SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving
Model Transformation

Anonymous ACL submission

Abstract

LLM inference for enterprise applications, such
as summarization, RAG, and code-generation,
typically observe much longer prompt than
generations, leading to high prefill cost and
response latency. We present SwiftKV, a novel
model transformation and distillation procedure
targeted at reducing the prefill compute (in
FLOPs) of prompt tokens while preserving high
generation quality. First, SwiftK'V prefills later
layers’ KV cache using an earlier layer’s output,
allowing prompt tokens to skip those later
layers. Second, SwiftK'V employs a lightweight
knowledge-preserving distillation procedure
that can adapt existing LLMs with minimal
accuracy impact. Third, SwiftKV can naturally
incorporate KV cache compression to improve
inference performance in low-memory scenar-
ios. Our comprehensive experiments show that
SwiftKV can effectively reduce prefill compu-
tation by 25-50% across several LLM families
while incurring minimum quality degradation.
In the end-to-end inference serving, SwiftKV
realizes up to 2x higher aggregate throughput
and 60% lower time per output token. It can
achieve a staggering 560 TFlops/GPU of nor-
malized inference throughput, which translates
to 16K tokens/s for Llama-3.1-70B. SwiftKV is
open-sourced at https://anonymized. link.

1 Introduction

Large Language Models (LLMs) are now an
integral enabler of enterprise applications and
offerings, including code and data co-pilots (Chen
et al., 2021; Pourreza and Rafiei, 2024), retrieval
augmented generation (RAG) (Lewis et al., 2020;
Lin et al., 2024), summarization (Pu et al., 2023;
Zhang et al., 2024), and agentic workflows (Wang
et al., 2024; Schick et al., 2023). However, the cost
and speed of inference determine their practicality,
and improving the throughput and latency of LLM
inference has become increasingly important.
While prior works, such as model pruning (Ma
et al., 2023; Sreenivas et al., 2024), KV cache

compression (Hooper et al., 2024; Shazeer, 2019;
Ainslie et al., 2023b; Chang et al., 2024), and sparse
attention (Zhao et al., 2024; Jiang et al., 2024),
have been developed to accelerate LLLM inference,
they typically significantly degrade the model
quality or work best in niche scenarios, such as low-
memory environments or extremely long contexts
requests (e.g. >100K tokens). On the other hand,
production deployments are often compute-bound
rather than memory-bound, and such long-context
requests are rare amongst diverse enterprise use
cases (e.g. those observed at Anonymous Org).

In this paper, we take a different approach to im-
proving LLM inference based on the key observa-
tion that typical enterprise workloads process more
input tokens than output tokens. For example, tasks
like code completion, text-to-SQL, summarization,
and RAG each submit long prompts but produce
fewer output tokens (a 10:1 ratio with average
prompt length between 500 and 1000 is observed
in our production). In these scenarios, inference
throughput and latency are often dominated by the
cost of prompt processing (i.e. prefill), and reduc-
ing this cost is key to improving their performance.

Based on this observation, we designed SwiftKV,
which improves throughput and latency by
reducing the prefill computation for prompt tokens.
SwiftKV (Fig. 1) consists of three key components:

Model transformation. SwiftKV rewires an
existing LLLM so that the prefill stage during
inference can skip a number of later transformer
layers, and their KV cache are computed by the last
unskipped layer. This is motivated by the obser-
vation that the hidden states of later layers do not
change significantly (see Sec. 3.2 and (Liu et al.,
2024b)). With SwiftKV, prefill compute is reduced
by approximately the number of layers skipped.
Optionally, for low-memory scenarios, we
show that the SwiftKV model transformation can
naturally incorporate KV cache memory reductions

https://anonymized.link

Layer 1 Layer 2 Layer 3 Layer4 Prefill Layer5

tokens

Layer 6

Layer 7 Layer 8

exit

o]

Attn
out

) ()

A4

Wk

&
MLP

n

'

LM
A Head pjgill from
Original

=

IH S

Fm————————
1 KV Cache
1

1 C] Computed in prefill
1
1 C] Skipped in prefill

=

SwiftKV (50% reduction)

2-way AcrossKV

Figure 1: Illustration of SwiftKV 50% prefill reduction and 2-way AcrossKV. After distillation, the KV cache of
layers 5-8 can all be populated using the hidden state outputs of layer 4. For prefill tokens, the query, attention, and
MLP operations of layers 5—-8 may be skipped, while decode tokens complete all layers. Existing models may be
efficiently adapted for SwiftKV by distilling from the original model using a small dataset. Model knowledge is
preserved by keeping the trainable parameters limited to the Q, K, and V projections of the layers affected by SwiftK'V.

by also merging the KV cache of consecutive
skipped layers, which we call AcrossKV.

Knowledge Recovery. After the SwiftKV trans-
formation is applied to the LLM, its prediction
quality is recovered via distillation from the
original model. A very lightweight distillation is
sufficient, with <10% the model weights (Q, K,
and V projections of the skipped layers) trained
on <1B tokens, which takes less than 3 hours
on 8 H100 GPUs for Llama-3.1-8B-Instruct. In
contrast, recent prune-and-distill techniques train
the entire pruned model on 10-100B tokens (Tang
et al., 2025; Sreenivas et al., 2024).

We show that SwiftKV is effective on diverse
architectures, including small models (Llama-
3.2-3B-Instruct), large models (Llama-3.1-405B-
Instruct), mixture-of-experts and latent attention
(Deepseek-V2-Lite-Chat). Remarkably, we found
that it is possible for SwiftKV to skip 25-50% of
the layers for prompt tokens without significantly
impacting the model quality across these scenarios.

Optimized Inference. To realize SwiftKV into
end-to-end throughput and latency improvements,
we implemented it in vLLM (Kwon et al., 2023)
and SGLang (Zheng et al.,, 2024). SwiftkKV
increases the throughput of enterprise workloads
by up to 2x, while reducing time-to-first-token
(TTFT) and time-per-output-token (TPOT) by up
to 50% and 60%, respectively. In fact, for Llama-
3.1-70B-Instruct, SwiftKV achieves a normalized

throughput of 560 TFLOPS/GPU! at an unprece-
dented 56.6% MFU utilization for inference
(Sec. 4.2). SwiftKV incurs minimal quality degra-
dations (<1-2%) averaged across a wide range of
tasks (Sec. 4.1), including ARC-Challenge (Clark
et al., 2018), Winogrande (Sakaguchi et al., 2019),
HellaSwag (Zellers et al., 2019), Truthful QA (Lin
et al., 2022), MMLU (Hendrycks et al., 2021), and
GSMSK (Cobbe et al., 2021).

We open-sourced the training and inference
code for SwiftKV at https://anonymized. link,
as well as several SwiftKV models that can be
used directly by the community.

2 Related Works

Model pruning and layer skipping. Prior works
have explored reducing the size and compute
footprint of LLMs by pruning their weights,
followed by post-training on 10—-100B tokens to
recover accuracy (Tang et al., 2025; Sreenivas
et al., 2024; Xia et al., 2024). Compared to these
methods, SwiftKV is focused on reducing prefill
compute using a much lighter-weight distillation
(<1B tokens). Other works explored adaptively
skipping layers without pruning weights, and
using little to no post-training (Ma et al., 2023;
Jaiswal et al., 2024; Men et al., 2024; Yang et al.,
2024; Ashkboos et al., 2024). These works reduce
compute for prefill and decode tokens alike, and
typically can skip up to 25% of the model without
significant accuracy degradations. SwiftKV re-

"Normalized throughput and MFU is based on number of
floating point operations in the baseline model.

https://anonymized.link

duces prefill compute, and can skip 25-50% of the
model without significant accuracy degradations.

KV cache compression. Quantization tech-
niques like FP8/FP4 can reduce the memory for
both KV cache and parameters (Hooper et al.,
2024). Attention optimizations like MQA (Shazeer,
2019), GQA (Ainslie et al., 2023b), low-rank
attention (Chang et al., 2024) also reduce the
KV cache. These approaches are complementary
to SwiftKV, which we demonstrate in Sec. 4.1
and Sec. B.1. Furthermore, while many of these
approaches only focus on reducing the memory,
SwiftKV reduces both the prefill compute and
memory (via AcrossKV). As we show in Sec. 5.1,
compute reduction is crucial for accelerating
LLM inference in compute-bound scenarios with
sufficient memory, which is common in production
with modern GPUs (e.g., A100, H100).

