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Abstract

Training Large Language Models (LLMs) from001
scratch requires immense computational re-002
sources, making it prohibitively expensive.003
Model scaling-up offers a promising solution004
by leveraging the parameters of smaller mod-005
els to create larger ones. However, existing006
depth scaling-up methods rely on empirical007
heuristic rules for layer duplication, which re-008
sult in poorer initialization and slower conver-009
gence during continual pre-training. We pro-010
pose LESA, a novel learnable method for depth011
scaling-up. By concatenating parameters from012
each layer and applying Singular Value Decom-013
position, we uncover latent patterns between014
layers, suggesting that inter-layer parameters015
can be learned. LESA uses a neural network016
to predict the parameters inserted between ad-017
jacent layers, enabling better initialization and018
faster training. Experiments show that LESA019
outperforms existing baselines, achieving supe-020
rior performance with less than half the com-021
putational cost during continual pre-training.022
Extensive analyses demonstrate its effective-023
ness across different model sizes and tasks.024

1 Introduction025

Recent advancements in Natural Language Process-026

ing (NLP) have been largely driven by Transformer-027

based architectures (Vaswani et al., 2017), with028

Large Language Models (LLMs) demonstrating ex-029

ceptional capabilities in addressing a wide range of030

complex tasks (Brown et al., 2020; Achiam et al.,031

2023; Bai et al., 2023; Touvron et al., 2023a; Yang032

et al., 2024a; AI@Meta, 2024; Jiang et al., 2023;033

Almazrouei et al., 2023; Bi et al., 2024). As the034

parameter size continues to grow, in accordance035

with scaling laws (Kaplan et al., 2020), the com-036

putational resources required to train LLMs from037

scratch have become increasingly prohibitive, de-038

manding millions of GPU hours and significant en-039

ergy consumption. This immense resource demand040

largely arises from the need to randomly reinitial- 041

ize model parameters, preventing the transfer of 042

ability from existing LLMs. 043

To address this limitation, a common approach 044

is model scaling-up, which leverages the parame- 045

ters of smaller models to construct larger ones, ei- 046

ther for immediate deployment or as a better initial 047

checkpoint for more effective further continual pre- 048

training. Existing model scaling-up methods can 049

be divided into width scaling-up and depth scaling- 050

up. Width scaling-up (Chen et al., 2015, 2021a; 051

Wang et al., 2023; Samragh et al., 2024) primar- 052

ily involves expanding matrix dimensions, rather 053

than increasing the number of layers 1. In con- 054

trast, depth scaling-up involves repurposing trained 055

Transformer blocks from a smaller model to build 056

a larger one with additional layers (Wu et al., 2024; 057

Kim et al., 2023; Gong et al., 2019; Pan et al., 058

2024; Agarwal et al., 2024; Parmar et al., 2024). 059

This strategy is widely applicable to modern LLMs 060

based on the Transformer architecture, preserving 061

the internal structure, such as matrix sizes. It is also 062

compatible with existing parallel training frame- 063

works, better preserving the model’s knowledge, 064

contributing to its increasing popularity in recent 065

model scaling-up approaches. 066

However, current depth scaling-up methods rely 067

on heuristic rules, typically duplicating one or 068

more blocks before integrating them into the model. 069

These approaches overlook parameter change pat- 070

terns between layers, limiting the model’s ability 071

to specialize each layer effectively. As a result, 072

newly upscaled layers replicate the previous ones, 073

neglecting layer-specific specialization (Voita et al., 074

2019b,a). This not only leads to suboptimal model 075

initialization performance but also prevents the 076

model from fully utilizing its expanded capacity. 077

By treating all layers equally, these methods fail to 078

capture the nuanced relationships between layers, 079

1A “layer” refers to a Transformer block for simplicity.
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Figure 1: Existing depth scaling-up methods can be categorized into two types: “Interpolation” and “Stack”. LLaMA
Pro and SOLAR can be seen as specific examples of these two types. Layers with the same color represent identical
parameters, and the dashed boxes indicate those obtained through duplication.

