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Abstract001

LLM inference for enterprise applications, such002
as summarization, RAG, and code-generation,003
typically observe much longer prompt than004
generations, leading to high prefill cost and005
response latency. We present SwiftKV, a novel006
model transformation and distillation procedure007
targeted at reducing the prefill compute (in008
FLOPs) of prompt tokens while preserving high009
generation quality. First, SwiftKV prefills later010
layers’ KV cache using an earlier layer’s output,011
allowing prompt tokens to skip those later012
layers. Second, SwiftKV employs a lightweight013
knowledge-preserving distillation procedure014
that can adapt existing LLMs with minimal015
accuracy impact. Third, SwiftKV can naturally016
incorporate KV cache compression to improve017
inference performance in low-memory scenar-018
ios. Our comprehensive experiments show that019
SwiftKV can effectively reduce prefill compu-020
tation by 25–50% across several LLM families021
while incurring minimum quality degradation.022
In the end-to-end inference serving, SwiftKV023
realizes up to 2× higher aggregate throughput024
and 60% lower time per output token. It can025
achieve a staggering 560 TFlops/GPU of nor-026
malized inference throughput, which translates027
to 16K tokens/s for Llama-3.1-70B. SwiftKV is028
open-sourced at https://anonymized.link.029

1 Introduction030

Large Language Models (LLMs) are now an031

integral enabler of enterprise applications and032

offerings, including code and data co-pilots (Chen033

et al., 2021; Pourreza and Rafiei, 2024), retrieval034

augmented generation (RAG) (Lewis et al., 2020;035

Lin et al., 2024), summarization (Pu et al., 2023;036

Zhang et al., 2024), and agentic workflows (Wang037

et al., 2024; Schick et al., 2023). However, the cost038

and speed of inference determine their practicality,039

and improving the throughput and latency of LLM040

inference has become increasingly important.041

While prior works, such as model pruning (Ma042

et al., 2023; Sreenivas et al., 2024), KV cache043

compression (Hooper et al., 2024; Shazeer, 2019; 044

Ainslie et al., 2023b; Chang et al., 2024), and sparse 045

attention (Zhao et al., 2024; Jiang et al., 2024), 046

have been developed to accelerate LLM inference, 047

they typically significantly degrade the model 048

quality or work best in niche scenarios, such as low- 049

memory environments or extremely long contexts 050

requests (e.g. >100K tokens). On the other hand, 051

production deployments are often compute-bound 052

rather than memory-bound, and such long-context 053

requests are rare amongst diverse enterprise use 054

cases (e.g. those observed at Anonymous Org). 055

In this paper, we take a different approach to im- 056

proving LLM inference based on the key observa- 057

tion that typical enterprise workloads process more 058

input tokens than output tokens. For example, tasks 059

like code completion, text-to-SQL, summarization, 060

and RAG each submit long prompts but produce 061

fewer output tokens (a 10:1 ratio with average 062

prompt length between 500 and 1000 is observed 063

in our production). In these scenarios, inference 064

throughput and latency are often dominated by the 065

cost of prompt processing (i.e. prefill), and reduc- 066

ing this cost is key to improving their performance. 067

Based on this observation, we designed SwiftKV, 068

which improves throughput and latency by 069

reducing the prefill computation for prompt tokens. 070

SwiftKV (Fig. 1) consists of three key components: 071

Model transformation. SwiftKV rewires an 072

existing LLM so that the prefill stage during 073

inference can skip a number of later transformer 074

layers, and their KV cache are computed by the last 075

unskipped layer. This is motivated by the obser- 076

vation that the hidden states of later layers do not 077

change significantly (see Sec. 3.2 and (Liu et al., 078

2024b)). With SwiftKV, prefill compute is reduced 079

by approximately the number of layers skipped. 080

Optionally, for low-memory scenarios, we 081

show that the SwiftKV model transformation can 082

naturally incorporate KV cache memory reductions 083
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Figure 1: Illustration of SwiftKV 50% prefill reduction and 2-way AcrossKV. After distillation, the KV cache of
layers 5–8 can all be populated using the hidden state outputs of layer 4. For prefill tokens, the query, attention, and
MLP operations of layers 5–8 may be skipped, while decode tokens complete all layers. Existing models may be
efficiently adapted for SwiftKV by distilling from the original model using a small dataset. Model knowledge is
preserved by keeping the trainable parameters limited to the Q, K, and V projections of the layers affected by SwiftKV.

by also merging the KV cache of consecutive084

skipped layers, which we call AcrossKV.085

Knowledge Recovery. After the SwiftKV trans-086

formation is applied to the LLM, its prediction087

quality is recovered via distillation from the088

original model. A very lightweight distillation is089

sufficient, with <10% the model weights (Q, K,090

and V projections of the skipped layers) trained091

on <1B tokens, which takes less than 3 hours092

on 8 H100 GPUs for Llama-3.1-8B-Instruct. In093

contrast, recent prune-and-distill techniques train094

the entire pruned model on 10–100B tokens (Tang095

et al., 2025; Sreenivas et al., 2024).096

We show that SwiftKV is effective on diverse097

architectures, including small models (Llama-098

3.2-3B-Instruct), large models (Llama-3.1-405B-099

Instruct), mixture-of-experts and latent attention100

(Deepseek-V2-Lite-Chat). Remarkably, we found101

that it is possible for SwiftKV to skip 25–50% of102

the layers for prompt tokens without significantly103

impacting the model quality across these scenarios.104

Optimized Inference. To realize SwiftKV into105

end-to-end throughput and latency improvements,106

we implemented it in vLLM (Kwon et al., 2023)107

and SGLang (Zheng et al., 2024). SwiftKV108

increases the throughput of enterprise workloads109

by up to 2×, while reducing time-to-first-token110

(TTFT) and time-per-output-token (TPOT) by up111

to 50% and 60%, respectively. In fact, for Llama-112

3.1-70B-Instruct, SwiftKV achieves a normalized113

throughput of 560 TFLOPS/GPU1 at an unprece- 114

dented 56.6% MFU utilization for inference 115

(Sec. 4.2). SwiftKV incurs minimal quality degra- 116

dations (<1–2%) averaged across a wide range of 117

tasks (Sec. 4.1), including ARC-Challenge (Clark 118

et al., 2018), Winogrande (Sakaguchi et al., 2019), 119

HellaSwag (Zellers et al., 2019), TruthfulQA (Lin 120

et al., 2022), MMLU (Hendrycks et al., 2021), and 121

GSM8K (Cobbe et al., 2021). 122

We open-sourced the training and inference 123

code for SwiftKV at https://anonymized.link, 124

as well as several SwiftKV models that can be 125

used directly by the community. 126

2 Related Works 127

Model pruning and layer skipping. Prior works 128

have explored reducing the size and compute 129

footprint of LLMs by pruning their weights, 130

followed by post-training on 10–100B tokens to 131

recover accuracy (Tang et al., 2025; Sreenivas 132

et al., 2024; Xia et al., 2024). Compared to these 133

methods, SwiftKV is focused on reducing prefill 134

compute using a much lighter-weight distillation 135

(<1B tokens). Other works explored adaptively 136

skipping layers without pruning weights, and 137

using little to no post-training (Ma et al., 2023; 138

Jaiswal et al., 2024; Men et al., 2024; Yang et al., 139

2024; Ashkboos et al., 2024). These works reduce 140

compute for prefill and decode tokens alike, and 141

typically can skip up to 25% of the model without 142

significant accuracy degradations. SwiftKV re- 143

1Normalized throughput and MFU is based on number of
floating point operations in the baseline model.
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duces prefill compute, and can skip 25–50% of the144