Sparse attention. Systems such as ALISA (Zhao
et al., 2024) and Mlnference (Jiang et al., 2024)
leverage naturally-occurring sparsity patterns in
transformer models to reduce the computation of
the quadratic attention operation. Sparse attention
can be particularly effective for very long sequence
lengths (e.g. 100K—1M tokens) when attention is
the dominant operation. In comparison, SwiftKV
reduces prefill computation by skipping not just
the attention operation, but also the query/output
projections and MLP of certain layers. This means
that SwiftKV can be more suited for inputs with
moderate lengths (e.g. <100K) when MLP is
the dominant operation. Additionally, SwiftKV
either runs or skips attention operations in their
entirety, which makes it orthogonal to existing
sparse attention methods.

3 SwiftKV: Design and Implementation

3.1 Preliminaries

In transformers (Vaswani et al., 2017), attention
enables each token to focus on other tokens by
comparing gueries (()) with keys (K), using values
(V) to compute the final representation. For a se-
quence of input tokens (1) oo™ the projections
are: Q = XWgq, K = XWg, V = XWy, where
X € R™*4 are the input embeddings, and Wg €
R4 and Wy ,Wy € R4 are trained model pa-
rameters with d,|dj. Hereafter, we may also refer
to Wy and Wy as a single matrix Wy € R%*2dk

During the prefill phase of inference, the model
processes the entire input sequence, computing

K and V for all tokens in parallel (or in chunks
in the case of Split-Fuse (Holmes et al., 2024;
Agrawal et al., 2024)). This typically occurs when
the model handles an initial prompt or context.

During the decoding phase of inference, new
tokens are generated one at a time. When predict-
ing the next token, only the query (Q(“t1) for the
new token needs to be computed, while the model
attends to the keys and values (K(l), . K®,
v V®)of all previous tokens.

In the decoding phase, KV caching is employed.
After processing each token ¢, the newly computed
K® and V() are stored in a cache. For the next
token ¢+ 1, only the new query Q(t1), key K (++1),
and value V1 are computed. The attention
computation will then utilize the cached K and
V' from all prior tokens, allowing for reduced
computational overhead during inference.

3.2 SwiftKV: Project KV cache from one layer

Assume the input of [-th layer is x;, and its i-th
token is Xfl). A key property of LLMs is that x;
becomes more similar as the depth grows (Liu
et al., 2024b; Gromov et al., 2024).

To illustreate, we compute the average input
similarity between [-th layer’s input and all

remaining layers’ input, i.e.,

Zf: 11 Similarity (x;,x;)

SimScore(x;) = T

» (D

where L is the number of layers and
Similarity(x),x;j) is the average cosine simi-
larity between all xl(z) and xy).

The results of several models are shown in Fig. 2.
Deeper layers have higher SimScore(x;), and at
around half of the depth, the average similarity
of x; with x; is above 0.5 for all models, which
shows that the difference of input hidden states are
small in deeper layers.

Based on this observation, the first key compo-
nent of SwiftKV is to use /-th layer’s output x; 1
to compute the KV cache for all remaining layers.
More specifically, SwiftKV retains the standard
transformer architecture up to and including the
[-th layer, but the KV cache for all remaining
layers are computed immediately using x;41, i.e.

KV, =W x 1, forallj>Il, (2)

where KV is the KV cache for j-th layer and
W is its KV projection weight matrix.

—— LLaMa-3.1-8B-Instruct
Mistral-7B-Instruct-v0.1

0] — Qwen2.5-7B-Instruct 0.8

SimScore(x;)
°
>

SimScore(x;)

°
S

0.2

|7

M Bascline
75% SwiftKV (1=L/4)

W 50% SwiftKV (1= L/2)
25% SwiftkV (1= 3L/4)

Forward time (ms)

150

100

—— LLaMa-3.1-70B-Instruct 50
Mistral-Large-Instruct-2407 0 I l I I I

—— Qwen2.5-72B-Instruct
128 256 512 1024 2048

0 5 10 15 20 25 30 0 20
Layer

40 60 80
Layer Batch size (tokens)

Figure 2: LEFT: input similarity of smaller models. MID: input similarity of larger models. RIGHT: time per forward
pass of Llama-3.1-8B-Instruct. SwiftK'V reduces the forward pass processing time across a range of batch sizes.

Table 1: Breakdown of transformer operations for Llama-
3.1-70B with SwiftKV (in GFlops per prefill token).

Model Vocab K,V QO MLP Attn. Total Rel.

Bascline 43 26 22 113 160 302 100%
25% SwifikV 43 26 16 85 120 228 755%
50% SwiftkV 43 26 11 56 80 154 51.0%
S0%SWIftKV 43 9 11 56 80 153 50.7%

+ 4% AcrossKV

Prefill Compute Reduction. SwiftKV enables
significant reduction in prefill compute during
LLM inference. Originally, all input tokens must
be processed by all transformer layers. With
SwiftKV, input tokens? only need to compute
W}(Vxlﬂ for layers j > [to generate layer j’s
KV cache, and all other operations (i.e., QO
projections, Attention, and MLP) of layers j > [
can be skipped entirely. When prefill compu-
tation dominates generated token computation,
this reduces the total inference computation to
approximately [/ L. Fig. 1 illustrates the operations
skipped by SwiftKV, and Table 1 shows a more
detailed example compute breakdown for Llama-
3.1-70B-Instruct. We note that decoding tokens
still propagate through all layers, so additional
decoding heads are not necessary for SwiftKV.

3.3 AcrossKV: Share KV cache between layers

GQA (Ainslie et al., 2023a), one of the most
widely adopted KV cache compression methods,
showed that the KV cache can be shared across
attention heads within the same transformer layer.
Later, (Liu et al., 2024a) showed that the KV
cache can be merged for certain pairs of adjacent
layers. Although SwiftKV’s main focus is on
compute reduction rather than memory reduction,
we show that KV cache compression can readily be

The very last input token still needs to compute all layers
to generate the first output token.

incorporated with SwiftKV. To do this, SwiftKV
is supplemented by AcrossKV, which employs
cross-layer KV cache sharing to the skipped layers.

Particularly, instead of computing KV cache for
all of the skipped layers as shown in equation 2,
AcrossKV selects one layer to compute the KV
cache for several consecutive layers and share
it within the small group (Fig. 1). AcrossKV
can combine more than two layers’ KV caches
into a single one, which offers higher potential
compression ratios than prior works (Liu et al.,
2024a) that employ cross-layer KV cache merging,
while simplifying its implementation.

3.4 Knowledge Recovery

While SwiftKV preserves all the original param-
eters, it re-wires the architecture so that the KV
cache projections may receive different inputs. We
found that this re-wiring (and AcrossKV) requires
fine-tuning to recover the original capabilities from
the modified model. Since we only change the KV
projections for layer >/, this can be achieved by
fine-tuning just the W g g weight matrices from
the (I + 1)-th layer onwards. However, instead
of directly fine-tuning these parameters using
standard LM loss, we find that distilling using the
output logits of the original model allows for better
knowledge recovery (see Sec. 5 for more details).

Additionally, we found that limiting the training
to just Wogy achieves better accuracy, which
aligns with prior hypotheses that LLM knowledge
is primarily stored in their MLP layers (Meng et al.,
2024; Geva et al., 2021; Elhage et al., 2021). We
further explore this in Sec. 5.2. An added benefit
is that these parameters are typically <10% of the
total for popular GQA models (e.g., Llama, Mistral,
Qwen), allowing for very efficient distillation.

Efficient Distillation. Since only a few Wy
parameters need training, we can keep just a single
copy of the original model weights in memory
that are frozen during training, and add an extra
trainable copy of the W gy, parameters for layers
> [initialized using the original model (See Fig. 1).

During training, we create two modes for the
later layers > [, one with original frozen parameters
using original architecture, and another with the
SwiftKV re-wiring using new QKYV projections i.e.,

Yteacher = M(X,SUJthKV = False),

. 3)
Y student = M(Xys’IUthKV = True),

where y. is the final logits, M is the model, and
x is the input. Afterwards, we apply the standard
distillation loss (Hinton et al., 2015) on the outputs.
After the distillation, the original KV projection
layers > are discarded during inference.