causing slower convergence during training and080

yielding less effective models.081

In this paper, we propose a novel approach for082

depth scaling-up called LESA (LEarnable LLM083

Layer ScAling-Up). We are the first to observe084

that by concatenating the parameters of each Trans-085

former block and applying Singular Value Decom-086

position (SVD), patterns such as continuity can087

be identified between layers. Based on this ob-088

servation, it is hypothesized that latent patterns089

exist between Transformer layers in a well-trained090

LLM, suggesting that model parameters can be091

learned across layers. To predict these parameters,092

we propose training a neural network. Once trained,093

the network can generate intermediate layers be-094

tween adjacent layers, insert them into the model095

for depth scaling-up, and serve as a better initializa-096

tion checkpoint, enabling faster convergence dur-097

ing continual pre-training. Our key contributions098

are summarized as:099

• We first observe, through SVD, latent patterns100

such as continuity between Transformer lay-101

ers, suggesting that inter-layer parameters can102

potentially be learned.103

• We introduce LESA, which predicts interme-104

diate layer parameters from adjacent layers105

for depth scaling-up. Experiments show that106

LESA outperforms existing baselines, with107

better model initialization and faster conver-108

gence during continual pre-training.109

• Extensive experiments confirm that LESA110

works across various model sizes and fami-111

lies, including domain-specific tasks like code- 112

related tasks. We also perform ablation stud- 113

ies to explore different method configurations. 114

2 Related Works 115

2.1 Model Scaling-up 116

Model scaling-up can be broadly categorized into 117

width and depth scaling-up. Width scaling-up in- 118

creases the matrix size while ensuring that the out- 119

put of a layer or consecutive layers remains consis- 120

tent with the output of the original network before 121

expansion. Net2Net (Chen et al., 2015) is one of 122

the first to transfer parameters from a smaller model 123

to initialize a larger one using function-preserving 124

transformations. bert2BERT (Chen et al., 2021a) 125

extends this approach to Transformer-based models. 126

LiGO (Wang et al., 2023) learns a linear mapping to 127

initialize larger models. HyperCloning (Samragh 128

et al., 2024) expands LLM to fit a larger model with 129

more hidden dimensions. However, while these 130

methods increase matrix size, they are less compat- 131

ible with parallel training frameworks, which are 132

better suited for depth scaling-up. Moreover, depth 133

scaling-up better preserves the model’s knowledge. 134

Current depth scaling-up methods expand the 135

model by duplicating and adding layers based on 136

heuristic rules, which can be broadly categorized 137

into "Interpolation" and "Stack" (Pan et al., 2024), 138

as shown in Figure 1. Interpolation involves adding 139

a copy of each layer after the original, while Stack 140

treats consecutive layers as a group and dupli- 141

cates them together. Recent popular methods like 142

LLaMA Pro (Wu et al., 2024) and SOLAR (Kim 143
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et al., 2023) can be seen as special cases of these144

two types. LLaMA Pro copies only a selected few145

layers, while SOLAR duplicates the first 24 and the146

last 24 layers of a previous 32-layer model and com-147

bines them. However, these methods are based on148

heuristic rules, which hinder layer specialization,149

leading to suboptimal performance and limiting the150

model’s potential.151

2.2 Progressive Training152

Progressive training involves gradually transition-153

ing from simpler, smaller models to more complex,154

larger ones (Chang et al., 2017; Wen et al., 2020;155

Dong et al., 2020; Wei et al., 2016; Fayek et al.,156

2020). It is often combined with model scaling-up,157

where the model size is progressively increased dur-158

ing training. Prior to the era of LLMs, many meth-159

ods (Chen et al., 2021a; Gu et al., 2020; Wang et al.,160

2023; Yang et al., 2020; Yao et al., 2023) are devel-161

oped to train smaller models, such as BERT (De-162

vlin et al., 2018). In recent years, LLaMA Pro (Wu163

et al., 2024) and Apollo (Pan et al., 2024) have164

applied progressive learning and model scaling-165

up strategies to train LLMs. YODA (Lu et al.,166

2024) introduces a novel teacher-student progres-167

sive learning framework that enhances model fine-168

tuning by emulating the teacher-student educa-169

tional process. Du et al. offer a comprehensive170

evaluation and empirical guidelines for progressive171

learning and model scaling-up.172

3 Method173

This section discusses the patterns observed be-174

tween model layers through SVD analysis of the175

model’s parameters. Based on these patterns, we176

hypothesize that there are underlying patterns in the177

trained model that can be learned by a neural net-178

work. We then use this trained network to predict179

intermediate layers that can be inserted between180

adjacent layers for depth scaling-up.181

3.1 SVD-Based Layer Pattern182

Inspired by recent work using SVD for LLM com-183

pression or merging (Wang et al., 2024c; Stoica184

et al., 2024; Wang et al., 2024a), it is realized that185

SVD can map the model’s parameters into one186

space for analysis. Specifically, assume we have187

weight matrices W1,W2, . . . ,WL from L layers188

of an LLM, where Wi ∈ Rd1×d2 represents a ma-189

trix from each Transformer block, such as the up-190

projection matrix in MLP, Query matrix in self-191

attention. These L matrices can be concatenated192
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Figure 2: The inter-layer continuity pattern exhibited by
the gate_proj matrix of Llama3-8B in the SVD space.
The numbers represent the layer indices.

