
LESA: Learnable LLM Layer Scaling-Up

Anonymous ACL submission

Abstract

Training Large Language Models (LLMs) from001
scratch requires immense computational re-002
sources, making it prohibitively expensive.003
Model scaling-up offers a promising solution004
by leveraging the parameters of smaller mod-005
els to create larger ones. However, existing006
depth scaling-up methods rely on empirical007
heuristic rules for layer duplication, which re-008
sult in poorer initialization and slower conver-009
gence during continual pre-training. We pro-010
pose LESA, a novel learnable method for depth011
scaling-up. By concatenating parameters from012
each layer and applying Singular Value Decom-013
position, we uncover latent patterns between014
layers, suggesting that inter-layer parameters015
can be learned. LESA uses a neural network016
to predict the parameters inserted between ad-017
jacent layers, enabling better initialization and018
faster training. Experiments show that LESA019
outperforms existing baselines, achieving supe-020
rior performance with less than half the com-021
putational cost during continual pre-training.022
Extensive analyses demonstrate its effective-023
ness across different model sizes and tasks.024

1 Introduction025

Recent advancements in Natural Language Process-026

ing (NLP) have been largely driven by Transformer-027

based architectures (Vaswani et al., 2017), with028

Large Language Models (LLMs) demonstrating ex-029

ceptional capabilities in addressing a wide range of030

complex tasks (Brown et al., 2020; Achiam et al.,031

2023; Bai et al., 2023; Touvron et al., 2023a; Yang032

et al., 2024a; AI@Meta, 2024; Jiang et al., 2023;033

Almazrouei et al., 2023; Bi et al., 2024). As the034

parameter size continues to grow, in accordance035

with scaling laws (Kaplan et al., 2020), the com-036

putational resources required to train LLMs from037

scratch have become increasingly prohibitive, de-038

manding millions of GPU hours and significant en-039

ergy consumption. This immense resource demand040

largely arises from the need to randomly reinitial- 041

ize model parameters, preventing the transfer of 042

ability from existing LLMs. 043

To address this limitation, a common approach 044

is model scaling-up, which leverages the parame- 045

ters of smaller models to construct larger ones, ei- 046

ther for immediate deployment or as a better initial 047

checkpoint for more effective further continual pre- 048

training. Existing model scaling-up methods can 049

be divided into width scaling-up and depth scaling- 050

up. Width scaling-up (Chen et al., 2015, 2021a; 051

Wang et al., 2023; Samragh et al., 2024) primar- 052

ily involves expanding matrix dimensions, rather 053

than increasing the number of layers 1. In con- 054

trast, depth scaling-up involves repurposing trained 055

Transformer blocks from a smaller model to build 056

a larger one with additional layers (Wu et al., 2024; 057

Kim et al., 2023; Gong et al., 2019; Pan et al., 058

2024; Agarwal et al., 2024; Parmar et al., 2024). 059

This strategy is widely applicable to modern LLMs 060

based on the Transformer architecture, preserving 061

the internal structure, such as matrix sizes. It is also 062

compatible with existing parallel training frame- 063

works, better preserving the model’s knowledge, 064

contributing to its increasing popularity in recent 065

model scaling-up approaches. 066

However, current depth scaling-up methods rely 067

on heuristic rules, typically duplicating one or 068

more blocks before integrating them into the model. 069

These approaches overlook parameter change pat- 070

terns between layers, limiting the model’s ability 071

to specialize each layer effectively. As a result, 072

newly upscaled layers replicate the previous ones, 073

neglecting layer-specific specialization (Voita et al., 074

2019b,a). This not only leads to suboptimal model 075

initialization performance but also prevents the 076

model from fully utilizing its expanded capacity. 077

By treating all layers equally, these methods fail to 078

capture the nuanced relationships between layers, 079

1A “layer” refers to a Transformer block for simplicity.

1

Layer 2

Layer 3

Layer 2𝐿-2

Layer 2𝐿-1

…

Layer 1

Layer 4

Layer 2𝐿-3

Layer 2𝐿

Layer 24…

Layer 1

Layer 2

Layer 47…

Layer 25

Layer 48

Layer 1

Layer 2

LLM

Layer 𝐿-1

Layer 𝐿

…

Layer 𝐿-2

Layer 3

SOLARLlaMAProInterpolation

Duplicate each
layer individually

Layer 2

Layer 2𝐿-3

Layer 2𝐿-2

Layer 1

Layer 3

Layer 2𝐿-4

Layer 2𝐿-1

Layer 4

Layer 4

…

Layer 2𝐿 Zero-Linear
Initialize the
output linear
matrix to zero

Zero-Linear

Zero-Linear

Zero-Linear

Duplicate selected layers individually

Stack

Layer 3

Layer 4

Layer 2𝐿-3

Layer 2𝐿-2

…

Layer 1

Layer 2

Layer 2𝐿-1

Layer 2𝐿

Duplicate multiple
layers as a group

Combines the first
and last 24 layers
of the model

Figure 1: Existing depth scaling-up methods can be categorized into two types: “Interpolation” and “Stack”. LLaMA
Pro and SOLAR can be seen as specific examples of these two types. Layers with the same color represent identical
parameters, and the dashed boxes indicate those obtained through duplication.

