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ABSTRACT

Scaled Dot Product Attention (SDPA) is the backbone of many modern deep-
learning models. It is so versatile that it has been used in natural language, vi-
sion, and multi-modal domains with very little change compared to its original
formulation. This paper studies the linear transformations used in SDPA. To this
end, we introduce three variants of the attention mechanism by removing con-
secutive linear transformations or adding an extra one. We name these variants
Optimized (WV removed), Efficient (WV and WK removed), and Super Atten-
tion (WV and WK removed and WA introduced) to simplify comparison when
referring to them. In addition to providing the mathematical intuition behind these
choices, we evaluate these variants when used in the self-attention module of
Transformer models on several datasets of varying size and complexity in vision
and text modalities for predictive and generative tasks. Optimized and Efficient
variants have one and two matrix multiplications fewer per head, respectively, and
25% and 50% fewer parameters, respectively, than standard SDPA. However, the
performance change compared to the difference in parameter count is small. Su-
per Attention introduces a new linear transformation on the values, transforming
them from the left. It outperforms standard SPDA in both modalities by up to 10%
while having one fewer matrix multiplication per head and 25% fewer parameters
than standard SPDA. Consequently, it is also faster than standard SDPA.

1 INTRODUCTION

Not many ideas have had as profound an effect on the field of Artificial Intelligence (AI) as the at-
tention mechanism (Bahdanau et al., 2015). Introduced as a method to improve machine translation,
the attention mechanism revolutionized the way neural networks process and interpret data. By al-
lowing models to focus on specific parts of the input while disregarding irrelevant information, it
mimics a form of cognitive attention in humans. It not only enhanced the capability and efficiency
of Language Models (LM) but also paved the way for the development of advanced AI architectures
like the Transformer model (Vaswani et al., 2017).

These advances have had far-reaching impacts, extending beyond Natural Language Processing
(NLP) to other areas such as image recognition (Dosovitskiy et al., 2021), autonomous systems
(Mott et al., 2019), healthcare (Choi et al., 2016), and multi-modal application Xu et al. (2023).

The formulation of SDPA in all these domains has undergone very little change compared to the
original formulation of Vaswani et al. (2017). Instead, “The bigger the better” has been the prevailing
maxim in AI in the last few years. Larger Language Models (LLM), such as Llama 3 (Touvron
et al., 2023a;b), GPT-4 (Achiam et al., 2023), and Gemini (Anil et al., 2023) have demonstrated
unprecedented capabilities in multi-modal domains.

The behemothic sizes of these models have introduced numerous challenges, such as expensive and
slow training and inference, leading to secondary problems such as high carbon emission (Dhar,
2020). Furthermore, such models are impossible not only to run but even to store on edge devices
such as smartphones, consumer laptops, and even powerful personal workstations.

In recent years, there have been numerous attempts to address this problem using post-training tech-
niques, like quantization (Jacob et al., 2018), Low-Rank Adaptation (LoRA) (Hu et al., 2022), Quan-
tized LoRA (QLoRA) (Dettmers et al., 2023), and sparsification (Ashkboos et al., 2024). There have
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Figure 1: Standard multi-head scaled dot product attention (1a) alongside the proposed variations:
Optimized Attention (1b), Efficient Attention (1c), and Super Attention (1d). The “Linear” block
denotes a linear transformation right while “Linear*” denotes a linear transformation from left.

been also attempts to optimise the speed and GPU utilization of attention-based models. Notable
examples include Flash Attention 1, 2, and 3 (Dao et al., 2022; Dao, 2024; Shah et al., 2024).

All these approaches focus on techniques to improve the performance of attention-based models
without altering the attention mechanism. In this paper, we look into the attention mechanism itself
and study SDPA and three SDPA variants, that are designed based on two intuitive principles: (1)
two consecutive linear transformations do not introduce non-linearity, and (2) a learnable linear
kernel between each two inputs of SDPA enhances learning. These three variants are as follows:

⋄ Optimized Attention, which we introduce in Section 3.1. As shown in Figure 1b, Optimized
Attention replaces WV linear transformation by a simple slicing operation (following Principle 1),
thus reducing the number of parameters in the attention layer by 25% and its computational cost
by h matrix multiplications, where h is the number of heads. The evaluations in Section 4, show
that Optimized Attention reduces the inference time by 2.5–7.5%, while performing similarly (i.e.,
no/little performance degradation depending on the task).

⋄ Efficient Attention, which we introduce in Section 3.2. As shown in Figure 1c, Efficient Attention
replaces WV and WK linear transformations by simple slicing operations (following Principle 1),
thus reducing the number of parameters in the attention layer by 50% and its computational cost
by 2h matrix multiplications, where h is the number of heads. The evaluations in Section 4, show
that Efficient Attention reduces the inference time by 5–15%, while performing similarly (i.e.,
no/little performance degradation depending on the task).

⋄ Super Attention, which we introduce in Section 3.3. As shown in Figure 1d, Super Attention,
introduces a new linear operation WA (following Principle 2), which transforms the values V from
the left. For the sake of simplicity, we build Super Attention on top of Efficient Attention (i.e., WV

and WK linear transformations are replaced by slicing), but we emphasise that Super Attention
can be used on top of standard or Optimized attentions (i.e., without replacing WV and WK).
Super Attention reduces the attention layer’s size by ∼ 25% (depending on the attention’s context
length) and its computational cost by h matrix multiplications. The evaluations in Section 4, show
that Super Attention, outperforms standard attention by 2–10% in both vision and NLP tasks (in
terms of various learning metrics), while reducing the training and inference time by 2.5–10%.

We evaluate SDPA and our proposed variations in the self-attention setting in transformers on (1)
image classification on MNIST, CIFAR100, and ImageNet datasets, (2) natural language sentiment
classification on IMDB and Amazon Reviews datasets, (3) Neural Machine Translation (NMT) on
the combined Europarl and Anki English-to-Spanish translation dataset, and (4) generative language
modelling using Andrea Karpathy’s NanoGPT on the OpenWebText dataset.
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2 PRELIMINARIES

Let us start by introducing the notations used throughout the paper. For natural numbers dm, dk ∈ N,
we denote the dm-dimensional real vectors space by Rdm and the set of all real dm × dk matrices
by Rdm×dk , noting that all matrices can be regarded as 2D tensors and vice versa. Given a set
A ⊆ Rdm , we denote the smallest real vector space containing A by span(A). Similarly, given
a matrix W ∈ Rdm×dk , we denote the smallest real vector space containing the columns of W ’s
by span(W ). For a subspace S ≤ Rdm , the dimension of S, denoted dim(S), is the size of the
largest linearly independent set in S. The rank of a matrix W ∈ Rdm×dk , denoted rank(W ), is
the number of linearly independent columns (or rows) in W . The rank-nullity theorem implies that
rank(W ) = dim(span(W )) and rank(W ) ≤ min(dm, dk).1

We use the definition of the attention mechanism as implemented in SotA open-source models, such
as Llama-3 and Mistral as well as machine learning frameworks like Torch, JAX, TensorFlow, and
Keras. For consistency, we use the same notation as (Vaswani et al., 2017).