This method allows us to distill Llama-3.1-8B-
Instruct on 680M tokens of data in 3 hours using
8 H100 GPUs, and Llama-3.1-70B-Instruct in 5
hours using 32 H100 GPUs across 4 nodes. In con-
trast, many prune-and-distill (Sreenivas et al., 2024)
and layer-skipping (Elhoushi et al., 2024) methods
require much larger datasets (e.g. 10-100B tokens)
and incur greater accuracy gaps than SwiftKV.

3.5 Optimized Implementation for Inference

LLM serving systems can be complex and incorpo-
rate many simultaneous optimizations at multiple
layers of the stack, such as PagedAttention (Kwon
et al., 2023), Speculative Decoding (Leviathan
et al., 2023), SplitFuse (Holmes et al., 2024;
Agrawal et al., 2024), and more. A benefit of
SwiftKV is that it makes minimal changes to the
model architecture, so it can be integrated into
existing serving systems without implementing
new kernels (e.g. for custom attention operations or
sparse computation) or novel inference procedures.

Implementation in vLLM and SGLang. To
show that the theoretical compute reductions of
SwiftKV translates to real-world savings, we
integrated it with vLLM (Kwon et al., 2023) and
SGLang (Zheng et al., 2024). Our implementation
is compatible with chunked prefill (Holmes et al.,
2024; Agrawal et al., 2024), which mixes chunks of
prefill tokens and decode tokens in each minibatch.
During each forward pass, after completing layer
1, the KV-cache for the remaining layers (> 1) are
immediately computed, and only the decode tokens
are propagated through the rest of the model layers.

4 Main Results

We evaluated SwiftKV in terms of model accuracy
(Sec. 4.1) compared to the original model and
several baselines, and end-to-end inference
performance (Sec. 4.2) in a real serving system.

Distillation datasets. Our dataset is a mixture
of Ultrachat (Ding et al., 2023), SlimOrca (Lian
et al., 2023), and OpenHermes-2.5 (Teknium,
2023), totaling roughly 680M Llama-3.1 tokens.
For more details, please see Appendix A.1.

SwiftKV Notation. For prefill computation, we
report the approximate reduction as (L — [)/L
due to SwiftKV, and for KV cache, we report the
exact memory reduction due to AcrossKV. For
example, SwiftKV (I=L/2) and 4-way AcrossKV
is reported as 50% prefill compute reduction and
37.5% KV cache memory reduction.

4.1 Model Quality Impact of SwiftKV

Table 2 shows the quality results of all models we
evaluated, including Llama-3.1-Instruct, Qwen2.5-
14B-Instruct, Mistral-Small, and Deepseek-V2.
Of these models, we note that the Llama models
span two orders of magnitude in size (3B to 405B),
Llama-3.1-405B-Instruct uses FP8 (W8A16) quan-
tization, and Deepseek-V2-Lite-Chat is a mixture-
of-experts model that implements a novel latent
attention mechanism (DeepSeek-Al et al., 2024).
We also compare with three baselines: (1)
FFN-SkipLLM (Jaiswal et al., 2024), a training-free
method for skipping FFN layers (no attention lay-
ers are skipped) based on hidden state similarity, (2)
Llama-3.1-Nemotron-51B-Instruct (Sreenivas et al.,
2024), which is pruned and distilled from Llama-
3.1-70B-Instruct using neural architecture search
on 40B tokens, and (3) DarwinLM-8.4B (Tang
et al., 2025), which is pruned and distilled from
Qwen2.5-14B-Instruct using 10B tokens.

SwiftKV. For Llama, Mistral, and Deepseek, we
find the accuracy degradation for 25% SwiftKV is
less than 0.5% from the original models (averaged
across tasks). Additionally, the accuracy gap is
within 1-2% even at 40-50% SwiftKV. Beyond
50% SwiftKV, model quality drops quickly. For
example, Llama-3.1-8B-Instruct incurs a 7% accu-
racy gap at 62.5% SwiftKV. We find that Qwen suf-
fers larger degradations, at 1.1% for 25% SwiftKV
and 7.4% for 50% SwiftKV, which may be due
to Qwen models having lower simularity between
layer at 50-75% depth (Fig. 2). Even still, SwiftKV

Table 2: All SwiftKV model quality evaluations. For FFN-SkipLLM, we set the candidate layers to be skipped to be
from 35-8% depth in each model, which reflects the settings in their paper. The prefill reduction % represents just the
fraction of MLP layer skipped, and varies between models and tasks since it is adaptively determined during inference.

Model SwiftKV AcrossKV Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSMS8K-CoT A
(Prefill Reduction) (Cache Reduction) 0-shot 5-shot 10-shot 0-shot 5-shot 0-shot 8-shot Ve
Baseline - - 82.00 77.90 80.40 54.56 67.90 70.63 82.56 73.71
SwiftkKV v (25%) X 82.08 77.98 80.63 54.59 67.95 70.45 81.43 73.59
SwiftkV v (50%) X 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
SwiftkKV v (62.5%) X 71.76 75.77 78.21 52.73 61.55 53.68 68.92 66.09
Llama-3.1-8B-Instruct
SwiftkV v (50%) 2-way (25%) 80.29 77.82 79.03 54.66 66.96 68.39 75.59 71.82
SwiftkKV v (50%) 4-way (37.5%) 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49
SwiftKV v (50%) 8-way (43.75%) 79.18 77.19 77.38 54.79 65.73 66.88 7233 70.50
SwiftKV, v (50%) 16-way (46.875%) 78.24 76.80 76.87 56.86 64.65 65.86 72.25 70.22
FFN-SkipLLM (12-19%) - 81.4 74.11 73.94 54.55 67.65 64.12 78.62 70.62
Baseline - 93.34 85.16 86.42 59.95 83.97 86.21 95.15 84.31
SwiftkV v (25%) X 93.00 84.69 85.98 59.43 82.82 85.81 95.07 83.83
SwiftKV v (50%) X 93.09 83.82 84.45 58.40 82.51 85.00 93.56 82.98
Llama-3.1-70B-Instruct
SwiftKV, v (50%) 2-way (25%) 92.92 82.95 84.10 57.79 82.66 84.55 93.48 82.63
SwiftkKV v (50%) 4-way (37.5%) 92.92 83.74 84.72 58.28 82.60 84.79 93.71 82.96
Nemotron-51B (28%) (50%) 91.47 84.45 85.68 59.02 81.74 83.86 93.25 82.78
Llama-3.1-405B-Instruct (FPS) Baseline - - 94.7 87.0 88.3 64.7 87.5 88.1 96.1 86.6
SwiftKV v (50%) X 94.0 86.3 88.1 64.2 85.7 87.5 95.2 85.9
Baseline - - 75.17 68.59 73.32 51.45 62.01 62.48 72.32 66.47
SwiftKV vV (25%) X 75.59 69.77 7234 52.80 61.89 62.39 71.11 66.55
SwiftkV v (40%) X 75.34 68.98 71.37 51.10 61.80 61.62 68.68 65.55
Llama-3.2-3B-Instruct SwiftKV v (50%) X 71.25 68.75 70.77 51.29 59.63 59.94 67.02 64.09
SwiftkKV, v (40%) 2-way (25%) 74.82 68.66 71.41 50.67 61.55 61.03 67.77 65.13
SwiftKV v (40%) 4-way (37.5%) 75.59 69.21 70.79 50.89 61.35 60.82 67.70 65.19
FFN-SkipLLM (8-16%) - 74.57 66.38 67.55 49.57 60.95 61.24 69.75 64.28
Baseline - 84.12 84.68 87.27 56.85 73.33 74.86 86.50 78.23
SwiftKV v (25%) X 84.04 84.84 87.03 55.97 72.88 74.69 85.21 71.80
X SwiftKV v (50%) X 83.53 83.97 86.30 55.63 7291 74.04 84.30 71.24
Mistral-Small-Instruct-2409
SwiftKV v (50%) 2-way (25%) 83.36 84.05 86.22 56.20 72.30 73.70 84.68 77.21
SwiftKV v (50%) 4-way (37.5%) 82.93 83.82 86.17 56.00 72.29 73.00 82.48 76.66
FFN-SkipLLM (34-37%) - 65.61 72.61 59.80 53.52 64.20 2.16 2.12 45.71
Baseline - 65.53 74.66 81.56 50.98 56.86 50.61 68.69 64.12
SwiftKV v (25%) X 65.44 75.05 81.52 50.53 56.91 50.92 68.99 64.19
. SwiftKV v (45%) X 65.61 73.95 80.82 50.20 56.33 51.56 66.11 63.51
Deepseek-V2-Lite-Chat
SwiftkV v (45%) 2-way (25%) 65.52 74.26 80.23 49.85 55.59 50.51 65.57 63.07
SwiftkKV v (45%) 4-way (37.5%) 61.34 75.21 79.80 48.39 54.82 30.80 64.89 59.32
FFN-SkipLLM (30-32%) - 10.49 58.41 49.34 50.69 4.56 0.01 0.30 24.83
Baseline - 62.29 79.32 85.04 69.07 76.58 79.04 90.37 71.38
SwiftKV vV (25%) X 62.03 79.00 84.63 68.39 76.09 78.64 84.83 76.23
SwiftkKV v (50%) X 56.91 77.26 82.71 60.76 64.40 68.20 79.30 69.93
Qwen2.5-14B-Instruct SWiftkV /(25%) 2-way (25%) 61.43 79.71 85.22 69.33 7625 78.88 84.23 76.43
SwiftkKV vV (25%) 4-way (37.5%) 59.13 80.89 84.92 68.75 75.70 78.84 82.78 75.85
FFN-SkipLLM (7-21%) - 53.24 73.09 65.10 59.78 73.55 62.22 50.79 62.53
DarwinLM-8.4B (40%) - 49.32 70.96 74.95 41.99 12.46 0.00 1.90 35.94

