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ABSTRACT

Multimodal deep learning (MDL) has achieved remarkable success across various
domains, yet its practical deployment is often hindered by incomplete multimodal
data. Existing incomplete MDL methods either discard missing modalities, risk-
ing the loss of valuable task-relevant information, or recover them, potentially
introducing irrelevant noise, leading to the discarding-imputation dilemma. To
address this dilemma, in this paper, we propose DyMo, a new inference-time dy-
namic modality selection framework that adaptively identifies and integrates re-
liable recovered modalities, fully exploring task-relevant information beyond the
conventional discard-or-impute paradigm. Central to DyMo is a novel selection
algorithm that maximizes multimodal task-relevant information for each test sam-
ple. Since direct estimation of such information at test time is intractable due to
the unknown data distribution, we theoretically establish a connection between
information and the task loss, which we compute at inference time as a tractable
proxy. Building on this, a novel principled reward function is proposed to guide
modality selection. In addition, we design a flexible multimodal network architec-
ture compatible with arbitrary modality combinations, alongside a tailored train-
ing strategy for robust representation learning. Extensive experiments on diverse
natural and medical datasets show that DyMo significantly outperforms state-of-
the-art incomplete/dynamic MDL methods across various missing-data scenarios.
Our code will be available at https://github.com/anonymous.

1 INTRODUCTION

Multimodal / multi-view deep learning (MDL), which integrates various modalities/views to achieve
a multisensory perception akin to humans, has gained increasing attention and made significant ad-
vances in various domains such as healthcare (Acosta et al., 2022), marketing (Liu et al., 2024), and
embodied intelligence (Duan et al., 2022). However, real-world deployment of these MDL models
remains limited due to their simplified data assumptions. Existing MDL approaches typically pre-
suppose full modality availability during inference. In practice, however, samples often lack one or
more modalities due to heterogeneous collection protocols across centers, sensor malfunctions, or
transmission errors (Wu et al., 2024a), leading to degraded model performance. Therefore, develop-
ing MDL models robust to incomplete multimodal data has become a critical research focus.

Current methods addressing missing modality can be broadly categorized into two types: (1)
recovery-based approaches aim to impute missing modalities at the input level or in latent space
via retrieval or generation, enabling the MDL model to operate as if all modalities were present (Ma
et al., 2021; Xu et al., 2025); (2) recovery-free approaches are designed to ignore missing modalities
and make predictions using only available ones (Lee et al., 2023; Wu et al., 2024b).

However, these incomplete MDL methods encounter intrinsic challenges in capturing task-relevant
information under modality heterogeneity (Zhang et al., 2024). Specifically, modalities vary in their
task relevance, due to differences in the strength of task-relevant signals and the degree of interfering,
task-irrelevant noise (Huang et al., 2022b). As shown in Fig. 1(a), when highly informative modali-
ties are missing, earlier recovery-free methods rely solely on the less distinguishable features of the
remaining modalities, without considering the valuable task-relevant information contained in the
missing ones, resulting in decreased model performance. Prior recovery-based methods appear to
mitigate this issue by reconstructing missing modalities. Yet, imputation qualities often vary across
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Figure 1: (a-b) Evidence of the discarding-imputation dilemma: (a-1) vs. (a-2) recovery-free meth-
ods (e.g., ModDrop (Neverova et al., 2015)) learn less discriminative features because they ignore
highly task-relevant missing modalities {M,T}; (b) recovery-based methods (e.g., MoPoE (Sutter
et al., 2021)) generate unreliable reconstructions, e.g., low-fidelity (orange) or misaligned (yellow)
modalities. (c) Our DyMo, which addresses the dilemma by dynamically fusing task-relevant re-
covered modalities, improving accuracy by 5.67% on PolyMNIST and 1.68% on MST (Tab. 1).

samples due to cross-modal heterogeneity and diverse missing scenarios. As in Fig. 1(b), some
recovered modalities may be low-fidelity (i.e., blurry or corrupted, orange boxes) or semantically
misaligned (i.e., their labels are inconsistent with the input modalities, yellow boxes). Integrating
such unreliable modalities can inject task-irrelevant noise, impairing decision-making. Thus, dis-
carding missing modalities risks losing valuable task-relevant information, whereas restoring them
may inject harmful information, a trade-off limitation we term the discarding-imputation dilemma.

To address this dilemma in incomplete MDL, we introduce a new perspective that dynamically se-
lects and fuses recovered modalities conditioned on their task relevance, moving beyond the conven-
tional dichotomy of discarding vs. imputing missing data. A key technical challenge in such dynamic
systems is how to estimate the task-relevant informativeness of each modality and identify unreliable
modalities at inference time. Nevertheless, existing dynamic fusion approaches (Cao et al., 2024;
Gao et al., 2024) are primarily designed for low-fidelity modalities and rely on modality-specific
features for weighting, and thus are limited in identifying semantically misaligned modalities.

In this work, we propose DyMo, a novel inference-time dynamic modality selection framework that
adaptively fuses reliable recovered modalities to maximize multimodal task-relevant information in
incomplete MDL (see Fig. 1(c)). To avoid integrating unreliable (low-fidelity or misaligned) re-
covery, we propose a new dynamic algorithm that iteratively selects the most informative recovered
modality based on the incremental multimodal task-relevant information gain it provides. Since the
data distribution is unknown at inference, we theoretically derive that reducing task loss can increase
the lower bound on task-relevant information. This motivates using the loss decrease as a practical
proxy for information gain and introducing a novel principled reward function to guide modality
selection. Additionally, to support flexible multimodal input, we design a multimodal network ar-
chitecture capable of predicting task targets with arbitrary modalities. We further propose a tailored
training strategy to learn robust latent features suitable for DyMo’s dynamic selection process.

Our contributions can be summarized as follows. (1) To the best of our knowledge, we are the first
to investigate the discarding-imputation dilemma in incomplete MDL and introduce dynamic neural
networks to address it. (2) We propose DyMo, a novel dynamic framework that adaptively fuses
recovered modalities via a new selection algorithm formulated on multimodal task-relevant infor-
mation gain, together with a multimodal network and a tailored training algorithm for robust feature
extraction from arbitrary combinations of modalities. (3) Experiments on 5 diverse datasets demon-
strate DyMo’s remarkable outperformance over incomplete/dynamic MDL SOTAs, especially under
severe missing scenarios. DyMo is also easy-to-use (flexible with various modality recovery meth-
ods) and readily deployable without additional architecture overhead for its dynamic algorithm.

2 RELATED WORK

Incomplete Multimodal Deep Learning (MDL) methods (Zhan et al., 2025; Wu et al., 2024a)
broadly fall into two categories: recovery-based and recovery-free. Recovery-based approaches can
be further divided into offline and online, depending on when the imputation occurs. Offline methods
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typically pre-train separate reconstruction networks, e.g., variational auto-encoders (VAEs) (Sutter
et al., 2021; Gao & Pu, 2025), and then use reconstructed data for downstream tasks. Online meth-
ods (Wang et al., 2023b; Shou et al., 2025) jointly learn modality recovery and downstream tasks
during training (Wang et al., 2023a). For instance, SMIL (Ma et al., 2022) employs Bayesian meta-
learning to impute latent features, while M3Care (Zhang et al., 2022) retrieves similar samples to
compensate for missing modalities. In recovery-free approaches, missing-agnostic techniques learn
modality-invariant features via random modality dropout, e.g., ModDrop (Neverova et al., 2015)
and MMANet (Wei et al., 2023), or contrastive learning (Wu et al., 2024b), while missing-aware
methods introduce missingness-specific parameters to handle different missing patterns (Ma et al.,
2022; Li et al., 2025). However, previous incomplete MDL methods either fully recover or ignore
missing modalities, without considering the discarding-imputation dilemma.

Dynamic Deep Neural Networks, in contrast to static models, can adapt their architectures and pa-
rameters based on individual input, yielding substantial improvements in computational efficiency,
accuracy, and interpretability (Han et al., 2021; Guo et al., 2024). Dynamic architecture methods
adjust network depth, width, or routing paths on a per-sample basis (Fedus et al., 2022; Yue et al.,
2024), while dynamic parameter algorithms modulate network weights or feature scaling without
altering the architecture (Zhang et al., 2023). Our DyMo, which dynamically routes modality data
conditioned on each instance, falls into the dynamic architecture category.

Multimodal Fusion is a critical research problem in MDL (Baltrušaitis et al., 2018). Existing meth-
ods can be grouped by their fusion stage into early (data level), intermediate (feature level), and
late (decision level) fusion. Recently, dynamic multimodal fusion methods have emerged to address
instance-specific modality reliability variations. These methods assign different weights to each
modality (Zhang et al., 2023; Gao et al., 2024) or selectively use a subset of modalities (Xue & Mar-
culescu, 2023; Ma et al., 2025). However, such methods typically assume all modalities are available
and mainly focus on intra-modality noise (i.e., low-fidelity data) during training, lacking robustness
against inter-modality errors (i.e., semantic misalignment). While MICINet (Zhang et al., 2025)
explores both types of noise, it requires ground-truth labels and cannot be applied during inference.
By contrast, DyMo dynamically fuses observed and recovered modalities to handle incomplete data,
while effectively addressing intra- and inter-modality noise without relying on labels.

3 METHOD

In this section, we present DyMo, a novel inference-time dynamic modality selection framework for
incomplete multimodal classification by fully exploring task-relevant information from recovered
modalities, while addressing the discarding-imputation dilemma (Fig. 1(c)). To achieve this, DyMo
comprises 3 key components: (1) a flexible multimodal architecture capable of making predictions
from arbitrary modalities (Sec. 3.1, Fig. 2); (2) a novel dynamic selection algorithm that integrates
valuable recovered modalities to maximize multimodal task-relevant information for each sample
(Sec. 3.2, Algorithm 1); and (3) a tailored training strategy that enhances representation learning to
ensure feature robustness under dynamic modality configuration during inference (Sec. 3.3).

