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ABSTRACT

Human activity recognition (HAR) has advanced significantly with the availabil-
ity of diverse datasets, yet the field remains limited by a scarcity of datasets fo-
cused on two-person, or “dyadic,” interactions. Existing datasets primarily cater
to single-person activities, overlooking the complex dynamics and contextual de-
pendencies present in interactions between two individuals. Failing to extend
HAR to dyadic settings limits opportunities to advance areas like collaborative
learning, healthcare, robotics, augmented reality, and psychological assessments,
which require an understanding of interpersonal dynamics. To address this gap,
we introduce the Dyadic User Engagement dataseT (DUET), a comprehensive
dataset designed to enhance the understanding and recognition of dyadic activi-
ties. DUET comprises 14,400 video samples across 12 interaction classes, cap-
turing the highest sample-to-class ratio of dyadic datasets known to date. Each
sample is recorded using RGB, depth, infrared, and 3D skeleton joints, ensur-
ing a robust dataset for multimodal analysis. Critically, DUET features a tax-
onomization of interactions based on five fundamental communication functions:
emblems, illustrators, affect displays, regulators, and adaptors. This classification,
rooted in psychology, supports dyadic human activity contextualization by extract-
ing the embedded semantics of bodily movements. Data collection was conducted
at three locations using a novel technique that captures interactions from multiple
views with a single camera, thereby improving model resilience against back-
ground noise and view variations. We benchmark six state-of-the-art, open-source
HAR algorithms on DUET, demonstrating the dataset’s complexity and current
HAR models’ limitations in recognizing dyadic interactions. Our results highlight
the need for further research into multimodal and context-aware HAR for dyadic
interactions, and provide a dataset to support this advancement. DUET is publicly
available at “Anonymized DUET Repository”, providing a valuable resource for
the research community to advance HAR in dyadic settings.

1 INTRODUCTION

1.1 MOTIVATION

Human activity recognition (HAR) is a field within artificial intelligence focused on identifying and
analyzing human actions from sensor data, and it has achieved significant success across various
domains. The success of HAR can be attributed to many factors, including the commitment of
the field to producing publicly available datasets that can be used to help refine data-driven deep
learning algorithms across various contexts. While there is an abundance of HAR datasets already
available, the majority pertain to single-person—or monadic—activities. A better understanding of
two-person—or dyadic—interactions is essential for enhancing the accuracy, responsiveness, and
overall capabilities of systems where human interaction plays a central role.

Dyadic interactions, which involve the interplay between two individuals, convey deeper commu-
nicative and cultural significance. Despite their complexity, HAR for dyadic interactions offers sev-
eral advantages. The inclusion of a second subject improves the performance of many HAR tasks
by introducing an additional distinguishing factor (Adeli et al., 2020). For instance, consider the
actions “waving in” and “thumbs up.” These two movements appear similar at first glance, as both
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involve extending one’s arm. However, their small-scale hand movements differ only slightly, mak-
ing them difficult to distinguish in isolation. The distinction becomes much clearer when another
subject is involved—specifically, by observing the initiating action of one subject and the reaction
of the other. The reacting subject may physically approach if the initiating subject waves them in,
while they may simply nod in acknowledgment if the initiating subject gives a “thumbs up”. These
differing responses provide valuable contextual cues that improve the accuracy of recognizing and
differentiating between the two activities. The study of dyadic interactions allows for a more ac-
curate understanding of human behaviors that are absent in monadic activities, enabling systems to
better interpret and respond to social dynamics. For example, telepresence avatars in augmented
reality provide digital representations of participants during remote conferences. By analyzing the
subtleties of interactions between individuals, dyadic activity analysis enhances user experience
and increases the authenticity of digital environments (Ahuja et al., 2019). Similarly, social robots
designed to provide companionship for children leverage dyadic analysis to recognize dangerous
situations and intervene in a timely, adaptive manner. These robots also utilize two-person datasets
to deliver more natural and engaging conversational interactions, supporting the social, cognitive,
and emotional development of children (Chen et al., 2022). Additionally, in public infrastructure,
accurately recognizing dyadic social activities enhances safety by detecting potential dangers and
enables the provision of more personalized services in public spaces (Coppola et al., 2020).