Definition 1 (Standard Attention). The (multi-head) scaled dot-product attention on input tensors
Q,K, V ∈ Rℓ×dm is defined as

O = (H1 H2 · · · Hh)W
O, (1)

Hi = SiV
′
i , (2)

Si = softmax(
Q′

iK
′⊺
i√

dk
), (3)

V ′
i = VWV

i , (4)

K ′
i = KWK

i , (5)

Q′
i = QWQ

i , (6)

where O is the output; Q′
i,K

′
i, V

′
i , Si, and Hi are the query, key, value, attention score, and

head value of the i-th head, respectively. The natural numbers ℓ, dm and h are the context
length, model dimension, and number of heads, respectively. Moreover, WQ

i ,WK
i ∈ Rdm×dk and

WV
i ∈ Rdm×dv , where dk and dv are the key and value dimensions, respectively.

Parameters dm, dk, dv and h are often chosen so that dk = dv = dm/h, and in recent models,
including SotA Transformer models, Q,K, and V are set to X , a single input tensor; whereby, the
attention mechanism is called self-attention.

3 REVISING THE ATTENTION MECHANISM

In this section, we discuss our motivation for revisiting the attention mechanism and considering
the proposed variants. It is important to note these variants are not mathematically equivalent to
standard attention, and our goal here is to justify the choices of variants discussed in this paper.
These variants are Optimized Attention, Efficient Attention, and Super Attention, which we introduce
in Sections 3.1, 3.2, and 3.3, respectively.

3.1 OPTIMIZED ATTENTION: ABSORBING WV
i ’S INTO W 0

Our objective is to reduce the computational cost and number of parameters in SDPA. Here we focus
on (1) and (4) in standard attention. We propose absorbing WV

1 ,WV
2 , . . . ,WV

h into WO, which in
turn, reduces the computational cost of the attention layer by h matrix multiplications. But the
question is how does this affect the performance of the model. We answer this question in Section 4.
Before doing so, however, let us justify our motivation.

1For a detailed introduction to these see (Meyer, 2023, Chapters 2 & 4).
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In standard attention, the output O of the attention layer can be written as

O = (H1 H2 · · · Hh)W
O = (S1VWV

1 S2VWV
2 · · · ShVWV

h )


WO

1

WO
2
...

WO
h


= S1VWV

1 WO
1 + S2VWV

2 WO
2 + · · ·+ ShVWV

h WO
h ,

(7)

where WO
i is the matrix that contains rows (i − 1)dv + 1, . . . , idv of WO for i = 1, 2, . . . , h. By

the rank-nullity theorem, for each head, we have that

dim(span(VWV
i WO

i )) = rank(VWV
i WO

i ) ≤ rank(WV
i WO

i ),

≤ min(rank(WV
i ), rank(WO

i )) = min(dm, dv) = dv.

In other words, VWV
i WO

i has at most dv independent columns, and the linear function V 7→
VWV

i WO
i maps the columns of V into a dv-dimensional subspace of Rdm .

Thus, standard attention uses two consecutive matrix multiplications to embed the columns of V into
a dv-dimensional subspace of Rdm , which goes against Principle 1. Optimized Attention, instead of
using two consecutive linear transformations (one downscaling and one upscaling), uses one slicing
and one linear transformation as shown in Figure 1b and described in Definition 2.

In more detail, instead of multiplying V from the right by WV
i , we first slice V into V1, . . . , Vh,

where Vi consists of columns (i − 1)dv + 1, . . . , idv of V , and then, instead of computing
SiVWV

i WO
i , we compute SiViW

O
i , which requires fewer parameters and matrix multiplications

(see Remark 1). We have provided a detailed discussion on the computational gains of Optimized
Attention in Section 4.3.

Definition 2 (Optimized Attention). Using the notation of Definition 1, Optimized Attention is the
attention mechanism defined by the following set of equations:

O = (H1, H2, . . . ,Hh)W
O, (8)

Hi = SiVi, (9)

Si = softmax(
Q′

iK
′⊺
i√

dk
), (10)

K ′
i = KWK

i , (11)

Q′
i = QWQ

i . (12)

Remark 1. Optimized Attention is more efficient than standard attention in the sense that it has h
matrix multiplication and d2m parameters fewer than standard attention.

Proof. Compared to Optimized Attention, standard attention has extra WV
1 ,WV

2 , . . . ,WV
h , which

are multiplied from the right to V , amounting to a total of dmdvh = d2m parameters and h matrix
multiplications.

3.2 EFFICIENT ATTENTION: ABSORBING WK INTO WQ

In the last section, we discussed our motivation behind removing WV . Here, we repeat the same
thing for WK to further reduce the computational cost of the attention mechanism. When computing
the pre-softmax attention scores for each head, we have that

dim(span(
QWQ

i WK⊺
i K

⊺

dk
) = rank(QWQ

i WK⊺
i K

⊺) ≤ rank(WQ
i WK⊺

i ),

≤ min(rank(WQ
i ), rank(WK

i )) = min(dm, dk) = dk.
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More precisely, here two linear kernels WQ
i and WK⊺

i are stacked, which goes against Principle 1.
Thus, in a similar fashion to what we did in Optimized Attention, we merge WK⊺

i into WQ
i by re-

placing the WK
i linear transformation by slicing as depicted in Figure 1c and defined in Definition 3.

Definition 3 (Efficient Attention). Using the same notation as Definition 2, Efficient Attention is
defined via the following equations:

O = (H1, H2, . . . ,Hh)W
O, (13)

Hi = SiVi, (14)

Si = softmax(
Q′

iK
⊺
i√

dk
), (15)

Q′
i = QWQ

i , (16)

where Ki denotes the subtensor consisting of (i− 1)dk + 1, . . . , idk rows from K.

Remark 2. Efficient Attention is more efficient than Optimized Attention and standard attention in
the sense that it has h matrix multiplication and d2m parameters fewer than Optimized Attention and
2h multiplication and 2d2m parameters fewer than standard attention.

Proof. In Efficient Attention, we do not have WK
1 ,WK

2 , . . . ,WK
h , which are applied to K from left.

Hence, compared to Optimized Attention, we have reduced the number of matrix multiplications by
h and parameters by d2m. From this and Remark 1, it follows that Efficient Attention has h+h = 2h
matrix multiplication and d2m + d2m = 2d2m parameters less than standard attention.