3.1 MULTIMODAL ARCHITECTURE FOR ARBITRARY MODALITIES

Our multimodal network is designed to produce reliable predictions from any subsets of input modal-
ities, enabling adaptive fusion based on the task relevance of each recovered modality. To achieve
this, we construct a multimodal network f (Fig. 2), consisting of modality-specific encoders for
unimodal feature extraction, a multimodal transformer for modeling cross-modal interactions and
learning a multimodal representation of available modalities, and a classifier for the final prediction.

A multimodal classification dataset can be defined as {Xi, yi}Ni=1, where N is the number of sam-
ples, yi ∈ {1, ...,K} is the class label, and Xi = {x(m)}m∈Ii

represents a (potentially incomplete)
multimodal input comprising modalities such as images and text. Here, Ii denotes a subset of the
complete modality indices [M ] = {1, 2, ...,M}. Each available modality m ∈ Ii is encoded by a
modality-specific encoder h(m), producing a sequence of feature tokens H(m) ∈ RL(m)×C , where
L(m) is the sequence length. We then concatenate these tokens together with a learnable [CLS]
token to form a multimodal sequence embedding. The [CLS] token’s output embedding serves as
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the multimodal representation for classification as in (Devlin et al., 2019). To preserve the sequence
structure across samples, we assign dummy tokens to the positions of missing modalities.

Driven by transformer’s ability to capture long-range dependencies from variable lengths of
the sequence, we build a multimodal transformer network ψ composed of T stacked trans-
former layers (Vaswani et al., 2017) to learn cross-modal relations in observed modalities.

Figure 2: Multimodal network architec-
ture f for arbitrary modalities.

These transformer layers conduct self-attention on the mul-
timodal sequence embedding and apply attention masks
to ensure that missing modalities do not distort represen-
tation learning. The extracted multimodal representation
z = ψ[h(Xi)] from the transformer is passed through a lin-
ear softmax classifier ζ to yield the final prediction.

3.2 DYNAMIC MODALITY SELECTION AT INFERENCE

To address the discarding-imputation dilemma, we propose
a novel dynamic modality selection algorithm that adap-
tively discovers valuable task-relevant recovered modalities
at inference. The core idea of our approach is a novel re-
ward function that estimates the incremental multimodal
task-relevant information contributed by each recovered
modality. We establish a theoretical connection between
information and task (i.e., classification) loss, leading to an
effective reward formulation linked to representation shift in the latent space. To further enhance
robustness, we propose an intra-class similarity calibration for reward refinement based on training
data. Finally, we introduce an iterative selection mechanism for reliable dynamic multimodal fusion.

Multimodal Task-Relevant Information Reward (MTIR) is designed to estimate the incremental
multimodal task-relevant information gained by adding a recovered modality to the existing ob-
served modalities. MTIR is inspired by the notion of information gain (Ma et al., 2019; Jolliffe,
2011) and aims to indicate the marginal impact of each recovered modality on the multimodal rep-
resentation: (1) Positive reward suggests that the recovered modality introduces additional task-
relevant information that enhances the representation; (2) Zero reward indicates that the recovery is
of low fidelity, mainly introducing noise and providing negligible benefit; and (3) Negative reward
implies that the recovery contains task-relevant but semantically inconsistent information, poten-
tially degrading the representation. This formulation enables the identification of both low-fidelity
and misaligned modalities, which have been largely overlooked in prior dynamic MDL work.

To quantify task-relevant information contained in the multimodal representation, we consider mu-
tual information between the multimodal representations Z and the target labels Y :

I(Y ;Z) = Ep(y,z) log
p(y,z)

p(y)p(z)
. (1)

Since the true data distributions are unknown at inference, we propose to derive a lower bound of
I(Y ;Z), estimated using the empirical test classification cross-entropy (CE) loss L̂ce:

I(Y ;Z) ≥ H(Y )− L̂ce −G

√
ln(1/δ)

2|D|
, with probability at least 1− δ, (2)

where H(Y ) is the entropy of the target labels, G is a conservative upper bound on the per-sample
CE loss, |D| is the size of a test dataset, and δ ∈ (0, 1) controls the probability of the bound holding
(detailed derivation in Appendix A.1). This bound formalizes the intuition that reducing L̂ce can
increase the lower bound on I(Y ;Z), thereby potentially increasing the task-relevant information
in Z. Motivated by this insight, we propose to use the empirical test CE loss decrease as a tractable
proxy for information gain, forming the theoretical foundation of our MTIR reward.

Given an incomplete multimodal test sample Xj = {x(m)}m∈Ij
, we recover the missing modalities

as X̃j = {x̃(u)}u∈([M ]\Ij) using a recovery function Υ (e.g., a VAE). The empirical CE loss of
DyMo g, including a multimodal network f and a dynamic selection algorithm, is then defined as:

L̂ce =
1

|D|
∑|D|

j=1
ℓce

[
gj(Xj , X̃j), yj

]
. (3)
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To minimize L̂ce, DyMo should adaptively integrate the recovered modalities in X̃ that reduce per-
sample loss ℓce. Accordingly, for each sample, we define MTIR of u-th recovered modality as:

R(x̃(u),XO) = ℓce
[
f(XO), y

]
− ℓce

[
f(XO, x̃(u)), y

]
= − log pf (y|z) + log pf (y|zu), (4)

where XO denotes the observed modalities (initially X), ℓce = − log pf (y|z), z = ψ[h(XO)], and
zu = ψ[h(XO, x̃(u))]. Since the true label y is unknown at inference, we substitute it with the
predicted labels ŷ = argmax f(XO) and ŷu = argmax f(XO, x̃(u)). However, such substitution
may undermine the reliability of MTIR, especially under mispredictions or overfitting. To mitigate
this, inspired by the robustness and generalizability of metric learning (Vinyals et al., 2016; Chen
et al., 2020), we further investigate the representation shifts with respect to the training distribution,
measured in the latent space. Specifically, we treat classification as a mixture density estimation
problem in feature space, where each class corresponds to a component. Suppose equal class prior
probability and exponential family distributions, the posterior probability of y = k given z is:

p(y = k|z) = exp(−dϕ(z, ck))∑K
k′=1 exp(−dϕ(z, ck′))

, ck =
1∑N

i=1 I[yi = k]

∑
i:yi=k

zi, (5)

where dϕ is a Bregman-divergence type distance function (Banerjee et al., 2005) (e.g., squared
Euclidean distance), and ck is the class prototype estimated from the training dataset. The derivation
of this expression is provided in Appendix A.2. Substituting Eq. 5 into Eq. 4 yields:

R(x̃(u),XO) = − log
exp(−dϕ(z, cŷ))∑K

k′=1 exp(−dϕ(z, ck′))
+ log

exp(−dϕ(zu, cŷu))∑K
k′=1 exp(−dϕ(zu, ck′))

. (6)

This formula indicates that higher MTIR rewards can be obtained when the representation moves
closer to the class prototype after incorporating a recovered modality, which is consistent with the in-
tuition that fusing effective information increases the model’s predictive certainty (Dai et al., 2023).

Intra-Class Similarity Calibration: Eq. 6 defines the MTIR reward based on changes in the dis-
tance between a sample representation and its predicted class prototype. A challenging case arises
when ŷ and ŷu differ, while z and zu lie at similar distances from their respective prototypes, yield-
ing a near-zero reward. To address this and enhance the reliability of the MTIR reward, we introduce
a novel calibration term α, which refines the reward by accounting for how representative a sample
is within its predicted class cluster. The calibrated MTIR reward R∗ is:

R∗(x̃(u),XO) = − log
exp(−dϕ(z, cŷ))∑K

k′=1 exp(−dϕ(z, ck′))
+ α× log

exp(−dϕ(zu, cŷu))∑K
k′=1 exp(−dϕ(zu, ck′))

. (7)

To compute α, we first define the intra-class similarity (ICS) score of z for class k. Instead of com-
puting distances to all training samples in class k, we propose an efficient approximation. Specifi-
cally, we approximate the distribution of distances from the samples in class k to the class prototype
ck as a truncated normal distribution dϕ ∼ N (0, σk), dϕ > 0, where σk is estimated from the
training data. The ICS score is then written as:

ICS(y = k, z) = P(dϕ > dϕ(z, ck)|dϕ > 0) = 2(1− Φ(dϕ(z, ck))), (8)

where Φ is the cumulative distribution function of the normal distribution. ICS quantifies the rep-
resentativenss of z within a class cluster, with a higher value indicating closer alignment with the
training samples in that cluster.

The calibration term is defined as the ratio between the ICS scores of zu and z: ICS(y=ŷu,zu)
ICS(y=ŷ,z) . Since

XO are observed, task-relevant modalities, while x̃(u) is synthetic and can introduce unreliable
information, DyMo should be conservative when ICS(y = ŷu, zu) > ICS(y = ŷ,z). To this end,
we introduce an asymmetric α:

α =

{
1 if ICS(y = ŷu, zu) > ICS(y = ŷ,z),
ICS(y=ŷu,zu)
ICS(y=ŷ,z) otherwise,

(9)

which is used to calculate R∗ in Eq. 7. Thus, if zu is less representative than z within its predicted
class cluster (i.e., α < 1), the second term in R is down-weighted, reducing the calibrated MTIR.
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Iterative Modality Selection: To improve the reliability of DyMo’s dynamic process, we introduce
an iterative selection algorithm to maximize multimodal task-relevant information for each sample
(Algorithm 1). At each step, given an observed set XO and a candidate set XC , we add the recovered
modality with the highest MTIR reward to XO while removing all ineffective modalities with non-
positive rewards from XC . This stepwise selection ensures that DyMo incorporates only the most
informative modalities, effectively mitigating noise accumulation.

