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Abstract

Video understanding relies on accurate action detection for temporal analysis.
However, existing mainstream methods have limitations in real-world applications
due to their offline and closed-set evaluation approaches, as well as their depen-
dence on manual annotations. To address these challenges and enable real-time
action understanding in open-world scenarios, we propose OV-OAD, a zero-shot
online action detector that leverages vision-language models and learns solely
from text supervision. By introducing an object-centered decoder unit into a
Transformer-based model, we aggregate frames with similar semantics using video-
text correspondence. Extensive experiments on four action detection benchmarks
demonstrate that OV-OAD outperforms other advanced zero-shot methods. Specif-
ically, it achieves 37.5% mean average precision on THUMOS’14 and 73.8%
calibrated average precision on TVSeries. This research establishes a robust base-
line for zero-shot transfer in online action detection, enabling scalable solutions for
open-world temporal understanding. The code will be available for download at
https://github.com/OpenGVLab/OV-OAD.

1 Introduction

Action detection is a practical and demanding technique in intelligent video analysis, including
anomaly detection [32] in surveillance and human-computer interaction [29] in embodied studies.
Considering high variations in possible human behaviors with dynamic scenes, action detection
is significantly challenging. In this regard, most action detection approaches go offline, involving
the closed-set classification and localization of actions (a few predefined categories) within the
long untrimmed videos. However, real-world applications concerning real-time understanding (e.g.
surveillance) require estimating the action without accessing future frames. Further, closed-set
discrimination limits the applicability of action detection, and it also asks for manually annotating
all action categories, especially in complex scenarios such as a wide variety of actions or events in
driving scenarios, which is both costly and time-consuming.

To address these challenges, we formulate online action detection in open-vocabulary and transfer
popular vision-language models (VLM) to tackle this problem via only paired vision-text supervision
for learning. A growing number of researchers have been investigating how to leverage the capabilities
of powerful VLM to address specific novel visual tasks of interest. For instance, existing studies [21,
31, 1, 6, 25, 33] have explored the transfer of visual knowledge from VLM to a video understanding
task to achieve zero-shot temporal action detection (ZS-TAD). Applying VLM to ZS-OAD is non-
trivial. Plain solutions, as the ZS-TAD approaches mentioned earlier, involve partitioning a subset of
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Figure 1: Overview of the online action detection. Models trained on closed-set actions (e.g., discus
and brush toilet) are unable to detect the novel action class (e.g., fry eggs). We train a visual-text
dual-encoder on web-collected video-text pairs without using frame-scale labels. It can discriminate
arbitrary action classes.

base-to-novel category data from the downstream dataset and further fine-tuning the visual language
model with a prompt-based technique to adapt it for novel tasks. However, this poses several issues.
First, sliding-window frame sampling used in online action detection often leads to a high proportion
of background frames, which contradicts the assumption of low background information for VLM
training. Second, the OAD model fails to reach future frames during training, making it difficult to
sample all category labels in the same batch. This is detrimental to the optimization of image-text
contrast loss since the contrast loss favors the diversity of samples. We experimentally explored these
hypotheses in Sec. 4.1.

Inspired by CLIP [34], given frames representation from a powerful VLM, we learn online motion de-
tection models purely through text supervision, thus avoiding the use of fine-grained temporal annota-
tions. To this end, we introduce the proposed object-centered decoder unit into the Transfomrer-based
model, enabling automatic aggregation of frames with similar semantics with textual supervision
exclusively. Fig. 1 illustrates the overall framework of our method. By employing contrast loss
during training on extensive video-text pairs, we enable the model to be zero-shot transferred to
different action detection vocabularies. Hence, we name our model Open-Vocabulary Online Action
Detector (OV-OAD). We pre-train OV-OAD on the video-text datasets, and manual frame-level labels
are not used whatsoever. We propose three proxy tasks including alignment of current frame-text
embedding, background frame mask prediction, and alignment of multi-label video-text embedding
for training. The first task enables the model to prioritize discriminative information from neighboring
frames. The second task enables the successful detection of complex background frames in natural
videos. The third task mitigates the impact of caption noise in web videos. Our model was evaluated
on four action detection benchmarks without any fine-tuning, i.e., THUMOS’14 [19], EK100 [13],
FineAction [27] and TVSeries [14] in a zero-shot manner. Extensive experiments demonstrate that
our model outperforms other advanced zero-shot methods. The main contributions are summarized
as follows:

• We investigate the critical problems of how to capitalize pre-trained visual language models
for zero-shot online action detection in untrimmed videos.

• We introduce a novel video-text dual-encoder architecture, namely OV-OAD, to perform
open-vocabulary online action detection. Experiments on the downstream datasets show
that our model successfully learns clusters of similar video frames and transfers them to
multiple action semantic vocabularies in a zero-shot manner.

• To our knowledge, our work is the first to explore zero-shot transfer from text supervision
alone to the online action detection task without relying on any precise frame-scale labels.
And we have established a robust baseline for this new setting.
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2 Related Work

Pretrained Vision-Language Model (VLM). Recently, the joint image-text learning paradigm
[16] has been successfully scaled up by CLIP [34] and ALIGN [20] with the massive web data. After
that, researchers have proposed many variations, including CLIP-Adapter [18], GLIP [24], and so
on. One VLM’s visual encoder can leverage textual descriptions to recognize objects or scenes in
images when category-specific samples are unavailable. In video domains, similar ideas have been
explored for action recognition (e.g., ActionCLIP [40], ViFi-CLIP [35]) and video understanding
(e.g., CLIPBERT [22], EffPrompt [21]).

Zero-Shot Temporal Action Detection Temporal action detection (TAD [36, 11, 48, 26]) is a video
understanding task involving simultaneous recognition and localization of actions within an uncut
video. Recently, efforts [21, 31, 1, 6, 25, 33] have utilized the pre-trained vision-language model to
give the TAD models with the capability to recognize novel action classes. For example, EffPrompt
[21] proposes a two-stage fine-tuning scheme for zero-shot temporal action detection (ZS-TAD) by
incorporating task-specific prompt vectors. STALE [31] introduces a one-stage model to mitigate
the error propagation problem encountered by EffPrompt by utilizing a parallel classification and
localization design. T3AL [25] presents a training-free ZS-TAD that leverages an effective test-time
augmentation strategy and external knowledge derived from generated subtitles. It is important to
highlight that all those ZS-TAD methods adopt a Base-to-Novel fine-tuning approach, which involves
dividing the dataset categories into training and inference subsets. Due to the strong diversity among
the TAD datasets and the limitation of its scale size, it has been challenging to showcase the model’s
generalization capabilities. By contrast, we train our open-vocabulary online action detection model
with large-scale video-text pairs only. During inference, the model does not require any additional
fine-tuning to recognize arbitrary action classes.

Onlne Action Detection. Contrary to offline motion detection, OAD does not predict action onset
timing and cannot access future visuals. Arguably, OAD emphasizes real-time response and openness
of recognition over the accuracy of action classification in practice. Existing researchers [17, 45, 15,
41, 46, 38, 4] often use closed-set datasets for training and testing, boosting recognition accuracy
and speed on single datasets. For example, IDN [15] improves the discriminative representation of
actions by selectively accumulating relevant information. OadTR [41] incorporates the fusion of
current features and future frames for identifying ongoing actions. LSTR [46] captures contextual
dependencies in videos, leading to improvements in action identification. E2E-LOAD [4] proposes
an end-to-end framework that integrates a stream buffer between the spatial and spatiotemporal
modeling. MAT [38] introduces a memory-anticipation-based pipeline to model the entire temporal
structure of a video. In contrast, our work shifts the focus to enhancing the open recognition capability
of OAD models. We aim to leverage readily available video-text pairs to zero-shot transfer visual
knowledge into the OAD model, thereby improving the model’s ability to handle unseen actions.