causing slower convergence during training and080

yielding less effective models.081

In this paper, we propose a novel approach for082

depth scaling-up called LESA (LEarnable LLM083

Layer ScAling-Up). We are the first to observe084

that by concatenating the parameters of each Trans-085

former block and applying Singular Value Decom-086

position (SVD), patterns such as continuity can087

be identified between layers. Based on this ob-088

servation, it is hypothesized that latent patterns089

exist between Transformer layers in a well-trained090

LLM, suggesting that model parameters can be091

learned across layers. To predict these parameters,092

we propose training a neural network. Once trained,093

the network can generate intermediate layers be-094

tween adjacent layers, insert them into the model095

for depth scaling-up, and serve as a better initializa-096

tion checkpoint, enabling faster convergence dur-097

ing continual pre-training. Our key contributions098

are summarized as:099

• We first observe, through SVD, latent patterns100

such as continuity between Transformer lay-101

ers, suggesting that inter-layer parameters can102

potentially be learned.103

• We introduce LESA, which predicts interme-104

diate layer parameters from adjacent layers105

for depth scaling-up. Experiments show that106

LESA outperforms existing baselines, with107

better model initialization and faster conver-108

gence during continual pre-training.109

• Extensive experiments confirm that LESA110

works across various model sizes and fami-111

lies, including domain-specific tasks like code- 112

related tasks. We also perform ablation stud- 113

ies to explore different method configurations. 114

2 Related Works 115

2.1 Model Scaling-up 116

Model scaling-up can be broadly categorized into 117

width and depth scaling-up. Width scaling-up in- 118

creases the matrix size while ensuring that the out- 119

put of a layer or consecutive layers remains consis- 120

tent with the output of the original network before 121

expansion. Net2Net (Chen et al., 2015) is one of 122

the first to transfer parameters from a smaller model 123

to initialize a larger one using function-preserving 124

transformations. bert2BERT (Chen et al., 2021a) 125

extends this approach to Transformer-based models. 126

LiGO (Wang et al., 2023) learns a linear mapping to 127

initialize larger models. HyperCloning (Samragh 128

et al., 2024) expands LLM to fit a larger model with 129

more hidden dimensions. However, while these 130

methods increase matrix size, they are less compat- 131

ible with parallel training frameworks, which are 132

better suited for depth scaling-up. Moreover, depth 133

scaling-up better preserves the model’s knowledge. 134

Current depth scaling-up methods expand the 135

model by duplicating and adding layers based on 136

heuristic rules, which can be broadly categorized 137

into "Interpolation" and "Stack" (Pan et al., 2024), 138

as shown in Figure 1. Interpolation involves adding 139

a copy of each layer after the original, while Stack 140

treats consecutive layers as a group and dupli- 141

cates them together. Recent popular methods like 142

LLaMA Pro (Wu et al., 2024) and SOLAR (Kim 143

2

et al., 2023) can be seen as special cases of these144

two types. LLaMA Pro copies only a selected few145

layers, while SOLAR duplicates the first 24 and the146

last 24 layers of a previous 32-layer model and com-147

bines them. However, these methods are based on148

heuristic rules, which hinder layer specialization,149

leading to suboptimal performance and limiting the150

model’s potential.151

2.2 Progressive Training152

Progressive training involves gradually transition-153

ing from simpler, smaller models to more complex,154

larger ones (Chang et al., 2017; Wen et al., 2020;155

Dong et al., 2020; Wei et al., 2016; Fayek et al.,156

2020). It is often combined with model scaling-up,157

where the model size is progressively increased dur-158

ing training. Prior to the era of LLMs, many meth-159

ods (Chen et al., 2021a; Gu et al., 2020; Wang et al.,160

2023; Yang et al., 2020; Yao et al., 2023) are devel-161

oped to train smaller models, such as BERT (De-162

vlin et al., 2018). In recent years, LLaMA Pro (Wu163

et al., 2024) and Apollo (Pan et al., 2024) have164

applied progressive learning and model scaling-165

up strategies to train LLMs. YODA (Lu et al.,166

2024) introduces a novel teacher-student progres-167

sive learning framework that enhances model fine-168

tuning by emulating the teacher-student educa-169

tional process. Du et al. offer a comprehensive170

evaluation and empirical guidelines for progressive171

learning and model scaling-up.172

3 Method173

This section discusses the patterns observed be-174

tween model layers through SVD analysis of the175

model’s parameters. Based on these patterns, we176

hypothesize that there are underlying patterns in the177

trained model that can be learned by a neural net-178

work. We then use this trained network to predict179

intermediate layers that can be inserted between180

adjacent layers for depth scaling-up.181

3.1 SVD-Based Layer Pattern182

Inspired by recent work using SVD for LLM com-183

pression or merging (Wang et al., 2024c; Stoica184

et al., 2024; Wang et al., 2024a), it is realized that185

SVD can map the model’s parameters into one186

space for analysis. Specifically, assume we have187

weight matrices W1,W2, . . . ,WL from L layers188

of an LLM, where Wi ∈ Rd1×d2 represents a ma-189

trix from each Transformer block, such as the up-190

projection matrix in MLP, Query matrix in self-191

attention. These L matrices can be concatenated192

75 50 25 0 25 50 75 100
t-SNE Component 1

80

60

40

20

0

20

40

60

t-S
N

E
C

om
po

ne
nt

 2

12345678910
11

12
13
14
15
16
17

18192021 22232425262728
2930

31
32

Figure 2: The inter-layer continuity pattern exhibited by
the gate_proj matrix of Llama3-8B in the SVD space.
The numbers represent the layer indices.

horizontally into a single matrix, denoted as de- 193

noted as W ∈ Rd1×Ld2 . SVD can be used to de- 194

compose this matrix into three components: U,Σ 195

and V T . 196

According to SVD, Σ is a diagonal matrix of 197

size d1 × Ld2, containing the singular values of 198

W . U is a unitary matrix that spans a set of stan- 199

dard orthogonal bases. If we treat Σ as a scaling 200

transformation on each orthogonal basis in U , then 201

UΣ forms a new set of orthogonal bases. For the 202

i-th layer’s Wi, it can be recovered as Wi = UΣVi, 203

where Vi = V T
:,(i−1)∗d2:i∗d2 ∈ Rd1×d2 . This means 204

that the parameter Wi of each layer is a linear com- 205

bination of the orthogonal bases from UΣ, with Vi 206

representing the coefficients of this combination. 207

By projecting the parameters of each layer into the 208

space spanned by UΣ, we can analyze the patterns 209

in the coefficients Vi for the i-th layer. 210

Since larger singular values correspond to eigen- 211

vectors that capture more information about the 212

matrix, we select the eigenvector corresponding 213

to the largest singular value (top-1) from each 214

layer’s Vi for visualization. We use t-SNE (Van der 215

Maaten and Hinton, 2008) to reduce Vi to two di- 216

mensions. The visualization results of the gate- 217

projection in the MLP of Llama3-8B (AI@Meta, 218

2024) are presented in Figure 2, where we observe 219

a clear continuity in the distribution of these Vi. 220

This continuity pattern, derived from the top-1 sin- 221

gular value of the gate-projection using t-SNE, is 222

also present in Llama2 (Touvron et al., 2023b), 223

Llama3 (AI@Meta, 2024), and Qwen2 (qwe, 2024). 224

This suggests that the model’s parameters may ex- 225

hibit unique inter-layer patterns. More visualiza- 226

tion results can be found in Appendix B. 227

3

Layer 1

Layer 2

Original LLM

Layer 𝐿-1

Layer 𝐿

…

Layer 𝐿-2

Layer 3

Extract weight matrices from the MLP and self-
attention in each layer. Use SVD to obtain 𝑉

𝑊!

𝑊"

𝑊#

𝑊$%"

𝑊$%!

𝑊$

SVD
𝑊

Concat

V!

V"

V#$!

V#

…

V#$"

V%
𝑊 = 	𝑈Σ𝑉

𝑉

𝐺!
V!"#′

V!"$

V!"#

V!"$′

V!

V$

V#

V%𝐿! = 	𝑀𝑆𝐸 𝐺& 𝑉'$!, 𝑉'(! ,
𝑉'

𝐿" = 	𝑀𝑆𝐸 𝑁𝑜𝑟𝑚 𝐺& 𝑉'$!, 𝑉'(! ,
	𝑁𝑜𝑟𝑚 𝑉'

Predict

𝑊!
" = 	𝑈Σ𝑉!"

Reconstruct

Layer 1

Layer 2

Layer 𝐿-2 ′

Layer 𝐿

…

Layer 𝐿-2

Layer 3

Layer 𝐿-1 ′

Layer 𝐿-1

Expanded LLM

…

MLP

Train
Training Target

Predict the intermediate layer's 𝑉&' by using
the surrounding layers' 𝑉!	and 𝑉!#$ as input

Reconstruct layers

Figure 3: Overview of the proposed LESA . We first extract the weight matrices from the MLP and self-attention
layers. Next, we apply SVD and train a neural network to predict the intermediate layers. Finally, we reconstruct
the expanded LLM.