Algorithm 1: DyMo Adaptive Inference
Input: Test dataset D, network f (including h, ψ, and ζ), and a recovery method Υ
for each test sample X = {x(m)}m∈I ∈ D do

X̃ = {x̃(u)}u∈[M ]\I ← Υ(X) ; // Recover missing modalities
XO ← X, XC ← X̃ ; // Initialize observed & candidate modality sets
while XC ̸= ∅ do

r∗(i) ← R∗(x̃(i),XO), ∀x̃(i) ∈ XC ; // Calibrated MTIR reward (Eq. 7)
k ← argmaxi r

∗(i) ; // Best candidate modality index
if r∗(k) > 0 then

XO ← XO ∪ x̃(k) ; // Integrate the most informative modality
end
XC ← XC \ {x̃(i) | r∗(i) ≤ 0} ; // Remove ineffective modalities

end
ŷ ← f(XO)

end
return All test predictions Ŷ collected over D

3.3 TRAINING ALGORITHM

DyMo’s dynamic inference relies on representation shifts, making it essential to train our multimodal
network f properly to learn a robust latent feature space where samples of the same class cluster
together despite missing modalities. To achieve this, we design incomplete-modality simulation
training and an auxiliary missing-agnostic contrastive loss.

Incomplete Simulation Training. To guarantee that f extracts robust task-relevant features across
various missing patterns, we propose a simple yet effective random sampling strategy during train-
ing. In specific, each complete multimodal sample {x(1), ...,x(M)} has 2M−1 non-empty modality
subsets. In each minibatch, we randomly sample A such subsets for classification loss calculation:

Lclass = −
1

A

1

B

∑
S∼UA

∑B

i=1
log pf

(
yi | {x(m)}m∈S

)
, (10)

where B is the batch size, and UA ∼ Uniformw/o rep(P([M ]) \ ∅, A). P([M ]) denotes a collection
of all modality subsets. This strategy reduces computational cost compared to prior work (Ma et al.,
2022) that requires all missing patterns in each training step.

Auxiliary Missing-Agnostic Contrastive Loss is designed to further enhance intra-class clustering
and inter-class separation regardless of missing scenarios:

Laux = − 1

A

1

B

∑
S∼UA

∑B

i=1
log

exp (−dϕ(zi, cyi
)/t)∑K

k′=1 exp (−dϕ(zi, ck′)/t)
, (11)

where t is the temperature parameter. In experiments, we test two common distance functions: the
squared Euclidean distance dϕ(u,v) = ∥u− v∥22 and the cosine distance dϕ(u,v) = 1 − (u ·
v)/(∥u∥2∥v∥2), where u · v is the dot product of the vectors.

Overall Loss. The final training loss for DyMo is expressed as Loverall = Lclass + Laux.

4 EXPERIMENT

Datasets and Evaluation Metrics: We conduct extensive experiments on 5 different datasets with
varied modalities, including 3 simulated benchmark datasets (Sutter et al., 2021): PolyMNIST, MST,
and biomodal CelebA, and two large real-world datasets: a natural image dataset, Data Visual Mar-
keting (DVM) (Huang et al., 2022a), and a medical image dataset, UK Biobank (UKBB) (Sudlow
et al., 2015). For UKBB, we focus on two cardiac disease classification tasks: coronary artery dis-
ease (CAD) and myocardial infarction, using magnetic resonance (MR) images and disease-related
tabular features. Following (Du et al., 2025; Sutter et al., 2020), we report the area under the curve
(AUC) for UKBB, and accuracy for the remaining datasets. Dataset details are in Appendix B.1.
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Figure 3: Comparison of DyMo with static/dynamic multimodal fusion techniques on 6 multimodal
classification tasks under various missing scenarios. DyMoc and DyMoe denote the use of cosine
and squared Euclidean distances, respectively.

Implementation Details: For the recovery method in DyMo, we leveraged MoPoE (Sutter et al.,
2021), a multimodal VAE network, for PolyMNIST, MST, and CelebA. Then, for DVM and UKBB,
we used TIP (Du et al., 2024), an image-tabular reconstruction framework. Note that DyMo
can be deployed with any recovery method. To ensure a fair comparison, all compared methods
used the same modality-specific encoders as DyMo. Models were trained on complete datasets
and evaluated under various missing scenarios: (i) For PolyMNIST, we set 5 missing rates η =
{0, 0.2, 0.4, 0.6, 0.8}, where each sample randomly misses η × 100% modalities; (ii) For MST and
CelebA, we tested different combinations of missing modalities; (iii) For DVM and UKBB, since
TIP is a table reconstruction network, we evaluated both full- and intra-table (i.e., partial within-
modality) missing. Specifically, we set 7 missing tabular rates γ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1},
where each sample randomly misses γ × 100% tabular features. Note that DyMo can also handle
incomplete modality training, as our multimodal network supports arbitrary modalities. Detailed
implementation settings for all models are provided in Appendix B.2.

4.1 OVERALL RESULTS

Comparing Against Multmodal Static / Dynamic Fusion SOTAs: To assess DyMo’s effective-
ness in selecting valuable task-relevant recovered modalities at inference, we compared it with
SOTA multimodal fusion techniques, including static concatenation-based fusion (CONCAT) (Bal-
trušaitis et al., 2018) and 3 dynamic fusion methods, QMF (Zhang et al., 2023), DynMM (Xue
& Marculescu, 2023), and PDF (Cao et al., 2024). All methods were provided with the same set
of non-missing and recovered modalities at inference. Notably, prior dynamic methods typically
require additional modality-specific branches for modality contribution estimation or multi-stage
training, whereas DyMo operates directly on multimodal representations without extra modality-
specific parameters and relies on single-stage training. We report DyMo’s results using cosine dis-
tance (DyMoc) and squared Euclidean distance (DyMoe).

As shown in Fig. 3, DyMo achieves substantial improvements on most datasets, especially under se-
vere missing scenarios. For example, DyMo achieves 13.12% higher accuracy on PolyMNIST with
80% missing modalities and 4.11% higher accuracy on DVM when the full table is missing. Both
DyMoc and DyMoe consistently outperform prior SOTAs on most datasets, demonstrating DyMo’s
robustness to the choice of distance metric. We further observe that (1) performance decreases vary
across different missing modality combinations (Fig. 3(b,c)), indicating the existence of varying
modality task relevance; (2) prior dynamic methods outperform static fusion on DVM (Fig. 3(d))
but achieve limited gains on the 3 simulated benchmarks (Fig. 3(a-c)). This limitation arises be-
cause VAE-based reconstruction tends to produce visually plausible but class-misaligned recovered
modalities, which prior dynamic methods struggle to handle. By contrast, DyMo addresses this
via estimating incremental multimodal task-relevant information gain, resulting in superior results.
Additionally, DyMo and CONCAT perform similarly on CAD, likely due to the consistent informa-
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Table 1: Comparison of DyMo with recovery-based and recovery-free incomplete MDL methods
on 6 multimodal classification tasks under various missing scenarios. Models marked with † were
trained using our proposed incomplete modality simulation. Complete results for all missing sce-
narios are provided in Appendix C.1.

Model PolyMNIST Acc (%) ↑ MST Acc (%) ↑ CelebA Acc (%) ↑ DVM Acc (%) ↑ CAD AUC (%) ↑ Infarction AUC (%) ↑
Missing Rate η Missing Modality/ies Missing Tabular Rate γ

0 0.6 0.8 {} {S,T} {M,T} {} {I} {T} 0 0.7 1 0 0.7 1 0 0.7 1
(a) Recovery-based Methods for Missing Modality

MultiAE 99.77 95.36 84.39 99.96 97.00 81.60 89.98 15.51 89.71 - - - - - - - - -
MultiAE† 99.94 97.50 89.86 99.87 98.33 83.44 88.66 72.04 87.44 - - - - - - - - -
MoPoE 99.79 93.93 79.84 99.62 90.86 79.01 38.97 13.91 34.84 - - - - - - - - -
MoPoE† 99.63 96.81 87.06 99.39 96.50 82.54 68.22 56.90 65.75 - - - - - - - - -
M3Care 99.93 56.66 40.53 99.99 16.03 9.34 92.33 99.92 51.75 98.44 - 11.92 85.62 - 64.99 70.61 - 70.53
M3Care† 99.99 97.27 87.92 99.98 98.27 85.16 98.73 97.14 91.32 98.94 - 93.43 72.48 - 72.48 83.27 - 68.44
OnlineMAE 100 98.29 90.09 99.90 98.14 84.14 86.67 86.67 86.67 90.92 - 89.90 85.22 - 70.96 84.05 - 61.39

(b) Recovery-free Methods for Missing Modality
ModDrop 99.97 97.66 88.44 100 98.21 82.47 99.93 99.93 87.32 99.02 93.23 87.97 85.10 76.65 69.18 84.76 74.64 72.16
MTL 99.97 98.43 91.14 99.96 98.60 84.37 99.69 99.26 89.38 99.44 95.53 92.32 84.87 77.72 70.23 83.59 75.73 69.90
MAP 99.86 43.00 23.19 100 9.83 10.13 99.98 99.93 85.33 98.86 86.96 63.15 84.39 75.61 70.11 84.62 71.73 69.17
MAP† 99.99 96.74 76.20 99.99 97.84 11.36 100 99.99 86.06 99.37 94.83 91.15 85.26 75.84 68.76 85.49 75.88 70.81
MUSE 99.93 94.73 77.56 99.86 97.14 35.96 99.93 99.86 88.35 96.86 - 1.64 83.47 - 53.23 84.40 - 66.78

(c) Dynamic Recovery Method for Missing Modality
DyMoc 100 99.71 96.61 100 98.22 85.31 100 100 95.20 99.30 96.31 93.14 85.14 78.49 71.02 85.10 77.85 71.58
DyMoe 100 99.87 96.81 100 98.43 86.84 100 100 93.67 99.50 96.81 93.36 86.17 78.24 72.17 83.16 76.14 72.47

Table 2: Ablation study of DyMo. Baseline integrates all recovered modalities without selection. S
integrates all modalities with positive reward (r > 0) simultaneously. I iteratively adds the modality
with the highest r. C uses the calibrated reward r∗, obtained via intra-class similarity calibration.