1.2 REVIEW OF EXISTING DATASETS

Despite these advantages, the availability of dyadic datasets remains limited, particularly in compari-
son to the abundance of monadic datasets. This scarcity poses an increasing challenge as interactions
between humans and technical systems grow more complex. The research community’s uneven em-
phasis on these two activities types is reflected in their differing recognition performance levels.
Lin et al. (2024b) showed that monadic algorithms, which have achieved outstanding benchmarking
records for monadic activities, do not perform nearly as well for dyadic interactions. This highlights
the disparity between monadic and dyadic activities, which stems from the greater variety of expres-
sive and cultural signals, as well as the increased complexity of spatial and temporal coordination
between two or more subjects. To reconcile this discrepancy and improve dyadic HAR, there is a
need for more datasets tailored to dyadic interactions. As highlighted in the IEEE Control Systems
Society’s report on control for societal-scale challenges, traditional boundaries between humans and
technology are blurring, and emerging fields like cyber-physical-human systems (CPHS) face chal-
lenges in designing robust interactions between humans and control systems (Annaswamy et al.,
2023). One of the central CPHS research challenges is characterizing how humans adapt during in-
teractions. Dyadic datasets are critical for developing models that can enhance system adaptability,
safety, and trustworthiness in these complex environments (Annaswamy et al., 2023).

Besides increasing the number, diversity, and quality of dyadic datasets, contextualizing activities
has proven effective in improving the performance of HAR tasks (Niemann et al., 2021). Contextu-
alization distills meanings embedded in body language, such as emotional and cultural significance,
adding another layer of comprehension to the tracking of bodily movements. For instance, a “thumbs
up” signifies approval in most Western cultures but represents a profanity in Greece and several
Middle Eastern countries. Contextualization enables the interpretation of the cultural significance
of gestures, such as recognizing the nuanced meanings of a “thumbs up.” In addition to enhancing
HAR accuracy, contextualization supports the development of various downstream applications. For
example, certain branches of CPHS investigate how humans interact with and benefit from the built
environment (Doctorarastoo et al., 2023a;b). A critical aspect of this framework is understanding the
embedded semantics of human behaviors through bodily movements. This understanding provides
stakeholders with deeper insights into system use, improving infrastructure design, maintenance,
and operation. Contextualization also paves the way for automating psychological and sociological
assessments—such as sociometric tests (Moreno, 1941)—that currently rely on self-reported data.
These manual evaluations are labor-intensive and also prone to attribution bias. By integrating con-
textualization with dyadic HAR, these processes can be automated, extracting user preferences from
bodily movements (Lin et al., 2024a) and addressing these limitations. For instance, contextualiza-
tion enhances telepresence avatars by capturing nonverbal cues and paralinguistic signals, improving
the quality and authenticity of remote communication (Ahuja et al., 2019).

Despite these recognized benefits, the few available dyadic datasets—listed in Table 1—are inad-
equate for extracting the underlying semantics of bodily movements. While some datasets focus
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on healthcare activities, others are restricted to tracking bodily movements within specific action
categories. No existing dataset selects activity classes using scientifically grounded methods that
prioritize semantic cohesion to capture the social embeddings of activities. This lack of structured
selection limits the ability to understand functional relationships between actions, hindering mod-
els from generalizing effectively to new, unlabeled behaviors. A dyadic dataset that fully supports
contextualization is still absent in the research community.

1.3 OBJECTIVES AND NOVELTY OF THIS PAPER

To enhance HAR performance for dyadic activities through contextualization, we introduce the
Dyadic User Engagement dataseT (DUET). Featuring 12 taxonomized interactions, DUET helps
to bridge monadic and dyadic HAR while connecting HAR to other disciplines. It is publicly avail-
able under an MIT License at “Anonymized DUET Repository” (Authors, 2024).

Instead of repeating previous approaches that arbitrarily select activity categories, our dataset is built
on a psychology-based classification that identifies five core communication functions in human in-
teractions: emblems, illustrators, affect displays, regulators, and adaptors. This taxonomy provides
a scientifically grounded framework for integrating HAR with interdisciplinary applications. For
instance, lie detection often relies on emblematic slips—unconscious, fragmented gestures that de-
ceivers attempt to suppress while lying. Similarly, emotion detection heavily depends on adaptors,
which reveal physical or emotional discomfort. By capturing interactions from all five categories,
DUET addresses critical gaps left by existing datasets. This stands in stark contrast to existing
datasets, as shown in Table 1, particularly the largest dyadic dataset to date, NTU RGB+D 120
(Liu et al., 2019). While NTU RGB+D 120 includes dyadic interactions, it represents only three
of the five categories—illustrators, affect displays, and regulators. This imbalance prevents it from
supporting applications that require a comprehensive understanding of the taxonomy. In contrast,
DUET deliberately incorporates interactions from all five categories, ensuring semantic cohesion
and preserving the functional relationships between actions. This design enables HAR to generalize
more effectively, recognizing both labeled and unlabeled actions by aligning them with shared traits
of existing categories. As a result, DUET facilitates connections between HAR and fields like psy-
chology, sociology, and behavioral sciences, paving the way for applications like automated emotion
recognition and the analysis of social behaviors in complex, real-world scenarios. By bridging this
gap, DUET stands as a critical step toward advancing both HAR and its wider applications.