Although this continuity is currently only ob-228

served in the gate projection and not in other param-229

eters such as the up-projection or down-projection230

in the MLP through our t-SNE visualization, this231

may be due to the limitations of our analysis232

method. An intuitive approach, therefore, is to use233

a neural network to learn these potential patterns.234

3.2 Learnable LLM Layer Scaling-Up235

Inspired by the aforementioned SVD-Based Layer236

Patterns, we hypothesize that there may be inter-237

layer patterns in the parameters. However, these238

patterns might not be easily observed using simple239

visualization techniques or fitted with specific dis-240

tributions, such as Gaussian mixtures. Therefore, a241

direct approach is to learn these patterns through a242

neural network.243

We present our method in Figure 3. After obtain-244

ing Vi as described in Section 3.1, we train an MLP245

GW to learn the patterns. Our training objective is246

to enable the MLP to predict an intermediate layer247

given any two layers that are one layer apart.248

Formally, for a weight matrix W ∈249 {
q_proj, k_proj, v_proj,
o_proj, up_proj, down_proj, gate_proj

}
,250

we use SVD to obtain Vi following Section 3.1.251

We then train an MLP GW specific to W with the252

objective of predicting Vi by using the concatena-253

tion of Vi−1 and Vi+1 as input. We optimize GW254

using MSELoss (Mean Squared Error Loss):255

L1 = MSE(GW([Vi−1, Vi+1]), Vi) (1)256

whose goal is to enable GW to predict accurately.257

In subsequent experiments, we find that directly258

training with L1 will result in the norm of the pre-259

dicted GW([Vi−1, Vi+1]) approaching zero, mean- 260

ing that the predicted V
′
i parameters are close to 261

zero, which leads to parameter degradation. To 262

address this issue, we add a norm loss: 263

L2 = MSE(Norm(GW([Vi−1, Vi+1])), Norm(Vi))
(2) 264

where the Norm represents the L2 norm, and L2 265

aims to ensure that the norm of the model’s pre- 266

dicted V
′
i is close to that of Vi. Thus, the final loss 267

for training GW is: 268

L = (1− λ)L1 + λL2 (3) 269

where λ is a hyper-parameter. 270

Once trained, GW can predict the parameters 271

of an intermediate layer based on its surrounding 272

ones. Thus, for adjacent Vi and Vi+1, we use GW 273

to predict the intermediate layer V
′
i to insert be- 274

tween them. We then reconstruct V
′
i using the UΣ 275

decomposition from the previous step, forming the 276

predicted matrix W ′
, and insert it between the lay- 277

ers to expand the LLM. 278

4 Main Experiments 279

4.1 Settings 280

4.1.1 LESA Settings 281

We conduct experiments on the Llama3-8B model, 282

which has 32 layers. To construct the training 283

data for GW , we use consecutive triplets of lay- 284

ers, namely (1, 2, 3), (2, 3, 4), (3, 4, 5), ..., (30, 285

31, 32), resulting in 30 samples. We define GW 286

as a three-layer MLP with a ReLU (Agarap, 2018) 287

activation function, where the hidden dimension is 288

256. GW is trained for 5 epochs on these samples 289

4

using the AdamW (Loshchilov, 2017) optimizer290

with a learning rate of 1e-3. The λ is set to 5e-5.291

To compare with baselines (Wu et al., 2024; Kim292

et al., 2023), we use LESA to scale up Llama3-8B293

to 48 layers by inserting an intermediate layer be-294

tween each pair of adjacent layers in the original295

15th to 31st layers. The expanded models all have296

11.5 billion parameters.297

4.1.2 Continual Training298

For the models expanded using LESA and baseline299

methods, we continue pre-training with Wikipedia300

data from November 2024, which is released af-301

ter the training of Llama3-8B and has not been302

used in its original training. We use the Llama-303

Factory (Zheng et al., 2024) training framework,304

with a cutoff length of 4096, a warmup ratio of 0.1,305

and a cosine learning rate scheduler. The optimizer306

is AdamW with a learning rate of 5e-5. The batch307

size per GPU is 2, with 4 gradient accumulation308

steps. For LESA and LLaMA Pro, we only train309

the newly expanded layers, freezing the other lay-310

ers. Following the original setting, we perform full311

parameter fine-tuning for SOLAR.312

For the Supervised Fine-Tuning (SFT) stage, we313

use Alpaca-GPT4 (Peng et al., 2023) for training,314

following SOLAR. The hyper-parameters are the315

same as those in the continual pre-training, except316

that we perform full parameter fine-tuning with-317

out freezing any layers for all models. All exper-318

iments are conducted on a server with 8 Nvidia319

A100 80GB GPUs.320

4.2 Benchmarks321

For the continual pre-training models, since they322

lack instruction-following capabilities, we use the323

OpenCompass framework (Contributors, 2023)324

with the PPL (perplexity) 2 mode for evaluation, fo-325

cusing on five areas: Reasoning, Language, Knowl-326

edge, Examination, and Understanding, with se-327

lected benchmarks for each category. Reason-328

ing: CMNLI (Xu et al., 2020), HellaSwag (HeSw)329

(Zellers et al., 2019), PIQA (Bisk et al., 2019).330

Language: CHID (Zheng et al., 2019), Wino-331

Grande (Wino) (Sakaguchi et al., 2019). Knowl-332

edge: CommonSenseQA (CSQA) (Talmor et al.,333

2018), BoolQ (Clark et al., 2019). Examination:334

MMLU (Hendrycks et al., 2021), CMMLU (Li335

et al., 2023). Understanding: Race-High/Middle336

2https://opencompass.readthedocs.io/en/latest/
get_started/faq.html

0 1000 2000 3000 4000 5000 6000
Training Steps

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

Lo
ss

 V
al

ue

LESA
SOLAR
LLaMA Pro

Figure 4: The continual pre-training loss curves of mod-
els expanded by different methods. LESA starts with
a lower initial loss, indicating a better initialization. It
stabilizes after 2k steps, reaching the same convergence
level as LLaMA Pro after 5k steps, and converges much
faster than SOLAR, achieving the same loss with less
than half the training cost.

Model Pro SOLAR LESA

Time 56.4h(124%) 75.6h(166%) 45.6h

Table 1: Training time of continual pre-training. When
trained on the same dataset, the baselines require 124%
and 166% of the training time compared to our method.