Dynamic C PolyMNIST MST CelebA DVM CAD Infarction
selection 0.6 0.8 {S,T} {M,T} {I} {T} 0.7 1 0.7 1 0.7 1

Baseline 96.80 84.21 96.43 80.73 100 86.67 96.27 88.36 79.15 71.84 78.31 74.89
S 99.59 94.33 97.21 82.08 100 86.67 96.54 92.83 79.44 72.20 77.83 75.27
I 99.60 94.50 97.26 82.12 100 86.67 96.54 92.83 79.44 72.20 77.83 75.27
I

√
99.71 96.61 98.22 85.31 100 95.20 96.31 93.14 78.49 71.02 77.85 71.58

tiveness of the recovered table modality across samples, leaving limited room for dynamic fusion to
further improve performance.

Comparing Against Incomplete MDL SOTAs: To evaluate DyMo’s efficacy in handling missing
modalities, we compared it with SOTA incomplete MDL approaches, including 4 recovery-based
(MultiAE (Ngiam et al., 2011), MoPoE (Sutter et al., 2021), M3Care (Zhang et al., 2022), and
OnlineMAE (Woo et al., 2023)) and 4 recovery-free methods (ModDrop (Neverova et al., 2015),
MTL (Ma et al., 2022), MAP (Lee et al., 2023), and MUSE (Wu et al., 2024b)). For models without
simulating different missing scenarios during training, we additionally report their results with our
incomplete simulation training. Since ModDrop is a training scheme rather than a standalone archi-
tecture, we applied it to the same multimodal backbone as DyMo for a fair comparison. Methods
requiring task-specific decoders or restricted to full-modality missing settings were evaluated only
on datasets where such decoders are provided and under full-modality missingness.

In Tab. 1, integrating our incomplete simulation training improves model performance (w/ vs. w/o
†), demonstrating its effectiveness in learning features robust to missing data. We also observe
the discarding-imputation dilemma: (i) recovery-free methods suffer large performance drops when
highly task-relevant modalities are missing, e.g., a 61.18% accuracy reduction for MUSE on MST
with missing {M,T} vs. {S,T}; (ii) recovery-based methods struggle under severe missing scenarios,
e.g., OnlineMAE’s accuracy on PolyMNIST decreases by 9.91% with η = 0.8 vs. η = 0, indicat-
ing the generation of unreliable recoveries. In contrast, DyMo effectively addresses this dilemma,
significantly outperforming prior SOTAs on full- and intra-modality missing conditions, e.g., 5.67%
higher accuracy on PolyMNIST with 80% missing modalities and 1.97% higher AUC on Infarction
with 70% missing tabular features. Performance matches M3Care† on DVM and CAD when η = 1,
likely due to TIP’s limited full-table reconstruction; stronger recovery could further enhance results.

4.2 ABLATION STUDY AND VISUALIZATION

Effectiveness of Key Model Components: We ablated the key components of DyMo in Tab. 2,
including the MTIR reward, iterative selection, and the calibration term. The results show that in-
tegrating all recovered modalities without selection can introduce task-irrelevant information and
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Figure 4: (a) t-SNE visualization of DyMoc on MST with different modality inputs: (a-1) using only
non-missing modalities; (a-2) integrating all recovered modalities without selection; (a-3) incorpo-
rating recovered modalities selected by DyMoc. (b) PCA visualizations of two successful DyMoc’s
test cases on DVM: (b-1) a misprediction corrected by incorporating a recovered modality; (b-2) a
correct prediction maintained by disregarding an unreliable recovered modality.

degrade performance. Each component contributes positively, and DyMo, which combines all of
them, achieves the best overall results. For CAD and Infarction, I outperforms I+C. This is likely
because the calibration term, bounded between 0 and 1, makes the model more conservative in
modality selection. In these cases, the recovered table consistently provides task-relevant infor-
mation, so omitting C allows more samples to benefit from it. Tuning a dataset-specific scaling
hyper-parameter before applying C may mitigate this issue, which we leave for future work. Ad-
ditional ablation studies on our incomplete simulation training, generalizability analysis of DyMo,
and adaptive inference analysis can be found in Appendix C.2-C.3.

Visualization of Multimodal Representations and Case Studies: To examine the effect
of integrating recovered modalities selected by DyMo in shaping the latent space, we used
t-SNE (Maaten & Hinton, 2008) to visualize the multimodal embeddings of the test set.
Fig. 4(a) shows that integrating all recovered modalities increases inter-class separation; how-
ever, samples with unreliable recoveries can be embedded within incorrect class clusters,
leading to misclassifications and degraded performance. In contrast, DyMo’s dynamic fu-
sion alleviates this issue, producing a more discriminative latent space and improved classi-
fication results. Moreover, we conducted case studies at both the feature level (PCA (Jol-
liffe, 2011) visualization, Fig. 4(b)) and the input level (Fig. 5(b)), illustrating that DyMo ef-
fectively selects reliable, task-relevant recovered modalities that enhance model performance.

Figure 5: (a) Sankey diagram for DyMoc prediction transi-
tions on MST with missing {M,T}. (b) Case study on PolyM-
NIST, where yellow indicates non-missing modalities, while
blue indicates modalities selected by DyMoc.

A challenging example is shown in the
fourth row of Fig. 5(b), where all dy-
namic methods struggle due to noisy ob-
served modalities and semantically mis-
aligned recovered modalities. Additional
visualizations and detailed analyses are
provided in Appendix C.5.

Prediction Transition: We analyzed
prediction changes before and after dy-
namic modality selection using a Sankey
diagram. In Fig. 5(a), DyMo corrects
many initial mispredictions and achieves
improved performance, highlighting the
benefit of recovered modalities. A small fraction of correct predictions become incorrect after updat-
ing, likely due to limited recovery quality, suggesting that stronger recovery methods could reduce
such errors. Reconstruction analyses of modality recovery methods are in Appendix C.6.

5 CONCLUSION

In conclusion, we present the first study on dynamic multimodal fusion after modality recovery
for addressing missing modalities. We propose DyMo, a new inference-time dynamic modality
selection framework that fully explores task-relevant information while addressing the discarding-
imputation dilemma by adaptively identifying and fusing valuable recovered modalities. DyMo
introduces a novel selection algorithm grounded in maximizing multimodal task-relevant informa-
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tion and proposes a principled reward function. We further design a flexible multimodal network
architecture and a tailored training strategy to enable robust multimodal representation learning un-
der arbitrary modality combinations. Experiments on various natural and medical datasets showed
DyMo’s SOTA performance and the efficacy of its components. With the growing demand for mul-
timodal deep learning, DyMo offers significant potential for real-world deployment on incomplete
data. Future work will explore extensions to other tasks (e.g., segmentation) and modalities (e.g.,
video). We note that large language models (LLMs) were used solely to improve language clarity;
all scientific content and ideas were developed by the authors.
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mation. No direct human subject recruitment was involved, and the work does not raise foreseeable
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Reproducibility Statement: We provide detailed descriptions of datasets, preprocessing steps,
model architectures, training procedures, and evaluation protocols in Sec. 3 and Sec. 4 of the
manuscript and Appendix B to ensure reproducibility of our model and compared approaches.
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Appendices
Overview: The appendices are structured to provide further details and supporting evidence for
the manuscript. In Appendix A, we provide the detailed formulations of the proposed DyMo. Ap-
pendix B describes the datasets used in our experiments, together with the implementation details for
both DyMo and the baseline algorithms to ensure reproducibility. Finally, Appendix C presents ad-
ditional experiments, including the complete results under various missing-data scenarios, extended
ablation studies, generalization analysis (e.g., evaluating robustness across different modality recov-
ery methods), adaptive inference analysis, additional visualizations, and reconstruction performance
evaluation of modality recovery methods.

A DETAILED FORMULATION

A.1 RELATIONSHIP BETWEEN TASK LOSS FUNCTION & TASK-RELEVANT INFORMATION

Our dynamic selection algorithm leverages a novel multimodal task-relevant information reward
(MTIR) to rank the incremental multimodal task-relevant information gained from adding each re-
covered modality. Since the underlying data distribution is unknown at inference time, we introduce
a tractable proxy based on the task (i.e., classification) loss function. In this section, we derive the
connection between task loss and task-relevant information, demonstrating that reducing the task
loss can increase the lower bound on task-relevant information.

Let the true conditional distribution of labels given representations be p(y|z), and the model-
predicted distribution be qθ(y|z), where θ denotes model parameters, y is the classification label,
and z is the multimodal representation. The true classification cross-entropy (CE) loss over a test
dataset D is:

Lce = CE(p(y|z); qθ(y|z))

= −
∫
Z
p(z)

[∫
Y
p(y|z) log qθ(y|z)dy

]
dz.