3 Methodology

Consider an untrimmed video V , we generate a clip sequence employing a sliding window of length
τ on V that moves frame by frame. On the t-th slide, we get a clip V t = {Vt−τ , . . . , Vt−1, Vt} where
Vt denotes t-th frame. Online action detection is to predict action probability ŷt in each frame Vt

using only past and current observations. We propose an open-vocabulary online action detection
model (OV-OAD) for zero-shot online action detection with text supervision only. Our approach,
illustrated in Fig. 2, consists of two primary components: a visual encoder and a text encoder. The
visual encoder comprises a distant neighboring-frame transformer block and an action clustering
one. We pre-train OV-OAD on a web-scale video-text dataset. In inference, we transfer the trained
model to the zero-shot online action detection without any fine-tuning, as described in Sec. 3.3, and
it can predict arbitrary action classes. We ignore the subscripts of individual images and text pairs for
simplicity.

3.1 Architecture

3.1.1 Visual Encoder
The visual encoder is composed of a distant neighboring-frame transformer block (with a light grey
background in Fig. 2), and an action clustering block (with yellow background in Fig. 2) with an
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Figure 2: The illustration of our OV-OAD (best viewed in color), is formulated in a visual-text dual-
encoder manner. Specifically, the visual encoder consists of a distant neighboring-frame transformer
block (ΨDNTR, light grey backdrop) and an action clustering block (ΨAC , yellowish backdrop). The
ΨDNTR is built with Transformer Decoder units, which take the neighboring tokens and distant past
tokens as inputs. The ΨAC is built with our Object-Centric Decoder and vanilla Transformer Encoder
units, which take the output tokens (orange squares) and learnable group embeddings (purple gradient
squares) as inputs. During testing, the OV-OAD handles each incoming video snippet online, absent
future context.
object-centric decoder. For a given video clip-text pair, denoted as (Vt, T ), we initially divide the
video into extended past frames Vt

P ∈ R(τ−n)×d and neighboring ones Vt
N ∈ Rn×d. All frames Vt

are processed in the Distant Neighboring-frame TRansformer block ΨDNTR, which comprises the
transformer decoder unit [37]. Then the neighboring frames Vt′

N aggregated with the information of
past frames are fed into the Action Clustering block ΨAC , along with k learnable group embedding
(G ∈ Rk×d), that aims to bind the neighboring frames into clusters. The outputs of the visual encoder
are defined as:

(G,Vt′) := ΨAC(
[
G;Vt′

N

]
) ◦ΨDNTR(Vt

P ,Vt
N ), (1)

where the symbol ◦ represent a function composition, G ∈ Rk×d denotes the encoded group
embeddings, while Vt′ ∈ Rn×d refers to the output video frame tokens.
Distant Neighboring-Frame Transformer. It utilizes neighboring frames as queries to extract
information from frames in the distant past. It is predominantly composed of four layers of standard
transformer decoder units. Each frame in the video is augmented with 1-dimensional absolute
positional encoding, independently applied to both past and neighboring frames. A directional
attention mask is incorporated only for the neighboring frames, ensuring unidirectional information
flow toward the current frame. Intuitively, the current frame embedding Vt′

N [−1] with more spatial
information, will be aligned with the corresponding text as a raw video clip representation.

Action Clustering. The action clustering block namely ΨAC assembles frames into groups and
aligns the groups to human-understandable categories in a data-driven manner, only supervised by
video-text pairs. It consists of three steps, i.e., the frame-to-group binding that assigns static frames
with similar semantics to a group, the group-to-action mapping that computes the cosine similarity
between the group embeddings with the action labels, and background mask proposing that predicts a
set of binary masks by computing statistics from the frame-group similarity matrix A.