The dataset was collected using the Microsoft Azure Kinect v2 (Microsoft, 2024a) (hereafter re-
ferred to as the Azure Kinect), a high-quality, multimodal camera capable of capturing RGB, in-
frared (IR), depth, and 3D skeletal joint data. Over the span of one year, 23 participants contributed
to the dataset, generating 14,400 video samples, with 1,200 samples recorded for each interaction
category. To our knowledge, this dataset features the highest sample-to-class ratio published to date.

The testbeds consist of three locations across a university campus in the United States (US): an open
indoor space, a confined indoor space, and an outdoor area. These settings were chosen to represent
a range of environments where human activities commonly take place. For example, the compan-
ionship and support provided by social robots may take place in a small bedroom (confined indoor
space). A sociological evaluation of a group of students’ social connectivity during class could be
conducted in a large auditorium (open indoor space). A potential application for CPHS is to redesign
public open spaces based on patterns of measured usage and socialization to foster user sociability
and cohesion (open outdoor space). This variety not only allows downstream applications to lever-
age DUET for investigating the direct and indirect impacts of ambient surroundings on algorithm
performance but also improves the resilience of deep learning models against background noise. We
intentionally collected data at various times and on different days to capture a range of environmental
conditions (e.g., lighting) and background noise, ensuring the dataset reflects real-world scenarios.
Another challenge is the limited number of views, which can affect system robustness (Perera et al.,
2020). The lack of multiple views in existing literature (Table 1) undermines the generalizability
and view-invariance of video samples from different orientations. To address this, we propose a
novel data collection process that captures interactions from multiple angles using a single camera.
This low-cost approach captures activities from various orientations, something that even multiple
cameras have struggled to achieve. We evaluate the performance of six open-source, state-of-the-art
algorithms using RGB, depth, and 3D skeleton joint data. This comparison not only highlights the
complexity of contextualizable dyadic interactions but also reveals the strengths of each modality.
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Table 1: comparison of existing dyadic datasets shows that the proposed dataset has the highest
number of samples per class, the most views, and a relatively high number of locations. Note: (1)
“Views” refer to different sensor orientations from which interactions are captured, and (2) “back-
ground noise” indicates the presence of random people’s movement or cluttered environments.

Dataset Modalities #Videos #Classes #Loca-
tions #Views Backgro-

und noise Year

UT Interaction
(Ryoo et al., 2010) RGB 160 6 2 1 No 2010

SBU Kinect
(Yun et al., 2012) RGB+D+J 300 8 1 1 No 2012

JPL Interaction
(Ryoo & Matthies, 2013) RGB 399 7 5 1 No 2013

G3Di
(Bloom et al., 2016) RGB+D+J 168 14 1 1 No 2015

M2I
(Liu et al., 2018) RGB+D+J 1,760 9 1 2 No 2015

ShakeFive 2
(Van Gemeren et al., 2016) RGB+J 153 8 1 1 No 2016

PKU-MMD
(Liu et al., 2017) RGB+D+J+IR 4225 10 1 3 No 2017

MMAct
(Kong et al., 2019)

RGB+keypoints+
acceleration+
orientation+
Wi-FI+Pressure

2162 2 4 4+ego No 2019

NTU RGB+D 120
(Liu et al., 2019) RGB+D+J+IR 24,828 26 - 155 No 2019

Air Act2Act
(Ko et al., 2021) RGB+D+J 5,000 10 2 3 No 2020

DUET (our dataset) RGB+D+J+IR 14,400 12 3 360 No 2024

The remainder of the paper is structured as follows. Section 2 details the taxonomy for classify-
ing human interactions. Section 3 overviews the dataset, including modalities, format, acquisition
configurations, biometrics, annotation, and data splits for cross-location and cross-subject evalua-
tions. Section 4 benchmarks six open-source algorithms and their results. Finally, Section 5 presents
conclusions, key takeaways, and future directions.