(S1)

We can decompose the cross-entropy into conditional entropy and conditional KL divergence:

Lce = −
∫
Z
p(z)

[∫
Y
p(y|z) log qθ(y|z)dy

]
dz +

∫
Z
p(z)

[∫
Y
p(y|z) log p(y|z)dy

]
dz −

∫
Z
p(z)

[∫
Y
p(y|z) log p(y|z)dy

]
dz

= −
∫
Z
p(z)

[∫
Y
p(y|z) log p(y|z)dy

]
dz +

∫
Z
p(z)

[∫
Y
p(y|z) log p(y|z)

qθ(y|z)

]
dz

= H(Y |Z) + KL(p(y|z)||qθ(y|z)).
(S2)

Since conditional KL divergence is non-negative (Cover, 1999), we have
Lce ≥ H(Y |Z). (S3)

On the other hand, the task-relevant information contained in multimodal representations Z can be
quantified by the mutual information between Z and the labels Y (Tishby & Zaslavsky, 2015):

I(Y ;Z) = Ep(y,z) log
p(y,z)

p(y)p(z)

= −Ep(y,z) log p(y) + Ep(y,z) log p(y|z)
= H(Y )−H(Y |Z),

(S4)

where H(Y ) is the entropy of labels. Combining this with Eq. S3 yields a lower bound on mutual
information:

I(Y ;Z) ≥ H(Y )− Lce (S5)

This shows that the lower bound on mutual information increases as the expected CE loss Lce de-
creases, motivating the use of the loss as a tractable proxy for task-relevant information. In practice,
since the true distributions p(z) and p(y|z) are unknown, we estimate the bound using the empirical
test CE loss computed from one-hot labels. The empirical test CE loss is written as:

L̂ce =
1

|D|

|D|∑
j=1

ℓcej =
1

|D|

|D|∑
j=1

− log qθ(yj |zj). (S6)
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Assuming that the model is well-trained, we follow the common bounded-loss assumption in prior
work that the per-sample CE loss is bounded in practice (Cao et al., 2024; Zhang et al., 2023; Mohri
et al., 2018). Therefore, we adopt a conservative bound:

0 ≤ ℓcej = − log qθ(yj |zj) ≤ G, ∀j ∈ {1, 2, . . . , |D|}. (S7)

Then, by Hoeffding’s inequality (Hoeffding, 1963), with probability at least 1− δ,

Lce ≤ L̂ce +G

√
ln(1/δ)

2|D|
. (S8)

Substituting this into Eq. S5, we obtain a high-probability lower bound on the mutual information
in terms of the empirical test CE loss:

I(Y ;Z) ≥ H(Y )− L̂ce −G

√
ln(1/δ)

2|D|
, with probability at least 1− δ. (S9)

In this equation, the last term G
√

ln(1/δ)
2|D| is constant and will be nearly to zero when the test dataset

size is sufficient large. Therefore, reducing the empirical test CE loss can increase the lower bound
on task-relevant information contained in multimodal representations z, which provides the theoret-
ical foundation of our MTIR reward in the dynamic modality selection algorithm.

A.2 FORMULATION ON THE FEATURE SPACE

A regular Bregman divergence (Banerjee et al., 2005) dϕ is defined as:

dϕ(z, z
′) = ϕ(z)− ϕ(z′)− (z − z′)T∇ϕ(z

′), (S10)

where ϕ is a differentiable, strictly convex function of the Legendre type, e.g., squared Euclidean
distance or Mahalanobis distance. Inspired by prototypical networks (Snell et al., 2017), the poste-
rior probability p(y|z) can be interpreted as a mixture density estimation on the training set with an
exponential family density defined in the feature space.

Any regular exponential family distribution pΨ(z,θ) with natural parameters θ and cumulant func-
tion Ψ can be written in terms of a uniquely determined regular Bregman divergence:

pΨ(z|θ) = exp(⟨z,θ⟩ −Ψ(θ))p0(z) = exp
(
− dϕ(z,µ(θ))

)
bϕ(z), (S11)

where bϕ(z) = exp(ϕ(z))p0(z) and µ(θ) is the mean parameter. Consider a regular exponential
family mixture model with parameters Γ = {θk, πk}Kk=1:

p(z|Γ) =
K∑

k=1

πkpΨ(z|θk) =
K∑

k=1

πk exp
(
− dϕ(z,µ(θk))

)
bϕ(z). (S12)

Given Γ, the posterior probability of assigning an unlabeled data point z to cluster k is:

p(y = k|z) = p(y = k)p(z|y = k)

p(z|Γ)
=

πk exp(−dϕ(z,µ(θk)))∑K
k′=1 πk′ exp(−dϕ(z,µ(θk′)))

(S13)

Following Snell et al. (2017), we assume an equally-weighted mixture model with one cluster per
class, where πk = 1

K , and µ(θk) = ck denotes the class prototype estimated from the training data.
The posterior probability then simplifies to:

p(y = k|z) = exp(−dϕ(z, ck))∑K
k′=1 exp(−dϕ(z, ck′))

, ck =
1∑N

i=1 I[yi = k]

∑
i:yi=k

zi. (S14)

During training, we utilize the class prototypes to calculate our auxiliary missing-agnostic con-
trastive loss Laux. To avoid storing instance embeddings, we maintain the cumulative sum of em-
beddings and sample counts for each class during training and compute the prototype at the end of
each epoch.
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Note that the representations of a sample may differ across different modality subsets. To account
for this, at inference time, we further define subset-specific class prototypes. In specific, for each
class k ∈ {1, ...,K} and each non-empty modality subset S ⊆ [M ],S ≠ ∅, we construct:

ck,S =
1∑N

i=1 I[yi = k]

∑
i:yi=k

ψ
(
h
(
{x(m)

i }m∈S

))
, (S15)

where h denotes modality-specific encoders and ψ is the multimodal transformer (notations follow
Sec. 3.1). We then aggregate these prototypes into an averaged class prototype by considering all
possible non-empty modality subsets:

c̄k =
1

2M − 1

∑
S⊆[M ],S≠∅

ck,S . (S16)

In practice, c̄k is substituted for ck in Eq. S14. For the ICS score calculation of a sample represen-
tation z, we apply its associated modality subset S to all training samples and compute Eq. 8 using
these subset-specific representations.

In our experiments, we evaluated two common distance metrics: the squared Euclidean distance
and the cosine distance. While cosine distance does not strictly belong to the class of Bregman
divergences, it is widely used in high-dimensional embedding spaces, where directional similarity is
often more informative than vector magnitude (Li et al., 2021; Yang et al., 2023; Du et al., 2025). Our
experimental results demonstrate that cosine distance achieves performance comparable to Bregman
divergences, suggesting its suitability as a metric for our modality selection algorithm.

B DATASET AND IMPLEMENTATION DETAILS

B.1 DETAILED DATA DESCRIPTION

As summarized in Tab. S1, we conduct extensive experiments on 5 datasets with diverse modalities,
e.g., image, text, and structured tables. These comprises of 3 simulated benchmark datasets (Sutter
et al., 2021; 2020): PolyMNIST, MNIST-SVHN-Text (MST), and biomodal CelebA (CelebA), as
well as two large real-world datasets: a natural image dataset, Data Visual Marketing (DVM) (Huang
et al., 2022a) and a medical image dataset, UK Biobank (UKBB) (Sudlow et al., 2015).

PolyMNIST consists of 5 images per data point, all sharing the same digit label but with different
backgrounds and handwriting styles. MST is a trimodal dataset combining MNIST, street view
house numbers (SVHN), and synthetic text features. CelebA contains facial images paired with
descriptive text annotations of facial attributes. The DVM dataset includes 2D RGB images of cars
along with tabular data describing vehicle characteristics. Following (Du et al., 2024; Hager et al.,
2023; Du et al., 2025), we used 17 tabular features, including 4 categorical features (e.g., color),
and 13 continuous features (e.g., width). The UKBB dataset consists of cardiac magnetic resonance
images (MRIs) accompanied by tabular data related to cardiovascular diseases. Following prior
work (Hager et al., 2023), we used mid-ventricle slices from MRIs at three time points, i.e., end-
systolic (ES) frame, end-diastolic (ED) frame, and an intermediate time frame between ED and ES.
In addition, we employed 75 disease-related tabular features, including 26 categorical features (e.g.,
alcohol drinker status) and 49 continuous features (e.g., average heart rate). Notably, due to low
disease prevalence, similar to (Du et al., 2025), we constructed 2 balanced training subsets for CAD
and Infarction tasks, respectively. Detailed benchmark information for DVM and UKBB, including
the complete list of tabular feature names, can be found in the supplementary material of (Du et al.,
2024).