In its training, we devise a binary prediction task to cluster frames into background and non-
background as well as the grouping. The background mask MB is predicted as:

A := softmax(
K@Q⊤
√
d

), MB := A · G · T ⊤, (2)
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where A ∈ Rn×k is derived from the attentional weights in slot-attention computation. It denotes
the likelihood of each video frame being assigned into k learnable group embeddings. In Eq. 2, the
group embeddings serve as the query Q, and frame tokens serve as keys and values. With the softmax
operator normalizing over k, and the output of the slot-attention block is A⊤V , which is of shape
k × d. The tensor T ∈ R1×d represents the d-dimensional embeddings of the video caption.

In its evaluation, similar to the computation of MB, a video clip’s action prediction score namely
PAC ∈ Rn×C can be calculated as follows:

PAC := one-hot(argmax
k

(A)) · G · T ⊤
val . (3)

In contrast to Eq. 2, the frame-group similarity matrix A requires one-hot hard coding, while
Tval ∈ RC×d is encoded by the C categories descriptions in the test set.

Object-Centric Decoder Unit. To group frames, we give an Object-Centric (OC) Decoder unit
employing a slot attention mechanism [28] focused on the query object during cross-attention
computation. It works similarly to the previously proposed GroupViT [43] and OVSegmentor [44]
methods, which are specifically designed for semantic segmentation tasks.

As illustrated in Fig. 2, it requires two sets of inputs, i.e., target queries G consisting of a fixed number
of k encoded grouping embedding and n input frame tokens Vt′

N to be queried, where n can be a large
number. Following a layer of multi-head self-attention, G is transformed to G′. G′ is then employed
as a query in the second layer of multi-head slot-attention, while the frame tokens Vt′

N serve as the
key and value. These two steps can be expressed as

G′ := softmax(
G · G⊤
√
d

) · G, SlotAttn(θ(G′),Vt′

N ) :=

[
softmax(

Vt′

N · θ(G′)⊤√
d

)

]⊤
· Vt′

N , (4)

where θ : Rk×d ⇒ Rk×d denotes the dropout and norm operations.

3.1.2 Text Encoder
We adopt the pre-trained Text Transformer defined in CLIP [34] as the text encoder ΨT . To bridge
the gap between image-text and video-text models, we utilize the Adaptformer technique [7], for
lightweight transfer learning. We adopt the practice of setting up parallel adapters in each transformer
block of ΨT . For the input text, we use the CLIP Tokenizer [34] to add the tokenizer start [SOT ] and
tokenizer end [EOT ] at the beginning/end. The text embedding is computed as T = ΨT (T ), where
T ∈ R·×l represents the tokenized caption with a length of l.

3.2 Video-text data for online action detection.
Web video-text datasets [8, 42] are abundant in data volume, but their captions are typically pre-
labeled by image-text generative models [23, 9] and then filtered by humans semi-automatically.
Consequently, these annotations are extremely noisy and include fantasy elements, despite being
semantically rich and diverse. Additionally, we employ a sliding window approach to capture both
the video frame and its corresponding text description during the live-streaming video. These factors
introduce inherent bias in the visual and textual information of a sample pair. To achieve relatively
accurate textual captions of the visual information in the video, we employ a multi-label contrast
learning strategy. To generate multiple captions, we employ a linguistic analysis tool (e.g., the nltk
toolkit [2]) when the raw labels are not enough. This tool extracts verb-object phrase structures from
the given descriptions, which are then utilized as keywords to create additional captions, drawing on
CLIP’s prompting engineering. To handle redundant captions, we choose the text associated with the
highest number of frames as the global descriptor, and the remaining captions are utilized to compute
the multi-label contrast loss. In the absence of any tags, we utilize the keyword "background" for
sentence construction and as the global descriptor.