2 CONTEXTUALIZING HUMAN INTERACTIONS

A social interaction is an exchange of information between two or more individuals, and the deliv-
ery can happen through various channels. Among all communication channels, bodily movement
represents a critical part of social interaction as instinctive actions convey unspoken cues of the con-
versation or communication (Sharan et al., 2022). To study the context embedded in social interac-
tions through bodily movement, generating a dataset that attempts to exhaust all existing interactions
would not be feasible. Similarly, selecting actions arbitrarily would detract from the dataset’s ability
to preserve functional relationships and shared characteristics among actions, which is needed to
create semantic cohesion across classes. In this work, we propose a dataset, DUET, in which the
selection of interactions is not arbitrary but instead grounded in psychological principles.

A total of 12 kinesic interactions are drawn from a taxonomy developed by Ekman & Friesen (1969),
which classifies human interactions into five groups based on their fundamental communication
functions. This system provides a structured and effective approach for categorizing interactions and
systematically extracting the information embedded in bodily movements. The categories include
emblems, illustrators, affect displays, regulators, and adaptors:

• Emblems: Emblems are gestures that have direct verbal translation and can be culturally specific.
The same gesture might be interpreted differently for different cultures (Hartman, 2024). For
instance, a “thumbs up” indicates well done in most Western cultures, but is a derogatory sign in
Middle Eastern countries. Interactions chosen are “waving in,” “thumbs-up,” and “hand waving.”
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• Illustrators: Bodily movements that illustrate the verbal message they accompany are called il-
lustrators, which are used to clarify conversations and are context dependent (Chute et al., 2023).
Interactions chosen are “pointing” and “showing measurements.”

• Affect displays: Affect displays are gestures that reveal one’s affective and emotional state. An
example of an affect display is “arm crossing,” which can signal defensiveness, insecurity, or
anxiety. Interactions chosen are “hugging,” “laughing,” and “arm crossing.”

• Regulators: During interactions, regulators determine the alternation of instigating and receiving.
Interactions chosen are “nodding,” “writing circles in the air,” and “holding one’s palms out.”
Nodding is a gesture of acceptance and acknowledgement used for the continuation of the conver-
sation. “Drawing circles in the air” displays the need to expedite the conversation. “Holding one’s
palms out” is used to warn the other person to cease the conversation.

• Adaptors: Adaptors are habitual movements that satisfy personal needs and can be used to in-
crease or decrease emotional stability (Neff et al., 2011). The interaction chosen is “twirling or
scratching hair” to moderate one’s stress during contemplation.

3 DATA COLLECTION AND MANAGEMENT

3.1 DATA MODALITIES AND DATA FORMAT

For the data collection, we use the high-quality and multimodal Azure Kinect, equipped with an
RGB camera, a depth sensor, and an IR sensor. These sensors all operate at 30 frames per second
for three seconds for each video sample, yielding 91 frames per sample. The recorded data is saved
in the Matroska (‘.mkv’) container format, allowing multiple tracks of data formats to be extracted
through post-processing. Tracks of modalities used in this dataset are RGB, depth, IR, and 3D
skeleton joint sequences.

The specification of each data format varies depending on the conventions commonly used in the
research community: each RGB frame is captured with a resolution of 1,920×1,080 and is stored
in a ‘.jpeg’ format. We record depth and IR sequences with a resolution of 640×576 and store them
as 24-bit ‘.png’ files. The skeleton joints of every sample video are stored in their corresponding
‘.csv’ files. Each file contains a 91×193 array, where each row represents a frame, and each column
holds information related to that frame. The first column records the timestamp of the frame, and the
following 96 columns capture the x, y, and z coordinates of 32 joints of one subject (as illustrated
in Figure 2a), measured as the distance (in millimeters) from the joint to the camera. For instance,
the first three columns record the x, y, and z values of the first joint. The order of the joints follows
the joint index in (Microsoft, 2024b). The last 96 columns record the 32 joints of the other object.