(H/M) (Lai et al., 2017). Evaluations use Open- 337

Compass official scripts in zero-shot or few-shot 338

settings. Scores are computed by OpenCompass, 339

with higher values indicating better performance. 340

We also evaluate the trained models’ perplexity on 341

500 unseen Wikipedia plain sentences. 342

For the models after SFT, which have gained 343

instruction-following capabilities, we use the gen- 344

eration mode of OpenCompass for evaluation. We 345

conduct evaluations on ARC (Clark et al., 2018), 346

TruthfulQA (Lin et al., 2021), GSM8K (Cobbe 347

et al., 2021), HellaSwag (Zellers et al., 2019), and 348

MMLU (Hendrycks et al., 2021). 349

4.3 Results 350

We first present the training loss curves of the three 351

models in Figure 4. From the figure, we observe 352

that our method starts with a lower initial loss com- 353

pared to the baselines, indicating a better initializa- 354

tion checkpoint. Throughout training, our model’s 355

loss consistently remains the lowest. SOLAR even 356

fails to converge to a low loss level even after train- 357

ing on the dataset. Although LLaMA Pro’s loss 358

approaches ours after 5k steps, by the end, the 359

5

https://opencompass.readthedocs.io/en/latest/get_started/faq.html
https://opencompass.readthedocs.io/en/latest/get_started/faq.html

Model PPL Average Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID Wino CSQA BoolQ MMLU CMMLU RaceH RaceM

Pro-3k 6.06 60.89(-3.41) 32.99 69.14 79.21 67.33 55.79 69.19 68.10 45.53 49.66 65.32 67.55

Pro-6k 5.44 62.67(-1.63) 32.97 70.15 78.94 69.80 55.09 69.04 66.79 64.31 50.30 62.66 69.36

SOLAR-3k 9.82 45.34(-18.96) 32.97 61.11 73.23 51.49 53.68 54.55 52.94 34.98 28.97 27.36 27.44

SOLAR-6k 8.09 47.86(-16.44) 32.98 62.36 74.65 48.02 54.38 59.54 61.53 43.74 28.68 31.76 28.83

LESA-3k 5.27 64.11(-0.19) 32.99 71.18 79.65 72.77 57.89 69.78 70.46 66.66 50.91 65.32 67.55

LESA-6k 5.13 64.30 32.99 71.51 79.92 73.30 57.54 69.21 69.94 66.67 51.00 65.72 69.50

Table 2: We evaluate the performance of models after expanding Llama3-8B from 32 layers to 48 layers (11.5B
parameters) using different baseline methods, followed by continual pre-training. Pro (LLaMA Pro (Wu et al.,
2024)) and SOLAR (Kim et al., 2023) are two strong baselines for model depth scaling-up. We evaluate the model
performance at two stages: after training with half the data (3k steps) and after training with the full data (6k steps).

Model Average ARC-e ARC-c TruthfulQA GSM8K HellaSwag MMLU

Pro-SFT 24.38(77%) 28.92 23.73 21.91 21.95 25.44 24.33

SOLAR-SFT 26.47(84%) 37.10 24.25 19.34 33.45 25.16 19.52

LESA-SFT 31.57(100%) 42.86 32.54 22.28 37.14 32.09 22.49

Table 3: After continual pre-training and subsequent SFT, the model expanded with LESA still achieves better task
performance, with baselines scoring less than 85% of our model’s average score.

model expanded using our method still has the low-360

est loss. Additionally, our method’s loss stabilizes361

after 2k steps, while LLaMA Pro reaches a similar362

convergence level only after 5k steps. This demon-363

strates that models expanded using LESA achieve364

the same loss convergence with less than half the365

training cost.366

We list the time taken to train on the full dataset367

in Table 1 and find that the time taken by LESA368

is significantly shorter. It is worth noting that the369

training of GW in LESA is very fast, taking less370

than 5 minutes, making its cost nearly negligible371

compared to the overhead of continual pre-training.372

For model performance after continual pre-373

training, we present the results on various bench-374

marks in Table 2. It can be inferred that the per-375

formance of models expanded with LESA consis-376

tently outperforms the baselines in all categories.377

Specifically, LESA-6k (6k steps) achieves the high-378

est performance across all tasks and PPL. Even379

with only half of the data used for continual pre-380

training (3k steps), the models expanded using381

LESA outperform the baselines trained on the full382

dataset (6k steps). We also present the results in383

Table 3 for models trained on the full dataset and384

then fine-tuned with SFT, showing performance385

across different tasks. The results still indicate that386

the models expanded using LESA achieve the best387

Model CSQA BoolQ TriviaQA NQ

Pro-3k 69.19 68.10 62.50 24.82
Pro-6k 69.04 66.79 63.68 26.73

SOLAR-3k 54.55 52.94 43.06 13.57
SOLAR-6k 59.54 61.53 47.72 16.40

LESA-3k 69.78 70.46 67.15 23.30
LESA-6k 69.21 69.94 67.05 26.76

Table 4: The scores of different models on knowledge-
related tasks after continual pre-training. LESA consis-
tently performs better overall.

performance. 388

The above analysis proves that LESA effectively 389

inherits the original model’s parameters, enabling 390

better initialization, faster continual training, and 391

enhanced model performance. 392

4.4 Evaluation on Knowledge-Related Tasks 393

Previous studies, such as LLaMA Pro, highlight 394

that a key advantage of model expansion is the abil- 395

ity to inherit knowledge from the original model. 396

We focus on evaluating performance in knowledge- 397

related tasks. In addition to the main results, we 398

further evaluate performance on two additional 399

knowledge tasks: TriviaQA (Joshi et al., 2017) 400

and NQ (Kwiatkowski et al., 2019). The results 401

in Table 4 show that LESA outperforms previous 402

approaches on all knowledge tasks. 403

6

5 Ablation Study404

5.1 Evaluation across Different Model405

Families406

We also aim to explore whether LESA is effective407

across different model sizes and families. Specifi-408

cally, we select several current mainstream model409

families Llama3, Qwen2.5, Mistral (Mistral@AI,410

2025) and use LESA to expand the final layers of411

the models, increasing their layer count by 1.5x412

of the original. We use SOLAR initialization as413

the baseline. Since their method only applies to414

32-layer models by concatenating the first 24 and415

last 24 layers, we adapt it for models with different416

layer counts. We concatenate the first and last n417

layers to create a model with 1.5 times the origi-418

nal layers and measure initialization performance419

using PPL. The results are shown in Table 5.420

Model Original +LESA +SOLAR

Llama3-8B 5.20 6.35 7.81
Llama3-70B 1.98 2.62 4.21

Qwen2.5-1.5B 9.30 10.52 11.75
Qwen2.5-7B 6.03 7.04 7.99
Qwen2.5-32B 3.78 5.67 INF

Mistral-Small-24B 4.43 5.17 6.51

Table 5: PPL of LESA and SOLAR during 1.5x layer
expansion initialization for different models, along with
the PPL of the original models.

The results show that LESA outperforms SO-421

LAR in initialization performance. Unlike SOLAR,422

which experiences a PPL explosion on Qwen2.5-423

32B, LESA remains stable, highlighting the supe-424

riority of LESA’s predicted parameters over SO-425

LAR’s heuristic-based expansion.426

5.2 Analysis of GW ’s Ability427

We investigate whether GW can predict interme-428

diate layers between adjacent layers accurately,429

demonstrating this through loss changes.430

Due to the limited number of samples available431

for training GW on individual LLM layers, which432

makes it difficult to separate a test set and increases433

the risk of overfitting, we select several mod-434

els: Llama3-8B, and fine-tuned versions of it, in-435

cluding Llama3-8B-Lexi-Uncensored (Orenguteng,436

2024), Meta-Llama3-8B-Instruct, Llama-3-Smaug-437

8B (Pal et al., 2024), and Llama3-8B-Chinese-438

Chat (Wang et al., 2024b). Following the procedure439

outlined in Section 4.1.1, we sequentially select440

three consecutive layers as samples, resulting in441

Matrix Random Loss Training Loss Test Loss
down_proj 5.7 0.0005 0.0004

up_proj 0.055 0.015 0.015
gate_proj 0.056 0.015 0.015

q_proj 0.153 0.016 0.016
v_proj 0.545 0.017 0.016
o_proj 0.147 0.016 0.015
k_proj 0.6 0.016 0.016

Table 6: Loss values for different matrices during train-
ing and testing. All values are multiplied by 104 for
convenience.