3.3 SUPER ATTENTION: INTRODUCING WA

Looking at the Equations (1-6), we observe that in SDPA, there are learnable parameters between Q
and K; however, there is no such parameter between K and V (even though a softmax is applied
to the term containing K). Thus, we introduce a new learnable parameter WA which linearly trans-
forms the values from left. To better observe this, let us write the equation for one head in one of the
attention variants, e.g., Efficient Attention by combining Equations (14–16):

Hi = softmax(
QWQ

i K⊺
i

dm
)ViW

O. (17)

As we see in Equation (17), there are no learnable parameters between K⊺ and V , and the attention
scores Si are directly applied to the values Vi. The intuition behind directly applying Si to Vi is
that the attention scores in Si determine “how much attention is paid” to each of the features of each
token in Vi. Despite this intuition, we found that in practice the model can benefit from an additional
kernel which appears in between the scores Si and values Vi. Specifically, with the introduction of
WA, Equation (17) changes to

Hi = softmax(
QWQ

i K⊺
i

dm
)WAViW

O. (18)

The role of WA is to mix and align the values vertically (token-wise). Thus, to prevent “look ahead”
in the attention mechanism for use in generative language modelling, we constrain WA to be lower
triangular, so that future tokens do not influence the current one in WA. Note that we use the same
WA for all heads. The reason here is that we want to improve the model performance while keeping
the model size as small as possible. Thus, in a more general formulation, one can use different
WA for each head to perhaps gain better performance, but at the cost of increasing the number of
parameters, and thereby the model size.

Definition 4 (Super Attention). Using the notation of Definition 3, Super Attention is the attention
mechanism defined by the following set of equations:

5
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O = (H1, H2, . . . ,Hh)W
O, (19)

Hi = SiV
′
i , (20)

Si = softmax(
Q′

iK
⊺
i√

dk
), (21)

V ′
i = WAVi, (22)

Q′
i = QWQ

i , (23)

where WA ∈ Rℓ×ℓ is the alignment kernel, which vertically (i.e., for values corresponding to dif-
ferent tokens) aligns and mixes the values before the attention scores are applied to them.

Remark 3. Super Attention is more efficient than standard attention whenever the model dimension
dm is greater than or equal to the context length ℓ. This means that Super Attention has at least h
matrix multiplication and d2m parameters fewer than standard attention.

Proof. Looking at the Equations (13–16) and (19–23), we observe that Super Attention and Efficient
Attention have the same defining equations, except that Super Attention has an additional linear
transformation in Equation (22), where Vi’s are multiplied by WA from the left. This amounts to
ℓ2 parameters and h matrix multiplication more than Efficient Attention. From Remark 2, it follows
that Super Attention has at least 2d2m − ℓ2 ≥ d2m parameters and 2h− h = h matrix multiplications
less than standard attention.

4 EVALUATION

We evaluate all the proposed mechanisms in vision (Section 4.1) and NLP (Section 4.2 and Ap-
pendix A.5). We also provided a detailed comparison of the computational costs and edge device
performance in Section 4.3 and Appendices A.1 and A.2.

Evaluation Methodology. We have chosen various benchmarks to ensure a fair and comprehen-
sive comparison between the four attention mechanisms discussed. In each benchmark, we have
followed the common practices used to evaluate the performances. For all benchmark, (1) we use
the same model architecture and iterate between standard, Optimized, Efficient, and Super Atten-
tion; (2) we continue training until the validation loss flattens or a given computational budget is
reached; and (3) for benchmarks on smaller datasets, we report the results by averaging over five
runs to ensure fairness.

Experimental Setup. All experiments in Sections 4.1 and 4.2 are implemented in Keras with
JAX backend using the examples available at keras.io/examples with minor dataset-specific
adjustments, e.g., modifying the number of classes, layers, etc. The generative language mod-
elling experiment in Section 4.2 is an adaptation of Andrea Karpathy’s NanoGPT available at
github.com/karpathy/nanoGPT. All the reported results are obtained by training on an
Nvidia RTX 4090 GPU (24GB VRAM) or an Nvidia A100 GPU (80GB VRAM); however, we
have chosen model and batch sizes to ensure that they run on 24GB VRAM. In each table, we report
the train and test loss and accuracy (where relevant), the number of parameters in one attention layer
(in the “# Param.” column), the average training time (in seconds) of models for one epoch on an
RTX 4090 GPU (in the “Epoch Time” column), as well as other related task-specific metrics.

4.1 VISION TRANSFORMERS

We experiment with three widely adopted vision datasets of varying size and complexity: MNIST
(LeCun et al., 2010), CIFAR100 (Krizhevsky, 2009), and ImageNet1K Russakovsky et al. (2015).
For Brevity, we refer to the ImageNet1K dataset throughout the paper as ImageNet. However, for
the reported ImageNet results, we first pre-trained the model on the ImageNet21K dataset. We report
the training details in Appendix A.3.

6
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Table 1: Averages of different metrics (over five runs on MNIST and CIFAR100, and one run on
ImageNet). The numbers in parentheses indicate the ranking of each mechanism on each dataset for
that metric. An ablation study on the number of heads is available in Appendix A.3. An additional
ablation study for models of the same size on ImageNet but with different attention mechanisms is
provided in Appendix A.3. As expected, Efficient Attention models have the smallest attention layer
size, and the Super Attention models achieve the highest accuracy and lowest loss.

Dataset Att. h dm # Param. Epoch Time Acc. (%) Loss Top 5 Val Acc. (%) Val Loss Val Top 5

Stn. 4 128 66K (4) 8.31 (4) 93.73 (4) 0.209 (4) N/A 98.12 (4) 0.062 (4) N/A
Opt. 4 128 49K (3) 7.68 (3) 95.36 (2) 0.161 (2) N/A 98.43 (2) 0.046 (2) N/A
Eff. 4 128 33K (1) 7.05 (1) 94.28 (3) 0.197 (3) N/A 98.27 (3) 0.058 (3) N/A

M
N

IS
T

Sup. 4 128 37K (2) 7.58 (2) 96.96 (1) 0.112 (1) N/A 98.62 (1) 0.051 (1) N/A

Stn. 8 256 263K (4) 21.19 (4) 72.28 (2) 1.41 (2) 91.02 (2) 48.14 (3) 1.82 (3) 90.22 (4)
Opt. 8 256 197K (2) 20.39 (3) 72.26 (3) 1.47 (3) 93.01 (3) 48.63 (2) 1.71 (2) 90.99 (2)
Eff. 8 256 131K (1) 19.22 (1) 71.96 (4) 1.49 (4) 92.23 (4) 47.95 (4) 1.83 (4) 90.48 (3)