Figure 1 presents sample frames from each action category across different modalities, each offering
distinct strengths and weaknesses. RGB frames capture rich details such as interactions, locations,
and subject features, making them highly informative but lacking in user privacy protection. How-
ever, since RGB frames compress the 3D world into a 2D plane, they often suffer from issues like
occlusion and view variation. In contrast, 3D skeleton joints provide the spatial position of each
joint in a 3D space, offering a desirable view-invariant characteristic. Beyond joint positioning,
3D skeletons reveal little about the subject’s identity, making this modality more privacy-friendly.
This privacy feature is particularly valuable in human-centered applications such as smart homes,
CPHS, and elder care management. Overall, the comparison of these modalities highlights an in-
verse relationship between privacy and the amount of information conveyed—the more information
a modality provides, the less it typically protects user privacy. Our dataset includes four modalities
that span this entire spectrum, encouraging both the exploration of individual modalities and the
fusion of multiple modalities to balance privacy preservation with information richness.

3.2 DATA ACQUISITION AND SETUP

After selecting the Azure Kinect as the sensing device, a setup for housing the sensor was needed
to guarantee consistency throughout the experiments. We constructed a sensing module, shown in
Figure 2b, which positions the Azure Kinect 215 cm above the ground and tilts it forward at a 37◦
angle. This setup allows for capturing interactions with a full field of view and minimal occlusions.
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Figure 1: Sample data from 12 interactions. The modalities are, from top row to bottom row: RGB,
IR, depth, and 3D skeleton joints. The 12 interactions are, from left to right: “waving in,” “thumbs
up,” “waving,” “pointing,” “showing measurements,” “nodding,” “drawing circles in the air,” “hold-
ing one’s palms out,” “twirling or scratching hair,” “laughing,” “arm crossing,” and “hugging.”

An important aspect of the experiment is the selection of testbed locations. Rather than attempting
to cover all possible environments, we chose three representative locations across a US university
campus: an open indoor area, a confined indoor space, and an outdoor area, as shown in Figure
3. These locations are selected to provide a variety of backgrounds and support the exploration of
the effects of the ambient environment on the sensors. A common limitation of HAR datasets is
the lack of diverse backgrounds, which can lead to deep learning models overfitting to background
noise. By conducting the experiment in three distinct locations, we aim to improve the generaliz-
ability of background noise handling. We also acknowledge that a contextualizable dataset should
be applicable across a range of environments, such as parks, schools, nursing facilities, and smart
homes. Collecting data in varied locations, especially outdoors, allows for the examination of how
the ambient environment directly and indirectly affects sensor performance and algorithm accuracy.

Since the experiment was conducted at three different locations, it was essential to ensure the data
collection process was consistent and repeatable. To achieve this, we designed a testbed setup,
shown in Figure 2c, which was used across all three environments. In this setup, volunteers were
asked to perform each interaction 40 times within a rectangular area marked on the ground. Af-
ter each repetition, a beep signaled the participants to rotate either clockwise or counterclockwise
before proceeding to the next repetition. This structured process helped minimize labeling ambigu-
ity by ensuring that subjects performed each action in a predefined sequence, one action at a time.
This approach allowed us to confidently associate specific images with their corresponding actions,
effectively eliminating the potential for ambiguity or labeling errors. In less controlled settings,
where actions may overlap or occur simultaneously, we recommend incorporating contextual tags
to enhance label clarity and reduce ambiguity in the data.

The benefits of this innovative technique are two-fold. First, it enabled us to capture interactions
from a wide range of orientations relative to the camera. As shown in Figures 6 and 7 in Section
A, some frames capture the side profiles of the subjects, while in others, one subject faces the cam-
era while the other has their back to it. This diversity in orientations enhances the view-invariance
of HAR algorithms. Second, our dataset includes samples with occlusions—a common challenge
in HAR tasks. Occlusion occurs when one subject fully or partially obstructs the other within the
camera’s field of view. By incorporating occlusions, our dataset aims to help HAR algorithms ad-
dress this issue more effectively. Furthermore, capturing multiple viewpoints using a single camera
reduces deployment costs, as achieving similar results would otherwise require multiple sensors.
Although the environments for this dataset were curated, similarly to other datasets in Table 1, we
intentionally collected data at different times of the day and on various days to capture a wide range
of environmental conditions. For example, in the outdoor setting, some participants performed dur-
ing the early morning or late afternoon when the lighting was dim, while others were assigned to
midday sessions under bright sunlight. On several occasions, the sky was fully overcast, providing a
low-light environment. These variations in illumination are evident in Figures 6 and 7. In the indoor
environments, we enriched the lighting conditions by opening curtains to allow natural light to filter
in and by configuring the overhead lights differently for each session. Additionally, the outdoor
setting introduced further variability, including breezes and higher winds that caused rustling in the
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(a) (b) (c)

Figure 2: Using the Azure Kinect SDK (Microsoft, 2023), (a) 32 3D skeleton joints are extracted
following this labeling scheme. (b) The sensing module configuration and (c) bird’s-eye view of the
testbed remain consistent across locations, with subjects confined to a rectangular area.