performs much better than FFN-SkipLLM and
DarwinlLM-8.4B, which suffer massive 15% and
42% drops from the baseline model, respectively.

AcrossKV. The accuracy impact of AcrossKV
is also minimal. Starting from 25-50% SwiftKV,
adding 2-way AcrossKV (20-25% KV cache
reduction) further degrades average task accuracy
by at most 1% across all models. Pushing to 4-way
AcrossKV, Deepseek-V2-Lite-Chat experiences a
steep accuracy drop from 63.07% to 59.32%, while
other models experience smaller drops. Notably,
we found that Llama-3.1-8B-Instruct still achieves
70.22% average accuracy at 16-way AcrossKV,
meaning all the last half of layers share a single
layer of KV cache. Furthermore, the design of
AcrossKV is complementary to many existing KV
cache compression methods. In Sec. B.1, we show
that AcrossKV can be combined with quantization

to achieve 62.5% reduction in KV cache memory.

SwiftKV vs Baselines. SwiftKV outperforms
FFN-SkipLLM across all scenarios we tested. FFN-
SkipLLM skips only MLPs for prefill and decode
tokens, while SwiftKV skips both MLP and atten-
tion layers for prefill tokens. Still, FFN-SkipLLM
sees large degradations for Mistral, Deepseek, and
Qwen, even at 7-37% of MLPs skipped. For Llama
models, skipping under 20% of of the MLP layers
using FFN-SkipLLM still underperforms SwiftkKV
skipping 50% of MLP and attention layers.
Compared with Nemotron-51B and DarwinL.M-
8.4B, 50% SwiftKV reduces more prefill while
achieving higher accuracies. Also, Nemotron-51B
is distilled on 40B tokens, and DarwinLM-8.4B
on 10B tokens, while SwiftKV is distilled on <1B
tokens and on <10% of the model parameters.
When prefill compute is substantial (e.g., many en-

terprise applications), SwiftKV is the clear choice
for reducing cost without sacrificing accuracy.

4.2 Inference Performance

We focus on two common production scenarios:

1. Batch-Inference: When processing requests
in bulk or serving a model under high usage
demand, it is important to achieve high com-
bined throughput in terms of input and output
tokens to cost-effectively serve the model.

2. Interactive-Inference: In interactive scenarios
(e.g., chatbots, copilots), metrics that define
the end-user experience are the time-to-first-
token (TTFT) and time-per-output-token
(TPOT). Low TTFT and TPOT are desirable
to deliver smooth usage experiences.

We evaluate the end-to-end inference perfor-
mance using Llama-3.1-8B-Instruct running on
1 NVIDIA H100 GPU with 80GB of memory,
Llama-3.1-70B-Instruct running on 4 NVIDIA
H100 GPUs with 4-way tensor parallelism. We
show results using vLLM and refer to our SGLang
results in Appendix A.4, and provide the full hard-
ware and vLLM configurations in Appendix A.2.

Batch Inference Performance. Fig. 3 shows
the results of Llama-3.1-8B-Instruct and Llama-
3.1-70B-Instruct across several workloads with
a range of input lengths. SwiftKV achieves
higher combined throughput than the baseline
across all the workloads we evaluated. For
Llama-3.1-8B-Instruct, with 2K input tokens per
prompt, SwiftKV achieves 1.2 — 1.3x higher
combined throughput than the baseline, and our
benefits increase further to 1.8 — 1.9x higher
combined throughput with 128K inputs. Note
that for an input length of 8K tokens, SwiftKV
achieves a staggering 30K tokens/sec/GPU (480
TFLOPS/GPU). For Llama-3.1-70B-Instruct with
2K input tokens per prompt, SwiftKV achieves
1.4 —1.5x higher combined throughput than the
baseline, which improves to 1.8 — 2.0x better
combined throughput for 128K inputs.

We also observe AcrossKV can further improve
the combined throughput due to its ability to
reduce the memory usage for the KV-cache and
supporting larger batch sizes. For sequence length
of 8K, Llama-3.1-70B-Instruct with SwiftKV
achieves a combined throughput of over 16K
toks/sec over 4xH100 GPUs which corresponds

Table 3: Throughput of Llama-3.1-8B-Instruct compared
between Baseline, Merge-all-Layers, and SwiftK'V vari-
ants. Run on a H100 GPU with varying memory limits.

Throughput (tokens/s)

Memory Bascline Merge-all- 50% SwiftKV 50% SwiftKV 50% SwiftKV

Layers +4x AcrossKV +4x AcrossKV (FP8)
80GB 229K 25.1K 31.0K 31.2K 32.0K
40GB 20.6K 25.2K 273K 28.4K 28.9K
20GB 10.8K 25.2K 122K 18.0K 232K
16GB OOM 24.8K OOM 4.22K 7.28K

W 50% SwiftkV 50% SwiftKV + 2x AcrossKV M 50% SwiftKV + 4x AcrossKV Baseline

480 18,000 630

I 320 12,000 420
10,000 I I 160 6,000 I | 210
0 0 0 0

2000 8000 32000 128000

5 w
S S
S 3
g 5
3 3

Throughput (tokens/s)

NdH/SdOTAL pazijeutioN

2000 8000 32000 128000

Figure 3: Combined input and output throughput
for Llama-3.1-8B-Instruct (left) and Llama-3.1-70B-
Instruct (right) across input lengths (bottom). Roughly
15M tokens worth of requests are sent for each experi-
ment, and each request generates 256 output tokens.

@ 50% SwiftkV

2 /
0.5 1 5
—o—o- -
0
05 1.0 15 20 0.1 03 0.5

50% SwiftkKV + 2x AcrossKV @ 50% SwiftKV + 4x AcrossKV Baseline

TTFT (s)

0.0 0
2 4 6 8 .

0.2 0.

2 ;
—o
0.1 f 0.1’///=1 0.1 e
S —
0.0 0.0

0.0

0.2

TPOT (s)

2 4 6 8 05 1.0 L5 20 0.1 0.3 0.5

Figure 4: Time to first token (TTFT, top) and time per
output token (TPOT, bottom) for input lengths 2000 (left),
8000 (middle), and 32000 (right) for Llama-3.1-70B. For
each experiment, a range of different request arrival rates
is simulated. Each request generates 256 output tokens.

to 560 TFLOPS/GPU of BF16 performance when
normalized to baseline. This is an unprecedented
throughput for BF16 inference workloads.

Interactive-Inference Performance. Fig. 4
shows the TTFT and TPOT of Llama-3.1-70B-
Instruct across a range of request arrival rates
and input lengths, and we refer to Fig. A.1 in the
Appendix for Llama-3.1-8B-Instruct. When the
arrival rate is too high, the TTFT explodes due
to the request queue accumulating faster than
they can be processed by the system. However,
SwiftKV can sustain 1.5 — 2.0x higher arrival
rates before experiencing such TTFT explosion.
When the arrival rate is low, SwiftKV can reduce
the TTFT by up to 50% for workloads with longer
input lengths. In terms of TPOT, SwiftK'V achieves

Table 4: Impact of Distillation and Full/Partial Model
Finetuning on Llama-3.1-8B-Instruct.

Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSM-8K Ave.
0-

Setting shot Sshots 10-shots O-shot Seshots O-shot 8-shots

(a) The effect of distillation
‘W/o Distill 79.44 7127 78.71 51.14 65.55 65.60 72.71 70.06
W Distill 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70

(b) Full model finetuning vs. part model finctuning

Full Model 76.79 74.82 76.42 53.08 62.94 64.20 69.37 68.23
Part Model 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70

significant reductions for all but the lowest arrival
rates, up to 60% for certain settings.

At first, it may be counter-intuitive that SwiftKV
can reduce TPOT by only optimizing the prefill
compute and not decode compute. However,
in most open-source inference systems today,
including vLLM and SGLang, prefill and decode
are run on the same GPUs, whether they be inter-
leaved (Yu et al., 2022) or mixed (Holmes et al.,
2024; Agrawal et al., 2024). This means prefill and
decode may contend for GPU time, and reducing
prefill compute also benefits decode latency.

Inference on Real-World Requests. In Ap-
pendix A.5, we evaluate SwiftKV on SGLang using
real-world requests from ShareGPT (ShareGPT
Team, 2023), which are collected in the wild from
users of ChatGPT (OpenAl, 2022). We show that
the throughput improvements due to SwiftKV
transfer well to real-world length distributions.

5 Ablations and Discussions

5.1 Compute vs Memory Reduction

A key aspect of SwiftKV is combining prefill
compute reduction and KV cache compression
(AcrossKV). While many prior works address KV
cache compression alone, they are only effective
when GPU memory is limited, and are less impact-
ful on datacenter GPUs (e.g., A100 and H100) with
sufficient memory and inference is compute-bound.

To illustrate, we construct an “ideal” KV com-
pression scheme, where every layer’s KV cache
is merged into a single layer (Merge-all-Layers).
We retain the computation for all KV operations
(ie., Wg;X) but eliminate the memory for all
layers > 1, leading to a single layer of KV cache.
Merge-all-Layers represents a “best case compres-
sion scenario” with (1) extreme compression ratio
beyond any published technique, e.g. 32x and
80x for Llama-3.1 8B-Instruct and 70B-Instruct,
respectively, and (2) zero overhead, while most
techniques (e.g., quantization, low-rank decompo-
sition) add extra computations or data conversions.

Table 3 shows the throughput attained by Merge-
all-Layers compared with the baseline model and
its SwiftKV variants under various memory con-
straints. As shown, Merge-all-Layers outperforms
only in very low memory scenarios (e.g. 16GB
and 20GB) when there is barely enough memory
for just the model weights, and is only marginally
(10%) better than the baseline model when using
all 80GB memory. On the other hand, SwiftKV
attains 35% higher throughput than the baseline
at 80GB even without AcrossKV. When combined
with 4 x AcrossKV using FP8-quantized KV cache,
SwiftKV can approach the throughput of Merge-
all-Layers even at a more limited 20GB of memory.

5.2 The Impact of Distillation

To demonstrate the effectiveness of our distillation
method, we train Llama-3.1-8B-Instruct with 50%
SwiftKV and no AcrossKV using the standard
language model loss, and compare it with our
distillation based approach discussed in Sec. 3.4.
The results are shown in Table 4 (a). As we can see,
the model trained with distillation has a 2.64 point
higher average. Particularly, for generative tasks,
i.e., MMLU-Cot and GSM-8K, the performance
improvement is 4.13 and 6.74, respectively.

Full model training vs. partial model training.
Our distillation method only fine-tuned the Wiy
parameters hypothesizing that this preserves the
original model’s knowledge better than full model
fine-tuning. This aligns with (Meng et al., 2024),
(Geva et al., 2021), and (Elhage et al., 2021),
which suggest that MLP layers player a more
prominent role in storing knowledge.

To validate this, we fine-tuned a model with
50% SwiftKV on Llama-3.1-8B-Instruct where all
parameters in the latter 50% of layers are trained.
The results are shown in Table 4 (b). The model
quality of full model distillation is about 4.5 points
lower than our proposed partial model distillation.

6 Conclusions

We presented SwiftKV, a model transformation for
reducing inference cost for prefill-dominant work-
loads, combined with a KV cache reduction strat-
egy to reduce memory footprint, and a light-weight
distillation procedure to preserve model accuracy.
SwiftKV demonstrates strong results and leaves
room for exploration in parameter-preserving
transformations to further optimize inference.

Limitations

In our work, we did not aim to optimize the
training data selection though we provide potential
ways in Sec. B.3. Additionally, we did not include
a detailed benchmark analysis for our method.
However, as shown in Sec. B.3, we ensured that
our datasets were not cherry-picked to overfit the
reported tasks. Furthermore, we did not finetune
our model with advanced post-training approaches,
like DPO and RLHF, which we leave for future
work. Finally, we hypothesize that our method can
work even better when combined with pretraining
or continued-pretraining, but due to resources
constraints, we did not explore this direction. We
hope to revisit these ideas in the future.

References

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree
Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey
Tumanov, and Ramachandran Ramjee. 2024. Taming
Throughput-Latency tradeoff in LLM inference
with Sarathi-Serve. In 18th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 24), pages 117-134, Santa Clara, CA. USENIX
Association.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023a. GQA: Training generalized multi-query
transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4895-4901, Singapore. Association for
Computational Linguistics.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023b. Gga: Training generalized multi-query
transformer models from multi-head checkpoints.
Preprint, arXiv:2305.13245.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. Preprint,
arXiv:2401.15024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin,
Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu.
2024. Palu: Compressing kv-cache with low-rank
projection. Preprint, arXiv:2407.21118.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.

2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. Preprint, arXiv:2110.14168.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingxuan
Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin,
Fuli Luo, Guangbo Hao, Guanting Chen, and 138
others. 2024. Deepseek-v2: A strong, economical,
and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.
Preprint, arXiv:2305.14233.

Nelson Elhage, Neel Nanda, Catherine Olsson,
Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernan-
dez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, and 6 others. 2021. A math-
ematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed Aly, Beidi Chen, and Carole-Jean
Wu. 2024. LayerSkip: Enabling early exit inference
and self-speculative decoding. In Proceedings of
the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12622-12642, Bangkok, Thailand. Association
for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers
are key-value memories. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5484-5495, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

GretelAlL. 2024. Synthetically generated reasoning
dataset (gsm8k-inspired) with enhanced diversity
using gretel navigator and meta-llama/meta-llama-
3.1-405b. https://huggingface.co/gretelai/synthetic-
gsm8k-reflection-405b.

https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2407.21118
https://arxiv.org/abs/2407.21118
https://arxiv.org/abs/2407.21118
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://arxiv.org/abs/2305.14233
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2024.acl-long.681
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
Preprint, arXiv:2403.17887.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language
understanding. Proceedings of the International
Conference on Learning Representations (ICLR).

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Connor Holmes, Masahiro Tanaka, Michael Wyatt,
Ammar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
Deepspeed-fastgen: High-throughput text generation
for llms via mii and deepspeed-inference. Preprint,
arXiv:2401.08671.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: Towards
10 million context length llm inference with kv cache
quantization. Preprint, arXiv:2401.18079.

Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shiwei
Liu, Tianlong Chen, and Aditya Akella. 2024.
Ffn-skipllm: A hidden gem for autoregressive
decoding with adaptive feed forward skipping.
Preprint, arXiv:2404.03865.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le
Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. 2023. Mistral 7b.
Preprint, arXiv:2310.06825.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention. Preprint, arXiv:2407.02490.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model
serving with pagedattention. In Proceedings of the
29th Symposium on Operating Systems Principles,
SOSP °23, page 611-626, New York, NY, USA.
Association for Computing Machinery.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023.
Fast inference from transformers via speculative de-
coding. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

10

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. In Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA. Curran Associates Inc.

Wing Lian, Guan Wang, Bleys Goodson, Eugene
Pentland, Austin Cook, Chanvichet Vong, and
"Teknium". 2023. Slimorca: An open dataset of gpt-4
augmented flan reasoning traces, with verification.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, Dublin,
Ireland. Association for Computational Linguistics.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,
Maria Lomeli, Richard James, Pedro Rodriguez, Ja-
cob Kahn, Gergely Szilvasy, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2024. RA-DIT: Retrieval-
augmented dual instruction tuning. In The Twelfth In-
ternational Conference on Learning Representations.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza
Haffari, and Bohan Zhuang. 2024a. Minicache: Kv
cache compression in depth dimension for large
language models. arXiv preprint arXiv:2405.14366.