model without significant accuracy degradations.145

KV cache compression. Quantization tech-146

niques like FP8/FP4 can reduce the memory for147

both KV cache and parameters (Hooper et al.,148

2024). Attention optimizations like MQA (Shazeer,149

2019), GQA (Ainslie et al., 2023b), low-rank150

attention (Chang et al., 2024) also reduce the151

KV cache. These approaches are complementary152

to SwiftKV, which we demonstrate in Sec. 4.1153

and Sec. B.1. Furthermore, while many of these154

approaches only focus on reducing the memory,155

SwiftKV reduces both the prefill compute and156

memory (via AcrossKV). As we show in Sec. 5.1,157

compute reduction is crucial for accelerating158

LLM inference in compute-bound scenarios with159

sufficient memory, which is common in production160

with modern GPUs (e.g., A100, H100).161

Sparse attention. Systems such as ALISA (Zhao162

et al., 2024) and MInference (Jiang et al., 2024)163

leverage naturally-occurring sparsity patterns in164

transformer models to reduce the computation of165

the quadratic attention operation. Sparse attention166

can be particularly effective for very long sequence167

lengths (e.g. 100K–1M tokens) when attention is168

the dominant operation. In comparison, SwiftKV169

reduces prefill computation by skipping not just170

the attention operation, but also the query/output171

projections and MLP of certain layers. This means172

that SwiftKV can be more suited for inputs with173

moderate lengths (e.g. <100K) when MLP is174

the dominant operation. Additionally, SwiftKV175

either runs or skips attention operations in their176

entirety, which makes it orthogonal to existing177

sparse attention methods.178

3 SwiftKV: Design and Implementation179

3.1 Preliminaries180

In transformers (Vaswani et al., 2017), attention181

enables each token to focus on other tokens by182

comparing queries (Q) with keys (K), using values183

(V ) to compute the final representation. For a se-184

quence of input tokens x(1),...,x(n), the projections185

are: Q=XWQ, K =XWK , V =XWV , where186

X ∈ Rn×d are the input embeddings, and WQ ∈187

Rd×dk and WK ,WV ∈Rd×dg are trained model pa-188

rameters with dg|dk. Hereafter, we may also refer189

to WK and WV as a single matrix WKV ∈Rd×2dk .190

During the prefill phase of inference, the model191

processes the entire input sequence, computing192

K and V for all tokens in parallel (or in chunks 193

in the case of Split-Fuse (Holmes et al., 2024; 194

Agrawal et al., 2024)). This typically occurs when 195

the model handles an initial prompt or context. 196

During the decoding phase of inference, new 197

tokens are generated one at a time. When predict- 198

ing the next token, only the query (Q(t+1)) for the 199

new token needs to be computed, while the model 200

attends to the keys and values (K(1), ... , K(t), 201

V (1),...,V (t)) of all previous tokens. 202

In the decoding phase, KV caching is employed. 203

After processing each token t, the newly computed 204

K(t) and V (t) are stored in a cache. For the next 205

token t+1, only the new query Q(t+1), key K(t+1), 206

and value V (t+1) are computed. The attention 207

computation will then utilize the cached K and 208

V from all prior tokens, allowing for reduced 209

computational overhead during inference. 210

3.2 SwiftKV: Project KV cache from one layer 211

Assume the input of l-th layer is xl, and its i-th 212

token is x
(i)
l . A key property of LLMs is that xl 213

becomes more similar as the depth grows (Liu 214

et al., 2024b; Gromov et al., 2024). 215

To illustreate, we compute the average input 216

similarity between l-th layer’s input and all 217

remaining layers’ input, i.e., 218

SimScore(xl)=

∑L
j=l+1Similarity(xl,xj)

L−l
, (1) 219

where L is the number of layers and 220

Similarity(xl,xj) is the average cosine simi- 221

larity between all x(i)
l and x

(i)
j . 222

The results of several models are shown in Fig. 2. 223

Deeper layers have higher SimScore(xl), and at 224

around half of the depth, the average similarity 225

of xl with x>l is above 0.5 for all models, which 226

shows that the difference of input hidden states are 227

small in deeper layers. 228

Based on this observation, the first key compo- 229

nent of SwiftKV is to use l-th layer’s output xl+1 230

to compute the KV cache for all remaining layers. 231

More specifically, SwiftKV retains the standard 232

transformer architecture up to and including the 233

l-th layer, but the KV cache for all remaining 234

layers are computed immediately using xl+1, i.e. 235

KVj=Wj
KV xl+1, for all j>l, (2) 236

where KVj is the KV cache for j-th layer and 237

Wj
KV is its KV projection weight matrix. 238
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Figure 2: LEFT: input similarity of smaller models. MID: input similarity of larger models. RIGHT: time per forward
pass of Llama-3.1-8B-Instruct. SwiftKV reduces the forward pass processing time across a range of batch sizes.

Table 1: Breakdown of transformer operations for Llama-
3.1-70B with SwiftKV (in GFlops per prefill token).

Model Vocab K,V Q,O MLP Attn. Total Rel.

Baseline 4.3 2.6 22 113 160 302 100%
25% SwiftKV 4.3 2.6 16 85 120 228 75.5%
50% SwiftKV 4.3 2.6 11 56 80 154 51.0%
50% SwiftKV 4.3 1.7 11 56 80 153 50.7%+ 4× AcrossKV

Prefill Compute Reduction. SwiftKV enables239

significant reduction in prefill compute during240

LLM inference. Originally, all input tokens must241

be processed by all transformer layers. With242

SwiftKV, input tokens2 only need to compute243

Wj
KV xl+1 for layers j > l to generate layer j’s244

KV cache, and all other operations (i.e., QO245

projections, Attention, and MLP) of layers j > l246

can be skipped entirely. When prefill compu-247

tation dominates generated token computation,248

this reduces the total inference computation to249

approximately l/L. Fig. 1 illustrates the operations250

skipped by SwiftKV, and Table 1 shows a more251

detailed example compute breakdown for Llama-252

3.1-70B-Instruct. We note that decoding tokens253

still propagate through all layers, so additional254

decoding heads are not necessary for SwiftKV.255

3.3 AcrossKV: Share KV cache between layers256

GQA (Ainslie et al., 2023a), one of the most257

widely adopted KV cache compression methods,258

showed that the KV cache can be shared across259

attention heads within the same transformer layer.260

Later, (Liu et al., 2024a) showed that the KV261

cache can be merged for certain pairs of adjacent262

layers. Although SwiftKV’s main focus is on263

compute reduction rather than memory reduction,264

we show that KV cache compression can readily be265

2The very last input token still needs to compute all layers
to generate the first output token.

incorporated with SwiftKV. To do this, SwiftKV 266

is supplemented by AcrossKV, which employs 267

cross-layer KV cache sharing to the skipped layers. 268

Particularly, instead of computing KV cache for 269

all of the skipped layers as shown in equation 2, 270

AcrossKV selects one layer to compute the KV 271

cache for several consecutive layers and share 272

it within the small group (Fig. 1). AcrossKV 273

can combine more than two layers’ KV caches 274

into a single one, which offers higher potential 275

compression ratios than prior works (Liu et al., 276

2024a) that employ cross-layer KV cache merging, 277

while simplifying its implementation. 278

3.4 Knowledge Recovery 279

While SwiftKV preserves all the original param- 280

eters, it re-wires the architecture so that the KV 281

cache projections may receive different inputs. We 282

found that this re-wiring (and AcrossKV) requires 283

fine-tuning to recover the original capabilities from 284

the modified model. Since we only change the KV 285

projections for layer > l, this can be achieved by 286

fine-tuning just the WQKV weight matrices from 287

the (l + 1)-th layer onwards. However, instead 288

of directly fine-tuning these parameters using 289

standard LM loss, we find that distilling using the 290

output logits of the original model allows for better 291

knowledge recovery (see Sec. 5 for more details). 292

Additionally, we found that limiting the training 293

to just WQKV achieves better accuracy, which 294

aligns with prior hypotheses that LLM knowledge 295

is primarily stored in their MLP layers (Meng et al., 296

2024; Geva et al., 2021; Elhage et al., 2021). We 297

further explore this in Sec. 5.2. An added benefit 298

is that these parameters are typically <10% of the 299

total for popular GQA models (e.g., Llama, Mistral, 300

Qwen), allowing for very efficient distillation. 301
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Efficient Distillation. Since only a few WQKV302