(a) (b) (c)

Figure 3: Testing locations: (a) open indoor area, (b) confined indoor space, and (c) outdoor area.

surrounding trees, creating varying levels of background noise. An active construction site located
behind the testing area also contributed to the diversity of conditions, with noticeable changes in the
site’s layout and equipment placement from one test to another. By incorporating these variations
in lighting, noise, and environmental dynamics, DUET more closely mirrors real-world scenarios,
enhancing its relevance and robustness for human activity recognition tasks.

3.3 SUBJECTS

A total of 15 male and eight female subjects participated in the experiments. The subjects were
randomly paired to perform actions across the three locations. The subjects’ ages range from 23 to
42 years old with a mean age of 27 years and standard deviation of 4.01 years. Heights ranged from
165.1 cm to 185.4 cm with a mean height of 172.7 cm and a standard deviation of 8.46 cm. The
subjects’ weights ranged from 55 kg to 93 kg with a mean weight of 69 kg and a standard deviation
of 10.1 kg. To further enhance the diversity and robustness of the dataset, users are encouraged to
apply data augmentation techniques to create additional variations and improve the generalizability
of machine learning models using this dataset.

3.4 DATA ANNOTATION

To simplify the file compilation, we organized the data into a folder structure, as shown in Figure
4. The folder structure comprises four hierarchical layers: (1) modality, (2) location combination,
interaction label, and subject, (3) timestamps, and (4) image or ‘.csv’ files. The first layer classifies
files by modality, including RGB, depth, IR, and 3D skeleton joints. The next layer uses a six-digit
code, LLIISS, to categorize the location, interaction label, and subject. In this code, LL represents the
location: CM for the indoor open space, CC for the indoor confined space, and CL for the outdoor
space. II refers to the numbered activities (1–12) listed in Table 2, and SS indicates the subject pair,
ranging from 1–10. Note that the same subject pair number in different locations does not indicate

7
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Table 2: Activity labels and their corresponding interactions.

Labe ID Dyadic interaction Label ID Dyadic interaction

1 Waving in 7 Drawing circles in the air
2 Thumbs up 8 Holding one’s palms out
3 Waving 9 Twirling or scratching hair
4 Pointing 10 Laughing
5 Showing measurements 11 Arm crossing
6 Nodding 12 Hugging

Figure 4: The data folder structure for our dataset is designed to ensure easy access for users. The
RGB, depth, and IR modalities follow the same hierarchical structure, while the 3D skeleton joint
folders store all 3D coordinates for a sample video clip in a single ‘.csv’ file.

the same pair; only the pairs CCII02 and CLII07, CCII01 and CMII10, and CCII03 and CMII05
represent the same individuals across locations. As mentioned earlier, each pair was asked to repeat
an interaction 40 times, and all repetitions were recorded in a single video. To segment the video
temporally, we organized each time window by start and end timestamps. For example, a folder
named 40800222 43800211 contains a recording that begins at 40800222 and ends at 43800211
milliseconds after the Azure Kinect is connected. Inside each timestamp folder, the corresponding
clip is stored frame by frame, with frames numbered sequentially from 0–90.

3.5 CROSS-LOCATION AND CROSS-SUBJECT EVALUATIONS

One of the key motivations for creating DUET is to encourage the research community to explore
HAR in the context of dyadic, contextualizable interactions. To support this, we provide a base-
line training and test data split for evaluating algorithm performance. In addition to the standard
cross-subject evaluation, we also include a cross-location evaluation. We recognize that applica-
tions involving dyadic, contextualizable interactions may take place in a variety of indoor and out-
door settings, so the cross-location evaluation helps ensure HAR algorithms are resilient to location
variation. For the cross-subject evaluation, we use CCII05, CCII07, CLII01, CLII05, CMII06, and
CMII09 for the test data, and the remainder for the training data. For cross-location evaluation,
CCIISS is selected as the test data, while CLIISS and CMIISS are used as the training data.