Method Pro SOLAR LESA

HumanEval 10.98 2.44 25.00
MBPP 21.69 13.93 28.60

Table 7: The results of Llama3-8B after expansion with
different methods, pre-trained on the BigCode dataset,
on two code benchmarks. The results show that LESA
consistently performs better.

a total of 150 samples. We use 120 samples for 442

training and 30 for testing. The hyperparameters 443

for training are set consistent with those used in the 444

main experiment. 445

We present the loss values of GW on both the 446

training and test sets after training in Table 6. For 447

comparison, we also show the loss on the training 448

set after random initialization. The results demon- 449

strate that GW significantly reduces the loss on the 450

training set after training, typically lowering it to 451

below 10% of the random initialization loss. More- 452

over, the loss on the test set remains at the same 453

level as the training set loss, indicating that GW 454

effectively learns the underlying patterns of the 455

model parameters. 456

5.3 Single-Domain Pre-training 457

In addition to general-domain pre-training experi- 458

ments, we explore whether models expanded using 459

our method show greater potential for continual 460

pre-training in a single-domain setting. We con- 461

duct experiments in the code domain, using a sub- 462

set of BigCode (Kocetkov et al., 2022), one of the 463

largest code pre-training datasets, while keeping 464

other settings unchanged. Each model is trained 465

for 40-60 hours and then evaluated on the Hu- 466

manEval (Chen et al., 2021b) and MBPP (Austin 467

et al., 2021) benchmarks. Table 7 shows that af- 468

ter continual pre-training on the same code dataset, 469

models expanded using our method outperform pre- 470

vious approaches, demonstrating its effectiveness 471

in single-domain pre-training. 472

7

0 1000 2000 3000 4000 5000 6000
Training Steps

1.60

1.80

2.00

2.20
Lo

ss
 V

al
ue

LESA
LESA+w/o SVD

Figure 5: The continual pre-training loss curves without
SVD, compared to the main experiment, show that with
SVD, the model’s initial loss and the final converged
loss are both slightly lower.

Model PIQA BoolQ HeSw Wino

LESA-6k 79.92 69.94 71.51 57.54
- SVD 79.54(-0.38) 68.81(-0.13) 70.44(-1.07) 57.29(-0.25)

Pro-6k 78.94 66.79 70.15 55.09

Table 8: Without SVD, performance on several tasks is
lower than with SVD, but still surpasses LLaMA Pro.

5.4 Impact of SVD473

We observe inter-layer patterns of matrices in the474

SVD space, as shown in Figure 2, which inspires475

us to train GW in the SVD space for prediction. We476

also explore whether GW can still predict effective477

matrices for layer expansion without SVD.478

We conduct an ablation study where we remove479

the SVD decomposition step while keeping other480

aspects of the method unchanged. Instead, we di-481

rectly input the matrices to train GW , which pre-482

dicts the parameters to be inserted between adjacent483

layers. We conduct experiments on Llama3-8B, ex-484

panding it to 48 layers and performing pre-training485

with the same data and hyper-parameters as in the486

main experiment. The loss curves with/without487

SVD are shown in Figure 5. Without SVD, the488

model performs worse, with higher loss in the early489

stages and an average loss of 0.03 higher than with490

SVD after 3k steps. Thus, the addition of SVD491

is beneficial. We evaluate the models on several492

tasks, as shown in Table 8. The results show that493

while the model expanded without SVD performs494

slightly worse, it still outperforms the LLaMA Pro495

baseline. This demonstrates the effectiveness of496

LESA, with SVD further enhancing performance.497

0 1000 2000 3000 4000 5000 6000
Training Steps

1.60

1.80

2.00

2.20

Lo
ss

 V
al

ue

LESA
LESA+w/o freeze

Figure 6: The training curves for LESA and LESA
without freezing layers. When not freezing, the loss
fluctuates and converges more slowly.

5.5 Impact of Freezing Layers during 498

Continual Pre-training 499

Following LLaMA Pro, we train only the newly 500

expanded layers during continual pre-training. We 501

also explore full parameter fine-tuning without 502

freezing any layers. Compared to the main exper- 503

iment, we directly fine-tune all parameters while 504

keeping the training data and hyperparameters con- 505

sistent. The loss curves are shown in Figure 6. The 506

figure shows that without freezing layers, loss con- 507

verges much slower, with fluctuations in the curve. 508

This suggests that, similar to LLaMA Pro, freezing 509

the original parameters is essential for faster and 510

better loss convergence. 511

More experiments on hyper-parameter settings, 512

loss design, and the effectiveness on MoE model 513

can be found in Appendix A. 514

6 Conclusion 515

In this paper, we introduce LESA , a novel ap- 516

proach for depth scaling-up of LLMs that over- 517

comes the limitations of current heuristic-based 518

methods. Using SVD and a neural network, LESA 519

predicts intermediate layer parameters, resulting 520

in improved model initialization and faster con- 521

vergence during continual pre-training. Extensive 522

experiments show that LESA outperforms existing 523

baselines, delivering superior performance with 524

lower computational costs. Furthermore, LESA is 525

effective across various model sizes, families, and 526

domain-specific tasks, offering a promising solu- 527

tion for scaling LLMs efficiently. Our discovery of 528

inter-layer patterns also provides new insights for 529

future model design and training. 530

8

Limitations531

This work does not yet consider scaling the model532

to sizes larger than three times the parameters.533

Based on current model design practices, when534

increasing the number of layers significantly, it is535

typically necessary to expand the matrix size of536

each layer as well, which requires width scaling-up.537

We plan to explore this in future work.538

Although we have conducted a preliminary ex-539

ploration of LESA on MoE model, the research540

is still limited by the challenges of constructing541

routers for the predicted layers and the current large542

size of MoE models. Further investigation into543

MoE models is needed, and we consider this as544

future work.545

References546

2024. Qwen2 technical report.547

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama548
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,549
Diogo Almeida, Janko Altenschmidt, Sam Altman,550
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.551
arXiv preprint arXiv:2303.08774.552

AF Agarap. 2018. Deep learning using rectified linear553
units (relu). arXiv preprint arXiv:1803.08375.554

Naman Agarwal, Pranjal Awasthi, Satyen Kale, and Eric555
Zhao. 2024. Stacking as accelerated gradient descent.556
arXiv preprint arXiv:2403.04978.557