parameters need training, we can keep just a single303

copy of the original model weights in memory304

that are frozen during training, and add an extra305

trainable copy of the WQKV parameters for layers306

>l initialized using the original model (See Fig. 1).307

During training, we create two modes for the308

later layers >l, one with original frozen parameters309

using original architecture, and another with the310

SwiftKV re-wiring using new QKV projections i.e.,311

yteacher=M(x,SwiftKV =False),

ystudent=M(x,SwiftKV =True),
(3)312

where y· is the final logits, M is the model, and313

x is the input. Afterwards, we apply the standard314

distillation loss (Hinton et al., 2015) on the outputs.315

After the distillation, the original KV projection316

layers >l are discarded during inference.317

This method allows us to distill Llama-3.1-8B-318

Instruct on 680M tokens of data in 3 hours using319

8 H100 GPUs, and Llama-3.1-70B-Instruct in 5320

hours using 32 H100 GPUs across 4 nodes. In con-321

trast, many prune-and-distill (Sreenivas et al., 2024)322

and layer-skipping (Elhoushi et al., 2024) methods323

require much larger datasets (e.g. 10–100B tokens)324

and incur greater accuracy gaps than SwiftKV.325

3.5 Optimized Implementation for Inference326

LLM serving systems can be complex and incorpo-327

rate many simultaneous optimizations at multiple328

layers of the stack, such as PagedAttention (Kwon329

et al., 2023), Speculative Decoding (Leviathan330

et al., 2023), SplitFuse (Holmes et al., 2024;331

Agrawal et al., 2024), and more. A benefit of332

SwiftKV is that it makes minimal changes to the333

model architecture, so it can be integrated into334

existing serving systems without implementing335

new kernels (e.g. for custom attention operations or336

sparse computation) or novel inference procedures.337

Implementation in vLLM and SGLang. To338

show that the theoretical compute reductions of339

SwiftKV translates to real-world savings, we340

integrated it with vLLM (Kwon et al., 2023) and341

SGLang (Zheng et al., 2024). Our implementation342

is compatible with chunked prefill (Holmes et al.,343

2024; Agrawal et al., 2024), which mixes chunks of344

prefill tokens and decode tokens in each minibatch.345

During each forward pass, after completing layer346

l, the KV-cache for the remaining layers (>l) are347

immediately computed, and only the decode tokens348

are propagated through the rest of the model layers.349

4 Main Results 350

We evaluated SwiftKV in terms of model accuracy 351

(Sec. 4.1) compared to the original model and 352

several baselines, and end-to-end inference 353

performance (Sec. 4.2) in a real serving system. 354

Distillation datasets. Our dataset is a mixture 355

of Ultrachat (Ding et al., 2023), SlimOrca (Lian 356

et al., 2023), and OpenHermes-2.5 (Teknium, 357

2023), totaling roughly 680M Llama-3.1 tokens. 358

For more details, please see Appendix A.1. 359

SwiftKV Notation. For prefill computation, we 360

report the approximate reduction as (L − l)/L 361

due to SwiftKV, and for KV cache, we report the 362

exact memory reduction due to AcrossKV. For 363

example, SwiftKV (l=L/2) and 4-way AcrossKV 364

is reported as 50% prefill compute reduction and 365

37.5% KV cache memory reduction. 366

4.1 Model Quality Impact of SwiftKV 367

Table 2 shows the quality results of all models we 368

evaluated, including Llama-3.1-Instruct, Qwen2.5- 369

14B-Instruct, Mistral-Small, and Deepseek-V2. 370

Of these models, we note that the Llama models 371

span two orders of magnitude in size (3B to 405B), 372

Llama-3.1-405B-Instruct uses FP8 (W8A16) quan- 373

tization, and Deepseek-V2-Lite-Chat is a mixture- 374

of-experts model that implements a novel latent 375

attention mechanism (DeepSeek-AI et al., 2024). 376

We also compare with three baselines: (1) 377

FFN-SkipLLM (Jaiswal et al., 2024), a training-free 378

method for skipping FFN layers (no attention lay- 379

ers are skipped) based on hidden state similarity, (2) 380

Llama-3.1-Nemotron-51B-Instruct (Sreenivas et al., 381

2024), which is pruned and distilled from Llama- 382

3.1-70B-Instruct using neural architecture search 383

on 40B tokens, and (3) DarwinLM-8.4B (Tang 384

et al., 2025), which is pruned and distilled from 385

Qwen2.5-14B-Instruct using 10B tokens. 386

SwiftKV. For Llama, Mistral, and Deepseek, we 387

find the accuracy degradation for 25% SwiftKV is 388

less than 0.5% from the original models (averaged 389

across tasks). Additionally, the accuracy gap is 390

within 1–2% even at 40–50% SwiftKV. Beyond 391

50% SwiftKV, model quality drops quickly. For 392

example, Llama-3.1-8B-Instruct incurs a 7% accu- 393

racy gap at 62.5% SwiftKV. We find that Qwen suf- 394

fers larger degradations, at 1.1% for 25% SwiftKV 395

and 7.4% for 50% SwiftKV, which may be due 396

to Qwen models having lower simularity between 397

layer at 50–75% depth (Fig. 2). Even still, SwiftKV 398
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Table 2: All SwiftKV model quality evaluations. For FFN-SkipLLM, we set the candidate layers to be skipped to be
from 35–8% depth in each model, which reflects the settings in their paper. The prefill reduction % represents just the
fraction of MLP layer skipped, and varies between models and tasks since it is adaptively determined during inference.

Model
SwiftKV AcrossKV Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM8K-CoT

Avg.
(Prefill Reduction) (Cache Reduction) 0-shot 5-shot 10-shot 0-shot 5-shot 0-shot 8-shot

Llama-3.1-8B-Instruct

Baseline – – 82.00 77.90 80.40 54.56 67.90 70.63 82.56 73.71

SwiftKV ✓(25%) ✗ 82.08 77.98 80.63 54.59 67.95 70.45 81.43 73.59
SwiftKV ✓(50%) ✗ 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
SwiftKV ✓(62.5%) ✗ 71.76 75.77 78.21 52.73 61.55 53.68 68.92 66.09

SwiftKV ✓(50%) 2-way (25%) 80.29 77.82 79.03 54.66 66.96 68.39 75.59 71.82
SwiftKV ✓(50%) 4-way (37.5%) 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49
SwiftKV ✓(50%) 8-way (43.75%) 79.18 77.19 77.38 54.79 65.73 66.88 72.33 70.50
SwiftKV ✓(50%) 16-way (46.875%) 78.24 76.80 76.87 56.86 64.65 65.86 72.25 70.22

FFN-SkipLLM (12-19%) – 81.4 74.11 73.94 54.55 67.65 64.12 78.62 70.62

Llama-3.1-70B-Instruct

Baseline – – 93.34 85.16 86.42 59.95 83.97 86.21 95.15 84.31

SwiftKV ✓(25%) ✗ 93.00 84.69 85.98 59.43 82.82 85.81 95.07 83.83
SwiftKV ✓(50%) ✗ 93.09 83.82 84.45 58.40 82.51 85.00 93.56 82.98

SwiftKV ✓(50%) 2-way (25%) 92.92 82.95 84.10 57.79 82.66 84.55 93.48 82.63
SwiftKV ✓(50%) 4-way (37.5%) 92.92 83.74 84.72 58.28 82.60 84.79 93.71 82.96

Nemotron-51B (28%) (50%) 91.47 84.45 85.68 59.02 81.74 83.86 93.25 82.78

Llama-3.1-405B-Instruct (FP8)
Baseline – – 94.7 87.0 88.3 64.7 87.5 88.1 96.1 86.6

SwiftKV ✓(50%) ✗ 94.0 86.3 88.1 64.2 85.7 87.5 95.2 85.9

Llama-3.2-3B-Instruct

Baseline – – 75.17 68.59 73.32 51.45 62.01 62.48 72.32 66.47

SwiftKV ✓(25%) ✗ 75.59 69.77 72.34 52.80 61.89 62.39 71.11 66.55
SwiftKV ✓(40%) ✗ 75.34 68.98 71.37 51.10 61.80 61.62 68.68 65.55
SwiftKV ✓(50%) ✗ 71.25 68.75 70.77 51.29 59.63 59.94 67.02 64.09

