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Abstract

Normative modeling has emerged as a pivotal approach for characterizing heterogeneity
and individual variance in neurodegenerative diseases, notably Alzheimer’s disease (AD).
One of the challenges of cortical normative modeling is the anatomical structure mismatch
due to folding pattern variability. Traditionally, registration is applied to address this issue
and recently deep generative models are employed to generate anatomically aligned sam-
ples for analyzing disease progression; however, these models are predominantly applied
to volume-based data, which often falls short in capturing intricate morphological changes
on the brain cortex. As an alternative, surface-based analysis has been proven to be more
sensitive in disease modeling such as AD. Yet, like volume-based data, it also suffers from
the mismatch problem. To address these limitations, we propose a novel generative nor-
mative modeling framework by transferring the conditional diffusion generative model to
the spherical domain. Furthermore, the proposed model generates normal feature map
distributions by explicitly conditioning on individual anatomical segmentation to ensure
better geometrical alignment which helps to reduce variance between subjects in norma-
tive analysis. We find that our model can generate samples that are better anatomically
aligned than registered reference data and through ablation study and normative assess-
ment experiments, the samples are able to better measure individual differences from the
normal distribution and increase sensitivity in differentiating cognitively normal (CN), mild
cognitive impairment (MCI), and Alzheimer’s disease (AD) patients.
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1. Introduction

Normative modeling has been proven to be an effective approach for modeling neurodegen-
ernative diseases such as Alzheimer’s disease (Rutherford et al., 2023). The core idea of
normative modeling is defining normal distribution such that each subject can be measured
against it to characterize deviation from norm. One of the major challenges of such tasks
is the individual anatomical variability. Specifically, the cortical folding patterns exhibit
considerable heterogeneity across individuals, thereby complicating the establishment of
meaningful comparisons. Conventionally, statistical analysis techniques are applied on the
anatomically registered images to attenuate effect of individual variability. However, due to
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shape differences, registered images still have significant gyral/sulcal mismatch (Zhang and
Shi, 2023) and statistical methods are usually limited in their abilities to capture complex
nonlinear relationships. As an alternative, deep generative models have recently been intro-
duced to address these limitations. The idea is to train a generative model that encodes how
normal distribution behaves. Variational Autoencoder (VAE) (Bass et al., 2020; Ravi et al.,
2022), flow-based model (Hwang et al., 2019), Generative Adversarial Network (GAN) (Bai
et al., 2022) were employed to model the normal distribution on the brain MRI volume space
and utilize deviation of original data from generated normal samples as disease atrophy map
for analysis. Although, these previous research achieved good results on the volume data,
few attempts have been made to adapt these methods for cortical surface-based data, which
has been proven to more prominent at capturing detailed anatomical changes(Hutton et al.,
2009; Lerch and Evans, 2005).

Traditional surface-based analysis is built upon registering brain surfaces across sub-
jects or with a template surface(Yeo et al., 2009; Fischl et al., 2004), but this process also
suffers from cortical structure mismatch. To account for this problem, previous works have
attempted personalized analysis where, instead of using entire dataset, only a subset with
similar anatomical structures were used for analysis(Zhang and Shi, 2023, 2021). However,
these approaches suffer from limited data availability and computational complexity as high
cortical variability might not be represented by the existing datasets. Therefore, genera-
tive model is a promising alternative approach to generate personalized reference sets to
alleviate challenges in matching against real data.

Recently, diffusion models have emerged as an effective framework for stable and ef-
fective image generation(Nichol and Dhariwal, 2021b; Song et al., 2021; Ho et al., 2020).
To leverage this advancement of generative model, in this paper, we adapt the Denoising
Diffusion Probabilistic Models(DDPM) framework (Ho et al., 2020) from euclidean image
domain to non-euclidean spherical domain and propose a conditional surface diffusion model
that utilizes gyral sulcal segmentation masks to generate cortical surface features that are
anatomically aligned. The proposed model is applied to HCP(Van Essen et al., 2012) and
ADNI dataset(Mueller et al., 2005) to conduct unconditional generative task, ablation study
and normative modeling on cognitively normal(CN), mild cognitive impairment (MCI) and
Alzheimer’s disease(AD) subjects. The results show that our model is able to generate
faithful and anatomically aligned feature maps and increase the sensitivity of surface based
disease analysis.

2. Method

Our proposed method consists of three parts: surface based diffusion model with condition,
denoising network in spherical domain, and normative modeling via sampling. The overall
diffusion model is shown in Fig. 1.

