. For the mono audio setup, we follow the EchoPin-M design by averaging
the stereo channels into a single-channel input. As shown in Fig. S7, for CNN-based models, feature
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Figure S9: The figure shows the failure examples of both IS3 and EchoPin compared to humans. The
leftmost images (Columns 1 and 4) show the correct localization results made by humans. Red boxes
mark the ground truth sound source locations, while green circles indicate mouse click responses
from multiple participants. The middle columns (2 and 5) and rightmost columns (3 and 6) display
heatmaps predicted by EchoPin and IS3, respectively. Yellow triangles on the heatmaps denote the
predicted sound source locations from each model. See the colorbar for the activation values of the
heatmaps.

maps from the final layers of the encoders are extracted, and cosine similarity is computed between
them to produce a similarity heatmap. For transformer-based models, token sequences from both
encoders are retrieved, and pairwise dot products of their token embeddings are calculated to generate
the heatmap. The predicted sound source location is identified as the point with the highest activation
on the heatmap.

We evaluated all the current models using their publicly available, pre-trained weights and adhered
to their original implementation details. Since AVSBench [35] shares some images with our
AudioCOCO test set, we exclude those overlapping image-audio pairs when evaluating CAVP [42]
and AVSegformer [23]. Experiments for ImageBind and LanguageBind were conducted on 8 NVIDIA
A100 GPUs, whereas all other models, including EchoPin and its variants, were trained and evaluated
on 4 NVIDIA A6000 GPUs. We fine-tune the EchoPin models using the Adaptive Moment Estimation
(Adam) optimizer [89] with a weight decay of 1×10−4 for 10 epochs. The initial learning rate is set to
1×10−5, and the batch size is 16. Each fine-tuning session takes approximately 16 hours to complete.
To accelerate data loading, all audio waveforms are preprocessed and stored as cochleagram tensors
in advance, with each .npy file occupying roughly 160 MB. All model evaluations are repeated three
times with different random seeds to ensure statistical reliability.

S4 More qualitative results of humans and AI in SSL

As shown in Fig.S9 and Fig.S10, we further illustrate the limitations of EchoPin relative to human
performance and provide additional qualitative results for other baselines. Notably, EchoPin often
fails to localize the correct sounding object when a visually salient distractor occupies a large portion
of the scene. This suggests that the model remains vulnerable to visual saliency bias, tending to
prioritize large or central objects even when they are not the true auditory source—a tendency that
human listeners are better equipped to suppress.

Similar patterns are shown in CAVP, which exhibits modality conflict sensitivity akin to IS3. Both
models are frequently misled by conflicting audio-visual cues and demonstrate a systematic bias
toward the visual modality, highlighting a lack of robust auditory grounding under incongruent
conditions.

S5 More quantitative results of AI models in SSL

The raw A-Acc may be confounded by the area of the ground-truth mask—since, intuitively, smaller
objects are more difficult to localize while larger ones are easier. To address this potential bias, we
introduce a chance-corrected gain metric, which quantifies the improvement of a human or model
over a random guess, normalized by the baseline accuracy of the random guess:
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EchoPin CAVPConflictVCue

AbsVCue EchoPin CAVP EchoPinMultiInstLoc CAVP

EchoPin CAVPCongruent

Figure S10: The figure shows the failure examples of CAVP and EchoPin compared to humans. The
rightmost columns (3 and 6) display heatmaps predicted by CAVP.

Gain(X) =
AccX −Accrand

Accrand
× 100 (1)

The Accrand represents the accuracy achieved when predictions are sampled uniformly at random
across the scene.

Normalized Percentage Size 1 Size 2 Size 3
(EchoPin - Random) / Random 5.2 4.6 2.9

(Human - Random) / Random 31.9 7.3 3.6

(Human - EchoPin) / Random 26.7 3.0 0.8

Table S1: We report the chance-corrected gain for humans and models across three object sizes under
the congruent condition. While human performance increases significantly with larger object sizes,
models show limited improvement. This discrepancy may stem from AudioCOCO’s uniform object
size distribution, which limits the models’ ability to exploit size-dependent cues.