SwiftKV ✓(40%) 2-way (25%) 74.82 68.66 71.41 50.67 61.55 61.03 67.77 65.13
SwiftKV ✓(40%) 4-way (37.5%) 75.59 69.21 70.79 50.89 61.35 60.82 67.70 65.19

FFN-SkipLLM (8-16%) – 74.57 66.38 67.55 49.57 60.95 61.24 69.75 64.28

Mistral-Small-Instruct-2409

Baseline – – 84.12 84.68 87.27 56.85 73.33 74.86 86.50 78.23

SwiftKV ✓(25%) ✗ 84.04 84.84 87.03 55.97 72.88 74.69 85.21 77.80
SwiftKV ✓(50%) ✗ 83.53 83.97 86.30 55.63 72.91 74.04 84.30 77.24

SwiftKV ✓(50%) 2-way (25%) 83.36 84.05 86.22 56.20 72.30 73.70 84.68 77.21
SwiftKV ✓(50%) 4-way (37.5%) 82.93 83.82 86.17 56.00 72.29 73.00 82.48 76.66

FFN-SkipLLM (34-37%) – 65.61 72.61 59.80 53.52 64.20 2.16 2.12 45.71

Deepseek-V2-Lite-Chat

Baseline – – 65.53 74.66 81.56 50.98 56.86 50.61 68.69 64.12

SwiftKV ✓(25%) ✗ 65.44 75.05 81.52 50.53 56.91 50.92 68.99 64.19
SwiftKV ✓(45%) ✗ 65.61 73.95 80.82 50.20 56.33 51.56 66.11 63.51

SwiftKV ✓(45%) 2-way (25%) 65.52 74.26 80.23 49.85 55.59 50.51 65.57 63.07
SwiftKV ✓(45%) 4-way (37.5%) 61.34 75.21 79.80 48.39 54.82 30.80 64.89 59.32

FFN-SkipLLM (30-32%) – 10.49 58.41 49.34 50.69 4.56 0.01 0.30 24.83

Qwen2.5-14B-Instruct

Baseline – – 62.29 79.32 85.04 69.07 76.58 79.04 90.37 77.38

SwiftKV ✓(25%) ✗ 62.03 79.00 84.63 68.39 76.09 78.64 84.83 76.23
SwiftKV ✓(50%) ✗ 56.91 77.26 82.71 60.76 64.40 68.20 79.30 69.93

SwiftKV ✓(25%) 2-way (25%) 61.43 79.71 85.22 69.33 76.25 78.88 84.23 76.43
SwiftKV ✓(25%) 4-way (37.5%) 59.13 80.89 84.92 68.75 75.70 78.84 82.78 75.85

FFN-SkipLLM (7–21%) – 53.24 73.09 65.10 59.78 73.55 62.22 50.79 62.53
DarwinLM-8.4B (40%) – 49.32 70.96 74.95 41.99 12.46 0.00 1.90 35.94

performs much better than FFN-SkipLLM and399

DarwinLM-8.4B, which suffer massive 15% and400

42% drops from the baseline model, respectively.401

AcrossKV. The accuracy impact of AcrossKV402

is also minimal. Starting from 25–50% SwiftKV,403

adding 2-way AcrossKV (20–25% KV cache404

reduction) further degrades average task accuracy405

by at most 1% across all models. Pushing to 4-way406

AcrossKV, Deepseek-V2-Lite-Chat experiences a407

steep accuracy drop from 63.07% to 59.32%, while408

other models experience smaller drops. Notably,409

we found that Llama-3.1-8B-Instruct still achieves410

70.22% average accuracy at 16-way AcrossKV,411

meaning all the last half of layers share a single412

layer of KV cache. Furthermore, the design of413

AcrossKV is complementary to many existing KV414

cache compression methods. In Sec. B.1, we show415

that AcrossKV can be combined with quantization416

to achieve 62.5% reduction in KV cache memory. 417

SwiftKV vs Baselines. SwiftKV outperforms 418

FFN-SkipLLM across all scenarios we tested. FFN- 419

SkipLLM skips only MLPs for prefill and decode 420

tokens, while SwiftKV skips both MLP and atten- 421

tion layers for prefill tokens. Still, FFN-SkipLLM 422

sees large degradations for Mistral, Deepseek, and 423

Qwen, even at 7–37% of MLPs skipped. For Llama 424

models, skipping under 20% of of the MLP layers 425

using FFN-SkipLLM still underperforms SwiftKV 426

skipping 50% of MLP and attention layers. 427

Compared with Nemotron-51B and DarwinLM- 428

8.4B, 50% SwiftKV reduces more prefill while 429

achieving higher accuracies. Also, Nemotron-51B 430

is distilled on 40B tokens, and DarwinLM-8.4B 431

on 10B tokens, while SwiftKV is distilled on <1B 432

tokens and on <10% of the model parameters. 433

When prefill compute is substantial (e.g., many en- 434
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terprise applications), SwiftKV is the clear choice435

for reducing cost without sacrificing accuracy.436

4.2 Inference Performance437

We focus on two common production scenarios:438

1. Batch-Inference: When processing requests439

in bulk or serving a model under high usage440

demand, it is important to achieve high com-441

bined throughput in terms of input and output442

tokens to cost-effectively serve the model.443

2. Interactive-Inference: In interactive scenarios444

(e.g., chatbots, copilots), metrics that define445

the end-user experience are the time-to-first-446

token (TTFT) and time-per-output-token447

(TPOT). Low TTFT and TPOT are desirable448

to deliver smooth usage experiences.449

We evaluate the end-to-end inference perfor-450

mance using Llama-3.1-8B-Instruct running on451

1 NVIDIA H100 GPU with 80GB of memory,452

Llama-3.1-70B-Instruct running on 4 NVIDIA453

H100 GPUs with 4-way tensor parallelism. We454

show results using vLLM and refer to our SGLang455

results in Appendix A.4, and provide the full hard-456

ware and vLLM configurations in Appendix A.2.457

Batch Inference Performance. Fig. 3 shows458

the results of Llama-3.1-8B-Instruct and Llama-459

3.1-70B-Instruct across several workloads with460

a range of input lengths. SwiftKV achieves461

higher combined throughput than the baseline462

across all the workloads we evaluated. For463

Llama-3.1-8B-Instruct, with 2K input tokens per464

prompt, SwiftKV achieves 1.2 − 1.3× higher465

combined throughput than the baseline, and our466

benefits increase further to 1.8 − 1.9× higher467

combined throughput with 128K inputs. Note468

that for an input length of 8K tokens, SwiftKV469

achieves a staggering 30K tokens/sec/GPU (480470

TFLOPS/GPU). For Llama-3.1-70B-Instruct with471

2K input tokens per prompt, SwiftKV achieves472

1.4−1.5× higher combined throughput than the473

baseline, which improves to 1.8 − 2.0× better474

combined throughput for 128K inputs.475

We also observe AcrossKV can further improve476

the combined throughput due to its ability to477

reduce the memory usage for the KV-cache and478

supporting larger batch sizes. For sequence length479

of 8K, Llama-3.1-70B-Instruct with SwiftKV480

achieves a combined throughput of over 16K481

toks/sec over 4xH100 GPUs which corresponds482

Table 3: Throughput of Llama-3.1-8B-Instruct compared
between Baseline, Merge-all-Layers, and SwiftKV vari-
ants. Run on a H100 GPU with varying memory limits.