3.3 Optimization and Inference
We train the model through three proxy tasks, i.e., video-text alignment, current frame-text matching,
and background mask prediction. The total loss is: Ltotal = Lcontras + αLcurrent + βLmask, where α, β
are trade-off parameters controlling the relative weight of the above cost functions. Each used loss is
detailed below.
Current Frame-Text Alignment. We adopt Image-Text Contrastive loss (LITC) to learn whether
the current frame image matches the caption. We denote the image embedding (from the distant
neighboring-frame Transformer block) and the text embedding as zI and zT , respectively. Both
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embeddings are projected into a 512-dimensional joint feature space before calculating the matching
loss. The current frame-text contrastive loss Lcurrent is:

Lcurrent = LITC(z
I , zT ) = −1

2

(
log

exp(zIi · zTi /τ)∑B
j exp(zIi · zTj /τ)

+ log
exp(zTi · zIi /τ)∑B
j exp(zTi · zIj /τ)

)
, (5)

where τ is a temperature parameter to scale the logits, and B denotes the batch size.
Multi-Label Video-Text Alignment. We employ the multi-label video-text contrastive loss to align
the visual and language representations for enhancing the textual representations of videos. The
multi-label video-text matching loss Lcontras is:

Lcontras = LITC(z
V , zT0 )−

1

2

(
log

∑M
m exp(zIi · zTm

i /τ)∑M
m

∑B
j exp(zIi · zTm

j /τ)
+

1

M

M∑
m=1

log
exp(zTm

i · zIi /τ)∑B
j exp(zTm

i · zIj /τ)

)
,

(6)
where zV is computed as the average of the output Vt′ from the visual encoder. {zT0 , zT1 , . . . , zTM }
are text embeddings, constructed in Sec. 3.2. All embeddings are mapped into 256-dimensional
vectors. Refer to Eq. 5, zT0 denotes a global descriptor selected from the multi-label captions.

Background Mask Proposal. Through video captions, we can roughly determine which frame
chunks are background and which ones correspond to actions. This prior helps the action clustering
block effectively group and bind the majority of background frames. To enhance the concatenation
region between the predicted background mask MB and the caption pseudo mask MGT , we employ
a per-frame binary mask loss. Following Maskformer [10], we use dice loss [30] for our mask loss,
i.e., Lmask = Ldice(MB ,MGT ). The binary mask MGT is derived from the neighboring frames
Vt
N of the input to the action clustering block. It is set to “1” for frames with a caption and “0” for

frames without captions.
Zero-Shot Online Inference Similar to CLIP’s zero-shot transfer [34], our distant neighboring-
frame Transformer block can assign the current frame image to the semantic category with the
highest image-text embedding similarity. During online inference, similar to Eq. 3, the action
prediction score namely PDNTR ∈ R1×C for the current frame of a video clip can be written as
PDNTR = Vt′

N [−1] · T ⊤
val.

The action clustering block can also estimate frame action without fine-tuning. We calculate the
similarity between the embedding of each frame token and the text embedding of the dataset. Then,
we assign each frame token to the corresponding category with the highest similarity. This zero-shot
transfer pipeline is depicted in Eq. 3. In summary, the final action prediction score ŷt ∈ R1×C for a
video clip V t can be expressed as: ŷt = PAC [−1] + αPDNTR.