AI@Meta. 2024. Llama 3 model card.558

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-559
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,560
Mérouane Debbah, Étienne Goffinet, Daniel Hess-561
low, Julien Launay, Quentin Malartic, et al. 2023.562
The falcon series of open language models. arXiv563
preprint arXiv:2311.16867.564

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten565
Bosma, Henryk Michalewski, David Dohan, Ellen566
Jiang, Carrie Cai, Michael Terry, Quoc Le, and567
Charles Sutton. 2021. Program synthesis with large568
language models. Preprint, arXiv:2108.07732.569

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,570
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei571
Huang, et al. 2023. Qwen technical report. arXiv572
preprint arXiv:2309.16609.573

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,574
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,575
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-576
ing open-source language models with longtermism.577
arXiv preprint arXiv:2401.02954.578

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng 579
Gao, and Yejin Choi. 2019. Piqa: Reasoning about 580
physical commonsense in natural language. Preprint, 581
arXiv:1911.11641. 582

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 583
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 584
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 585
Askell, et al. 2020. Language models are few-shot 586
learners. Advances in neural information processing 587
systems, 33:1877–1901. 588

Zouying Cao, Yifei Yang, and Hai Zhao. 2024. Head- 589
wise shareable attention for large language models. 590
arXiv preprint arXiv:2402.11819. 591

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, 592
and David Begert. 2017. Multi-level residual net- 593
works from dynamical systems view. arXiv preprint 594
arXiv:1710.10348. 595

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, 596
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen, 597
Zhiyuan Liu, and Qun Liu. 2021a. bert2bert: To- 598
wards reusable pretrained language models. arXiv 599
preprint arXiv:2110.07143. 600

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 601
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 602
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 603
Greg Brockman, Alex Ray, Raul Puri, Gretchen 604
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 605
try, Pamela Mishkin, Brooke Chan, Scott Gray, 606
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 607
Kaiser, Mohammad Bavarian, Clemens Winter, 608
Philippe Tillet, Felipe Petroski Such, Dave Cum- 609
mings, Matthias Plappert, Fotios Chantzis, Eliza- 610
beth Barnes, Ariel Herbert-Voss, William Hebgen 611
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 612
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 613
William Saunders, Christopher Hesse, Andrew N. 614
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 615
Morikawa, Alec Radford, Matthew Knight, Miles 616
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 617
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 618
Sutskever, and Wojciech Zaremba. 2021b. Evaluat- 619
ing large language models trained on code. 620

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. 621
2015. Net2net: Accelerating learning via knowledge 622
transfer. arXiv preprint arXiv:1511.05641. 623

Christopher Clark, Kenton Lee, Ming-Wei Chang, 624
Tom Kwiatkowski, Michael Collins, and Kristina 625
Toutanova. 2019. Boolq: Exploring the surprising 626
difficulty of natural yes/no questions. arXiv preprint 627
arXiv:1905.10044. 628

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 629
Ashish Sabharwal, Carissa Schoenick, and Oyvind 630
Tafjord. 2018. Think you have solved question an- 631
swering? try arc, the ai2 reasoning challenge. arXiv 632
preprint arXiv:1803.05457. 633

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 634
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 635

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro636
Nakano, et al. 2021. Training verifiers to solve math637
word problems. arXiv preprint arXiv:2110.14168.638

OpenCompass Contributors. 2023. Opencompass:639
A universal evaluation platform for foundation640
models. https://github.com/open-compass/641
opencompass.642

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,643
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,644
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,645
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong646
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,647
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,648
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,649
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,650
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,651
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,652
Han Bao, Hanwei Xu, Haocheng Wang, Honghui653
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,654
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang655
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.656
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai657
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai658
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong659
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan660
Zhang, Minghua Zhang, Minghui Tang, Meng Li,661
Miaojun Wang, Mingming Li, Ning Tian, Panpan662
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,663
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,664
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,665
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,666
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng667
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing668
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,669
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,670
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao671
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan672
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin673
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,674
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,675
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-676
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,677
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang678
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng679
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,680
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,681
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,682
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-683
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,684
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,685
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,686
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,687
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean688
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,689
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-690
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,691
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu692
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-693
tivizing reasoning capability in llms via reinforce-694
ment learning. Preprint, arXiv:2501.12948.695

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and696
Kristina Toutanova. 2018. Bert: Pre-training of deep697

bidirectional transformers for language understand- 698
ing. arXiv preprint arXiv:1810.04805. 699

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo 700
Shang. 2020. Towards adaptive residual network 701
training: A neural-ode perspective. In International 702
conference on machine learning, pages 2616–2626. 703
PMLR. 704

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, 705
Yikang Shen, Reynold Cheng, Yike Guo, and Jie 706
Fu. 2024. Stacking your transformers: A closer look 707
at model growth for efficient llm pre-training. arXiv 708
preprint arXiv:2405.15319. 709

Haytham M Fayek, Lawrence Cavedon, and Hong Ren 710
Wu. 2020. Progressive learning: A deep learning 711
framework for continual learning. Neural Networks, 712
128:345–357. 713

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei 714
Wang, and Tieyan Liu. 2019. Efficient training of bert 715
by progressively stacking. In International confer- 716
ence on machine learning, pages 2337–2346. PMLR. 717

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen 718
Chen, and Jiawei Han. 2020. On the transformer 719
growth for progressive bert training. arXiv preprint 720
arXiv:2010.12562. 721

Dan Hendrycks, Collin Burns, Steven Basart, Andy 722
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 723
hardt. 2021. Measuring massive multitask language 724
understanding. Proceedings of the International Con- 725
ference on Learning Representations (ICLR). 726

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 727
sch, Chris Bamford, Devendra Singh Chaplot, Diego 728
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 729
laume Lample, Lucile Saulnier, et al. 2023. Mistral 730
7b. arXiv preprint arXiv:2310.06825. 731

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke 732
Zettlemoyer. 2017. Triviaqa: A large scale distantly 733
supervised challenge dataset for reading comprehen- 734
sion. In Proceedings of the 55th Annual Meeting of 735
the Association for Computational Linguistics, Van- 736
couver, Canada. Association for Computational Lin- 737
guistics. 738

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 739
Brown, Benjamin Chess, Rewon Child, Scott Gray, 740
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 741
Scaling laws for neural language models. arXiv 742
preprint arXiv:2001.08361. 743

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung 744
Lee, Wonho Song, Yunsu Kim, Hyeonwoo Kim, 745
Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. 2023. 746
Solar 10.7 b: Scaling large language models with 747
simple yet effective depth up-scaling. arXiv preprint 748
arXiv:2312.15166. 749

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia 750
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine 751
Jernite, Margaret Mitchell, Sean Hughes, Thomas 752

10

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Wolf, Dzmitry Bahdanau, Leandro von Werra, and753
Harm de Vries. 2022. The stack: 3 tb of permissively754
licensed source code. Preprint.755

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-756
field, Michael Collins, Ankur Parikh, Chris Alberti,757
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-758
ton Lee, et al. 2019. Natural questions: a benchmark759
for question answering research. Transactions of the760
Association for Computational Linguistics, 7:453–761
466.762