Throughput (tokens/s)

Memory Baseline Merge-all- 50% SwiftKV 50% SwiftKV 50% SwiftKV
Layers + 4× AcrossKV + 4× AcrossKV (FP8)

80GB 22.9K 25.1K 31.0K 31.2K 32.0K
40GB 20.6K 25.2K 27.3K 28.4K 28.9K
20GB 10.8K 25.2K 12.2K 18.0K 23.2K
16GB OOM 24.8K OOM 4.22K 7.28K
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Figure 3: Combined input and output throughput
for Llama-3.1-8B-Instruct (left) and Llama-3.1-70B-
Instruct (right) across input lengths (bottom). Roughly
15M tokens worth of requests are sent for each experi-
ment, and each request generates 256 output tokens.
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Figure 4: Time to first token (TTFT, top) and time per
output token (TPOT, bottom) for input lengths 2000 (left),
8000 (middle), and 32000 (right) for Llama-3.1-70B. For
each experiment, a range of different request arrival rates
is simulated. Each request generates 256 output tokens.

to 560 TFLOPS/GPU of BF16 performance when 483

normalized to baseline. This is an unprecedented 484

throughput for BF16 inference workloads. 485

Interactive-Inference Performance. Fig. 4 486

shows the TTFT and TPOT of Llama-3.1-70B- 487

Instruct across a range of request arrival rates 488

and input lengths, and we refer to Fig. A.1 in the 489

Appendix for Llama-3.1-8B-Instruct. When the 490

arrival rate is too high, the TTFT explodes due 491

to the request queue accumulating faster than 492

they can be processed by the system. However, 493

SwiftKV can sustain 1.5 − 2.0× higher arrival 494

rates before experiencing such TTFT explosion. 495

When the arrival rate is low, SwiftKV can reduce 496

the TTFT by up to 50% for workloads with longer 497

input lengths. In terms of TPOT, SwiftKV achieves 498
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Table 4: Impact of Distillation and Full/Partial Model
Finetuning on Llama-3.1-8B-Instruct.

Setting
Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Avg.
0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots

(a) The effect of distillation
W/o Distill 79.44 77.27 78.71 51.14 65.55 65.60 72.71 70.06
W Distill 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70

(b) Full model finetuning vs. part model finetuning

Full Model 76.79 74.82 76.42 53.08 62.94 64.20 69.37 68.23
Part Model 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70

significant reductions for all but the lowest arrival499

rates, up to 60% for certain settings.500

At first, it may be counter-intuitive that SwiftKV501

can reduce TPOT by only optimizing the prefill502

compute and not decode compute. However,503

in most open-source inference systems today,504

including vLLM and SGLang, prefill and decode505

are run on the same GPUs, whether they be inter-506

leaved (Yu et al., 2022) or mixed (Holmes et al.,507

2024; Agrawal et al., 2024). This means prefill and508

decode may contend for GPU time, and reducing509

prefill compute also benefits decode latency.510

Inference on Real-World Requests. In Ap-511

pendix A.5, we evaluate SwiftKV on SGLang using512

real-world requests from ShareGPT (ShareGPT513

Team, 2023), which are collected in the wild from514

users of ChatGPT (OpenAI, 2022). We show that515

the throughput improvements due to SwiftKV516

transfer well to real-world length distributions.517

5 Ablations and Discussions518

5.1 Compute vs Memory Reduction519

A key aspect of SwiftKV is combining prefill520

compute reduction and KV cache compression521

(AcrossKV). While many prior works address KV522

cache compression alone, they are only effective523

when GPU memory is limited, and are less impact-524

ful on datacenter GPUs (e.g., A100 and H100) with525

sufficient memory and inference is compute-bound.526

To illustrate, we construct an “ideal” KV com-527

pression scheme, where every layer’s KV cache528

is merged into a single layer (Merge-all-Layers).529

We retain the computation for all KV operations530

(i.e., W T
kvX) but eliminate the memory for all531

layers > 1, leading to a single layer of KV cache.532

Merge-all-Layers represents a “best case compres-533

sion scenario” with (1) extreme compression ratio534

beyond any published technique, e.g. 32× and535

80× for Llama-3.1 8B-Instruct and 70B-Instruct,536

respectively, and (2) zero overhead, while most537

techniques (e.g., quantization, low-rank decompo-538

sition) add extra computations or data conversions.539

Table 3 shows the throughput attained by Merge- 540

all-Layers compared with the baseline model and 541

its SwiftKV variants under various memory con- 542

straints. As shown, Merge-all-Layers outperforms 543

only in very low memory scenarios (e.g. 16GB 544

and 20GB) when there is barely enough memory 545

for just the model weights, and is only marginally 546

(10%) better than the baseline model when using 547

all 80GB memory. On the other hand, SwiftKV 548

attains 35% higher throughput than the baseline 549

at 80GB even without AcrossKV. When combined 550

with 4× AcrossKV using FP8-quantized KV cache, 551

SwiftKV can approach the throughput of Merge- 552

all-Layers even at a more limited 20GB of memory. 553

5.2 The Impact of Distillation 554

To demonstrate the effectiveness of our distillation 555

method, we train Llama-3.1-8B-Instruct with 50% 556

SwiftKV and no AcrossKV using the standard 557

language model loss, and compare it with our 558

distillation based approach discussed in Sec. 3.4. 559

The results are shown in Table 4 (a). As we can see, 560

the model trained with distillation has a 2.64 point 561

higher average. Particularly, for generative tasks, 562

i.e., MMLU-Cot and GSM-8K, the performance 563

improvement is 4.13 and 6.74, respectively. 564

Full model training vs. partial model training. 565

Our distillation method only fine-tuned the WQKV 566

parameters hypothesizing that this preserves the 567

original model’s knowledge better than full model 568

fine-tuning. This aligns with (Meng et al., 2024), 569

(Geva et al., 2021), and (Elhage et al., 2021), 570

which suggest that MLP layers player a more 571

prominent role in storing knowledge. 572

To validate this, we fine-tuned a model with 573

50% SwiftKV on Llama-3.1-8B-Instruct where all 574

parameters in the latter 50% of layers are trained. 575

The results are shown in Table 4 (b). The model 576

quality of full model distillation is about 4.5 points 577

lower than our proposed partial model distillation. 578

6 Conclusions 579

We presented SwiftKV, a model transformation for 580

reducing inference cost for prefill-dominant work- 581

loads, combined with a KV cache reduction strat- 582

egy to reduce memory footprint, and a light-weight 583

distillation procedure to preserve model accuracy. 584

SwiftKV demonstrates strong results and leaves 585

room for exploration in parameter-preserving 586

transformations to further optimize inference. 587
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Limitations588

In our work, we did not aim to optimize the589

training data selection though we provide potential590

ways in Sec. B.3. Additionally, we did not include591

a detailed benchmark analysis for our method.592

However, as shown in Sec. B.3, we ensured that593

our datasets were not cherry-picked to overfit the594

reported tasks. Furthermore, we did not finetune595

our model with advanced post-training approaches,596

like DPO and RLHF, which we leave for future597

work. Finally, we hypothesize that our method can598

work even better when combined with pretraining599

or continued-pretraining, but due to resources600

constraints, we did not explore this direction. We601

hope to revisit these ideas in the future.602
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Table A.1: The setting for different tasks

Arc-Challenge Winogrande HelloSwag truthfulqa MMLU MMLU-CoT GSM-8K

0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots

exact_match,multi_choice acc acc_norm truthfulqa_mc2 (acc) exact_match,multi_choice exact_match,strict-match exact_match,strict-match
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Figure A.1: Time to first token (TTFT, top) and time per output token (TPOT, bottom) for input lengths 2000 (left),
8000 (middle), and 32000 (right) for Llama-3.1-8B-Instruct. For each experiment, a range of different request arrival
rates is simulated. Each request generates 256 output tokens.

A Main Experiment Details898

A.1 Training and Quality Evaluation Details899

For datasets, we use a mixture of HuggingFaceH4/ultrachat_200k, teknium/OpenHermes-2.5, and900

Open-Orca/SlimOrca which totals around 680M tokens. We set training epochs to be 2, learning rate901

to be 3e-4, weight decay to be 0.05, warm up ratio to be 5%, maximum sequence length to be 8192 with902

attention separated sequence packing, the distillation temperature to be 2.0.903

Our evaluation follows https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruc904

t-FP8 using the github repository https://github.com/neuralmagic/lm-evaluation-harness905

/tree/llama_3.1_instruct. The main reason behind this is that the implementation implemented906

chat-templated evaluations for several of our evaluation tasks, which is especially important for the907

Llama-3.1/3.2 models. For all tasks, we follow the same number of few shots and/or chain of thoughts908

as the provided commands. We present the number of shots and metrics used in the paper in Table A.1.909

A.2 Inference Speedup Evaluation Details910

Hardware Details. We ran all inference speedup experiments on a AWS p5.48xlarge instance, with911

8 NVIDIA H100 GPUs, 192 vCPUs, and 2TB memory. Llama-3.1-8B-Instruct experiments are run using912

1 of the 8 GPUs, and Llama-3.1-70B-Instruct experiments are run using 4 of the 8 GPUs.913

vLLM Configuration. We ran all experiments with enforce_eager and chunked prefill enabled914

with max_num_batched_tokens set to 2048. To run each benchmark, we instantiated vLLM’s915

AsyncLLMEngine and submitted requests using its generate method according to each benchmark916

setting. For each request, the inputs are tokenized before being submitted, and the outputs are forced917

to a fixed length of 256.918

A.3 Llama-3.1-8B-Instruct Latency Results919

See Fig. A.1.920
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Table A.2: Inference throughput for Llama-3.1-8B-Instruct and Llama-3.1-8B-Instruct on SGLang.