C
IF

A
R

10
0

Sup. 8 256 197K (3) 20.28 (2) 79.62(1) 1.28 (1) 94.34 (1) 49.28 (1) 1.55 (1) 91.69 (1)
Stn. 12 768 2.36M (4) 2572 (4) 92.07 (2) 1.02 (2) 98.41 (2) 74.35 (3) 1.47 (3) 94.10 (4)
Opt. 12 768 1.77M (3) 2426 (2) 91.78 (3) 1.03 (3) 98.36 (3) 77.12 (2) 1.47 (3) 94.21 (3)
Eff. 12 768 1.18M (1) 2374 (1) 90.36 (4) 1.05 (4) 98.37 (4) 75.67 (4) 1.44 (2) 95.46 (2)

Im
ag

eN
et

Sup. 12 768 1.22M (2) 2483 (3) 94.09 (1) 0.94 (1) 99.32 (1) 79.29 (1) 1.39 (1) 96.37 (1)

ViT Results Analysis. The number of parameters in the models considered for the vision tasks
range from 300K (MNIST) to 60M (ImageNet), their context length ranges from 64 (MNIST) to
256 (CIFAR100 and ImageNet), the dataset sizes range from 60K (MNIST) to 1.28M (ImageNet),
and the number of classes ranges from 10 (MNIST) to 1K (ImageNet). We observe that in these
all experiments, Super Attention performs better than all other attention mechanisms despite having
fewer parameters than standard attention. Also, Optimized and Efficient Attention demonstrate
comparable performance despite having fewer parameters than standard attention.

4.2 NATURAL LANGUAGE PROCESSING

In this section, we evaluate the attention variants considered here in Transformer models of different
sizes for three NLP tasks: sentiment classification, Natural Machine Translation (NMT), and gen-
erative language modelling. For sentiment classification (Table 2), we use two widely-used bench-
marks, IMDB Movie Reviews (Maas et al., 2011) and Amazon Reviews (Ni et al., 2019) datasets.
For NMT (Table 3), we use the combined Europarl (Koehn, 2005) and Anki (Anki.net) dataset for
English-to-Spanish translation. For generative language modelling (Table 4), we use the OpenWeb-
Text dataset (Gokaslan & Cohen, 2019) for training and the HellaSwag dataset (Zellers et al., 2019)
for comparing the common-sense reasoning performance of the trained models.

Table 2: Averages of different metrics over five runs in the natural language classification experi-
ments on IMDB and Amazon Reviews datasets. The numbers in parentheses indicate the ranking of
each attention variant for that metric for each dataset. Ablation studies on the number of heads for
all experiments is available in Appendix A.4. Efficient Attention models have the smallest attention
layer size and the Super Attention models perform the best in terms of accuracy and loss.

Dataset Att. h dm # Param. Epoch Time Acc. (%) Loss Val Acc. (%) Val Loss

Stn. 4 32 4,224 (4) 0.315 (4) 95.70 (4) 0.086 (3) 77.62 (4) 0.474 (4)
Opt. 4 32 3,168 (2) 0.305 (3) 96.31 (3) 0.095 (4) 77.85 (2) 0.472 (2)
Eff. 4 32 2,112 (1) 0.280 (1) 96.41 (2) 0.064 (1) 77.77 (3) 0.468 (1)IM

D
B

Sup. 4 32 3,168 (2) 0.299 (2) 97.45 (1) 0.070 (2) 78.34 (1) 0.472 (2)

Stn. 4 64 16,640 (4) 20.38 (4) 62.54 (3) 0.868 (3) 52.74 (4) 1.097 (4)
Opt. 4 64 12,480 (2) 19.89 (3) 61.64 (4) 0.876 (4) 52.88 (3) 1.090 (3)
Eff. 4 64 8,320 (1) 17.20 (1) 63.55 (2) 0.845 (2) 53.19 (2) 1.080 (2)

A
m

az
on

Sup. 4 64 12,480 (2) 19.77 (2) 66.52 (1) 0.774 (1) 54.25 (1) 1.058 (1)

NLP Results Analysis. The number of parameters in the models considered for the NLP tasks
ranges from 650K (IMDB) to 124M (language modelling), their context length ranges from 32
(IMDB) to 1024 (language modelling), the dataset sizes range from 50K samples (IMDB) to 9 billion
tokens (OpenWebText). We observe a similar pattern to ViT for text classification in the sense that
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Table 3: Averages of different metrics over five runs for English-to-Spanish NMT on combined
Europarl and Anki translation datasets. The numbers in parentheses indicate the ranking of each
attention variant for that metric. Ablation studies on the number of heads for all experiments is
available in Appendix A.4. Optimized and Efficient Attentions perform similarly to standard at-
tention on most metrics with 1/2 and 3/4 as many attention parameters, respectively. As the Super
Attention layer has a fixed context length and the decoder requires a varying context length, using
Super Attention would require us to use a sliding window, which would not be comparable to the
full attention used for the other attention variants.

Att. h dm dk # Param. Epoch Time BLEU Acc. Loss Val BLEU Val Acc. Val Loss

Stn. 4 1024 256 4.2M (3) 600.0 (3) 23.1 (2) 81.11 (3) 0.83 (3) 22.8 (1) 81.41 (3) 0.84 (3)
Opt. 4 1024 256 3.1M (2) 586.8 (2) 24.5 (1) 82.06 (1) 0.78 (1) 22.6 (3) 81.98 (1) 0.80 (1)
Eff. 4 1024 256 2.1M (1) 523.0 (1) 22.6 (3) 81.15 (2) 0.82 (2) 22.3 (3) 81.44 (2) 0.83 (2)

Super Attention outperforms attention variants in terms of train accuracy (up to (66.52−62.64)/62.64 =
6.19% compared to standard attention on Amazon Reviews). We also observe that standard attention
is slower than all other variants (up to (600−523)/523 = 14.72% slower than Efficient Attention in
NMT) with the highest number of parameters (twice as many parameters per layer compared to
Efficient Attention). The generative language modelling experiment reveals subtle differences in
performance among the models. The standard attention-based model demonstrated marginally lower
training and validation losses compared to the Optimized Attention model. In turn, the Optimized
Attention model slightly outperformed the Efficient Attention model in terms of loss. However,
when evaluated on the HellaSwag benchmark, all three models exhibited comparable performance,
achieving accuracy rates between 30% and 31%.

Table 4: Averages of different metrics in generative language modelling using NanoGPT, a widely-
referenced re-implementation of GPT-2 124M by Andrea Karpathy, when using different attention
architectures. The models are trained on the OpenWebText dataset (∼9B training tokens) for one
epoch with a batch size of 500 and a micro-batch size of 5 using a single A100 80GB node. The
maximum sequence length is set to 1024. In addition to the loss metric, we have provided the size
of each model as well as the results of the evaluation on the HellaSwag benchmark. Similarly to
the NMT task, a fair comparison of Super Attention against the other variants is not feasible as
NanoGPT uses full attention but Super Attention requires using a sliding window.