horizontally into a single matrix, denoted as de- 193

noted as W ∈ Rd1×Ld2 . SVD can be used to de- 194

compose this matrix into three components: U,Σ 195

and V T . 196

According to SVD, Σ is a diagonal matrix of 197

size d1 × Ld2, containing the singular values of 198

W . U is a unitary matrix that spans a set of stan- 199

dard orthogonal bases. If we treat Σ as a scaling 200

transformation on each orthogonal basis in U , then 201

UΣ forms a new set of orthogonal bases. For the 202

i-th layer’s Wi, it can be recovered as Wi = UΣVi, 203

where Vi = V T
:,(i−1)∗d2:i∗d2 ∈ Rd1×d2 . This means 204

that the parameter Wi of each layer is a linear com- 205

bination of the orthogonal bases from UΣ, with Vi 206

representing the coefficients of this combination. 207

By projecting the parameters of each layer into the 208

space spanned by UΣ, we can analyze the patterns 209

in the coefficients Vi for the i-th layer. 210

Since larger singular values correspond to eigen- 211

vectors that capture more information about the 212

matrix, we select the eigenvector corresponding 213

to the largest singular value (top-1) from each 214

layer’s Vi for visualization. We use t-SNE (Van der 215

Maaten and Hinton, 2008) to reduce Vi to two di- 216

mensions. The visualization results of the gate- 217

projection in the MLP of Llama3-8B (AI@Meta, 218

2024) are presented in Figure 2, where we observe 219

a clear continuity in the distribution of these Vi. 220

This continuity pattern, derived from the top-1 sin- 221

gular value of the gate-projection using t-SNE, is 222

also present in Llama2 (Touvron et al., 2023b), 223

Llama3 (AI@Meta, 2024), and Qwen2 (qwe, 2024). 224

This suggests that the model’s parameters may ex- 225

hibit unique inter-layer patterns. More visualiza- 226

tion results can be found in Appendix B. 227
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Figure 3: Overview of the proposed LESA . We first extract the weight matrices from the MLP and self-attention
layers. Next, we apply SVD and train a neural network to predict the intermediate layers. Finally, we reconstruct
the expanded LLM.

Although this continuity is currently only ob-228

served in the gate projection and not in other param-229

eters such as the up-projection or down-projection230

in the MLP through our t-SNE visualization, this231

may be due to the limitations of our analysis232

method. An intuitive approach, therefore, is to use233

a neural network to learn these potential patterns.234

3.2 Learnable LLM Layer Scaling-Up235

Inspired by the aforementioned SVD-Based Layer236

Patterns, we hypothesize that there may be inter-237

layer patterns in the parameters. However, these238

patterns might not be easily observed using simple239

visualization techniques or fitted with specific dis-240

tributions, such as Gaussian mixtures. Therefore, a241

direct approach is to learn these patterns through a242

neural network.243

We present our method in Figure 3. After obtain-244

ing Vi as described in Section 3.1, we train an MLP245

GW to learn the patterns. Our training objective is246

to enable the MLP to predict an intermediate layer247

given any two layers that are one layer apart.248

Formally, for a weight matrix W ∈249 {
q_proj, k_proj, v_proj,
o_proj, up_proj, down_proj, gate_proj

}
,250

we use SVD to obtain Vi following Section 3.1.251

We then train an MLP GW specific to W with the252

objective of predicting Vi by using the concatena-253

tion of Vi−1 and Vi+1 as input. We optimize GW254

using MSELoss (Mean Squared Error Loss):255

L1 = MSE(GW([Vi−1, Vi+1]), Vi) (1)256

whose goal is to enable GW to predict accurately.257

In subsequent experiments, we find that directly258

training with L1 will result in the norm of the pre-259

dicted GW([Vi−1, Vi+1]) approaching zero, mean- 260

ing that the predicted V
′
i parameters are close to 261

zero, which leads to parameter degradation. To 262

address this issue, we add a norm loss: 263

L2 = MSE(Norm(GW([Vi−1, Vi+1])), Norm(Vi))
(2) 264

where the Norm represents the L2 norm, and L2 265

aims to ensure that the norm of the model’s pre- 266

dicted V
′
i is close to that of Vi. Thus, the final loss 267

for training GW is: 268

L = (1− λ)L1 + λL2 (3) 269

where λ is a hyper-parameter. 270

Once trained, GW can predict the parameters 271

of an intermediate layer based on its surrounding 272

ones. Thus, for adjacent Vi and Vi+1, we use GW 273

to predict the intermediate layer V
′
i to insert be- 274

tween them. We then reconstruct V
′
i using the UΣ 275

decomposition from the previous step, forming the 276

predicted matrix W ′
, and insert it between the lay- 277

ers to expand the LLM. 278

4 Main Experiments 279

4.1 Settings 280

4.1.1 LESA Settings 281

We conduct experiments on the Llama3-8B model, 282

which has 32 layers. To construct the training 283

data for GW , we use consecutive triplets of lay- 284

ers, namely (1, 2, 3), (2, 3, 4), (3, 4, 5), ..., (30, 285

31, 32), resulting in 30 samples. We define GW 286

as a three-layer MLP with a ReLU (Agarap, 2018) 287

activation function, where the hidden dimension is 288

256. GW is trained for 5 epochs on these samples 289
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using the AdamW (Loshchilov, 2017) optimizer290