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,763
and Eduard Hovy. 2017. Race: Large-scale reading764
comprehension dataset from examinations. arXiv765
preprint arXiv:1704.04683.766

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang,767
Hai Zhao, Yeyun Gong, Nan Duan, and Timothy768
Baldwin. 2023. Cmmlu: Measuring massive mul-769
titask language understanding in chinese. Preprint,770
arXiv:2306.09212.771

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.772
Truthfulqa: Measuring how models mimic human773
falsehoods. arXiv preprint arXiv:2109.07958.774

I Loshchilov. 2017. Decoupled weight decay regulariza-775
tion. arXiv preprint arXiv:1711.05101.776

Jianqiao Lu, Wanjun Zhong, Yufei Wang, Zhijiang Guo,777
Qi Zhu, Wenyong Huang, Yanlin Wang, Fei Mi, Bao-778
jun Wang, Yasheng Wang, et al. 2024. Yoda: Teacher-779
student progressive learning for language models.780
arXiv preprint arXiv:2401.15670.781

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,782
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng783
Chen. 2024. Shortgpt: Layers in large language784
models are more redundant than you expect. arXiv785
preprint arXiv:2403.03853.786

Mistral@AI. 2025. Mistral small 3.787

Orenguteng. 2024. Llama-3-8b-lexi-uncensored.788

Arka Pal, Deep Karkhanis, Samuel Dooley, Man-789
ley Roberts, Siddartha Naidu, and Colin White.790
2024. Smaug: Fixing failure modes of prefer-791
ence optimisation with dpo-positive. arXiv preprint792
arXiv:2402.13228.793

Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu,794
Ming Zhang, Lifeng Shang, Xin Jiang, and Qun Liu.795
2024. Preparing lessons for progressive training on796
language models. In Proceedings of the AAAI Con-797
ference on Artificial Intelligence, volume 38, pages798
18860–18868.799

Jupinder Parmar, Sanjev Satheesh, Mostofa Patwary,800
Mohammad Shoeybi, and Bryan Catanzaro. 2024.801
Reuse, don’t retrain: A recipe for continued pre-802
training of language models. arXiv preprint803
arXiv:2407.07263.804

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal- 805
ley, and Jianfeng Gao. 2023. Instruction tuning with 806
gpt-4. arXiv preprint arXiv:2304.03277. 807

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga- 808
vatula, and Yejin Choi. 2019. Winogrande: An ad- 809
versarial winograd schema challenge at scale. arXiv 810
preprint arXiv:1907.10641. 811

Mohammad Samragh, Iman Mirzadeh, Keivan Al- 812
izadeh Vahid, Fartash Faghri, Minsik Cho, Moin 813
Nabi, Devang Naik, and Mehrdad Farajtabar. 2024. 814
Scaling smart: Accelerating large language model 815
pre-training with small model initialization. arXiv 816
preprint arXiv:2409.12903. 817

George Stoica, Pratik Ramesh, Boglarka Ecsedi, 818
Leshem Choshen, and Judy Hoffman. 2024. Model 819
merging with svd to tie the knots. arXiv preprint 820
arXiv:2410.19735. 821

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 822
Jonathan Berant. 2018. Commonsenseqa: A question 823
answering challenge targeting commonsense knowl- 824
edge. arXiv preprint arXiv:1811.00937. 825

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 826
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 827
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 828
Azhar, et al. 2023a. Llama: Open and effi- 829
cient foundation language models. arXiv preprint 830
arXiv:2302.13971. 831

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 832
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 833
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 834
Bhosale, et al. 2023b. Llama 2: Open founda- 835
tion and fine-tuned chat models. arXiv preprint 836
arXiv:2307.09288. 837

Laurens Van der Maaten and Geoffrey Hinton. 2008. 838
Visualizing data using t-sne. Journal of machine 839
learning research, 9(11). 840

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 841
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 842
Kaiser, and Illia Polosukhin. 2017. Attention is all 843
you need. Advances in neural information processing 844
systems, 30. 845

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. 846
The bottom-up evolution of representations in the 847
transformer: A study with machine translation 848
and language modeling objectives. arXiv preprint 849
arXiv:1909.01380. 850

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen- 851
nrich, and Ivan Titov. 2019b. Analyzing multi- 852
head self-attention: Specialized heads do the heavy 853
lifting, the rest can be pruned. arXiv preprint 854
arXiv:1905.09418. 855

Jingcun Wang, Yu-Guang Chen, Ing-Chao Lin, Bing Li, 856
and Grace Li Zhang. 2024a. Basis sharing: Cross- 857
layer parameter sharing for large language model 858
compression. arXiv preprint arXiv:2410.03765. 859

11

https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501
https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored

Peihao Wang, Rameswar Panda, Lucas Torroba Hen-860
nigen, Philip Greengard, Leonid Karlinsky, Roge-861
rio Feris, David Daniel Cox, Zhangyang Wang, and862
Yoon Kim. 2023. Learning to grow pretrained mod-863
els for efficient transformer training. arXiv preprint864
arXiv:2303.00980.865

Shenzhi Wang, Yaowei Zheng, Guoyin Wang, Shiji866
Song, and Gao Huang. 2024b. Llama3-8b-chinese-867
chat (revision 6622a23).868

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.869
2024c. Svd-llm: Truncation-aware singular value de-870
composition for large language model compression.871
arXiv preprint arXiv:2403.07378.872

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen873
Chen. 2016. Network morphism. In International874
conference on machine learning, pages 564–572.875
PMLR.876

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. 2020.877
Autogrow: Automatic layer growing in deep convo-878
lutional networks. In Proceedings of the 26th ACM879
SIGKDD International Conference on Knowledge880
Discovery & Data Mining, pages 833–841.881

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao882
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024.883
Llama pro: Progressive llama with block expansion.884
arXiv preprint arXiv:2401.02415.885

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie886
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,887
Cong Yu, et al. 2020. Clue: A chinese language888
understanding evaluation benchmark. arXiv preprint889
arXiv:2004.05986.890

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,891
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan892
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2893
technical report. arXiv preprint arXiv:2407.10671.894

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan895
Li, Ru He, and Jingqiao Zhang. 2020. Progres-896
sively stacking 2.0: A multi-stage layerwise train-897
ing method for bert training speedup. arXiv preprint898
arXiv:2011.13635.899

Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:900
Large language model pruning via layer collapse.901
arXiv preprint arXiv:2402.11187.902

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan903
Wang. 2023. Masked structural growth for 2x904
faster language model pre-training. arXiv preprint905
arXiv:2305.02869.906

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali907
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a908
machine really finish your sentence? arXiv preprint909
arXiv:1905.07830.910

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.911
ChID: A large-scale Chinese IDiom dataset for cloze912
test. In ACL.913

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 914
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 915
2024. Llamafactory: Unified efficient fine-tuning 916
of 100+ language models. In Proceedings of the 917
62nd Annual Meeting of the Association for Compu- 918
tational Linguistics (Volume 3: System Demonstra- 919
tions), Bangkok, Thailand. Association for Computa- 920
tional Linguistics. 921