Att. h dm dk Layer Size Model Size Train Loss Val Loss HellaSwag

Stn. 12 768 64 2.36M 124M 2.92 3.13 0.31
Opt. 12 768 64 1.77M 117M 2.96 3.14 0.31
Eff. 12 768 64 1.18M 110M 3.02 3.18 0.30

4.3 SPEED AND FLOPS ANALYSIS

Appendices A.1 and A.2 are dedicated to studying the computational complexity and inference speed
of the considered attention variants. Equation (24) formulates the computational complexity for
each algorithm. Figure 2 visualizes a comparison between the required number of FLOPs for each
algorithm based on “sequence length” and “projection dimension”. It indicates Efficient Attention
requires the least number of FLOPs under all scenarios. From an empirical perspective, Table 5 and
Figure 3 exhibit the faster inference speed (lower latency) of Efficient Attention compared to other
variants in different datasets, followed by Optimized and Super Attention variants.

5 RELATED WORK

After the adoption of Transformers, different research directions have emerged to address different
shortcomings of the attention mechanism and Transformer models. Sparse attention, such as Long-
former (Beltagy et al., 2020; Zhang et al., 2021a), reduces the computational complexity by focusing
on key input parts (Child et al., 2019). Despite their efficiency in handling long sequences, sparse
attention mechanisms struggle with tasks requiring a comprehensive sequence analysis.
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(d) Sup. Attention

Figure 2: 3D plots visualizing the number of required FLOPs for each attention variant during a
forward plus backward pass given different sequence lengths and projection dimensions in a single
head setting. Efficient Attention followed by Super Attention and Optimized Attention needs signif-
icantly fewer FLOPs for completing a forward and backward pass compared to standard attention.

Another line of research focuses on approximating the attention matrix to attain linear complexity.
Performer (Choromanski et al., 2021) uses random feature maps and FAVOR+ mechanism; Lin-
former (Wang et al., 2020) projects keys and values to lower dimensions by exploiting low-rank
properties of attention matrices. While effective for long sequences, using approximation strategies
often leads to reduced model quality compared to calculating exact attention, particularly for tasks
requiring precise token relationships.

A new line of research focuses on architectures that combine transformers’ parallel training speed
with RNNs’ inference efficiency. These include RWKV (Peng et al., 2023), which uses linear re-
currence and learnable time-mixing parameters, and State-Space models like S4 (Gu et al., 2021)
and Mamba (Gu & Dao, 2024), which leverage structured state-space sequences for long-range
dependencies. While these approaches show promise through efficient inference and strong theoret-
ical properties, Transformers maintain dominance due to their proven scalability in large language
models and superior performance on parallel hardware during training.

Transformers’ dominance has prompted a line of research for addressing their inefficiencies. For
instance, Voita et al. (2019) show that multi-head SDPA is over-parameterized and the majority of
heads can be pruned without negatively affecting the performance. Using this insight, Cordonnier
et al. (2020) introduce a collaborative framework for reducing the size of key and query projections
significantly without performance degradation.

Sparsification techniques reduce the number of non-zero elements in a network’s weights. Ashk-
boos et al. (2024) introduced a post-training sparsification technique for large language models that
compresses weight matrices with 1-10% performance degradation. Increasing sparsity could lead
to reduced robustness (Timpl et al., 2022). In addition to these directions, we discuss further re-
lated attempts (including research on LoRA, Quantization and Flash Attention) for facilitating the
deployability of transformer models in Appendix B.

0.80

0.85

0.90

0.95

1.00

MNIST CIFAR100 ImageNet IMDB Amazon

Super Efficient Optimized Standard

Figure 3: Summary of relative inference latency of the models using different attention variants
relative to standard attention on different datasets on an Edge Device (Apple Laptop M2 Chip).
Efficient Attention is the fastest while Optimized and Super Attention are also faster than standard
attention. More details and numerical results for all datasets are available in Table 5.
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6 DISCUSSION

We proposed and evaluated three variants of SDPA, which alter the standard arrangement of linear
transformations in standard SDPA in order to uncover if by doing so, we can achieve better perfor-
mance per computation cost and number of parameters. These variants include Optimized, Efficient,
and Super Attention (see Figure 1 for visualizations of each of the variants). Efficient and Optimized
Attentions considerably reduce the size and computational cost of the attention layer, while perform-
ing reasonably close to standard attention. Super Attention performs better than all other variants
despite having fewer parameters than standard attention. More precisely, our experimental results
can be summarized as follows.

Computer Vision. We considered image classification on MNIST, CIFAR100, and ImageNet1K,
comparing standard, Optimized, Efficient, and Super Attention. In terms of performance, i.e., ac-
curacy and loss, Optimized and Efficient Attention performed similarly to standard attention, while
having fewer parameters, and being faster to train and infer. Super Attention outperforms standard
attention in terms of accuracy by 3.5%, 10.1%, and 2.2% on MNIST, CIFAR100, and ImageNet
datasets, respectively, while being smaller and faster to train and infer.

Natural Language Processing. We also considered a wide range of NLP tasks, including senti-
ment classification on IMDB Movie Reviews and Amazon Reviews, NMT on combined Europarl
Parallel Corpus and Anki datasets for English-to-Spanish translation, and generative language mod-
elling on OpenWebText dataset. Optimized and Efficient Attention performed similarly to standard
attention on all tasks while having fewer parameters and being faster, and Super Attention outper-
forms standard attention by 1.8% and 6.4% on IMDB and Amazon Reviews respectively.

Limitations. There are two limitations in this paper. First, Super Attention supports fixed context
length due to the fixed size of WA (see Equation (22) and Figure 1d). Nonetheless, these do not
affect the advantages of Super Attention in many SotA applications such as in ViT. Moreover, this
can be addressed using a sliding window, which a future work is currently in progress. Second,
because of limited computational resources, we could only validate our hypotheses on models with
up to 124 million (1.1 billion considering Appendix A.5) parameters trained on datasets with up to
9 billion (30 billion considering Appendix A.5) tokens. Further scaling the experiments beyond our
computational resources and training large multi-modal and language models using the proposed
mechanisms could facilitate a better understanding of their performance in industrial scales.

7 CONCLUSIONS

We investigated SDPA and three proposed variants that modify the arrangement of linear transfor-
mations in SDPA. Two variants, Optimized and Efficient Attention, replace one (values) and two
(values and keys) linear transformations in SDPA with slicing, resulting in 25% and 50% size reduc-
tions and fewer matrix multiplications, respectively. The third variant, Super Attention, introduces
a new linear transformation operating on the values from the left. While Super Attention can be
applied to standard, Optimized, or Efficient Attention, we focused on combining it with Efficient
Attention to reduce the number of parameters in the attention layer, resulting in approximately 25%
fewer parameters compared to standard attention.