with a learning rate of 1e-3. The λ is set to 5e-5.291

To compare with baselines (Wu et al., 2024; Kim292

et al., 2023), we use LESA to scale up Llama3-8B293

to 48 layers by inserting an intermediate layer be-294

tween each pair of adjacent layers in the original295

15th to 31st layers. The expanded models all have296

11.5 billion parameters.297

4.1.2 Continual Training298

For the models expanded using LESA and baseline299

methods, we continue pre-training with Wikipedia300

data from November 2024, which is released af-301

ter the training of Llama3-8B and has not been302

used in its original training. We use the Llama-303

Factory (Zheng et al., 2024) training framework,304

with a cutoff length of 4096, a warmup ratio of 0.1,305

and a cosine learning rate scheduler. The optimizer306

is AdamW with a learning rate of 5e-5. The batch307

size per GPU is 2, with 4 gradient accumulation308

steps. For LESA and LLaMA Pro, we only train309

the newly expanded layers, freezing the other lay-310

ers. Following the original setting, we perform full311

parameter fine-tuning for SOLAR.312

For the Supervised Fine-Tuning (SFT) stage, we313

use Alpaca-GPT4 (Peng et al., 2023) for training,314

following SOLAR. The hyper-parameters are the315

same as those in the continual pre-training, except316

that we perform full parameter fine-tuning with-317

out freezing any layers for all models. All exper-318

iments are conducted on a server with 8 Nvidia319

A100 80GB GPUs.320

4.2 Benchmarks321

For the continual pre-training models, since they322

lack instruction-following capabilities, we use the323

OpenCompass framework (Contributors, 2023)324

with the PPL (perplexity) 2 mode for evaluation, fo-325

cusing on five areas: Reasoning, Language, Knowl-326

edge, Examination, and Understanding, with se-327

lected benchmarks for each category. Reason-328

ing: CMNLI (Xu et al., 2020), HellaSwag (HeSw)329

(Zellers et al., 2019), PIQA (Bisk et al., 2019).330

Language: CHID (Zheng et al., 2019), Wino-331

Grande (Wino) (Sakaguchi et al., 2019). Knowl-332

edge: CommonSenseQA (CSQA) (Talmor et al.,333

2018), BoolQ (Clark et al., 2019). Examination:334

MMLU (Hendrycks et al., 2021), CMMLU (Li335

et al., 2023). Understanding: Race-High/Middle336

2https://opencompass.readthedocs.io/en/latest/
get_started/faq.html
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Figure 4: The continual pre-training loss curves of mod-
els expanded by different methods. LESA starts with
a lower initial loss, indicating a better initialization. It
stabilizes after 2k steps, reaching the same convergence
level as LLaMA Pro after 5k steps, and converges much
faster than SOLAR, achieving the same loss with less
than half the training cost.

Model Pro SOLAR LESA

Time 56.4h(124%) 75.6h(166%) 45.6h

Table 1: Training time of continual pre-training. When
trained on the same dataset, the baselines require 124%
and 166% of the training time compared to our method.

(H/M) (Lai et al., 2017). Evaluations use Open- 337

Compass official scripts in zero-shot or few-shot 338

settings. Scores are computed by OpenCompass, 339

with higher values indicating better performance. 340

We also evaluate the trained models’ perplexity on 341

500 unseen Wikipedia plain sentences. 342

For the models after SFT, which have gained 343

instruction-following capabilities, we use the gen- 344

eration mode of OpenCompass for evaluation. We 345

conduct evaluations on ARC (Clark et al., 2018), 346

TruthfulQA (Lin et al., 2021), GSM8K (Cobbe 347

et al., 2021), HellaSwag (Zellers et al., 2019), and 348

MMLU (Hendrycks et al., 2021). 349

4.3 Results 350

We first present the training loss curves of the three 351

models in Figure 4. From the figure, we observe 352

that our method starts with a lower initial loss com- 353

pared to the baselines, indicating a better initializa- 354

tion checkpoint. Throughout training, our model’s 355

loss consistently remains the lowest. SOLAR even 356

fails to converge to a low loss level even after train- 357

ing on the dataset. Although LLaMA Pro’s loss 358

approaches ours after 5k steps, by the end, the 359

5
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Model PPL Average Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID Wino CSQA BoolQ MMLU CMMLU RaceH RaceM