B.2 IMPLEMENTATION DETAILS

For both DVM and UKBB, we adopted the data augmentation strategies described in (Hager et al.,
2023; Du et al., 2024). For image data, we applied random scaling, rotation, shifting, flipping, Gaus-
sian noise, as well as brightness, saturation, and contrastive changes, followed by resizing all images
to 128 × 128. For tabular data, categorical values (e.g., yes, no, and blue) were converted into or-
dinal integers, while continuous (numerous) values were standardized using z-score normalization.
To further enhance data diversity, we randomly replaced 30% of the tabular values for each subject
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Table S1: Summary of the 5 multimodal datasets for evaluation.
Dataset Classification Task #Modality Modality Type #Train #Val #Test #Class
PolyMNIST Digit 5 RGB image 60,000 3,000 7,000 10
MST Digit 3 RGB image, Text 1,121,360 60,000 140,000 10
CelebA Face attribute 2 RGB image, Text 162,770 19,962 19,867 2
DVM Car model 2 RGB image, Table 70,565 17,642 88,207 283

UKBB
Coronary artery disease (CAD) 2 MR image, Table 3,482 6,510 3,617 2

Myocardial infarction 2 MR image, Table 1,552 6,510 3,617 2

Table S2: Hyper-parameter configurations for DyMo.
Hyper-parameter PolyMNIST MST CelebA DVM CAD Infarction
# layers of the multimodal transformer 2 2 2 2 2 2
# attention heads of the multimodal transformer 4 2 2 8 8 8
Hidden dimension of the multimodal transformer 128 32 32 256 256 256
Sequence length per modality {4,4,4,4,4} {1,1,1} {1,1} {I:16,T:17} {I:16,T:75} {I:16,T:75}
Latent space dimension 64 16 16 128 128 128
# sampled modality subsets (A) 5 2 2 2 2 2
Learning rate 1e-3 1e-3 1e-3 3e-4 3e-4 3e-4
Batch size 256 256 256 256 128 128
Maximum # epochs 100 20 20 300 300 300

with randomly sampled values from the corresponding columns. Hyper-parameter settings for the
proposed DyMo and all compared approaches are detailed below.

Our DyMo: For the recovery method in DyMo, we leveraged MoPoE (Sutter et al., 2021), a mul-
timodal VAE, for PolyMNIST, MST, and CelebA. For DVM and UKBB, we used TIP (Du et al.,
2024), an image-tabular framework capable of reconstructing tabular features from images and in-
complete tables. Importantly, DyMo is agnostic to the choice of recovery method and can be de-
ployed with any recovery method. For modality-specific encoders, as done in (Sutter et al., 2021),
we used convolutional neural networks (CNNs) for images and multi-layer perceptrons (MLPs) for
text in PolyMNIST, MST, and CelebA. For DVM and UKBB, we followed (Du et al., 2024), using
ResNet-50 as the image encoder and a transformer-based encoder for tabular data. The tabular en-
coder consists of 4 transformer layers, each with 8 attention heads and a hidden dimension of 512.
To ensure fairness, all comparing approaches employed the same encoders as DyMo. To mitigate the
curse of dimensionality, multimodal representations z were projected into a low-dimensional latent
space using a 2-layer MLP before distance computation. The temperature parameter t for distance
metrics was set to 0.1. Hyper-parameter configurations for DyMo are summarized in Tab. S2.

CONCAT (Baltrušaitis et al., 2018): This static fusion algorithm has been widely adopted in MDL
tasks due to its simplicity and effectiveness. CONCAT concatenates modality-specific features into
a unified multimodal representation, which is then used for the classification task.

QMF (Zhang et al., 2023): This dynamic MDL framework performs modality fusion through
uncertainty-aware weighing. Modality-specific uncertainty is estimated via an energy score com-
puted from the output logits of each unimodal network. In addition, QMF incorporates a regular-
ization loss based on the historical training trajectory. Following the original paper, the number of
gradient accumulation steps was set to 12 for CAD and Infarction, and 24 for the remaining tasks.

DynMM (Xue & Marculescu, 2023): This dynamic MDL approach employs a learnable gating
network. Given M modalities, it constructs M + 1 network branches: M modality-specific net-
works and one concatenation-based multimodal network. The gating network adaptively selects
one branch for decision-making. Note that this approach requires two-stage training: (i) pre-training
each network branch independently on the targe task, and (ii) jointly fine-tuning all network branches
together with the gating network.

PDF (Cao et al., 2024): This dynamic MDL framework introduces a modality confidence score
to fuse unimodal predictions. The score is derived from the predicted class probability of each
unimodal network. In addition, to address potential uncertainty, a relative calibration strategy is
further applied to calibrate the confidence scores.
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MultiAE (Ngiam et al., 2011): This incomplete MDL model is an offline recovery-based method.
It first pre-trains a multimodal autoencoder (AE) with a reconstruction objective, then freezes the
AE encoder and uses the extracted latent features to train a classifier for downstream tasks. Since the
original design does not simulate missing modalities during training, we incorporated our incom-
plete simulation training to obtain MultiAE†. The hyper-parameter settings of this strategy were
aligned with our DyMo (see Tab. S2). The number of pre-training epochs was set to 300 for PolyM-
NIST and 200 for MST and CelebA. The same learning rate was used for both pre-training and
fine-tuning, matching the learning rate used by DyMo in its one-stage training.

MoPoE (Sutter et al., 2021): This incomplete MDL approach is also offline recovery-based. It
first pre-trains a multimodal VAE with an ELBO formulation tailored for incomplete multimodal
data. The encoder is then frozen, and its extracted latent features are used to train a classifier for
downstream tasks. Pre-training was performed for 100 epochs, and the learning rates for pre-training
and fine-tuning were identical, equal to that used by DyMo.

M3Care (Zhang et al., 2022): This incomplete MDL framework is an online recovery-based
method. It imputes missing modality information in the latent space using auxiliary information
from similar patents, identified via a task-guided, modality-adaptive similarity metric. Since the
original design does not simulate modality missing during training, we incorporated our incomplete
simulation training to obtain M3Care†. The hyper-parameter settings of this strategy were aligned
with our DyMo.

OnlineMAE (Woo et al., 2023): This incomplete MDL model is an online recovery-based method.
It jointly optimizes a feature-level reconstruction task and the target classification task by randomly
dropping modality features and reconstructing them from the remaining modalities. In reproduction,
we observed that training from scratch often led to model collapse, likely because the network
initially fails to extract reliable features, making feature-level reconstruction unstable. To mitigate
this, we initialized the encoders with weights from MultiAE (after downstream task training) for
PolyMNIST, MST, and CelebA, and weights from TIP (after downstream task training) for DVM,
CAD, and Infarction.

ModDrop (Neverova et al., 2015): This incomplete MDL framework is a missing-agnostic,
recovery-free method. It applies random modality dropping during target task training to encourage
modality-agnostic representation learning. Each modality is dropped according to a Bernoulli distri-
bution with probability p. For a fair comparison, we used the same multimodal network architecture
as our DyMo. Following the original paper, p was set to 0.5.

MTL (Ma et al., 2022): This incomplete MDL model is a missing-aware, recovery-free method. It
introduces a multimodal transformer architecture with missing-aware [CLS] tokens, which encode
different missing patterns. Attention masks on those [CLS] tokens ensure that they only aggregate
information from observed modalities. To optimize missingness-specific parameters, a multi-task
learning strategy is used to compute loss across all missing patterns in each training step. The
sequence length per modality and transformer configurations matched those of our DyMo.

MAP (Lee et al., 2023): This incomplete MDL approach is also missing-aware and recovery-free.
It designs a multimodal transformer architecture with missing-aware prompts. Prompts are assigned
based on the missing pattern of each input and injected into multiple transformer blocks. Since
the original paper does not simulate missing modalities during training, we applied our incomplete
simulation training to obtain MAP†. The sequence length per modality and transformer configura-
tions followed those of our DyMo. Following the original paper, prompt lengths were set to 12 for
PolyMNIST, 2 for MST and CelebA, 8 for DVM, and 16 for CAD and Infarction. Prompts were
applied to 2 transformer layers.

MUSE (Wu et al., 2024b): This incomplete MDL framework is a missing-agnostic, recovery-
free method. It models patient-modality relationships using a flexible bipartite graph that supports
arbitrary missing-modality patterns. The vertex set includes patient nodes and modality nodes, and
edges are defined by the modality missingness matrix. To learn modality-agnostic features, a mutual-
consistent contrastive loss is applied, where each edge is dropped with probability p. Following the
original paper, p was set to 0.5.

We trained all models using the Adam optimizer (Kingma & Ba, 2014) without weight decay and ran
experiments on a single NVIDIA A5000 GPU. To mitigate overfitting, similar to (Du et al., 2024;
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Table S3: Complete results on PolyMNIST and MST under various missing scenarios, compar-
ing DyMo with incomplete MDL methods, including both recovery-based and recovery-free ap-
proaches. Models marked with † were trained using our proposed incomplete-modality simula-
tion training. In addition to the results reported in Tab. 1, we also include PolyMNIST results for
η = {0.2, 0.4} and MST results for missing modality subsets {M}, {S}, {T}, and {M,S}.