4 BENCHMARKING STATE-OF-THE-ART HAR ALGORITHMS

In this section, we evaluate the performance of six open-source, state-of-the-art HAR models with
publicly available code, as listed in Table 3. This work intentionally selects algorithms that are open-
source to ensure that the implementation used in our benchmarking is consistent with the original
benchmarking conducted by the algorithm’s developers. This decision prioritizes reproducibility
and transparency, both of which are essential for meaningful comparisons. Since DUET provides
multiple modalities, the evaluation includes two RGB-based, two depth-based, and two skeleton-
based algorithms. The results of the evaluation are presented in Table 3.

First, we analyze the effect of occlusion on the RGB modality, as its accuracy is relatively lower
compared to other modalities. As previously mentioned, occlusion is a common challenge in vision-
based HAR. To evaluate its impact, we train the two selected algorithms using only unoccluded
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Table 3: Cross-location and cross-subject accuracy comparison for RGB, depth, and 3D skeleton
joints. Note: the parenthesized values are accuracies for unoccluded samples.

HAR algorithm Modality Cross-location
accuracy ( %)

Cross-subject
accuracy ( %)

DB-LSTM (He et al., 2021) RGB 9.65 (13.81) 17.85 (21.34)
V4D (Zhang et al., 2020) RGB 8.26 (18.58) 7.79 (34.68)
DOGV-ST3D (Xiaopeng et al., 2021) Depth 13.15 18.77
DB-LSTM (He et al., 2021) Depth 14.94 23.18
PAM-STGCN (Yang et al., 2020) 3D joints 30.73 36.65
DR-GCN (Zhu et al., 2021) 3D joints 38.17 41.57

(a) (b) (c)

Figure 5: Representative confusion matrices for cross-subject evaluation for (a) RGB (DB-LSTM
(He et al., 2021)), (b) depth (DB-LSTM (He et al., 2021)), and (c) 3D skeleton joints (DR-GCN
(Zhu et al., 2021)). Note: each label’s interaction corresponds to the mapping in Table 2.

samples for both cross-location and cross-subject evaluations. The corresponding results (Table 3)
are comparable to the benchmarking records of other datasets (Liu et al., 2017). The results indicate
that both algorithms show improved performance when occluded samples are excluded. This exper-
iment highlights not only the significant impact of occlusion on algorithm performance but also the
critical importance of including occluded samples in datasets for comprehensive evaluation.

Overall, the cross-subject evaluation outperforms the cross-location evaluation across all modalities
in the state-of-the-art algorithms, which can be explained by two key factors. First, RGB-based
and depth-based algorithms are prone to learning view-dependent motion patterns, often correlating
background with motion trajectories during training. In the cross-subject evaluation, the training set
includes samples from three locations, whereas in the cross-location evaluation, only two locations
are used for training. As a result, these models struggle to generalize to unseen backgrounds during
testing, leading to lower accuracy in the cross-location evaluation. Second, the difference in the
number of training samples also contributes to the performance gap. In the cross-subject evaluation,
80% of the dataset—approximately 11,520 samples—is used for training, while in the cross-location
evaluation, only two-thirds of the dataset is available for training. Performance improves with a
larger training sample size. These two phenomena are also present Liu et al. (2019)’s work.

Another observation is the gradual increase in accuracy of the state-of-the-art HAR algorithms tested
in our study, progressing from RGB to depth, and then to 3D skeleton joints, which aligns with the
expansion of dimensional information. RGB-based algorithms compress input into a 2D plane, lead-
ing to lower accuracy since human interactions involve both 3D spatial and temporal coordination
(Lee & Kim, 2022). This dimensional compression limits the system’s ability to fully capture spatial
dynamics. Adding depth information to each pixel in an image, as seen in depth-based algorithms,
provides an additional layer of information. The improvement in performance with depth inputs is
particularly clear when we compare the same model (i.e., DB-LSTM) using RGB and depth inputs
separately. However, despite the increase in accuracy from RGB to depth modalities, both still leave
room for improvement. This is due to the fact that both modalities operate in Euclidean space (i.e.,
images), making them more susceptible to view variations. DUET addresses this issue and improves
accuracy by providing more robust data. Additionally, training in Euclidean space can be easily in-
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fluenced by trivial features. As shown in Fig. 5a and Fig. 5b, RGB and depth models are confused
by common poses shared across activities—for example, standing is present in nearly all activities.
In contrast, skeleton-based algorithms perform HAR in non-Euclidean space (Peng et al., 2021),
representing human interactions in 3D space relative to the camera, leading to better accuracy.