4 Experiments
Our run experiments on NVIDIA V100 ×8 using Pytorch 1.11.0. During both training and inference,
we resample the video raw frame rate (e.g., 24/30 FPS) to 4 FPS, and resize images to 224 × 224
[49, 46]. For feature extraction, we employ the CLIP model (ViT-L). Specifically, the visual encoder
computes a series of image patch tokens along with one global token (aka, CLS token) for each frame,
and we utilize the normalized CLS token as the output feature encoding. Unless otherwise specified,
all parameters of the visual encoder in our OV-OAD model are initialized from scratch, while the
text encoder is initialized with the CLIP, except for the additional Adapter parameters. We train our
OV-OAD for 30 epochs with 2 warm-up epochs using the Adam optimizer with weight decay 5e−2.
It uses a cosine schedule with a batch size of 256, and the initial learning rate is 1.6e−4.
Pre-training Datasets. We use the filtered InternVid-10M-FLT (aka, InternVid [42]) and the
ActivityNet v1.3 (aka, ANet [3]) datasets for training, which are originally collected ∼4M and 14950
untrimmed video-caption pairs from the web, respectively. However, the videos within the InternVid
dataset typically have longer durations compared to ANet, and the average percentage of foreground
frames with annotations on these videos is only 27.4%. We sort the ∼4M videos in the InternVid
dataset according to the number of caption annotations they contain and take the top 5000 videos
(namely InternVid-5K) for training. For ANet, we utilize the prompting technique (following [35, 12])
to convert the short action tags into sentences. And we combined its training and test sets and utilized
them collectively for training. Please see Appendix A.2 for complete dataset preparation.
Benchmarks. We follow previous works [47, 5, 4] and evaluate our model for the zero-shot online
action detection on the validation splits of the THUMOS’14 [19], TVSeries [14], EPIC-Kitchens-100
(aka, EK100 [13]), and FineAction [27] datasets. THUMOS’14 and TVSeries datasets comprise 20
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Table 1: Benchmark evaluation on THUMOS’14 and
TVSeries. "IVid" denotes InternVid-5K.

Methods Arch THUMOS’14 TVSeries

mAP (%) cAP (%)
CLIP-I ViT/B 28.0 67.7
CLIP-I ViT/L 29.6 69.3
CLIP-II ViT/B 29.1 69.5
CLIP-II ViT/L 30.9 71.1
CLIP-III ViT/B 29.7 71.6
OV-OAD (IVid) ViT/B 33.2 73.8
OV-OAD (ANet) ViT/B 37.5 73.2

Table 2: Benchmark evaluation on FineAction and
EK100.

Methods Arch FineAction EK100 (Verb)

mAP (%) cAP (%)
CLIP-I ViT/B 26.5 40.1
CLIP-II ViT/B 27.8 39.9
OV-OAD ViT/B 29.2 41.4

Table 3: Base-to-novel and fully-supervised
evaluation on THUMOS’14 dataset.

Train-Test
Split Methods THUMOS’14

mAP (%)

100% Seen
0% Unseen

OadTR-D8 47.4
LSTR 47.7
MAT-D48 48.2

CLIP-I† 28.0
OV-OAD† 37.5

75% Seen
25% Unseen

OadTR-D8 33.7
LSTR 26.9
MAT-D48 25.5

CLIP-I† 38.6
OV-OAD† 44.6

50% Seen
50% Unseen

OadTR-D8 9.6
LSTR 9.1
MAT-D48 7.9

CLIP-I† 28.6
OV-OAD† 35.9

and 30 foreground action categories, respectively. EK100 and FineAction datasets comprise 97 verb
classes and 106 foreground action labels, respectively. An additional background class is considered
for all datasets. Turn to the Appendix A.3 for dataset details.