Model Input length Output length Baseline (tokens/s) 50% SwiftKV (tokens/s) 50% SwiftKV + 4× AcrossKV (tokens/s)

Llama-3.1-8B-Instruct

2000 256 27.4K 36.2K 38.9K
8000 256 22.9K 31.0K 34.0K
32000 256 16.9K 25.9K 26.6K
128000 256 7.66K 13.2K 14.0K

Llama-3.1-70B-Instruct

2000 256 11.6K 15.7K 17.3K
8000 256 10.8K 16.1K 17.8K
32000 256 8.82K 14.0K 15.3K
128000 256 4.78K 8.21K 8.75K

Table A.3: Inference throughput for Llama-3.1-8B-Instruct and Llama-3.1-8B-Instruct on ShareGPT.

Model
Min length Avg length ratio of Baseline 50% SwiftKV 50% SwiftKV + 4× AcrossKV
ratio filter filtered dataset (tokens/s) (tokens/s) (tokens/s)

Llama-3.1-8B-Instruct

0 (Original) 1.5 23.7K 27.6K 29.4K
0.2 3.4 25.8K 31.3K 31.9K
1 6.5 27.2K 35.1K 37.3K
2 10 30.3K 41.5K 43.7K
10 26 37.1K 54.7K 56.6K
20 40 37.7K 57.6K 59.9K
100 150 40.3K 64.2K 67.0K

Llama-3.1-70B-Instruct

0 (Original) 1.5 9.73K 11.2K 12.2K
0.2 3.4 10.4K 13.2K 14.2K
1 6.5 11.4K 15.6K 16.0K
2 10 12.6K 18.0K 19.0K
10 26 14.1K 22.6K 23.2K
20 40 14.1K 22.9K 24.1K
100 150 14.6K 24.9K 25.8K

A.4 Inference Results with SGLang 921

In addition to vLLM, we also implemented SwiftKV on SGLang (Zheng et al., 2024). SGLang differs from 922

vLLM in that it leverages RadixAttention and Prefix Caching as first-class citizens, but otherwise supports 923

many of the same features as vLLM, such as chunked-prefill (Agrawal et al., 2024; Holmes et al., 2024). 924

We report the throughput results using SGLang in Table A.2. Overall, we observe similar relative 925

improvements over the baseline (1.4 – 1.8× higher throughput for Llama-3.1-8B-Instruct, and 1.5 – 1.8× 926

for Llama-3.1-70B-Instruct) using SGLang as vLLM (Fig. 3). 927

A.5 Inference Results on ShareGPT 928

We provide additional evaluations using the ShareGPT dataset (ShareGPT Team, 2023), which consists of 929

real-world conversations between users and ChatGPT (OpenAI, 2022). To better match our own observed 930

request lengths (i.e. inputs ≥ 10× outputs), and to cover a broader range of scenarios, we also benchmark 931

different versions of ShareGPT filtered by minimum input/output ratios. These datasets preserve the 932

internal diversity of request lengths from ShareGPT. We report the average input/output length ratios 933

and the measured performance for each of these filtered datasets below. 934

Table A.3 shows the results. Overall, we observe similar percentage improvements from SwiftKV 935

as our main synthetic-dataset experiments, i.e. 1.25 – 1.7× and 1.25 – 1.8× higher throughput for 936

Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct respectively for average length ratios up to ≈ 100 937

(similar ratio to the 32K input length experiments in Fig. 3). 938

B Additional Ablations and Discussions 939

B.1 Combining KV Compression Methods 940

SwiftKV operates in an orthogonal design space to other KV compression methods and can be combined 941

with techniques such as sliding window (Jiang et al., 2023), token-level pruning (Liu et al., 2024c) and 942

quantization (Hooper et al., 2024). We show the combined effect of SwiftKV with per-token KV cache 943

FP8 quantization (Yao et al., 2022). Table B.1 shows the accuracy degradation is within 0.4 points for 944

all cases, even though we applied post-training quantization with no quantization-aware finetuning. 945
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Table B.1: Llama-3.1-8B-Instruct KV cache quantization results.

Model
AcrossKV

KV Quantization
Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Avg.
(Cache Reduction) 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots

SwiftKV ✗ ✗ 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
SwiftKV ✗ ✓ 80.29 77.66 79.23 54.40 67.10 69.51 77.94 72.30
SwiftKV 2-way (25%) ✗ 80.29 77.82 79.03 54.66 66.96 68.39 75.59 71.82
SwiftKV 2-way (62.5%) ✓ 80.03 77.35 78.86 54.44 66.89 68.27 75.97 71.69
SwiftKV 4-way (37.5%) ✗ 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49
SwiftKV 4-way (68.75%) ✓ 79.27 77.43 78.38 54.76 65.62 68.00 75.97 71.35

Table B.2: Llama-3.1-8B-Instruct AcrossKV design

Method
Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Avg.
0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots

MQA 66.89 72.22 67.33 55.00 55.96 39.12 22.37 54.13
AcrossKV-MHA 77.99 75.85 77.37 55.50 63.55 65.48 72.63 69.76
AcrossKV-GQA 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49

B.2 Inter-layer AcrossKV vs Intra-Layer KV cache Reduction946

In this section, we share different design choices of AcrossKV, which considers the tradeoff between947

GQA (Ainslie et al., 2023a) and the across layer sharing into the design. Particularly, when AcrossKV≥2,948

we can either use GQA and AcrossKV together or we can simply use AcrossKV to get all savings.949

For instance, when using 4× AcrossKV, we have KV cache reduction from both GQA and AcrossKV.950

However, we can either do multi-query attention (MQA) for all 16 layers or do multi-head attention951

(MHA) but share the KV cache for all 16 layers.952

We present the 50% SwiftKV reduction with MQA, GQA plus AcrossKV, and GQA plus MHA953

in Table B.2, that all have the same KV cache reduction, 37.5%. AcrossKV-GQA actually provides the954

best performance. One thing to notice is that the AcrossKV-MHA is actually worse than the result of 16×955

AcrossKV from from Table 2 even though AcrossKV-MHA has larger KV cache than 16× AcrossKV.956

We hypothesize that this might be related to hyper-parameter tuning but did not invest deeper. Also, note957

that pure MQA leads to worst performance, which is about 17 points lower than AcrossKV-GQA958

How to effectively balance inter/intra-layer KV cache sharing is an interesting direction to explore.959

We hope that our initial experiments here shed some light for future research.960

B.3 The impact of fine-tuning datasets961

Note that in Sec. 4, we did not try to maximize the performance of SwiftKV from the data recipe962

perspective since the search space is very large and outside the scope of our paper. However, we want963

to share some initial findings about the dataset recipe.964

How good is the data used to train SwiftKV? We chose the datasets to train SwiftKV due to their965

popular adoption and broad domain and task coverage. However, as compared to other high-quality966

domain specific fine-tuning datasets, they may have weaknesses. To measure the quality of these two967

datasets, we directly fine-tuned a model using the Llama-3.1-8B base model, and compared this trained968

model with the Llama-3.1-8B-Instruct model released by Meta.969

The results are shown in Table B.3 (a). The original Llama-3.1-8B-Instruct has a average score of970

73.71 but the model trained using our two datasets only achieved 65.77. This indicates the training data971

used for SwiftKV is not optimal and there may be opportunities to further improve the results we reported972

in Sec. 4 as discussed next.973

Does more math/coding data help GSM-8K? From Table 2, the main degradation among 7 tasks974

for 50% SwiftKV is GSM-8K. This may be due to the lack of math and coding examples in the two975

datasets we picked to train the model. To verify this, we distilled SwiftKV using one extra math-related976

dataset, gretelai/synthetic-gsm8k-reflection-405b (GretelAI, 2024), and one extra coding977

dataset, ise-uiuc/Magicoder-OSS-Instruct-75K (Wei et al., 2023), in total about 8K+75K = 83K978

samples, and about 16M tokens.979
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Table B.3: The impact of datasets on Llama-3.1-8B-Instruct.