Pro-3k 6.06 60.89(-3.41) 32.99 69.14 79.21 67.33 55.79 69.19 68.10 45.53 49.66 65.32 67.55

Pro-6k 5.44 62.67(-1.63) 32.97 70.15 78.94 69.80 55.09 69.04 66.79 64.31 50.30 62.66 69.36

SOLAR-3k 9.82 45.34(-18.96) 32.97 61.11 73.23 51.49 53.68 54.55 52.94 34.98 28.97 27.36 27.44

SOLAR-6k 8.09 47.86(-16.44) 32.98 62.36 74.65 48.02 54.38 59.54 61.53 43.74 28.68 31.76 28.83

LESA-3k 5.27 64.11(-0.19) 32.99 71.18 79.65 72.77 57.89 69.78 70.46 66.66 50.91 65.32 67.55

LESA-6k 5.13 64.30 32.99 71.51 79.92 73.30 57.54 69.21 69.94 66.67 51.00 65.72 69.50

Table 2: We evaluate the performance of models after expanding Llama3-8B from 32 layers to 48 layers (11.5B
parameters) using different baseline methods, followed by continual pre-training. Pro (LLaMA Pro (Wu et al.,
2024)) and SOLAR (Kim et al., 2023) are two strong baselines for model depth scaling-up. We evaluate the model
performance at two stages: after training with half the data (3k steps) and after training with the full data (6k steps).

Model Average ARC-e ARC-c TruthfulQA GSM8K HellaSwag MMLU

Pro-SFT 24.38(77%) 28.92 23.73 21.91 21.95 25.44 24.33

SOLAR-SFT 26.47(84%) 37.10 24.25 19.34 33.45 25.16 19.52

LESA-SFT 31.57(100%) 42.86 32.54 22.28 37.14 32.09 22.49

Table 3: After continual pre-training and subsequent SFT, the model expanded with LESA still achieves better task
performance, with baselines scoring less than 85% of our model’s average score.

model expanded using our method still has the low-360

est loss. Additionally, our method’s loss stabilizes361

after 2k steps, while LLaMA Pro reaches a similar362

convergence level only after 5k steps. This demon-363

strates that models expanded using LESA achieve364

the same loss convergence with less than half the365

training cost.366

We list the time taken to train on the full dataset367

in Table 1 and find that the time taken by LESA368

is significantly shorter. It is worth noting that the369

training of GW in LESA is very fast, taking less370

than 5 minutes, making its cost nearly negligible371

compared to the overhead of continual pre-training.372

For model performance after continual pre-373

training, we present the results on various bench-374

marks in Table 2. It can be inferred that the per-375

formance of models expanded with LESA consis-376

tently outperforms the baselines in all categories.377

Specifically, LESA-6k (6k steps) achieves the high-378

est performance across all tasks and PPL. Even379

with only half of the data used for continual pre-380

training (3k steps), the models expanded using381

LESA outperform the baselines trained on the full382

dataset (6k steps). We also present the results in383

Table 3 for models trained on the full dataset and384

then fine-tuned with SFT, showing performance385

across different tasks. The results still indicate that386

the models expanded using LESA achieve the best387

Model CSQA BoolQ TriviaQA NQ

Pro-3k 69.19 68.10 62.50 24.82
Pro-6k 69.04 66.79 63.68 26.73

SOLAR-3k 54.55 52.94 43.06 13.57
SOLAR-6k 59.54 61.53 47.72 16.40

LESA-3k 69.78 70.46 67.15 23.30
LESA-6k 69.21 69.94 67.05 26.76

Table 4: The scores of different models on knowledge-
related tasks after continual pre-training. LESA consis-
tently performs better overall.

performance. 388

The above analysis proves that LESA effectively 389

inherits the original model’s parameters, enabling 390

better initialization, faster continual training, and 391

enhanced model performance. 392

4.4 Evaluation on Knowledge-Related Tasks 393

Previous studies, such as LLaMA Pro, highlight 394

that a key advantage of model expansion is the abil- 395

ity to inherit knowledge from the original model. 396

We focus on evaluating performance in knowledge- 397

related tasks. In addition to the main results, we 398

further evaluate performance on two additional 399

knowledge tasks: TriviaQA (Joshi et al., 2017) 400

and NQ (Kwiatkowski et al., 2019). The results 401

in Table 4 show that LESA outperforms previous 402

approaches on all knowledge tasks. 403
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5 Ablation Study404