Skeleton-based algorithms outperform other modalities because they capture activities in a 3D space
relative to the camera, which is well-suited for the spatial complexity of human interactions. These
algorithms can extract underlying motion patterns regardless of the viewpoint. Additionally, 3D
skeletons provide a sparse representation of the human body, which helps prevent the network from
learning irrelevant features. However, this sparsity can also hinder recognition in certain cases. In
our dataset, many dyadic interactions differ only in subtle ways. For example, both the “thumbs up”
gesture and “holding one’s palms out” (i.e., label ID 2 and 8, respectively) involve arm extension,
but the former requires raising the thumb, while the latter involves holding the hand vertically.
The simplified skeletal representation may not capture these fine distinctions using current HAR
algorithms. This is evident in Figure 5c, which shows these two actions are frequently confused by
the algorithm. While the nuances are more apparent in RGB and depth images, from which the 3D
skeleton joints are extracted, state-of-the-art skeleton-based algorithms still struggle to detect them.

5 DISCUSSION AND CONCLUSION

In this work, we introduce DUET, a contextualizable dataset consisting of 12 dyadic interactions,
based on a psychological taxonomy that organizes human interactions into five groups according
to their communication functions. This taxonomy advances the field of HAR beyond simple body
movement tracking by extracting the embedded semantics in dyadic interactions. Moreover, con-
textualizing human activities enhances HAR models and paves the way for significant downstream
applications, such as autonomous vehicles, urban infrastructure planning, and healthcare.

14,400 samples were collected across 12 interactions, resulting in 1,200 samples per activity—the
highest sample-to-class ratio published. The samples span four modalities: RGB, depth, IR, and
3D skeleton joints, each offering unique strengths. The multimodal dataset encourages both the
individual use of each modality to refine models for specific applications and the fusion of modalities
to combine complementary information, maximizing the value provided by each modality.

DUET also aims to improve the view and background invariance of HAR models. We introduce
a novel data collection procedure to capture human interactions from multiple angles using a sin-
gle camera, something previously unachievable even with multiple sensors. This innovative setup
enhances resilience to variations in viewing angles, reflects real-life scenarios where observations
are not restricted to a specific angle, and reduces deployment costs. The choice of testbed locations
is carefully considered. Data was collected in three distinct environments: an open indoor area, a
confined indoor space, and an outdoor area. This variety not only improves generalizability but also
enables applications to assess how ambient environments affect system performance.

To establish baseline performance for DUET, we evaluate six HAR algorithms with open-source
code to ensure an accurate assessment of their capabilities—two RGB-based, two depth-based, and
two skeleton-based algorithms. While some previous work has attempted to recognize dyadic in-
teractions using monadic algorithms, the performance reveals a persistent gap between recognizing
monadic and dyadic activities. In this study, we take a step further by benchmarking six dyadic algo-
rithms with our dataset. The results highlight (1) the complexity of social interactions that remains
underexplored in existing literature, and (2) the vulnerability of HAR algorithms to changes in view
and background, which presents new research opportunities for future investigation.

Future developments from this work can be broadly categorized into two areas: refining HAR al-
gorithms and enhancing the taxonomy to better capture the embedded semantics of interactions.
As shown in Table 3, all modalities require improvement when it comes to contextualizable dyadic
interactions. In addition to developing more sophisticated HAR models capable of capturing the
nuances in these interactions, another way to enhance performance is through contextualization.
We have laid the groundwork for contextualizing human activities by integrating a psychological
taxonomy with HAR. The next step is to further define this framework, mapping all interactions to
their corresponding levels of embedded meaning, which can benefit downstream applications such
as CPHS, autonomous vehicles, smart homes, and healthcare.
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A APPENDIX

Figure 6: Sample data from the first six interactions. The locations presented are, from left to right:
the confined indoor space, the open indoor space, and the open outdoor space. The six interac-
tions are, from the top to bottom rows: “waving in,” “thumbs up,” “waving,” “pointing,” “show-
ing measurements,” and “nodding.” These images demonstrate the variation in lighting conditions,
viewpoints, and occlusions.
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Figure 7: Sample data from the last six interactions. The locations presented are, from left to right:
the confined indoor space, the open indoor space, and the open outdoor space. The six interactions
are, from the top to bottom rows: “drawing circles in the air,” “holding one’s palms out,” “twirling or
scratching hair,” “laughing,” “arm crossing,” and “hugging.” These images demonstrate the variation
in lighting conditions, viewpoints, and occlusions.
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