This normalization removes the influence of mask size and isolates the true localization capability
of humans and models. As shown in Tab.S1, even after correcting for chance, humans consistently
outperform models—especially for small object sizes. For example, in the smallest size category,
humans achieve a gain of 31.9%, compared to only 5.2% for models. These results suggest that
object size modulates sound source localization performance in a way that cannot be fully explained
by ground-truth mask area alone, highlighting deeper perceptual and representational differences
between human and model behavior.

We apply the same evaluation criterion to both human participants and AI models to ensure fair
comparisons: a prediction is considered correct if the peak activation (for models) or the human
click falls within the bounding box of the sounding object. We also conducted an additional analysis
by varying the pixel distance thresholds used to determine correctness. Specifically, a prediction
is considered correct if it falls within x pixels of the ground-truth bounding box. We report the
resulting A-Acc (accuracy with spatial tolerance) as a function of pixel thresholds in Tab.S2 based on
congruent conditions for object size2. From these results, we observe that while larger thresholds
naturally lead to higher A-Acc values, the relative performance trend between humans and models
remains consistent. This further supports the validity of our evaluation methodology.

Moreover, we conducted an additional experiment by fine-tuning our EchoPin-S model using the
VGG-SS and Flickr-SoundNet datasets, and report comparative results against IS3 and CAVP using
the CIoU metric under the default evaluation protocol provided by [90]. As a localization-aware
metric, CIoU accounts for overlap area, center distance, and aspect ratio alignment, offering a more
comprehensive assessment of spatial prediction quality. From Tab. S3, we observe that benefiting
from the fine-grained spatial features provided by AudioCOCO, our EchoPin-S model achieves
superior performance on these standard SSL benchmarks, outperforming the baselines.
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Threshold Random Human EchoPin-S EchoPin
0 (default) 9.5 79.3 17.3 50.9

10 9.6 79.9 18.5 52.0

25 9.9 80.4 19.8 52.4

Table S2: We compare performance across varying localization thresholds (0–25 pixels) under the
congruent condition for object size 2. As shown, both human and model accuracy exhibit only
marginal improvement with increasing thresholds, indicating that our evaluation metric is stable and
not overly sensitive to small shifts in the decision boundary—thereby validating its robustness.

Method VGG-SS Flickr-SoundNet
IS3 42.96 84.40
CAVP 43.58 85.03
EchoPin-S 43.61 85.25
EchoPin 45.02 85.87

Table S3: We conduct comparison experiments on the VGG-SS and Flickr-SoundNet datasets. Despite
the challenges posed by these large-scale, imbalanced public benchmarks, EchoPin consistently
outperforms prior state-of-the-art (SOTA) methods, highlighting the robustness of spatial cues and
the effectiveness of our neuroscience-inspired design.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately summarize the
paper’s key contributions and align well with the scope and results presented throughout the
paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses the limitations of the proposed method,
acknowledging its constraints and outlining areas for future improvement in section of
Discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

10



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details on the experimental setup, model
architecture, and evaluation protocol to support reproducibility of the main results and
states that the code, model, and data are publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The paper indicates that the code and data are made publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: The paper specifies key training and testing details, including data selection
pipeline, hyperparameters and optimizer settings, allowing readers to understand how the
results were obtained both in the main body and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper contains error bars and we test all models with 3 runs and report
its mean. For human experiments, we summarize all results, randomly select 60% data,
calculate the accuracy with 5 runs and report its mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computational resources used
for model experiments and human experiments in the section of Experiment Details in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper adheres to the NeurIPS Code of Ethics,
with no identified ethical concerns regarding the methods, data usage, or potential societal
impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work shares the general ethical considerations common to AI research,
and does not present any unique or specific societal impact that warrants separate discussion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For the human experiment data, all participants have approved to use their
anonymous data for research activity and signed the consent form under the supervision of
IRB.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper uses existing assets, which the authors have properly acknowledged.
It also contributes new assets, including novel models, datasets, and benchmarks. Details
of these contributions are clearly described in the paper, and all associated code, data, and
models are made publicly available.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Details of the human experiments are provided in both the main body and the
Experiment Details section of the appendix.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
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Justification: IRB has approved our human behavioral experiments. The human experiments
pose no risks to participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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