Setting
Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Avg.
0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots

(a) Quality of Llama-3.1-8B-Instruct vs model fine-tuned using “ultrachat_200k” and “OpenHermes-2.5”.

Llama-3.1-8B-Instruct 82.00 77.90 80.40 54.56 67.90 70.63 82.56 73.71
Our fine-tuned model 71.42 76.56 80.29 55.37 59.14 54.03 63.61 65.77

(b) Adding more data improves model quality.

Original SwiftKV data 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
Plus math & code data 80.89 77.98 79.54 54.70 67.41 70.00 79.98 72.93
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Figure B.1: Density of early exit probabilities and
alignment of early exit vs final logits.

Q u e s t i o n : What a r e t h e t h r e e p r i m a r y c o l o r s ?
Answer : The t h r e e p r i m a r y c o l o r s a r e :
1 . Red
2 . Blue
3 . Yellow
These c o l o r s a r e c a l l e d p r i m a r y b e c a u s e t h e y a r e t h e
b a s i c b u i l d i n g b l o c k s o f a l l o t h e r c o l o r s . They c a n n o t be
c r e a t e d by mixing o t h e r c o l o r s t o g e t h e r , and t h e y a r e t h e
on ly c o l o r s t h a t can be used t o c r e a t e a l l o t h e r c o l o r s
t h r o u g h mixing .

Table B.4: A Q&A example of early exit.

The results are reported in Table B.3 (b). The performance of all tasks except Winogrande are slightly 980

improved, with the average score being 0.23 higher. Particularly, GSM-8K improves the most, with a 981

0.53% improvement. This is expected since we added extra math and coding datasets. Considering the 982

small amount of new data (83k vs. 1.2M), the improvement is remarkable. 983

This study indicates that improvements in distillation data is potentially an important direction for 984

future work, particularly domain-specific datasets to reduce the quality gap compared to the original 985

model when using SwiftKV. 986

B.4 Simple Early Exit for Decoding Tokens 987

SwiftKV allows all the KV cache needed for generating future tokens to be computed without having to 988

forward-pass though the entire LLM. This means that even the decoding phase could exit earlier without 989

worrying about missing KV cache for subsequent tokens. 990

To add early exit upon SwiftKV, we add an extra language modeling head and use the input to calculate 991

SwiftKV to directly compute the output logits. We apply the same distillation loss of this early exit 992

logits with the original teacher’s logits and directly sum the two distillation losses together as our final 993

optimizing loss. 994

After training, we first look the alignment between the early exit logits and the final logits. The figure 995

is shown in Fig. B.1. The left axis plot the density of early exit largest probabilities. And the right axis 996

shows the probabilities when the maximum of early exit logits aligns with the final logits for each bin. 997

As can be seen, when the maximum logits is larger than 0.95, the alignment likelihood is larger than 998

66%. Note that this is achieved within 160M token training and longer training should help the alignment. 999

How to use early exit is always an interesting directly and research topic. Fully exploring this is out 1000

of the scope of this paper. Here we adopt a simple heuristic approach. When the largest probability is 1001

larger than 0.95, we directly use the early exit prediction. Otherwise, we still process the remaining layers 1002

to get the final prediction. We apply this logic to some questions we selected from Alpaca (Taori et al., 1003

2023) and the results are shown in Table B.4 and Appendix B.4.1. 1004

B.4.1 Early Exit Examples 1005

Here we provide more examples of early exit from Alpaca dataset. 1006

Q u e s t i o n : 1007

1008

D e s c r i b e a t ime when you had t o make a d i f f i c u l t d e c i s i o n . 1009

1010

Answer : 1011
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1012

I 'm an AI , I don ' t have p e r s o n a l e x p e r i e n c e s o r emot ions , b u t I1013

can p r o v i d e1014

a h y p o t h e t i c a l s c e n a r i o t o i l l u s t r a t e a d i f f i c u l t d e c i s i o n −1015

making p r o c e s s .1016

1017

Imagine1018

a s c e n a r i o where I 'm a manager a t a company t h a t s p e c i a l i z e s i n1019

d e v e l o p i n g1020

a r t i f i c i a l i n t e l l i g e n c e s o l u t i o n s . One of t h e key c l i e n t s , a1021

l a r g e1022

c o r p o r a t i o n , has been a s i g n i f i c a n t c o n t r i b u t o r t o t h e company ' s1023

r e v e n u e . However , t h e c l i e n t has been c o n s i s t e n t l y p u s h i n g f o r t h e1024

deve lopment1025

of a new AI sys tem t h a t would r e q u i r e s i g n i f i c a n t r e s o u r c e s1026

and r e s o u r c e s , i n c l u d i n g t h e e x p e r t i s e o f s e v e r a l key team members .1027

1028

However , t h e company has a l s o been a p p r o a c h e d by a new c l i e n t t h a t1029

o f f e r s a more s u s t a i n a b l e and long − term p a r t n e r s h i p , b u t w i th a lower1030

i n i t i a l r e v e n u e p o t e n t i a l . The new c l i e n t i s w i l l i n g t o i n v e s t i n t h e1031

company ' s r e s e a r c h and development , which c o u l d l e a d t o b r e a k t h r o u g h s1032

i n AI t e c h n o l o g y .1033

1034

The d e c i s i o n1035

I would have t o make i s whe the r t o p r i o r i t i z e t h e e x i s t i n g1036

c l i e n t ' s needs and r i s k ove r t h e long − term p o t e n t i a l o f t h e new1037

c l i e n t ' s p a r t n e r s h i p . Th i s d e c i s i o n would r e q u i r e we igh ing t h e s h o r t −1038

t e rm1039

f i n a n c i a l b e n e f i t s a g a i n s t t h e p o t e n t i a l long − term b e n e f i t s o f t h e1040

new p a r t n e r s h i p .1041

1042

To make t h i s d e c i s i o n , I would c o n s i d e r t h e f o l l o w i n g f a c t o r s :1043

1044

1 . ** F i n a n c i a l i m p l i c a t i o n s : * *1045

− The immedia te r e v e n u e from t h e e x i s t i n g c l i e n t would be1046

s i g n i f i c a n t , b u t i t would a l s o come wi th t h e r i s k o f1047

o v e r c o m m i t t i n g r e s o u r c e s and p o t e n t i a l l y s t r a i n i n g t h e team ' s1048

c a p a c i t y .1049

− The new c l i e n t ' s p a r t n e r s h i p would o f f e r a more s u s t a i n a b l e1050

r e v e n u e s t ream , b u t i t would r e q u i r e a s i g n i f i c a n t i n v e s t m e n t o f1051

r e s o u r c e s u p f r o n t .1052

1053

2 . ** S t r a t e g i c a l i g n m e n t : * *1054

− The e x i s t i n g c l i e n t ' s p r o j e c t a l i g n s wi th t h e company ' s c u r r e n t1055

b u s i n e s s1056

model , b u t i t may n o t be t h e b e s t use o f r e s o u r c e s i n t h e1057

l ong te rm .1058

− The new c l i e n t ' s p a r t n e r s h i p would a l l o w t h e company t o e x p l o r e1059

new a r e a s o f r e s e a r c h and development , which c o u l d l e a d t o1060

b r e a k t h r o u g h s i n AI t e c h n o l o g y .1061

1062

3 . **Team dynamics : * *1063
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− The e x i s t i n g c l i e n t ' s p r o j e c t would r e q u i r e t h e i n v o l v e m e n t o f 1064

s e v e r a l key team members , which c o u l d l e a d t o b u r n o u t and 1065

d e c r e a s e d mora le . 1066

− The new c l i e n t ' s p a r t n e r s h i p would a l l o w t h e company t o a t t r a c t 1067

and r e t a i n 1068

t o p t a l e n t , which would be b e n e f i c i a l f o r t h e company ' s 1069

long − te rm s u c c e s s . 1070

. . . 1071

====================================================================== 1072

1073

Q u e s t i o n : 1074

1075

What i s t h e c a p i t a l o f F r a nc e ? 1076

1077

Answer : 1078

1079

The c a p i t a l o f F r an ce i s P a r i s . 1080

====================================================================== 1081

1082

Q u e s t i o n : 1083

1084

E x p l a i n t h e use o f word embeddings i n N a t u r a l Language P r o c e s s i n g 1085