We evaluated all discussed variants across a wide range of tasks (within our available computational
budget), from image classification to generative language modelling, using benchmarks varying in
size from 60,000 examples to 9 billion tokens. Our evaluations demonstrate Optimized Attention and
Efficient Attention perform comparably to standard attention across different benchmarks, despite
having considerably fewer parameters. Super Attention outperforms all variants in all applicable
benchmarks while still maintaining fewer parameters than standard attention. In summary, the pro-
posed attention variants show promising performance across a wide range of tasks. Our generative
language modelling experiment using a 1.1B Llama-based model in Appendix A.5 provides some
insight into their performance on large scales. Realizing the true potential of these variants requires
evaluating larger scales, which are beyond our available resources. Overall, the promising results of
the proposed variants suggest the potential for more extensive evaluation and adoption.
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Reproducibility Statement. The code for all experiments is provided in the supplementary mate-
rials. Publicly available datasets are used, with automatic downloads included in the code, except for
the Amazon dataset (link in README). The NanoGPT repository (linked in Experimental Setup)
details the generative language modelling experiment. Further implementation details are in Section
Section 4 and Appendices A.3 and A.4.
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A ADDITIONAL EXPERIMENTS

A.1 EDGE DEVICE PERFORMANCE

Our main motivation for introducing Optimized, Efficient, and Super Attention is to allow running
more capable models on edge devices. We calculated the inference times of the Transformer models,
we trained before, on a MacBook Pro with an M2 Chip for each task/attention mechanism in Table 5.
As expected, Efficient models are the fastest. Also, Super Attention and Optimized Attention models
are faster than their standard counterparts with the same number of heads while performing equally
well as we discussed before.

Table 5: Total inference times (in seconds) for each attention mechanism/dataset pair on an Apple
M2 chip over 5,000 samples.

Name h MNIST CIFAR100 ImageNet IMDB Amazon

1 4.43 34.84 299.26 0.114 1.02
Standard 4 5.27 46.06 323.84 0.183 1.77

8 6.89 (4) 62.08 (4) 341.69 (4) 0.266 (4) 2.84 (4)

1 4.19 33.36 281.14 0.109 1.00
Optimized 4 5.22 44.17 301.30 0.176 1.72

8 6.37 (2) 60.63 (2) 320.49 (3) 0.262 (2) 2.77 (2)

1 3.78 31.50 259.71 0.101 0.93
Efficient 4 4.71 42.16 276.15 0.170 1.66

8 6.10 (1) 58.60 (1) 301.24 (1) 0.256 (1) 2.70 (1)
1 4.21 33.69 264.99 0.112 0.99

Super 4 5.07 44.47 284.49 0.178 1.74
8 6.65 (3) 60.73 (3) 309.72 (2) 0.264 (3) 2.77 (2)

A.2 SPEED AND EFFICIENCY COMPARISON

In the main body and other sections of the Appendix, we present comprehensive theoretical com-
parisons and rigorous experiments on Vision and NLP classification tasks as well as for English-to-
Spanish translation to compare the attention algorithms. Optimized Attention and Efficient Attention
perform on par with standard attention with 25% and 50% less parameters respectively. In addition,
Super Attention outperformed all other algorithms significantly while having 25% fewer parameters
compared to standard attention.

As mentioned in the main body, according to the definitions of our proposed algorithms, Efficient,
Optimized, and Super Attention mechanisms perform 2,1, and 1 fewer matrix multiplication per
head compared to standard attention respectively. Here, we further analyze and compare the required
number of FLOPs for completing a single forward and backward pass for all algorithms under study
to gain further insight into the efficiency of the proposed algorithms.

FLOPs Versus Projection Dim. As depicted in Figure 4, we compare the number of required
FLOPs by each attention algorithm when we fixate the sequence length (denoted as ℓ) and vary the
projection dimension. Even though the number of FLOPs scales linearly with the projection dimen-
sion for all algorithms, the slope of this increase differs significantly for each algorithm. Specifically,
for Efficient Attention, the slope of the line is equal to 9ℓ while for both Optimized and Super At-
tention this is equal to 12ℓ compared to 15ℓ for standard attention. This means that as we scale the
projection dimension the FLOPs required for finishing a forward and backward pass using Efficient
Attention increases 3/5 as fast as standard attention.

FLOPs Equation. The number of FLOPs required for finishing a forward and backward pass for
each of the attention mechanisms is calculated according to the following equation:

FLOPs = CAttnℓdm + 15hℓ2 (24)
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Figure 4: Number of Flops required to complete a single forward plus backward pass for each
attention mechanism. While the complexity and therefore, the number of FLOPs increases linearly
as the projection dimension increases for all attention mechanisms, the slope of the increase varies
significantly as depicted in this plot. Efficient Attention and Super Attention (Optimized Attention
is not shown as it is exactly similar to Super Attention) require significantly fewer FLOPs as the
projection dimension increases compared to standard attention. Here sequence length is set to 64
(ℓ = 64). Trying different values for ℓ changes the scale of the y-axis but the chart looks the same.

where CAttn is the attention algorithm constant which is 15 for standard attention, 12 for Optimized
and Super Attention, and 9 for Efficient Attention, and ℓ, dm, and h represent the sequence length,
projection dimension, and number of heads consistent with the notation used throughout the paper.

Figure 2 shows the 3D plot summarizing the number of FLOPs for each attention algorithm under
varying sequence length and projection dimension in the single head setting. As evident in Figure 2
and Equation (24), our proposed algorithms need fewer FLOPs as sequence length increases, which
is an important consideration for use in LLMs.

FLOPs Heatmaps. In addition to the previous analyses, in Figure 5, we compare the ratio of
FLOPs required to finish a single forward and backward pass by standard attention to Efficient At-
tention under different settings (i.e., varying sequence length and projection dimension) for different
number of heads. In all scenarios, standard attention requires up to 66% more FLOPs in compari-
son to Efficient Attention. On average, Standard Efficient requires 30%, 25%, 20%, and 16% more
FLOPs in comparison to Efficient Attention when using 1, 2, 4, and 8 heads, respectively.

A.3 VISION TRANSFORMERS

MNIST. We trained ViT models with different attention mechanisms, all with two attention layers
and model dimension dm = 128. As expected, Super Attention outperforms all other architectures,
in terms of accuracy, by at least 2.68% and standard attention by 3.23%. The smallest attention layer
size belongs to Efficient Attention, which performs on par with standard attention. The complete
results are presented in Table 6.