Songwei Liu, Chao Zeng, Liangiang Li, Chengian
Yan, Lean Fu, Xing Mei, and Fangmin Chen. 2024b.
Foldgpt: Simple and effective large language model
compression scheme. Preprint, arXiv:2407.00928.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. 2024c. Scis-
sorhands: exploiting the persistence of importance
hypothesis for llm kv cache compression at test time.
In Proceedings of the 37th International Conference
on Neural Information Processing Systems, NIPS *23,
Red Hook, NY, USA. Curran Associates Inc.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
LLM-pruner: On the structural pruning of large
language models. In Thirty-seventh Conference on
Neural Information Processing Systems.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. Preprint,
arXiv:2403.03853.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2024. Locating and editing factual
associations in gpt. In Proceedings of the 36th
International Conference on Neural Information
Processing Systems, NIPS *22, Red Hook, NY, USA.
Curran Associates Inc.

OpenAl. 2022. [link].

https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.08671
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2404.03865
https://arxiv.org/abs/2404.03865
https://arxiv.org/abs/2404.03865
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://openreview.net/forum?id=22OTbutug9
https://openreview.net/forum?id=22OTbutug9
https://openreview.net/forum?id=22OTbutug9
https://arxiv.org/abs/2407.00928
https://arxiv.org/abs/2407.00928
https://arxiv.org/abs/2407.00928
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://openai.com/blog/chatgpt

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: decomposed in-context learning of text-to-
sql with self-correction. In Proceedings of the 37th
International Conference on Neural Information
Processing Systems, NIPS *23, Red Hook, NY, USA.
Curran Associates Inc.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. 2023. Summa-
rization is (almost) dead. Preprint, arXiv:2309.09558.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bha-
gavatula, and Yejin Choi. 2019. Winogrande: An
adversarial winograd schema challenge at scale.
arXiv preprint arXiv:1907.10641.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

ShareGPT Team. 2023. [link].

Noam Shazeer. 2019. Fast transformer decod-
ing: One write-head is all you need. Preprint,
arXiv:1911.02150.

Sharath Turuvekere Sreenivas, Saurav Muralidharan,
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz,
and Pavlo Molchanov. 2024. Llm pruning and
distillation in practice: The minitron approach.
Preprint, arXiv:2408.11796.

Shengkun Tang, Oliver Sieberling, Eldar Kurtic,
Zhiqiang Shen, and Dan Alistarh. 2025. Darwinlm:
Evolutionary structured pruning of large language
models. Preprint, arXiv:2502.07780.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https:
//github.com/tatsu-1lab/stanford_alpaca.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist Ilm assistants.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing
Systems, NIPS’ 17, page 6000—-6010, Red Hook, NY,
USA. Curran Associates Inc.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024. Mixture-of-agents enhances
large language model capabilities. Preprint,
arXiv:2406.04692.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

11

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning. Preprint,
arXiv:2310.06694.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
Preprint, arXiv:2402.11187.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Preprint,
arXiv:2206.01861.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim,
Soojeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for Transformer-Based gen-
erative models. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22),
pages 521-538, Carlsbad, CA. USENIX Association.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B. Hashimoto.
2024. Benchmarking large language models for news
summarization. Transactions of the Association for
Computational Linguistics, 12:39-57.

Youpeng Zhao, Di Wu, and Jun Wang. 2024. Alisa: Ac-
celerating large language model inference via sparsity-
aware kv caching. Preprint, arXiv:2403.17312.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. SGLang: Efficient
execution of structured language model programs.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

https://arxiv.org/abs/2309.09558
https://arxiv.org/abs/2309.09558
https://arxiv.org/abs/2309.09558
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://sharegpt.com/
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://arxiv.org/abs/2502.07780
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2402.11187
https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2206.01861
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.1162/tacl_a_00632
https://doi.org/10.1162/tacl_a_00632
https://doi.org/10.1162/tacl_a_00632
https://arxiv.org/abs/2403.17312
https://arxiv.org/abs/2403.17312
https://arxiv.org/abs/2403.17312
https://arxiv.org/abs/2403.17312
https://arxiv.org/abs/2403.17312
https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq

Table A.1: The setting for different tasks

Arc-Challenge Winogrande HelloSwag truthfulqa MMLU MMLU-CoT GSM-8K
0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots
exact_match,multi_choice acc acc_norm truthfulga_mc2 (acc) exact_match,multi_choice exact_match,strict-match exact_match,strict-match

@ 50% SwiftkV 50% SwiftkV + 2x AcrossKV @ 50% SwiftKV + 4x AcrossKV Baseline

300 800 4,000
7 600 3,000
é 200
E 400 2,000
E; 100 _—v—-—/ 200 1,000 jbem =
0 0 0
2 4 6 8 10 12 14 0510 15 20 25 3.0 3540 0.2 0.4 0.6 0.8 1.0
100 100
=~ 100
g
= p———
= 50 50
8 1 50
= —_— "
0 0 0
2 4 6 8 10 12 14 0510 1.5 20 25 3.0 3540 0.2 0.4 0.6 0.8 1.0
Arrival Rate (requests/s) Arrival Rate (requests/s) Arrival Rate (requests/s)

Figure A.1: Time to first token (TTFT, top) and time per output token (TPOT, bottom) for input lengths 2000 (left),
8000 (middle), and 32000 (right) for Llama-3.1-8B-Instruct. For each experiment, a range of different request arrival
rates is simulated. Each request generates 256 output tokens.

A Main Experiment Details

A.1 Training and Quality Evaluation Details

For datasets, we use a mixture of HuggingFaceH4/ultrachat_200k, teknium/OpenHermes-2.5, and
Open-0rca/SlimOrca which totals around 680M tokens. We set training epochs to be 2, learning rate
to be 3e-4, weight decay to be 0.05, warm up ratio to be 5%, maximum sequence length to be 8192 with
attention separated sequence packing, the distillation temperature to be 2.0.

Our evaluation follows https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruc
t-FP8 using the github repository https://github.com/neuralmagic/lm-evaluation-harness
/tree/llama_3.1_instruct. The main reason behind this is that the implementation implemented
chat-templated evaluations for several of our evaluation tasks, which is especially important for the
Llama-3.1/3.2 models. For all tasks, we follow the same number of few shots and/or chain of thoughts
as the provided commands. We present the number of shots and metrics used in the paper in Table A.1.

A.2 Inference Speedup Evaluation Details

Hardware Details. We ran all inference speedup experiments on a AWS p5.48xlarge instance, with
8 NVIDIA H100 GPUs, 192 vCPUs, and 2TB memory. Llama-3.1-8B-Instruct experiments are run using
1 of the 8 GPUs, and Llama-3.1-70B-Instruct experiments are run using 4 of the 8 GPUs.

vLLM Configuration. We ran all experiments with enforce_eager and chunked prefill enabled
with max_num_batched_tokens set to 2048. To run each benchmark, we instantiated vLLM’s
AsyncLLMEngine and submitted requests using its generate method according to each benchmark
setting. For each request, the inputs are tokenized before being submitted, and the outputs are forced
to a fixed length of 256.

A.3 Llama-3.1-8B-Instruct Latency Results
See Fig. A.1.

12

https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8
https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct
https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct
https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct

Table A.2: Inference throughput for Llama-3.1-8B-Instruct and Llama-3.1-8B-Instruct on SGLang.

Model Input length Output length Baseline (tokens/s) 50% SwiftKV (tokens/s) 50% SwiftKV + 4x AcrossKV (tokens/s)

2000 256 274K 362K 38.9K

8000 256 229K 31.0K 340K
Llama-3.1-8B-Instruct 5, 256 16.9K 25.9K 26.6K

128000 256 7.66K 13.2K 14.0K

2000 256 11.6K 15.7K 17.3K

8000 256 10.8K 16.1K 17.8K
Llama-3.1-70B-Instruct 5, 256 8.82K 14.0K 15.3K

128000 256 478K 821K 8.75K

Table A.3: Inference throughput for Llama-3.1-8B-Instruct and Llama-3.1-8B-Instruct on ShareGPT.