Model Publication PolyMNIST Acc (%) ↑ MST Acc (%) ↑
Missing Rate η Missing Modality/ies

0 0.2 0.4 0.6 0.8 {} {M} {S} {T} {M,S} {S,T} {M,T}
(a) Recovery-based Methods for Missing Modality

MultiAE ICML’11 99.77 99.39 98.56 95.36 84.39 99.96 99.74 99.98 98.30 100 97.00 81.60
MultiAE† ICML’11 99.94 99.83 99.03 97.50 89.86 99.87 98.65 99.93 98.60 100 98.33 83.44
MoPoE ICLR’21 99.79 99.41 98.13 93.94 79.84 99.62 91.32 99.33 92.28 90.11 90.86 79.01
MoPoE† ICLR’21 99.63 99.57 98.96 96.81 87.06 99.39 99.42 99.18 97.62 100 96.50 82.54
CMVAE ICLR’24 94.93 95.50 95.21 95.13 95.11 - - - - - -
CMVAE† ICLR’24 94.59 95.23 94.93 95.17 95.20 - - - - - -
M3Care KDD’22 99.93 89.26 74.93 56.66 40.53 99.99 40.64 85.18 23.48 41.69 16.03 9.34
M3Care† KDD’22 99.99 99.93 99.40 97.27 87.92 99.98 100 99.98 99.17 100 98.27 85.16
OnlineMAE AAAI’23 100 99.89 99.61 98.29 90.09 99.90 99.70 99.96 97.94 100 98.14 84.14

(b) Recovery-free Methods for Missing Modality
ModDrop ICML’15 99.97 99.77 99.43 97.66 88.44 100 100 100 99.14 100 98.21 82.47
MTL CVPR’22 99.97 99.91 99.61 98.43 91.14 99.96 99.97 99.96 98.82 100 98.60 84.37
MAP CVPR’23 99.86 95.29 66.40 43.00 23.19 100 65.32 58.14 15.28 80.29 9.83 10.13
MAP† CVPR’23 99.99 99.86 99.41 96.74 76.20 99.99 100 99.99 97.87 100 97.84 11.36
MUSE ICLR’24 99.93 99.64 98.61 94.73 77.56 99.86 99.99 99.83 97.51 100 97.14 35.96

(c) Dynamic Recovery Method for Missing Modality
DyMoc 100 100 99.99 99.71 96.61 100 100 100 99.01 100 98.22 85.31
DyMoe 100 100 99.99 99.87 96.81 100 99.98 100 99.22 100 98.43 86.84

Table S4: Complete results on DVM, CAD, and Infarction under various missing scenarios, compar-
ing DyMo with incomplete MDL methods, including recovery-based and recovery-free approaches.
Models marked with † were trained using our proposed incomplete-modality simulation training. In
addition to the results reported in Tab. 1, we also include results for γ = {0.1, 0.3, 0.5, 0.9}.

Model DVM Acc (%) ↑ CAD AUC (%) ↑ Infarction AUC (%) ↑
Missing Tabular Rate γ Missing Tabular Rate γ Missing Tabular Rate γ

0 0.1 0.3 0.5 0.7 0.9 1 0 0.1 0.3 0.5 0.7 0.9 1 0 0.1 0.3 0.5 0.7 0.9 1
(a) Recovery-based Methods for Missing Modality

M3Care 98.44 - - - - - 11.92 85.62 - - - - - 64.99 70.61 - - - - - 70.53
M3Care† 98.94 - - - - - 93.43 72.48 - - - - - 72.48 83.27 - - - - - 68.44
OnlineMAE 90.92 - - - - - 89.90 85.22 - - - - - 70.96 84.05 - - - - - 61.39

(b) Recovery-free Methods for Missing Modality
ModDrop 99.02 98.73 97.68 95.88 93.23 89.80 87.97 85.10 84.56 82.96 80.39 76.65 70.77 69.18 84.76 83.44 80.61 78.36 74.64 72.06 72.16
MTL 99.44 99.43 98.70 97.42 95.53 93.38 92.32 84.87 85.22 83.82 80.98 77.72 73.08 70.23 83.59 83.90 81.33 79.26 75.73 69.82 69.90
MAP 98.86 98.53 97.02 93.83 86.96 74.88 63.15 84.39 83.81 81.52 78.58 75.61 71.39 70.11 84.62 83.40 78.80 75.92 71.73 68.47 69.17
MAP† 99.37 99.10 98.29 96.89 94.83 92.43 91.15 85.26 84.66 82.76 80.14 75.84 70.36 68.76 85.49 84.45 82.08 78.94 75.88 71.38 70.81
MUSE 96.86 - - - - - 1.64 83.47 - - - - - 53.23 84.40 - - - - - 66.78

(c) Dynamic Recovery Method for Missing Modality
DyMoc 99.30 99.10 98.50 97.62 96.31 94.36 93.14 85.14 84.53 82.77 81.16 78.49 73.92 71.02 85.10 84.38 82.34 80.76 77.85 75.72 71.58
DyMoe 99.50 99.33 98.86 98.08 96.81 94.76 93.36 86.17 85.73 83.84 81.49 78.24 74.01 72.17 83.16 82.70 80.27 79.05 76.14 72.96 72.47

Hager et al., 2023), we employed an early stopping strategy, with a minimal divergence threshold
of 0.0001, a maximal number of training epochs (see Tab. S2), and a patience (stopping threshold)
of 20 epochs. All models were trained with the same learning rate and batch size as our DyMo (see
Tab. S2). We ensured convergence of all methods under this configuration.

C ADDITIONAL EXPERIMENT

C.1 COMPARING AGAINST INCOMPLETE MDL SOTAS (COMPLETE RESULTS)

In Sec. 4.1 of the manuscript, we report results for the most challenging missing scenarios on PolyM-
NIST, MST, DVM, CAD, and Infarction in Tab. 1, due to space constraints. Here, we provide the
complete results in Tab. S3 and Tab. S4.
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Figure S1: (a) Performance of DyMoc’s multimodal network on MST under various missing sce-
narios, evaluated with different numbers of sampled modality subsets (A). w/o A denotes training
without our incomplete-modality simulation strategy. (b) Comparison between MTL and DyMoe on
MST with {M,T} missing, under different modality inputs: (1) using only non-missing modalities;
(2) integrating all recovered modalities without selection; (3) integrating only the recovered modal-
ities selected by DyMoe.

Table S5: Classification accuracy (%) of DyMo using different modality recovery methods on
PolyMNIST under various missing modality rates.

Model Recovery Publication Missing Rate η
Method 0.2 0.4 0.6 0.8

DyMoc
MoPoE ICLR’2021 100 99.99 99.71 96.61
MMVAE+ ICLR’2023 99.99 99.97 99.79 97.40
CMVAE ICLR’2024 100 99.97 99.80 97.69

DyMoe
MoPoE ICLR’2021 100 99.99 99.87 96.81
MMVAE+ ICLR’2023 100 100 99.87 97.39
CMVAE ICLR’2024 100 99.99 99.89 97.39

C.2 ABLATION STUDY & GENERALIZABILITY ANALYSIS

Effect of the Incomplete Simulation Training Strategy: We examined the impact of the number
of sampled modality subsets (A) during incomplete-modality simulation training on MST under
various missing scenarios. As shown in Fig. S1(a), removing our incomplete simulation training
leads to a substantial performance drop, e.g., accuracy decreases by 71.91% on MST with missing
{M,T}, compared to models trained with A = 2. In contrast, when this training strategy is applied,
performance remains stable across different values of A, suggesting that even a small A is sufficient
to achieve both efficiency and strong performance.

Efficacy and Applicability of DyMo’s Selected Recovered Modalities: We compared DyMo’s
multimodal network with MTL, a recovery-free transformer-based method, under three input set-
tings: (1) using only non-missing modalities; (2) integrating all recovered modalities without se-
lection; and (3) integrating the recovered modalities selected by DyMo. As shown in Fig. S1(b),
for both models, naively integrating all recovered modalities results in lower accuracy than using
only the non-missing modalities, indicating that some imputed modalities are task-irrelevant and
can negatively affect decision-making. In contrast, integrating only the recovered modalities se-
lected by DyMo improves performance of both models, demonstrating the effectiveness of DyMo’s
selection algorithm and the applicability of its selected recovered modalities to other models. More-
over, DyMo consistently outperforms MTL across all input settings, which showcases the efficacy
of DyMo’s network architecture and training strategy.

Generalizability of DyMo Across Different Modality Recovery Methods: To evaluate the ro-
bustness and flexibility of DyMo with respect to diverse modality recovery strategies, we conducted
experiments using 3 different modality recovery approaches, including MoPoE (Sutter et al., 2021),
MMVAE+ (Palumbo et al., 2023), and CMVAE (Palumbo et al., 2024), on PolyMNIST under vary-
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Table S6: Classification accuracy (%) of DyMo using different modality recovery methods on DVM
and Infarction under various missing modality rates.

Model Recovery Method DVM DVM Infarction Infarction
η = 0.7 η = 0.9 η = 0.7 η = 0.9

CONCAT IMI 81.85 67.13 73.75 69.39
DyMoe IMI 95.97 94.28 75.96 71.09
CONCAT TIP 94.74 86.08 75.91 72.04
DyMoe TIP 96.81 94.76 76.14 72.96

Figure S2: Results on PolyMNIST (missing {M, T}) and CelebA (missing {T}) with different
correct recovery rates r.

ing missing modality rates. As shown in Tab. S5, DyMo combined with any of these recovery
methods consistently outperforms prior SOTA dynamic/incomplete MDL methods (see Fig. 3 and
Tab. S3). E.g., DyMoc with CMVAE achieves a 7.6% higher accuracy on PolyMNIST when 80% of
modalities are missing, demonstrating DyMo’s compatibility with multiple modality recovery tech-
niques. In addition, these recovery methods exhibit comparable performance for moderate missing
rates η ∈ {0.2, 0.4, 0.6}, likely due to their similar reconstruction quality under these conditions.
At a high missing rate (η = 0.8), DyMo paired with CMVAE achieves the best performance, e.g.,
improving MoPoE’s accuracy by 1.08% when both paired with DyMoc. This outcome is consistent
with the fact that CMVAE, as the latest SOTA recovery network, provides superior reconstruction
quality. Overall, these findings suggest that employing more effective recovery networks can further
enhance DyMo’s performance. Quantitative analyses of reconstruction quality for these recovery
approaches are provided in Appendix C.6.

For DVM and UKBB, we additionally evaluate an alternative recovery method, the iterative multi-
variate imputer (IMI), a widely-used tabular imputation method that recovers missing values using
information from other table columns (Liu et al., 2014). Since IMI relies only on table information
for reconstruction, it performs worse than TIP (Liu et al., 2014). As shown in Tab. S6, with this
weaker reconstructor, CONCAT suffers a large accuracy drop compared to its performance with TIP
(e.g., -18.95% accuracy on DVM with 90% missing tabular features). In contrast, DyMo remains
stable and achieves the best performance under both recovery methods. These results show that
DyMo is not constrained to the reconstruction-quality bottleneck.