ImageNet. Scaling the vision experiments even further, the ImageNet1k dataset presents much
more complexity as the labels comprise 1000 classes. We used a modified ViT-B/16 model architec-
ture, employed different attention mechanisms in its Transformers blocks, and trained the models.
Due to our computational constraints, we reduced the number of transformer blocks from 12 to 8,
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Figure 5: Heatmaps showing the ratio of FLOPs Standard Attention requires compared to the Effi-
cient Attention in 1, 2, 4, and 8 attention head settings. Standard attention requires up to 67% more
FLOPs to complete a single forward and backward pass. On average, standard attention requires
30%, 25%, 20%, and 16% more FLOPs than Efficient Attention when using 8, 4, 2, and 1 heads
respectively.

resized the images to 112×112 (instead of the original 224×224) and reduced the patch size from
16 to 8 to enable training on our Nvidia RTX 4090 GPU. Other parameters are similar to the orig-
inal architecture; specifically, dm = 768 and h = 12. Tables 1 and 7 present the results of our
experiments on the ImageNet dataset.

Val. results in Tables 1, 6 and 7 refer to models’ performances on the official validation set for
ImageNet1K, and the official tests sets for MNIST and CIFAR100 datasets.

A.4 NATURAL LANGUAGE PROCESSING

A.4.1 TRANSFORMER FOR TEXT CLASSIFICATION

IMDB. The IMDB dataset includes 50,000 reviews with binary labels, indicating negative and
positive sentiments. The Transformer models, used in this experiment, all have a single attention
layer with model dimension and context length 32. The complete results are presented in Table 8.

Amazon Reviews. The Amazon Reviews dataset poses a different challenge than the IMDB
dataset as it is a significantly larger dataset with 3,650,000 reviews, containing a wider range of
sentiments in 1, 2, . . . , 5; higher values indicate more positive sentiment. The Transformer models,
used in this experiment, all have three attention layers with model dimension and context length 64.
The complete results are presented in Table 9.
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Table 6: Averages of different metrics over five runs in the MNIST experiment. The numbers in
parentheses indicate the ranking of each mechanism for that metric. An ablation study on the number
of heads shows increasing the number of heads enhances the performance of all algorithms. As
expected, the Efficient Attention model has the smallest attention layer size and the Super Attention
model performs the best in terms of accuracy and loss.

Att. h dm dk # Param. Avg. Time (s) Acc. (%) Loss Val Acc. (%) Val Loss

1 128 128 66,048 8.15 93.26 0.227 98.02 0.063
Stn. 2 128 64 66,048 8.18 95.40 0.161 98.61 0.049

4 128 32 66,048 (4) 8.31 (4) 93.73 (4) 0.209 (4) 98.12 (4) 0.062 (4)

1 128 128 49,536 7.56 91.02 0.299 97.30 0.095
Opt. 2 128 64 49,536 7.57 93.70 0.215 97.93 0.071

4 128 32 49,536 (3) 7.68 (3) 95.36 (2) 0.161 (2) 98.43 (2) 0.046 (2)

1 128 128 33,024 6.89 93.29 0.228 97.78 0.073
Eff. 2 128 64 33,024 6.99 93.60 0.223 98.11 0.061

4 128 32 33,024 (1) 7.05 (1) 94.28 (3) 0.197 (3) 98.27 (3) 0.058 (3)

1 128 128 37,184 7.46 96.24 0.136 98.32 0.056
Sup. 2 128 64 37,184 7.50 96.59 0.124 98.52 0.050

4 128 32 37,184 (2) 7.58 (2) 96.96 (1) 0.112 (1) 98.62 (1) 0.051 (1)

Table 7: Performance of different architectures on the ImageNet dataset. Since different attention
layer architectures in the main ImageNet experiment had different numbers of parameters, an inter-
esting ablation study is comparing these architectures when the total number of parameters is very
close. To achieve this, we change some hyperparameters like dm or the number of attention layers
from the previous experiment. The numbers in parentheses indicate the ranking of each mecha-
nism for that metric. We used a modified ViT-B/16 model, plugged in the attention algorithms in
the Transformers block, and trained the models. Super Attention significantly outperforms all other
algorithms. Unlike the results reported in Table 1 in the main body, the models in this ablation ex-
periment are not pre-trained on ImageNet21K (as such the accuracies and validation accuracies are
lower compared to the ones with pre-training).

Att. h dm Att. Layers Tot. # Param. Acc. (%) Loss Top 5 Val Acc. (%) Val Loss Val Top 5

Stn. 12 768 8 60.54M (4) 51.18 (4) 2.09 (4) 76.05 (4) 32.74 (4) 3.36 (4) 56.48 (4)

Opt. 12 816 8 60.12M (2) 53.22 (2) 1.98 (2) 77.21 (2) 33.44 (3) 3.23 (3) 57.37 (3)

Eff. 12 804 9 60.09M (1) 51.28 (3) 2.06 (3) 76.66 (3) 35.49 (1) 3.13 (1) 59.69 (1)
Sup. 12 804 9 60.44M (3) 64.98 (1) 1.37 (1) 87.36 (1) 34.31 (2) 3.18 (2) 58.70 (2)

A.4.2 TRANSFORMER FOR NEURAL MACHINE TRANSLATION

Europarl Parallel Corpus and Anki. Anki dataset for English-Spanish translation consists of
more than 118,000 sentence pairs in both English and Spanish languages. While training a model on
this dataset enables basic translation, the educational nature and size of the dataset are too simple for
training a capable translation model. Therefore, we also add the Europarl Parallel Corpus which has
around 2 million examples in both English and Spanish languages and has sentences with much more
technical and sophisticated terms to enable training in a powerful English-to-Spanish translation
model. We then shuffle the mix of both datasets, and randomly split the dataset into 99.8%, 0.1%,
and 0.1% for train, validation, and test splits respectively.

We then train a translation model inspired by the implementation available on the official Keras
website for translation but with 2 decoder blocks and one encoder block for 6 epochs. Additionally,
we set the dm = 1024 and try 1, 2, and 4 as the number of heads. We use Sparse Categorical Cross
Entropy as our loss metric. The complete analysis of the results is available in Table 10.

All 3 algorithms perform comparably in terms of BLEU score, Accuracy, and Loss. However,
the number of attention parameters per encoder/decoder layer is 1/2 and 3/4 of standard atten-
tion in Efficient and Optimized Attention respectively. Additionally, Efficient attention is up to
(556.5−472.7)/556.6 = 15.06% faster to train in comparison to the standard attention.
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Table 8: Averages of different metrics over five runs in the IMDB experiment. Here, varying the
number of heads doesn’t meaningfully affect the performance of any of the algorithms. As expected,
the Efficient Attention model has the smallest attention layer size and the Super Attention model
performs the best in terms of accuracy and loss.