5.1 Evaluation across Different Model405

Families406

We also aim to explore whether LESA is effective407

across different model sizes and families. Specifi-408

cally, we select several current mainstream model409

families Llama3, Qwen2.5, Mistral (Mistral@AI,410

2025) and use LESA to expand the final layers of411

the models, increasing their layer count by 1.5x412

of the original. We use SOLAR initialization as413

the baseline. Since their method only applies to414

32-layer models by concatenating the first 24 and415

last 24 layers, we adapt it for models with different416

layer counts. We concatenate the first and last n417

layers to create a model with 1.5 times the origi-418

nal layers and measure initialization performance419

using PPL. The results are shown in Table 5.420

Model Original +LESA +SOLAR

Llama3-8B 5.20 6.35 7.81
Llama3-70B 1.98 2.62 4.21

Qwen2.5-1.5B 9.30 10.52 11.75
Qwen2.5-7B 6.03 7.04 7.99
Qwen2.5-32B 3.78 5.67 INF

Mistral-Small-24B 4.43 5.17 6.51

Table 5: PPL of LESA and SOLAR during 1.5x layer
expansion initialization for different models, along with
the PPL of the original models.

The results show that LESA outperforms SO-421

LAR in initialization performance. Unlike SOLAR,422

which experiences a PPL explosion on Qwen2.5-423

32B, LESA remains stable, highlighting the supe-424

riority of LESA’s predicted parameters over SO-425

LAR’s heuristic-based expansion.426

5.2 Analysis of GW ’s Ability427

We investigate whether GW can predict interme-428

diate layers between adjacent layers accurately,429

demonstrating this through loss changes.430

Due to the limited number of samples available431

for training GW on individual LLM layers, which432

makes it difficult to separate a test set and increases433

the risk of overfitting, we select several mod-434

els: Llama3-8B, and fine-tuned versions of it, in-435

cluding Llama3-8B-Lexi-Uncensored (Orenguteng,436

2024), Meta-Llama3-8B-Instruct, Llama-3-Smaug-437

8B (Pal et al., 2024), and Llama3-8B-Chinese-438

Chat (Wang et al., 2024b). Following the procedure439

outlined in Section 4.1.1, we sequentially select440

three consecutive layers as samples, resulting in441

Matrix Random Loss Training Loss Test Loss
down_proj 5.7 0.0005 0.0004

up_proj 0.055 0.015 0.015
gate_proj 0.056 0.015 0.015

q_proj 0.153 0.016 0.016
v_proj 0.545 0.017 0.016
o_proj 0.147 0.016 0.015
k_proj 0.6 0.016 0.016

Table 6: Loss values for different matrices during train-
ing and testing. All values are multiplied by 104 for
convenience.

Method Pro SOLAR LESA

HumanEval 10.98 2.44 25.00
MBPP 21.69 13.93 28.60

Table 7: The results of Llama3-8B after expansion with
different methods, pre-trained on the BigCode dataset,
on two code benchmarks. The results show that LESA
consistently performs better.

a total of 150 samples. We use 120 samples for 442

training and 30 for testing. The hyperparameters 443

for training are set consistent with those used in the 444

main experiment. 445

We present the loss values of GW on both the 446

training and test sets after training in Table 6. For 447

comparison, we also show the loss on the training 448

set after random initialization. The results demon- 449

strate that GW significantly reduces the loss on the 450

training set after training, typically lowering it to 451

below 10% of the random initialization loss. More- 452

over, the loss on the test set remains at the same 453

level as the training set loss, indicating that GW 454

effectively learns the underlying patterns of the 455

model parameters. 456

5.3 Single-Domain Pre-training 457

In addition to general-domain pre-training experi- 458

ments, we explore whether models expanded using 459

our method show greater potential for continual 460

pre-training in a single-domain setting. We con- 461

duct experiments in the code domain, using a sub- 462

set of BigCode (Kocetkov et al., 2022), one of the 463

largest code pre-training datasets, while keeping 464

other settings unchanged. Each model is trained 465

for 40-60 hours and then evaluated on the Hu- 466

manEval (Chen et al., 2021b) and MBPP (Austin 467

et al., 2021) benchmarks. Table 7 shows that af- 468

ter continual pre-training on the same code dataset, 469

models expanded using our method outperform pre- 470

vious approaches, demonstrating its effectiveness 471

in single-domain pre-training. 472
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Figure 5: The continual pre-training loss curves without
SVD, compared to the main experiment, show that with
SVD, the model’s initial loss and the final converged
loss are both slightly lower.

Model PIQA BoolQ HeSw Wino

LESA-6k 79.92 69.94 71.51 57.54
- SVD 79.54(-0.38) 68.81(-0.13) 70.44(-1.07) 57.29(-0.25)

Pro-6k 78.94 66.79 70.15 55.09

Table 8: Without SVD, performance on several tasks is
lower than with SVD, but still surpasses LLaMA Pro.