To further evaluate DyMo’s robustness to recovery quality, we conducted an extreme simulation
experiment with a controlled correct recovery rate r. For r × 100% of the samples, the missing
modalities are imputed with their ground-truth versions; for the remaining (1 − r) × 100%, the
missing modalities are replaced with zero noise. We evaluate DyMo on MST (missing M,T) and
CelebA (missing T). As shown in Fig. S2, prior static and dynamic fusion methods degrade sharply
as recovery quality deteriorates. In contrast, DyMo remains relatively stable across a wide range of
correct recovery rates, suggesting its ability to effectively disregard unreliable recovered modalities.
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Figure S3: Distribution of iterative selection steps per test sample for DyMo on PolyMNIST with
missing modality rate η = 0.8 (i.e., each sample randomly misses 4 out of 5 modalities). The
average number of steps per sample is 1.38.

Table S7: Test loss range on PolyMNIST with 80% missing modalities (δ = 0.1).
Dataset Dataset Size

|D|
Min Max (G in

Eq. 2)
G
√
|(ln 1/δ)/|D| in Eq. 2

PolyMNIST 7,000 0.00 4.14 0.0053

C.3 ADAPTIVE INFERENCE ANALYSIS

To study how DyMo dynamically selects task-relevant recovered modalities at inference time, we
visualized the distribution of iterative selection steps per sample on PolyMNIST, when 80% of
modalities are missing. Fig. S3 shows that samples require different numbers of iterations, reflecting
variations in the quality of recovered modalities and the adaptive nature of DyMo. At each itera-
tion, only recovered modalities that provide a non-negligible incremental multimodal task-relevant
information are added. In addition, most samples require only 1-2 steps, and the average number of
iterations is 1.38, suggesting that although iterative selection introduces some additional computa-
tion, the extra cost compared to DyMo w/o iteration selection is moderate.

C.4 TEST TASK LOSS ANALYSIS

We show the test CE loss range for DyMo on PolyMNIST with 60% missing modalities in Tab. S7.
The results show that the test CE loss stays within a well-behaved numerical range. The G-related
term is extremely small (< 0.006), and thus will not affect the tightness of the lower bound in
practice (Eq. 2).

C.5 VISUALIZATION

Latent Feature Space Visualization on Training Data: The MTIR reward of a recovered modality
in DyMo is based on the representation shift in the latent space relative to the training distribution
after adding that modality. We used t-SNE to visualize the multimodal latent space learnt by DyMo’s
multimodal network on training data under various missing scenarios. As shown in Fig. S4, samples
from different classes are generally well-separated, demonstrating that DyMo effectively learns a
structured feature space suitable for reward calculation.

Input-Level Case Study: To understand which recovered modalities are selected by DyMo, we
conduct input-level case studies comparing DyMo with other dynamic/static fusion methods, as
shown in Fig. 5(b) in the manuscript and Fig S5. The results indicate that (1) the recovery method
may generate modalities of varying qualities across samples; (2) existing dynamic MDL methods
that rely solely on modality-specific information for estimating modality importance often fail to
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Figure S4: t-SNE visualization of DyMoc’s multimodal network on the training data of (a) PolyM-
NIST, (b) MST, (c) CelebA, and (d) DVM under various missing scenarios. Colors denote different
class labels.
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Figure S5: Extending the cases shown in Fig. 5(b), this figure presents additional representative ex-
amples of model predictions on PolyMNIST with missing rate η = 0.8 for DyMo and static/dynamic
multimodal fusion methods. The sub-figures illustrate: (a) all recovered modalities are task-relevant;
(b) recovered modalities vary in quality, and DyMo preserves correct predictions by disregarding
unreliable recoveries; (c) recovered modalities vary in quality, and DyMo corrects initial mispre-
dictions by incorporating task-relevant recovered modalities; (d) particularly challenging cases with
limited task-relevant information in both non-missing and recovered modalities. Yellow boxes in-
dicate non-missing modalities, and blue boxes indicate modalities selected by DyMoc.

√
denotes

correct predictions, while × denotes incorrect predictions. For QMF and PDF, which perform dy-
namic weighted fusion, we report the weights assigned to each modality for every sample.

identify semantically misaligned recovery (e.g., right case in Fig. S5(b)), which can degrade model
performance; and (3) DyMo, however, alleviates this limitation by selectively incorporating benefi-
cial recovery while disregarding unreliable one, thereby improving overall performance. Moreover,
Fig. S5(d) illustrates particularly challenging cases for all models, where both non-missing and re-
covered modalities provide limited task-relevant information. In these rare and difficult cases, DyMo
may not fully correct its initial mispredictions, suggesting that the use of more advanced recovery
methods could further enhance performance.

C.6 RECOVERED MODALITY ANALYSIS

VAE-based Reconstruction Analysis: Fig. 5(b) in the manuscript and Appendix C.5 present ex-
amples of recovered modalities. We further provide a quantitative analysis of these reconstructions.
Specifically, We evaluated the reconstruction performance of VAE-based modality recovery meth-
ods (i.e., MoPoE, MMVAE+, and CMVAE) on PolyMNIST. Following prior studies (Palumbo et al.,
2023; Sutter et al., 2021), we assessed cross-modal generation using two complementary metrics: (i)
semantic generative coherence, measured by the accuracy of generated modalities (i.e., conditional
coherence accuracy); and (ii) generative quality, measured by the similarity between generated and
real samples using the Fréchet Inception Distance (FID) score (Heusel et al., 2017). Additional de-
tails of these metrics can be found in Appendix D.3 of (Palumbo et al., 2023). As shown in Fig. S6,
CMVAE consistently outperforms the other methods in both cohenrence and quality across differ-
ent numbers of input modalities. This finding aligns with the observation that DyMo combined with
CMVAE achieves the best classification performance (see Tab. S5). Notably, while MoPoE performs
substantially worse than MMVAE+ and CMVAE, DyMo exhibits smaller performance gaps across
all three recovery methods. This demonstrates that DyMo is robust to different recovery techniques
by dynamically integrating task-relevant recovered modalities while disregarding unreliable ones,
highlighting its selective and adaptive behavior.

Table Reconstruction Analysis: Tab. S8 and Fig. S7 report the reconstruction results of tabular
features for DVM and UKBB under full-table missingness, respectively. Categorical features are
evaluated using accuracy, while continuous features are assessed with mean squared error (MSE).
The results show that most tabular features are accurately reconstructed, e.g., color in DVM (Acc:
82.46%), suggesting that their integration can benefit the target classification task. Some tabular
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Figure S6: Reconstruction performance of different VAE-based recovery methods on PolyMNIST:
(a) reconstruction coherence (higher is better), (b) reconstruction quality measured by FID (lower is
better).

Table S8: Reconstruction performance of 17 tabular features (4 categorical and 13 continuous) using
TIP on DVM under full-table missingness (i.e., γ = 1). Cat denotes whether a tabular feature is
categorical, and Nunq represents the number of unique values for each categorical feature.

Tabular Feature Cat Nunq MSE ↓ Acc (%)
↑

Tabular Feature Cat Nunq MSE ↓ Acc (%)
↑

Advertisement month (Adv month) × - 1.2340 - Height × - 0.3234 -
Advertisement year (Adv year) × - 0.4448 - Length × - 0.4272 -
Bodytype

√
13 - 82.25 Price × - 0.2921 -

Color
√

22 - 82.46 Registration year (Reg year) × - 0.2622 -
Number of doors (Door num) × - 0.3641 - Miles runned (Runned Miles) × - 0.6962 -
Engine size (Engine size) × - 0.3818 - Number of seats (Seat num) × - 0.4601 -
Entry prize (Entry prize) × - 0.2908 - Wheelbase × - 0.5938 -
Fuel type (Fuel type)

√
12 - 64.45 Width × - 0.5873 -

Gearbox
√

3 - 73.24

features, however, exhibit low reconstruction performance, likely due to their relatively weak corre-
lations with the image modality. Examples include fuel type in DVM (Acc: 64.45%) and smoking
status in UKBB (Acc: 4.4%). In real-world applications, though, tabular features are more often
partially missing rather than entirely absent (Wu et al., 2024b; Xue et al., 2024). Under a tabular
missing rate γ = 0.5, we observed that the reconstruction performance of these challenging features
improves substantially, e.g., fuel type in DVM (64.45% → 87.13%) and smoking status in UKBB
(4.4%→ 86.99%). These findings suggest that the proposed DyMo can generalize well to practical
scenarios, where partial missingness is more common than than full-table missingness.

D DISCUSSION

Beyond Classification Tasks: While this paper primarily focuses on classification tasks, the
DyMo’s framework can be extended to a broader range of multimodal tasks. The key adaptation
is to replace the cross-entropy (CE) term with the appropriate likelihood-based loss for the target
task. Many multimodal tasks, e.g., detection, segmentation, and sequence-to-sequence modelling,
can be trained using probabilistic losses, and thus the same mutual information decomposition,
I(Y ;Z) = H(Y )−H(Y |Z), remains applicable. In specific: (1) segmentation: MTIR can operate
on the averaged per-pixel CE loss; (2) detection: MTIR can incorporate both classification and local-
ization likelihoods as the task loss; and (3) sequence-to-sequence modelling: MTIR can aggregate
token-level CE losses to guide modality selection.
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Figure S7: Reconstruction performance of 75 tabular features (26 categorical and 49 continuous)
using TIP on UKBB under full-table missingness (i.e., γ = 1).
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