Att. h dm dk # Param. Avg. Time Acc. (%) Loss Test Acc. (%) Test Loss

1 32 32 4,224 0.284 96.09 0.082 78.09 0.461
Stn. 2 32 16 4,224 0.297 95.51 0.112 78.14 0.467

4 32 8 4,224 (4) 0.315 (4) 95.70 (4) 0.086 (3) 77.62 (4) 0.474 (4)

1 32 32 3,168 0.283 96.62 0.070 78.00 0.461
Opt. 2 32 16 3,168 0.299 96.77 0.073 78.00 0.460

4 32 8 3,168 (2) 0.305 (3) 96.31 (3) 0.095 (4) 77.85 (2) 0.472 (2)

1 32 32 2,112 0.267 96.66 0.080 77.58 0.478
Eff. 2 32 16 2,112 0.273 96.86 0.068 77.74 0.473

4 32 8 2,112 (1) 0.280 (1) 96.41 (2) 0.064 (1) 77.77 (3) 0.468 (1)
1 32 32 3,168 0.272 97.68 0.063 78.21 0.472

Sup. 2 32 16 3,168 0.294 97.84 0.064 78.35 0.454
4 32 8 3,168 (2) 0.299 (2) 97.45 (1) 0.070 (2) 78.34 (1) 0.472 (2)

Table 9: Averages of different metrics over five runs in the Amazon Reviews experiment. An abla-
tion study on the number of heads shows increasing the number of heads helps improve the perfor-
mance of all algorithms. The Efficient Attention model has the smallest attention layer size and the
Super Attention model performs the best in accuracy and loss.

Att. h dm dk # Param. Avg. Time Acc. Loss Val Acc. Val Loss

1 64 64 16,640 13.81 61.33 0.897 52.84 1.094
Stn. 2 64 32 16,640 16.33 63.61 0.851 52.71 1.091

4 64 16 16,640 (4) 20.38 (4) 62.54 (3) 0.868 (3) 52.74 (4) 1.097 (4)

1 64 64 12,480 12.54 60.71 0.909 52.79 1.093
Opt. 2 64 32 12,480 14.67 62.04 0.884 52.93 1.090

4 64 16 12,480 (2) 19.89 (3) 61.64 (4) 0.876 (4) 52.88 (3) 1.090 (3)

1 64 64 8,320 10.61 62.23 0.873 53.25 1.082
Eff. 2 64 32 8,320 14.05 63.11 0.862 52.67 1.098

4 64 16 8,320 (1) 17.20 (1) 63.55 (2) 0.845 (2) 53.19 (2) 1.080 (2)

1 64 64 12,480 11.96 66.65 0.776 53.87 1.070
Sup. 2 64 32 12,480 15.21 66.30 0.781 54.11 1.064

4 64 16 12,480 (2) 19.77 (2) 66.52 (1) 0.774 (1) 54.25 (1) 1.058 (1)

A.5 EVALUATION FOR USE IN LLMS

In addition to evaluating the standard SDPA and its variants for generative language modelling in
a scale of around 125M parameters, we also trained a Language Model (LM) with 1.1B parame-
ters based on Efficient Attention architecture to see the feasibility and scalability of this variant of
SDPA in a large scale experiment. This Language Model achieves lower loss than the similarly-
sized TinyLlama model, which is based on Standard Attention (details are provided in Table 11
below). We could not train more LMs based on other architectures due to our limited computational
resources. The LM based on Efficient Attention was trained using a GPU credit donation that we
used to train our LM over 8 weeks on 30 billion tokens of C4 dataset (Raffel et al., 2019) using a
single A100 with 80GB of GPU.
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Table 10: Averages of different metrics over five runs trained on Europarl and Anki English-to-
Spanish translation datasets. The numbers in parentheses indicate the ranking of each mechanism
for that metric. An ablation study on the number of heads shows increasing the number of heads
enhances the performance of all algorithms. Optimized and Efficient Attentions perform on par or
better than Standard Attention on most benchmarks with 1/2 and 3/4 as many attention parameters.

Att. h dm dk # Param. Avg. Time BLEU Acc. Loss Val BLEU Val Acc. Val Loss

1 1024 1024 4,198,400 556.5 23.2 80.48 0.86 22.1 80.86 0.87
Stn. 2 1024 512 4,198,400 598.7 22.3 81.03 0.84 22.7 81.43 0.84

4 1024 256 4,198,400 (3) 600.0 (3) 23.1 (2) 81.11 (3) 0.83 (3) 22.8 (1) 81.41 (3) 0.84 (3)

1 1024 1024 3,148,800 552.0 22.5 81.15 0.87 22.6 81.11 0.84
Opt. 2 1024 512 3,148,800 583.8 22.1 81.61 0.82 23.0 81.57 0.82

4 1024 256 3,148,800 (2) 586.8 (2) 24.5 (1) 82.06 (1) 0.78 (1) 22.6 (3) 81.98 (1) 0.80 (1)
1 1024 1024 2,099,200 472.7 22.4 81.13 0.82 22.8 81.43 0.83

Eff. 2 1024 512 2,099,200 498.6 22.3 81.48 0.80 22.9 81.62 0.81
4 1024 256 2,099,200 (1) 523.0 (1) 22.6 (3) 81.15 (2) 0.82 (2) 22.3 (3) 81.44 (2) 0.83 (2)

Table 11: A Language Model (Based on Efficient Attention) compared to TinyLlama (Based on
Standard Attention) after training on 30 billion tokens of C4 dataset. We set the number of heads
to 1 in this LM to make training faster. Despite this, this LM performs favourably (5.8% smaller
categorical cross-entropy loss) compared to TinyLlama.

name # layers # heads model dim intermediate size loss

TinyLlama 22 32 2048 5632 2.25
Efficient based LM 10 1 3072 8192 2.12

B ADDITIONAL RELATED WORK

Flash Attention (Dao et al., 2022) and Flash Attention 2 (Dao, 2024) optimize multi-head attention
for modern GPUs without changing its structure, enabling faster processing and reduced memory
demands. It’s worth mentioning our proposed algorithms also benefit from these optimizations.

With the adoption of LLMs and Foundation Models (FMs), a lot of work has been done to improve
their scalability and deployability. LoRA (Hu et al., 2022) adapts pre-trained models with mini-
mal additional parameters, and QLoRA (Dettmers et al., 2023) incorporates quantization to reduce
memory and computational demands.

Quantization has revolutionized the adoption of FMs, particularly those based on Transformers.
Recent advances include mixed-precision post-training quantization for vision transformers (Liu
et al., 2021), quantization-aware training (Jacob et al., 2018; Nagel et al., 2022), mixed-precision
training (Micikevicius et al., 2018), dynamic quantization (Zhang et al., 2021b), and layer-wise
quantization (Chen et al., 2019).

Moreover, Ding et al. (2022) unveiled a cutting-edge framework enhancing quantized model accu-
racy without significant performance degradation. However, quantization faces challenges such as
potential performance drops and increased vulnerability to adversarial attacks (Hong et al., 2021;
Gupta & Ajanthan, 2022).
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