2.1. Denoising Diffusion Probabilistic Models(DDPM)

DDPM (Ho et al., 2020; Rombach et al., 2022) is an iterative generative model for modeling
data distribution from samples. Given a series of observed samples xi, which is drawn from
the data distribution p(x), the model learns to generate new samples from p(x) through
a forward and backward diffusion process. The diffusion process of DDPM is governed
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by a Markov chain as in equation 1 and 2, which describe forward and backward process
respectively:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) q(x1:t|x0) =

T∏
t=1

q(xt|xt−1) (1)

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt|xt−1), pθ(xt|xt−1) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where N is the Gaussian distribution and q is the transition probability of the forward
process. pθ, µθ and Σθ are parameterized estimation from neural networks. x0 is the original
data and xt is the noisy data after adding t steps of noise. The T denotes the total number
of steps. βt is from a predefined set of variance schedule {βt ∈ (0, 1)}|T1 . The information
within the data is progressively destroyed by adding independent Gaussian noise for a cer-
tain number of steps in the forward process. The backward process is then formulated as
a sampling process by implementing a neural network to estimate µθ(xt, t),Σθ(xt, t) itera-
tively and denoise the noisy data xT to achieve new sample generation.

L =t∼[1,T ],x0,ϵt

[
||ϵt − ϵθ(

√
αtx0 +

√
1− αtϵt, t)||

]
(3)

The model is trained by optimizing a simplified Evidence Lower Bound loss(Ho et al.,
2020) in equation 3. ϵt is the noise at time t and ϵθ is the neural network. αt is

∏T
i=1 (1− βi).

We employ the cosine beta schedule(Nichol and Dhariwal, 2021a) as the variance schedule
and the velocity sample scheme in (Salimans and Ho, 2022), which we empirically find to
be more stable. During training, a randomly sampled t steps of noise is applied to a feature
map and the resulting noisy image is the input to the network along with the time step t
in the form of a time embedding vector. The loss is computed between network output and
original feature map without noise. After training, the model can be iteratively applied to
random noise or noisy input data for a selected number of steps to generate new samples.

2.2. Anatomical and Demographic Conditioning

The original DDPM is for modeling unconditional distributions. To generate samples that
are better anatomically aligned, we modified the model to take additional conditions. In
our method, two types of conditions are used: demographic and anatomical conditions. The
demographic conditions include sex and biological age. Both values are first passed into the
network through serveral multilayer perceptrons and activation layers. The embedding vec-
tors are then added to the time embedding (Ho et al., 2020) and passed to the network. For
anatomical condition,the gyral/sulcal segmentation mask(Shi et al., 2008) is concatenated
with the input feature map as input to the network. All the conditions are used during
training and sampling.

2.3. Denoising Network in Spherical Domain

To align data in a common space, the feature maps and masks are resampled to a standard
icosahedron. To transfer convolution in image domain, we adapt the convolution method
from (Zhao et al., 2021) in the spherical domain, which defines convolution by the 1 ring
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Figure 1: Overall framework of the proposed surface diffusion model. (A) The
training procedure of the conditional DDPM model, where CT denotes cortical
thickness, SI denotes shape index and G/S seg. denotes Gyral/Sulcal segmenta-
tion. (B) The sampling process for each test subject to generate abnormal score
for analysis (Note: all images are actual data and actual generated samples).

neighborhood of each vertex. The network in (Zhao et al., 2021) utilizes neighborhood av-
eraging for pooling and up-pooling,which we empirically find to introduce grid artifacts into
the generated samples. Therefore, we employ a different pooling and up pooling method.
Utilizing the natural structure of the icosahedron, the pooling for ith order is defined as
only keeping vertices in the (i-1)-th order icosahedron and up pooling is the zero padding
for vertices added from i-th to (i+1)-th order. Fig. 2 shows the structure of the network
and illustrations of the operations. The network has a standard UNet structure with 2
ResBlocks in each level. Each ResBlock has an additional time embedding input, from
Sinusoidal embedding layer + MLP layer, same as in (Ho et al., 2020) for denoisnig at each
time step. For memory efficiency, the attention layer is only included in the last two levels.

2.4. Sampling for Normative Modeling

The core idea for our normative modeling is to use sampled feature maps to measure devi-
ation scores as opposed to registered real data. Through procedures described in previous
sections, the model will generate N samples per test subject conditioned on original cortical
feature maps with 500 steps of added noise, which is determined empirically, individual
anatomical segmentation, sex and age. This step aims to reconstruct disease feature maps
to be pseudo-healthy ones while still maintain the same anatomical structure. For each
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Figure 2: Denoising network structure and operations in spherical domain: (A)
A UNet structure with ResBlock built out of spherical convolution, pooling, up-
pooling and attention layers. (B) Illustration of spherical operations.