Model Min length Avg length ratio of ~ Baseline 50% SwiftKV ~ 50% SwiftKV + 4x AcrossKV

ratio filter filtered dataset (tokens/s) (tokens/s) (tokens/s)
0 (Original) 1.5 23.7K 27.6K 29.4K
0.2 3.4 25.8K 31.3K 31.9K
1 6.5 27.2K 35.1K 37.3K
Llama-3.1-8B-Instruct 2 10 30.3K 41.5K 43.7K
10 26 37.1K 54.7K 56.6K
20 40 37.7K 57.6K 59.9K
100 150 40.3K 64.2K 67.0K
0 (Original) 1.5 9.73K 11.2K 12.2K
0.2 34 10.4K 13.2K 14.2K
1 6.5 11.4K 15.6K 16.0K
Llama-3.1-70B-Instruct 2 10 12.6K 18.0K 19.0K
10 26 14.1K 22.6K 23.2K
20 40 14.1K 22.9K 24.1K
100 150 14.6K 249K 25.8K

A.4 Inference Results with SGLang

In addition to vLLM, we also implemented SwiftK'V on SGLang (Zheng et al., 2024). SGLang differs from
vLLM in that it leverages RadixAttention and Prefix Caching as first-class citizens, but otherwise supports
many of the same features as vLLM, such as chunked-prefill (Agrawal et al., 2024; Holmes et al., 2024).

We report the throughput results using SGLang in Table A.2. Overall, we observe similar relative
improvements over the baseline (1.4 — 1.8 x higher throughput for Llama-3.1-8B-Instruct, and 1.5 — 1.8 x
for Llama-3.1-70B-Instruct) using SGLang as vLLM (Fig. 3).

A.5 Inference Results on ShareGPT

We provide additional evaluations using the ShareGPT dataset (ShareGPT Team, 2023), which consists of
real-world conversations between users and ChatGPT (OpenAl, 2022). To better match our own observed
request lengths (i.e. inputs > 10x outputs), and to cover a broader range of scenarios, we also benchmark
different versions of ShareGPT filtered by minimum input/output ratios. These datasets preserve the
internal diversity of request lengths from ShareGPT. We report the average input/output length ratios
and the measured performance for each of these filtered datasets below.

Table A.3 shows the results. Overall, we observe similar percentage improvements from SwiftKV
as our main synthetic-dataset experiments, i.e. 1.25 — 1.7x and 1.25 — 1.8 higher throughput for
Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct respectively for average length ratios up to ~ 100
(similar ratio to the 32K input length experiments in Fig. 3).

B Additional Ablations and Discussions

B.1 Combining KV Compression Methods

SwiftKV operates in an orthogonal design space to other KV compression methods and can be combined
with techniques such as sliding window (Jiang et al., 2023), token-level pruning (Liu et al., 2024¢) and
quantization (Hooper et al., 2024). We show the combined effect of SwiftKV with per-token KV cache
FP8 quantization (Yao et al., 2022). Table B.1 shows the accuracy degradation is within 0.4 points for
all cases, even though we applied post-training quantization with no quantization-aware finetuning.

13

Table B.1: Llama-3.1-8B-Instruct KV cache quantization results.

Model AcrossKV KV Quantization Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSM-8K Ave
(Cache Reduction) 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots :
SwiftKV X X 80.38 78.22 79.30 54.54 67.30 69.73 7945 7270
SwiftkKV X v 80.29 77.66 79.23 54.40 67.10 69.51 7794 7230
SwiftKV 2-way (25%) X 80.29 77.82 79.03 54.66 66.96 68.39 7559 71.82
SwiftkV — 2-way (62.5%) v 80.03 71.35 78.86 54.44 66.89 68.27 7597 71.69
SwiftkV 4-way (37.5%) X 79.35 7751 78.44 54.96 65.71 67.75 76.72 7149
SwiftKV 4-way (68.75%) v 79.27 7143 78.38 54.76 65.62 68.00 75.97 71.35

Table B.2: Llama-3.1-8B-Instruct AcrossKV design

Arc-Challenge Winogrande Hellaswag TruthfulQA MMLU MMLU-CoT GSM-8K

Method 0-shot 5-shots 10-shots 0-shot 5-shots 0-shot 8-shots Avg.
MQA 66.89 72.22 67.33 55.00 55.96 39.12 22.37 54.13
AcrossKV-MHA 77.99 75.85 77.37 55.50 63.55 65.48 72.63 69.76
AcrossKV-GQA 79.35 77.51 78.44 54.96 65.71 67.75 76.72 71.49

B.2 Inter-layer AcrossKYV vs Intra-Layer KV cache Reduction

In this section, we share different design choices of AcrossKV, which considers the tradeoff between
GQA (Ainslie et al., 2023a) and the across layer sharing into the design. Particularly, when AcrossKV > 2,
we can either use GQA and AcrossKV together or we can simply use AcrossKV to get all savings.
For instance, when using 4 x AcrossKV, we have KV cache reduction from both GQA and AcrossKV.
However, we can either do multi-query attention (MQA) for all 16 layers or do multi-head attention
(MHA) but share the KV cache for all 16 layers.

We present the 50% SwiftKV reduction with MQA, GQA plus AcrossKV, and GQA plus MHA
in Table B.2, that all have the same KV cache reduction, 37.5%. AcrossKV-GQA actually provides the
best performance. One thing to notice is that the AcrossKV-MHA is actually worse than the result of 16x
AcrossKV from from Table 2 even though AcrossKV-MHA has larger KV cache than 16x AcrossKV.
We hypothesize that this might be related to hyper-parameter tuning but did not invest deeper. Also, note
that pure MQA leads to worst performance, which is about 17 points lower than AcrossKV-GQA

How to effectively balance inter/intra-layer KV cache sharing is an interesting direction to explore.
We hope that our initial experiments here shed some light for future research.

B.3 Theimpact of fine-tuning datasets

Note that in Sec. 4, we did not try to maximize the performance of SwiftKV from the data recipe
perspective since the search space is very large and outside the scope of our paper. However, we want
to share some initial findings about the dataset recipe.

How good is the data used to train SwiftKV? We chose the datasets to train SwiftKV due to their
popular adoption and broad domain and task coverage. However, as compared to other high-quality
domain specific fine-tuning datasets, they may have weaknesses. To measure the quality of these two
datasets, we directly fine-tuned a model using the Llama-3.1-8B base model, and compared this trained
model with the Llama-3.1-8B-Instruct model released by Meta.

The results are shown in Table B.3 (a). The original Llama-3.1-8B-Instruct has a average score of
73.71 but the model trained using our two datasets only achieved 65.77. This indicates the training data
used for SwiftKV is not optimal and there may be opportunities to further improve the results we reported
in Sec. 4 as discussed next.

Does more math/coding data help GSM-8K? From Table 2, the main degradation among 7 tasks
for 50% SwiftKV is GSM-8K. This may be due to the lack of math and coding examples in the two
datasets we picked to train the model. To verify this, we distilled SwiftKV using one extra math-related
dataset, gretelai/synthetic-gsm8k-reflection-405b (GretelAl, 2024), and one extra coding
dataset, ise-uiuc/Magicoder-0SS-Instruct-75K (Wei et al., 2023), in total about 8K+ 75K = 83K
samples, and about 16M tokens.

14

Table B.3: The impact of datasets on Llama-3.1-8B-Instruct.

Arc-Challenge Winogrande Hellaswag TruthfulQA' MMLU MMLU-CoT GSM-8K

. Avg.
Setting 0-shot Sshots 10-shots Oshot S-shots O-shot 8shots ¢
(a) Quality of Llama-3.1-8B-Instruct vs model fine-tuned using “ultrachat_200k” and “OpenHermes-2.5".
Llama-3.1-8B-Instruct 82.00 77.90 80.40 54.56 67.90 70.63 82.56 73.71
Our fine-tuned model 71.42 76.56 80.29 55.37 59.14 54.03 63.61 65.77
(b) Adding more data improves model quality.
Original SwiftKV data 80.38 78.22 79.30 54.54 67.30 69.73 79.45 72.70
Plus math & code data 80.89 77.98 79.54 54.70 67.41 70.00 79.98 72.93
035 Question: What are the three primary colors?
030 “g Answer: The three primary colors are:
R 1. Red
2. Blue
o 3. Yellow
005 02 These colors are called primary because they are the
basic building blocks of all other colors. They cannot be
Max softmax score created by mixing other colors together, and they are the

only colors that can be used to create all other colors
through mixing.