5.4 Impact of SVD473

We observe inter-layer patterns of matrices in the474

SVD space, as shown in Figure 2, which inspires475

us to train GW in the SVD space for prediction. We476

also explore whether GW can still predict effective477

matrices for layer expansion without SVD.478

We conduct an ablation study where we remove479

the SVD decomposition step while keeping other480

aspects of the method unchanged. Instead, we di-481

rectly input the matrices to train GW , which pre-482

dicts the parameters to be inserted between adjacent483

layers. We conduct experiments on Llama3-8B, ex-484

panding it to 48 layers and performing pre-training485

with the same data and hyper-parameters as in the486

main experiment. The loss curves with/without487

SVD are shown in Figure 5. Without SVD, the488

model performs worse, with higher loss in the early489

stages and an average loss of 0.03 higher than with490

SVD after 3k steps. Thus, the addition of SVD491

is beneficial. We evaluate the models on several492

tasks, as shown in Table 8. The results show that493

while the model expanded without SVD performs494

slightly worse, it still outperforms the LLaMA Pro495

baseline. This demonstrates the effectiveness of496

LESA, with SVD further enhancing performance.497
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Figure 6: The training curves for LESA and LESA
without freezing layers. When not freezing, the loss
fluctuates and converges more slowly.

5.5 Impact of Freezing Layers during 498

Continual Pre-training 499

Following LLaMA Pro, we train only the newly 500

expanded layers during continual pre-training. We 501

also explore full parameter fine-tuning without 502

freezing any layers. Compared to the main exper- 503

iment, we directly fine-tune all parameters while 504

keeping the training data and hyperparameters con- 505

sistent. The loss curves are shown in Figure 6. The 506

figure shows that without freezing layers, loss con- 507

verges much slower, with fluctuations in the curve. 508

This suggests that, similar to LLaMA Pro, freezing 509

the original parameters is essential for faster and 510

better loss convergence. 511

More experiments on hyper-parameter settings, 512

loss design, and the effectiveness on MoE model 513

can be found in Appendix A. 514

6 Conclusion 515

In this paper, we introduce LESA , a novel ap- 516

proach for depth scaling-up of LLMs that over- 517

comes the limitations of current heuristic-based 518

methods. Using SVD and a neural network, LESA 519

predicts intermediate layer parameters, resulting 520

in improved model initialization and faster con- 521

vergence during continual pre-training. Extensive 522

experiments show that LESA outperforms existing 523

baselines, delivering superior performance with 524

lower computational costs. Furthermore, LESA is 525

effective across various model sizes, families, and 526

domain-specific tasks, offering a promising solu- 527

tion for scaling LLMs efficiently. Our discovery of 528

inter-layer patterns also provides new insights for 529

future model design and training. 530
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Limitations531

This work does not yet consider scaling the model532

to sizes larger than three times the parameters.533

Based on current model design practices, when534

increasing the number of layers significantly, it is535

typically necessary to expand the matrix size of536

each layer as well, which requires width scaling-up.537

We plan to explore this in future work.538

Although we have conducted a preliminary ex-539

ploration of LESA on MoE model, the research540

is still limited by the challenges of constructing541

routers for the predicted layers and the current large542

size of MoE models. Further investigation into543

MoE models is needed, and we consider this as544

future work.545
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A More Experiments 927

In this section, we provide additional experiments 928

and analyses on hyperparameter settings, loss de- 929

sign, and the effectiveness on the MoE model. 930

A.1 Impact of Layer Insertion Location 931

Previous studies (Yang et al., 2024b; Men et al., 932

2024; Cao et al., 2024) suggest that LLMs are gen- 933

erally less sensitive to layers near the output end, 934

which can be modified. Therefore, our main ex- 935

periment focuses on expanding layers closer to the 936

output end. We also aim to explore the perfor- 937

mance of our method when expanding layers near 938

the input end. Building on the main experiment, 939

we change the range of the expanded layers from 940

the original 15th to 31st layers to the 1st to 17th 941

layers. We then compare the PPL on Wikipedia 942

for the models after initialization, without further 943

training. 944

Layer Interval 15-31 1-17

PPL 6.35 57.32

Table 9: The model’s initialization performance is better
when layers are inserted at the output than at the input
end.