Region of Interest (ROI) defined by FreeSurfer output file aparc.annot, an abnormal score
is computed as in equation 4.

Zi =
xi −mean([x(i,1)...x(i,N)])

stdj([x(i,1)...x(i,N)])
(4)

For a test subject, Zi is the abnormal score for the i-th ROI. xi is the mean feature value
of the test subject in the i-th ROI. x(i,j) denotes the mean feature value for the i-th ROI
of the j-th sample. The abnormal score measures the deviation from normal in each ROI.
Additionally, the abnormal scores of 34 ROIs are used as feature in a standard SVM for
10-fold cross validation of CN vs MCI and CN vs AD classification.

3. Experiments and Results

3.1. Preprocessing and Implementation

Two public datasets are used in the experiments. 584 subjects are selected from Human
Connectome Project (HCP) dataset(Van Essen et al., 2012). 9:1 train test split is applied for
unconditional task. 646 subjects are selected from the Alzheimer’s Disease Neuroimaging
Initiative(ADNI) dataset(Mueller et al., 2005), including 482 CN, 82 MCI, and 82 AD
patients. 400 CN subjects are used as training set and all others as test set. All the
T1 MRI images are processed through FreeSurfer 6.0 (Dale et al., 1999) to extract the
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type/FID score CT(front)↓ CT(back)↓ Curv(front)↓ Curv(back)↓ Sulc(front)↓ Sulc(back)↓
VAE 4.2268 5.2528 1.4641 2.3283 0.5640 0.3503

SiT Diffusion 0.4179 0.5556 0.3526 0.3693 0.4169 0.9080

Our Model 0.3453 0.3103 0.2308 0.2670 0.2351 0.4725

Test data 0.0091 0.0080 0.0077 0.0064 0.0037 0.0023

Table 1: FID score for each feature map:. The generated feature maps are embedded
to 2D images. The FID score is computed between generated sample or test data
and train data.

cortical surfaces and cortical thickness (CT) map, curvature(curv) and sulcal depth(sulc).
Surfaces are registered by FreeSurfer in the spherical domain. The Desikan-Killiany Atlas
in FreeSurfer is used for ROI parcellation. The shape index (SI) map and gyral/sulcal
segmentation mask are obtained following (Shi et al., 2008). All feature maps and masks
are resampled to a 6th order icosahedron(40962 vertices) using the mris surf2surf command
in FreeSurfer. All feature maps are standardized to 0 mean and std 1. Sex label is set as
female:0 and male:1. Age label is scaled to [0,1] range by dividing by 100. For computational
costs, the experiments are only conducted on the left hemisphere.

The input to the network is the concatenation of feature maps including CT, SI, Curv,
Sulc, and the segmentation mask based on the task. In the unconditional task, we use
CT,Curv and Sulc as input. In normative modeling, we use CT,SI,age,sex, and segmentation
mask. All feature maps are 40962 length vector. Hidden dimension of each network level
is 128,256 and 512. The max timesteps of DDPM is set at 1000. The model is trained
with ADAM (Kingma, 2014) as optimizer, cosine annealing(Loshchilov and Hutter, 2016)
as scheduler and a starting learning rate of 1e-5 for a total of 1000 epochs, about 24 hours.
The network is implemented using Pytorch and trained on a NVIDIA A5000 GPU.

3.2. Generating Ability through FID Score

To show the superior generative power of our model, we performed the unconditional gen-
erative task on the HCP dataset and compared the performance in terms of the FID
score(Heusel et al., 2017) with two other generative models, Variational Autoencoder(VAE)
(Kingma, 2013) and surface transformer based diffusion model(Xie et al., 2024). We use the
same structure as our backbone in the VAE by removing the skip connections and adding
fully connected layer between encoder and decoder. We also included the FID score between
test data and training data as a reference. Since FID is designed for 2D images, we embed
surface feature maps on fsaverage as snapshots in front and back sagittal views using the
jet colormap in Plotly.(Inc., 2015). We use the 192 dimension embedding for FID. Each
model generates 200 sets of feature maps and are compared to the training data by FID
score. Examples are shown in appendix A. Table 1 shows that, with the exception of sulc
back view, our model achieved the best FID score among generative models and is closest
to the real data. This result demonstrats that our backbone in DDPM is able to generate
new feature maps closer to the real data distribution.
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Model type SI SSIM↑ SI MSE(mm) ↓ CT SSIM↑ CT MSE(mm) ↓
DDPM 0.4911 ± 0.0165 0.1461 ± 0.0064 0.3978 ± 0.0168 0.4329 ± 0.0174

DDPM + mask 0.6167 ± 0.0127 0.1011 ± 0.0046 0.4903 ± 0.0224 0.3894 ± 0.0253

Table 2: Ablation study results: For both CT and SI, the anatomical condition improves
SSIM and MSE.