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, 922
Jingqi Tong, Conghui He, and Yu Cheng. 2024. 923
Llama-moe: Building mixture-of-experts from 924
llama with continual pre-training. arXiv preprint 925
arXiv:2406.16554. 926

A More Experiments 927

In this section, we provide additional experiments 928

and analyses on hyperparameter settings, loss de- 929

sign, and the effectiveness on the MoE model. 930

A.1 Impact of Layer Insertion Location 931

Previous studies (Yang et al., 2024b; Men et al., 932

2024; Cao et al., 2024) suggest that LLMs are gen- 933

erally less sensitive to layers near the output end, 934

which can be modified. Therefore, our main ex- 935

periment focuses on expanding layers closer to the 936

output end. We also aim to explore the perfor- 937

mance of our method when expanding layers near 938

the input end. Building on the main experiment, 939

we change the range of the expanded layers from 940

the original 15th to 31st layers to the 1st to 17th 941

layers. We then compare the PPL on Wikipedia 942

for the models after initialization, without further 943

training. 944

Layer Interval 15-31 1-17

PPL 6.35 57.32

Table 9: The model’s initialization performance is better
when layers are inserted at the output than at the input
end.

The results in Table 9 show that expanding layers 945

near the input end results in poorer initialization 946

performance than expanding near the output. This 947

suggests that our method is more effective when 948

layers are inserted closer to the output, aligning 949

with previous findings. 950

A.2 Ablation on Norm Loss 951

We investigate whether it is possible to train GW 952

without adding the norm loss L2. Compared to the 953

main experiment, we remove this loss and calcu- 954

late the average norm of the matrices in the newly 955

inserted layers predicted by GW . 956

12

https://doi.org/10.57967/hf/2316
https://doi.org/10.57967/hf/2316
https://doi.org/10.57967/hf/2316
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554

Model Llama3-8B +LESA +LESA+w/o L2

down_proj 80.88 80.70 13.18
up_proj 81.88 81.57 10.26

gate_proj 104.96 105.39 13.34
q_proj 69.16 69.28 8.85
k_proj 52.44 51.01 7.32
v_proj 19.88 18.98 2.91
o_proj 40.25 40.49 5.29

Table 10: Without the norm loss L2, the norms of the
matrices predicted by GW are very small, leading to
parameter degradation.

As shown in Table 10, without L2, the predicted957

matrices have very small norms, causing their val-958

ues to approach zero and leading to degeneration.959

However, with L2, the norms of the predicted ma-960

trices align with those of the original Llama3-8B961

matrices.962

A.3 Hyper-parameter Impact on Model963

Initialization964

In this section, we explore the impact of key hyper-965

parameters during the training of GW . We find that966

the number of epochs and learning rate affect the967

initialization performance of the model obtained968

through layer expansion. We also conduct exper-969

iments on Llama3-8B, varying the learning rate970

and epochs while keeping other hyper-parameters971

consistent with the main experiment.972

Learning Rate Epoch PPL

1e-3 5 6.35
1e-4 5 102.42
5e-4 5 6.82
1e-4 10 39182.51
5e-4 10 6.94

Table 11: Ablation study on the hyperparameters during
the training of WG .

The results in Table 11 show that adjusting the973

learning rate and epochs can sometimes cause the974

expanded model’s PPL to explode during initial-975

ization. This may be due to the limited number976

of training samples generated from a single model,977

leading to training instability. However, after tun-978

ing the hyper-parameters a few times, we are able979

to achieve a good initialization performance, with980

PPL values typically ranging between 6 and 7.981

Additionally, we find that the hidden-state size982

and the number of layers in GW have no significant983

impact on the performance of the expanded model.984

The loss’s λ only affects the matrix norm, but has985

minimal effect on the model’s performance. Ad- 986

justing λ to match the predicted matrix norm with 987

that of the original model is sufficient. 988

A.4 Effectiveness on MoE Model 989

Recently, LLMs based on the Mixture-of-Experts 990

(MoE) architecture have become increasingly pop- 991

ular. In this section, we explore the effectiveness of 992

LESA on such models. Due to the large size of cur- 993

rent MoE models, such as DeepSeek-R1 with 671B 994

parameters (DeepSeek-AI et al., 2025), which can- 995

not be loaded onto our server, we conduct exper- 996

iments on the smaller LLaMA-MoE-3.0B (Zhu 997

et al., 2024), which has 32 layers. 998

We use LESA to expand the model to 48 layers. 999

However, a unique aspect of MoE models is that 1000

each layer has an MLP router, and we have not yet 1001

devised a method to generate routers for the newly 1002

added layers, since the router is highly dependent 1003

on the performance of each expert. Our current 1004

approach is to replicate the previous layer’s router 1005

for the newly expanded layer. We use SOLAR 1006

as the baseline and then evaluate the PPL of the 1007

expanded model after initialization. The results are 1008

shown in Table 12. 1009

Model +LLaMA-MoE-3.0B +LESA +SOLAR

PPL 7.70 1923.14 76.50

Table 12: The MoE model’s initialization performance
on PPL with different scaling-up methods.

The results show that LESA experiences a sig- 1010

nificant increase in PPL, which we attribute to the 1011

mismatch between the router and the expanded pa- 1012

rameters. We will continue investigating this issue 1013

in future work. Meanwhile, SOLAR also performs 1014

poorly, increasing PPL by 10 times. This suggests 1015

that scaling-up methods for MoE models require 1016

further research. 1017

B SVD-Based Patterns 1018

We present the t-SNE visualizations of the top 1 1019

singular values corresponding to the vectors of V , 1020

obtained after applying SVD decomposition to the 1021

matrices in the MLP and self-attention of different 1022

models, in Figure 7 and Figure 8, respectively. 1023

13

up_proj down_proj gate_proj

Llama3-8B

Qwen2.5-1.5B

Llama2-7B

Figure 7: The gate_proj parameter matrices in the MLP of different models exhibit clear patterns of continuity
or clustering. This suggests that after applying SVD, the model’s parameters may be learnable. The parameter
distributions of other matrices appear more uniform in our visualizations.

q_proj k_proj v_proj

Llama3-8B

Qwen2.5-1.5B

o_proj

Llama2-7B

Figure 8: The parameter distributions of the matrices in the self-attention layers across different models appear
relatively uniform in our visualizations.

14

	Introduction
	Related Works
	Model Scaling-up
	Progressive Training

	Method
	SVD-Based Layer Pattern
	Learnable LLM Layer Scaling-Up

	Main Experiments
	Settings
	LESA Settings
	Continual Training

	Benchmarks
	Results
	Evaluation on Knowledge-Related Tasks

	Ablation Study
	Evaluation across Different Model Families
	Analysis of GW's Ability
	Single-Domain Pre-training
	Impact of SVD
	Impact of Freezing Layers during Continual Pre-training

	Conclusion
	More Experiments
	Impact of Layer Insertion Location
	Ablation on Norm Loss
	Hyper-parameter Impact on Model Initialization
	Effectiveness on MoE Model

	SVD-Based Patterns