Figure B.1: Density of early exit probabilities and
alignment of early exit vs final logits. Table B.4: A Q&A example of early exit.

The results are reported in Table B.3 (b). The performance of all tasks except Winogrande are slightly
improved, with the average score being 0.23 higher. Particularly, GSM-8K improves the most, with a
0.53% improvement. This is expected since we added extra math and coding datasets. Considering the
small amount of new data (83k vs. 1.2M), the improvement is remarkable.

This study indicates that improvements in distillation data is potentially an important direction for
future work, particularly domain-specific datasets to reduce the quality gap compared to the original
model when using SwiftKV.

B.4 Simple Early Exit for Decoding Tokens

SwiftKV allows all the KV cache needed for generating future tokens to be computed without having to
forward-pass though the entire LLM. This means that even the decoding phase could exit earlier without
worrying about missing KV cache for subsequent tokens.

To add early exit upon SwiftKV, we add an extra language modeling head and use the input to calculate
SwiftKV to directly compute the output logits. We apply the same distillation loss of this early exit
logits with the original teacher’s logits and directly sum the two distillation losses together as our final
optimizing loss.

After training, we first look the alignment between the early exit logits and the final logits. The figure
is shown in Fig. B.1. The left axis plot the density of early exit largest probabilities. And the right axis
shows the probabilities when the maximum of early exit logits aligns with the final logits for each bin.
As can be seen, when the maximum logits is larger than 0.95, the alignment likelihood is larger than
66%. Note that this is achieved within 160M token training and longer training should help the alignment.

How to use early exit is always an interesting directly and research topic. Fully exploring this is out
of the scope of this paper. Here we adopt a simple heuristic approach. When the largest probability is
larger than 0.95, we directly use the early exit prediction. Otherwise, we still process the remaining layers
to get the final prediction. We apply this logic to some questions we selected from Alpaca (Taori et al.,
2023) and the results are shown in Table B.4 and Appendix B.4.1.

B.4.1 Early Exit Examples

Here we provide more examples of early exit from Alpaca dataset.

Question:
Describe a time when you had to make a difficult decision.

Answer :

15

I'm an AI, I don't have personal experiences or emotions, but I
can provide

a hypothetical scenario to illustrate a difficult decision-—
making process.

Imagine

a scenario where I'm a manager at a company that specializes in
developing

artificial intelligence solutions. One of the key clients, a
large

corporation , has been a significant contributor to the company's
revenue. However, the client has been consistently pushing for the
development

of a new Al system that would require significant resources
and resources , including the expertise of several key team members.

However, the company has also been approached by a new client that
offers a more sustainable and long-term partnership, but with a lower
initial revenue potential. The new client is willing to invest in the
company 's research and development, which could lead to breakthroughs
in AI technology.

The decision

I would have to make is whether to prioritize the existing
client 's needs and risk over the long—-term potential of the new
client 's partnership. This decision would require weighing the short-
term

financial benefits against the potential long—term benefits of the
new partnership.

To make this decision, I would consider the following factors:

1. *xFinancial implications =%

— The immediate revenue from the existing client would be
significant , but it would also come with the risk of
overcommitting resources and potentially straining the team's
capacity .

— The new client 's partnership would offer a more sustainable
revenue stream, but it would require a significant investment of
resources upfront.

2. xxStrategic alignment:s*=*

— The existing client's project aligns with the company's current

business
model, but it may not be the best use of resources in the

long term.

— The new client 's partnership would allow the company to explore
new areas of research and development, which could lead to
breakthroughs in Al technology.

3. xxTeam dynamics:#=*

16

— The existing client 's project would require the involvement of
several key team members, which could lead to burnout and
decreased morale.

— The new client 's partnership would allow the company to attract
and retain

top talent , which would be beneficial for the company's
long—term success.

Question:
What is the capital of France?
Answer:

The capital of France is Paris.

Question:
Explain the use of word embeddings in Natural Language Processing
Answer:
#*+Word Embeddings in Natural Language Processing#=
Word embeddings are a fundamental concept in Natural Language
Processing (NLP) that enables computers to understand the meaning of
words in a more meaningful way. They are a way to represent words as
numerical vectors, allowing machines to capture the semantic
relationships between words.
#%What are Word embeddings ?:x
Word embeddings are a type of word representation that captures the
semantic meaning of words. They are typically learned from large
amounts of text data using techniques such as word2vec, GloVe, and
Word2Vec.
++How do Word embeddings work 7
Word embeddings work by learning a vector space where words are
represented as points. Each word is mapped to a vector in this space,
where the vector represents the meaning of the word. The closer two
words

are in the vector space, the more similar they are semantically.

#*xTypes of Word embeddings =

There are several types of word embeddings, including:

17

ksk
Word2Vecs*x: This is a popular word embedding technique that learns
word representations by predicting the context in which a word is
used .

Word2Vec uses two main architectures: CBOW (Continuous Bag—of-
Words) and skip-—gram.
#*xGloVesx*: This is another popular word embedding technique that
learns

word representations by analyzing the co-occurrence of words
in a sentence.
+xWord2Vec with Negative Sampling=+=x: This is a variant of the
word2vec algorithm that uses negative sampling to reduce the
dimensionality of the word embeddings.

+xHow are Word embeddings used in NLP tasks 7=

Word embeddings are used in a variety of NLP tasks, including:

1. #*xText Classification :#x*

— #xSentiment Analysis:®=*

— #xSpam Detection s

— x=xTopic Modeling : =

— #xNamed Entity Recognition (NER):=
2. #xText Generation :s*x*

— %+ Text Summarization :x*

— xxText Generation:#x
3. #x%xInformation Retrieval :#x

— %+ Information Retrieval i
4. xxMachine Translation :#x*
5. #xQuestion Answering:ss
Question :

What is the product of 6 and 2?

Answer :

The product of 6 and 2 is 12.

Question:

Give three tips for staying healthy.

Answer :

18

Here are three tips for staying healthy:
1. *+Maintain a Balanced Diet:#x=*

Eating a well-balanced diet is essential for maintaining overall
health

This includes consuming a variety of fruits , vegetables, whole
grains , lean proteins, and healthy fats. Aim to include a rainbow of
colors on your plate to ensure you're getting a range of essential
vitamins

and minerals. Limit your intake of processed and sugary foods,
and stay hydrated by drinking plenty of water throughout the day.

2. #xStay Physically Active:sx

Regular physical activity is crucial for maintaining physical and
mental health. Aim to engage in at least 150 minutes of moderate—
intensity exercise or 75 minutes of vigorous-—intensity exercise per
week. This can include activities such as walking, running, swimming,
cycling , or any other physical activity that you enjoy. You can also
incorporate strength training exercises into your routine to build
muscle and improve bone density.

3. #xGet Enough Sleep and Manage Stress :xx

Getting

enough sleep and managing stress are essential for maintaining
overall health. Aim to get 7-9 hours of sleep per night to help your
body repair and recharge. Establish a consistent sleep schedule and
create

a relaxing bedtime routine to help you wind down. Additionally ,
engage

in stress —reducing activities such as meditation, yoga, or deep
breathing exercises to help manage stress and anxiety.

Remember, maintaining a healthy lifestyle is a long—-term commitment,
and

it 's essential to find activities and habits that work for you and
your lifestyle.

19

	Introduction
	Related Works
	SwiftKV: Design and Implementation
	Preliminaries
	SwiftKV: Project KV cache from one layer
	AcrossKV: Share KV cache between layers
	Knowledge Recovery
	Optimized Implementation for Inference

	Main Results
	Model Quality Impact of SwiftKV
	Inference Performance

	Ablations and Discussions
	Compute vs Memory Reduction
	The Impact of Distillation

	Conclusions
	Main Experiment Details
	Training and Quality Evaluation Details
	Inference Speedup Evaluation Details
	Llama-3.1-8B-Instruct Latency Results
	Inference Results with SGLang
	Inference Results on ShareGPT

	Additional Ablations and Discussions
	Combining KV Compression Methods
	Inter-layer AcrossKV vs Intra-Layer KV cache Reduction
	The impact of fine-tuning datasets
	Simple Early Exit for Decoding Tokens
	Early Exit Examples