The results in Table 9 show that expanding layers 945

near the input end results in poorer initialization 946

performance than expanding near the output. This 947

suggests that our method is more effective when 948

layers are inserted closer to the output, aligning 949

with previous findings. 950

A.2 Ablation on Norm Loss 951

We investigate whether it is possible to train GW 952

without adding the norm loss L2. Compared to the 953

main experiment, we remove this loss and calcu- 954

late the average norm of the matrices in the newly 955

inserted layers predicted by GW . 956
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Model Llama3-8B +LESA +LESA+w/o L2

down_proj 80.88 80.70 13.18
up_proj 81.88 81.57 10.26

gate_proj 104.96 105.39 13.34
q_proj 69.16 69.28 8.85
k_proj 52.44 51.01 7.32
v_proj 19.88 18.98 2.91
o_proj 40.25 40.49 5.29

Table 10: Without the norm loss L2, the norms of the
matrices predicted by GW are very small, leading to
parameter degradation.

As shown in Table 10, without L2, the predicted957

matrices have very small norms, causing their val-958

ues to approach zero and leading to degeneration.959

However, with L2, the norms of the predicted ma-960

trices align with those of the original Llama3-8B961

matrices.962

A.3 Hyper-parameter Impact on Model963

Initialization964

In this section, we explore the impact of key hyper-965

parameters during the training of GW . We find that966

the number of epochs and learning rate affect the967

initialization performance of the model obtained968

through layer expansion. We also conduct exper-969

iments on Llama3-8B, varying the learning rate970

and epochs while keeping other hyper-parameters971

consistent with the main experiment.972

Learning Rate Epoch PPL

1e-3 5 6.35
1e-4 5 102.42
5e-4 5 6.82
1e-4 10 39182.51
5e-4 10 6.94

Table 11: Ablation study on the hyperparameters during
the training of WG .

The results in Table 11 show that adjusting the973

learning rate and epochs can sometimes cause the974

expanded model’s PPL to explode during initial-975

ization. This may be due to the limited number976

of training samples generated from a single model,977

leading to training instability. However, after tun-978

ing the hyper-parameters a few times, we are able979

to achieve a good initialization performance, with980

PPL values typically ranging between 6 and 7.981

Additionally, we find that the hidden-state size982

and the number of layers in GW have no significant983

impact on the performance of the expanded model.984

The loss’s λ only affects the matrix norm, but has985

minimal effect on the model’s performance. Ad- 986

justing λ to match the predicted matrix norm with 987

that of the original model is sufficient. 988

A.4 Effectiveness on MoE Model 989

Recently, LLMs based on the Mixture-of-Experts 990

(MoE) architecture have become increasingly pop- 991

ular. In this section, we explore the effectiveness of 992

LESA on such models. Due to the large size of cur- 993

rent MoE models, such as DeepSeek-R1 with 671B 994

parameters (DeepSeek-AI et al., 2025), which can- 995

not be loaded onto our server, we conduct exper- 996

iments on the smaller LLaMA-MoE-3.0B (Zhu 997

et al., 2024), which has 32 layers. 998

We use LESA to expand the model to 48 layers. 999

However, a unique aspect of MoE models is that 1000

each layer has an MLP router, and we have not yet 1001

devised a method to generate routers for the newly 1002

added layers, since the router is highly dependent 1003

on the performance of each expert. Our current 1004

approach is to replicate the previous layer’s router 1005

for the newly expanded layer. We use SOLAR 1006

as the baseline and then evaluate the PPL of the 1007

expanded model after initialization. The results are 1008

shown in Table 12. 1009

Model +LLaMA-MoE-3.0B +LESA +SOLAR

PPL 7.70 1923.14 76.50

Table 12: The MoE model’s initialization performance
on PPL with different scaling-up methods.

The results show that LESA experiences a sig- 1010

nificant increase in PPL, which we attribute to the 1011

mismatch between the router and the expanded pa- 1012

rameters. We will continue investigating this issue 1013

in future work. Meanwhile, SOLAR also performs 1014

poorly, increasing PPL by 10 times. This suggests 1015

that scaling-up methods for MoE models require 1016

further research. 1017

B SVD-Based Patterns 1018

We present the t-SNE visualizations of the top 1 1019

singular values corresponding to the vectors of V , 1020

obtained after applying SVD decomposition to the 1021

matrices in the MLP and self-attention of different 1022

models, in Figure 7 and Figure 8, respectively. 1023
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up_proj down_proj gate_proj

Llama3-8B

Qwen2.5-1.5B

Llama2-7B

Figure 7: The gate_proj parameter matrices in the MLP of different models exhibit clear patterns of continuity
or clustering. This suggests that after applying SVD, the model’s parameters may be learnable. The parameter
distributions of other matrices appear more uniform in our visualizations.

q_proj k_proj v_proj

Llama3-8B

Qwen2.5-1.5B

o_proj

Llama2-7B

Figure 8: The parameter distributions of the matrices in the self-attention layers across different models appear
relatively uniform in our visualizations.
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