3.3. Ablation Study for Conditional DDPM

We performed ablation study for conditional DDPM to demonstrate improvement. Two
models are trained on the 400 CN subjects: unconditional DDPM and DDPM with gy-
ral/sulcal segmentation. All test data are first blurred with 500 time steps of noise, then
denoised for sampling. Both models include sex and age conditions. From the 82 test
CN subjects, the mean Structural Similarity(SSIM) and mean squared error(MSE) between
samples and real data are shown in Table 2. From the ablation study results, we show that
the conditioning can indeed improve the sample quality and produce better aligned feature
maps.

3.4. Normative Assessment on ADNI dataset

To evaluate our model’s performance on reducing heterogeneity from anatomical mismatch,
we compare our model to spherically registered real data using FreeSurfer (Dale et al., 1999)
to compare normative modeling performance using registered data and generated data. The
conditional DDPM model is trained on the 400 template CN subjects. After training, for
each CN, MCI and AD subject in the test set, 10 samples are generated as the DDPM
reference set. To ensure a fair comparison, a template reference set was constructed by
selecting 10 subjects from the 400 training CN subjects whose ages are closest to that of
the test subject. Abnormality scores for each subject per ROI are computed using both
reference sets, following equation 4. The scores were computed using only cortical thickness
as an accepted biomarker of brain atrophy in AD.

Qualitative comparison between the real and generated data is illustrated in Fig. 3. All
feature maps are resampled to the inflated fsaverage surface for visualization. This figure
demonstrates that our model, trained on CN subjects, is capable of estimating the normal
feature distribution based on AD subjects’ individual anatomical structure, particularly in
the temporal region, which strongly correlates to AD pathology. Fig. 4 is a box plot of the
mean abnormality scores across cortical ROIs. The statistical difference between CN and
MCI, as well as AD, are quantified using ttest p-values for both reference sets. Based on
the p-values, our model exhibits increased power in differentiating CN vs MCI and CN vs
AD.

Additionally, we also conduct classification experiments for CN vs MCI and CN vs AD.
The abnormal scores are computed for 34 ROIs for all test subjects, which are formatted
as length 34 vectors. These vectors are then used as features for classification in a standard
SVM classifier. To validate the results, we perform 10-fold cross validation and the accuracy,
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Figure 3: Comparison between real and generated feature maps for CN and AD
subjects In the figure, CT denotes cortical thickness in unit of millimeter(mm).
SI denotes shape index. A, B are 2 AD subjects and C, D are 2 CN subjects.
The blue circles highlight the temporal region which highly correlates with AD.
A,B demonstrate that our model can infer normal feature distribution for AD
subjects. B,C verify that generated feature maps are similar to real ones for CN
subject which is expected

Figure 4: Mean abnormal score across whole cortex The figure shows the distribution
comparison between mean abnormal score of the whole cortex per subject for
template and DDPM reference sets

precision and recall are shown in Table 3. In both CN vs AD and CN vs MCI, our abnormal
score performs better than the template’s with closest matched age.

8



Short Title

CN vs AD CN vs MCI

Score Type Accuracy Precision Recall Score Type Accuracy Precision Recall

Template 0.6882 0.6482 0.7049 Template 0.5850 0.5850 0.5676

DDPM 0.7128 0.7182 0.7091 DDPM 0.6214 0.6554 0.6221

Table 3: Classification of CN vs MCI and CN vs AD. The table shows the accuracy,
precision and recall of 10 fold cross validation using template and DDPM reference
sets’ abnormal score per ROI as feature for SVM.

4. Conclusion

In this paper, we proposed a framework for DDPM model on the spherical domain, con-
ditioned on the anatomical segmentation, sex and age to generate anatomically aligned
feature maps. The ablation study and normative tests have shown that our model can
generate reliable feature maps on the cortical surface and perform better than registered
reference set in AD normative modeling. We will freely distribute our source codes and
trained models to the research community and enable researchers to utilize our model for
other generative tasks on surfaces beyond normative analyses.
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Appendix A. Example images for FID Score Computation

Figure 5: Example feature maps embedded into 2D images: Each row shows the
saggital front and back view of each type of feature, cortical thickness(CT), cur-
vature(curv) and sulcal depth(sulc). Each column denotes the generative model
for the feature maps.
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