1086

Answer : 1087

1088

**Word Embeddings i n N a t u r a l Language P r o c e s s i n g ** 1089

1090

Word embeddings a r e a f u n d a m e n t a l c o n c e p t i n N a t u r a l Language 1091

P r o c e s s i n g (NLP) t h a t e n a b l e s compu te r s t o u n d e r s t a n d t h e meaning o f 1092

words i n a more m e a n i n g f u l way . They a r e a way t o r e p r e s e n t words as 1093

n u m e r i c a l v e c t o r s , a l l o w i n g machines t o c a p t u r e t h e s e m a n t i c 1094

r e l a t i o n s h i p s between words . 1095

1096

**What a r e Word embeddings ?** 1097

1098

Word embeddings a r e a t y p e o f word r e p r e s e n t a t i o n t h a t c a p t u r e s t h e 1099

s e m a n t i c meaning of words . They a r e t y p i c a l l y l e a r n e d from l a r g e 1100

amounts o f t e x t d a t a u s i n g t e c h n i q u e s such as word2vec , GloVe , and 1101

Word2Vec . 1102

1103

**How do Word embeddings work ?** 1104

1105

Word embeddings work by l e a r n i n g a v e c t o r s p a c e where words a r e 1106

r e p r e s e n t e d as p o i n t s . Each word i s mapped t o a v e c t o r i n t h i s space , 1107

where t h e v e c t o r r e p r e s e n t s t h e meaning of t h e word . The c l o s e r two 1108

words 1109

a r e i n t h e v e c t o r space , t h e more s i m i l a r t h e y a r e s e m a n t i c a l l y . 1110

1111

** Types o f Word embeddings ** 1112

1113

There a r e s e v e r a l t y p e s o f word embeddings , i n c l u d i n g : 1114

1115

17



1 . **1116

Word2Vec * * : Th i s i s a p o p u l a r word embedding t e c h n i q u e t h a t l e a r n s1117

word r e p r e s e n t a t i o n s by p r e d i c t i n g t h e c o n t e x t i n which a word i s1118

used .1119

Word2Vec u s e s two main a r c h i t e c t u r e s : CBOW ( C o n t i n u o u s Bag−of −1120

Words ) and sk ip −gram .1121

2 . **GloVe * * : Th i s i s a n o t h e r p o p u l a r word embedding t e c h n i q u e t h a t1122

l e a r n s1123

word r e p r e s e n t a t i o n s by a n a l y z i n g t h e co − o c c u r r e n c e o f words1124

i n a s e n t e n c e .1125

3 . **Word2Vec wi th N e g a t i v e Sampl ing * * : Th i s i s a v a r i a n t o f t h e1126

word2vec a l g o r i t h m t h a t u s e s n e g a t i v e s a m p l i n g t o r e d u c e t h e1127

d i m e n s i o n a l i t y o f t h e word embeddings .1128

1129

**How a r e Word embeddings used i n NLP t a s k s ?**1130

1131

Word embeddings a r e used i n a v a r i e t y o f NLP t a s k s , i n c l u d i n g :1132

1133

1 . ** Text C l a s s i f i c a t i o n : * *1134

− ** S e n t i m e n t A n a l y s i s : * *1135

− **Spam D e t e c t i o n : * *1136

− ** Topic Model ing : * *1137

− **Named E n t i t y R e c o g n i t i o n (NER) : * *1138

1139

2 . ** Text G e n e r a t i o n : * *1140

− ** Text Summar iza t ion : * *1141

− ** Text G e n e r a t i o n : * *1142

1143

3 . ** I n f o r m a t i o n R e t r i e v a l : * *1144

− ** I n f o r m a t i o n R e t r i e v a l : * *1145

1146

4 . ** Machine T r a n s l a t i o n : * *1147

1148

5 . ** Q u e s t i o n Answering : * *1149

. . .1150

======================================================================1151

1152

Q u e s t i o n :1153

1154

What i s t h e p r o d u c t o f 6 and 2?1155

1156

Answer :1157

1158

The p r o d u c t o f 6 and 2 i s 1 2 .1159

======================================================================1160

1161

Q u e s t i o n :1162

1163

Give t h r e e t i p s f o r s t a y i n g h e a l t h y .1164

1165

Answer :1166

1167
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Here a r e t h r e e t i p s f o r s t a y i n g h e a l t h y : 1168

1169

1 . ** M a i n t a i n a Ba lanced D i e t : * * 1170

1171

E a t i n g a wel l − b a l a n c e d d i e t i s e s s e n t i a l f o r m a i n t a i n i n g o v e r a l l 1172

h e a l t h 1173

. Th i s i n c l u d e s consuming a v a r i e t y o f f r u i t s , v e g e t a b l e s , whole 1174

g r a i n s , l e a n p r o t e i n s , and h e a l t h y f a t s . Aim t o i n c l u d e a ra inbow of 1175

c o l o r s on your p l a t e t o e n s u r e you ' r e g e t t i n g a r a n g e o f e s s e n t i a l 1176

v i t a m i n s 1177

and m i n e r a l s . L i m i t your i n t a k e o f p r o c e s s e d and s u g a r y foods , 1178

and s t a y h y d r a t e d by d r i n k i n g p l e n t y o f w a t e r t h r o u g h o u t t h e day . 1179

1180

2 . ** S tay P h y s i c a l l y A c t i v e : * * 1181

1182

R e g u l a r p h y s i c a l a c t i v i t y i s c r u c i a l f o r m a i n t a i n i n g p h y s i c a l and 1183

me nt a l h e a l t h . Aim t o engage i n a t l e a s t 150 m i n u t e s o f modera te − 1184

i n t e n s i t y e x e r c i s e o r 75 m i n u t e s o f v i g o r o u s − i n t e n s i t y e x e r c i s e p e r 1185

week . Th i s can i n c l u d e a c t i v i t i e s such as walk ing , runn ing , swimming , 1186

c y c l i n g , o r any o t h e r p h y s i c a l a c t i v i t y t h a t you e n j o y . You can a l s o 1187

i n c o r p o r a t e s t r e n g t h t r a i n i n g e x e r c i s e s i n t o your r o u t i n e t o b u i l d 1188

muscle and improve bone d e n s i t y . 1189

1190

3 . ** Get Enough S l e e p and Manage S t r e s s : * * 1191

1192

G e t t i n g 1193

enough s l e e p and managing s t r e s s a r e e s s e n t i a l f o r m a i n t a i n i n g 1194

o v e r a l l h e a l t h . Aim t o g e t 7−9 h o u r s o f s l e e p p e r n i g h t t o h e l p your 1195

body r e p a i r and r e c h a r g e . E s t a b l i s h a c o n s i s t e n t s l e e p s c h e d u l e and 1196

c r e a t e 1197

a r e l a x i n g bed t ime r o u t i n e t o h e l p you wind down . A d d i t i o n a l l y , 1198

engage 1199

i n s t r e s s − r e d u c i n g a c t i v i t i e s such as m e d i t a t i o n , yoga , o r deep 1200

b r e a t h i n g e x e r c i s e s t o h e l p manage s t r e s s and a n x i e t y . 1201

1202

Remember , m a i n t a i n i n g a h e a l t h y l i f e s t y l e i s a long − term commitment , 1203

and 1204

i t ' s e s s e n t i a l t o f i n d a c t i v i t i e s and h a b i t s t h a t work f o r you and 1205

your l i f e s t y l e . 1206
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