We evaluate metrics for online motion detection based on previous studies [38, 46, 4]. Specifically,
we applied per-frame mean average precision (mAP) on THUMOS’14 [19] and FineAction [27], and
per-frame calibrated average precision (cAP) on TVSeries [14] and EK100 [13].
4.1 Comparison with Existing Methods
We conducted a comparison of the zero-shot online motion detection metrics between our method
and other zero-shot baselines. We also explore the base-to-novel fine-tuning approach for zero-shot
OAD and compare it to our OV-OAD model.
Comparison with Zero-Shot Baselines. We utilize visual language models with image zero-shot
capabilities (i.e., CLIP) for comparison. The inference process of online action detection involves
sliding frame-by-frame sampling on an untrimmed video and subsequently predicting the action
class of the last frame (aka, the current frame). We can set the sliding length to 1 and classify the
actions based on a single frame image to simplify the inference. To zero-shot transfer CLIP to
online action detection, We first extract the features of the frame images using its visual encoder, and
then, we compute the similarity between the visual features and the text embedding of the dataset
action labels. We can perform several non-parametric processes on the visual embeddings, including:
1) Averaging the visual embeddings of the neighboring frames to obtain the visual feature of the
current frame, named CLIP-II; 2) Non-parametric clustering of all sampled frames (e.g., K-means
algorithm), followed by averaging the visual embedding of the group to which the current frame
belongs, resulting in the visual feature, named CLIP-III; 3) Directly using the visual embedding
of the current frame as the visual feature, dubbed as CLIP-I. Table 1 presents the experimental
results, clearly demonstrating the superior performance of our OV-OAD over other non-parametric
zero-shot methods. It is worth noting that enhancing the scale of the visual language model leads
to a moderate increase in single-frame action prediction accuracy. However, this improvement is
constrained, indicating that relying solely on robust image discrimination is insufficient for achieving
high performance. Consequently, it is essential to incorporate temporal structure information into the
learning process for effective online action recognition.

Furthermore, as depicted in Table 2, we delve into the zero-shot performance of OV-OAD on more
demanding datasets. We evaluate OV-OAD’s performance on the first-view shots dataset called
EK100. This dataset comprises first-view shots and notably deviates from the ANet data distribution.
We also assess the performance of OV-OAD on the large-scale dataset, FineAction, which includes
∼4,000 uncut videos categorized into 106 action classes. The outcomes indicate that OV-OAD
exhibits superior generalization capabilities in online action detection when contrasted with CLIP.
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Table 4: Ablation study on the current frame-caption
contrastive loss (Lcurrent) and background mask loss
(Lmask). The baseline only uses the multi-label video
clip-text contrastive loss (Lcontras).

Lcontras Lcurrent Lmask mAP (%)
✓ 32.9
✓ ✓ 36.3
✓ ✓ 33.6
✓ ✓ ✓ 37.5

Table 5: Results of different num-
ber of frame tokens about Vt

N and
Vt
P .

Vt
P

Vt
N #4 #8

#16 36.1 37.1
#24 36.7 37.5
#28 37.1 36.9
#32 35.9 36.5

Table 6: Results of different num-
bers of Transformer units for
ΨAC and ΨDNTR.

ΨDNTR ΨAC mAP (%)
0 9-3 31.9
0 5-3 33.2
0 6-6 33.3
4 6-2 37.5
4 6-0 36.9

Table 7: Results of different designs of the ΨDNTR block.
“TR” denotes Transformer. “OC” means Object-Centric.
The penultimate row is our proposed OV-OAD design.

Block ΨDNTR Clustering Unit mAP (%)
n/a OC Decoder 33.3
4×TR Encoder OC Decoder 35.6
4×TR Encoder+1×Cross Attn OC Decoder 36.5
4×TR Decoder OC Decoder 37.5
4×TR Decoder TR Decoder 37.0

Comparison with base-to-novel methods. We compare base-to-novel fine-tuning methods and
fully-supervised transfer to online action detection on the THUMOS’14 dataset. For base-to-novel
generalization, we integrate three well-known Transformer-based online action detection models
including OadTR [41], LSTR [46] and MAT [38] with a text encoder using the image-text contrastive
loss. To ensure statistical significance, we adopted the random sampling setup and dataset partitioning
method proposed by [21]. For our experiments, we employed two evaluation settings on the THU-
MOS’14 dataset, i.e., training on 75% of the action categories and testing on the remaining 25%, and
training on 50% of the categories while testing on the remaining 50%. We followed the experimental
fine-tuning setup of [35], including the Adam optimizer, the learning rate 1e−3, and the Cosine decay
function for training. For fully supervised transfer, we also train these models on 100% of the action
categories with inputs of video frame features extracted by CLIP/ViT-B. We followed the training
setup in [41, 46, 38] for the experiment, which remained consistent except for the different feature
extractors. All experimental results are reported in Table 3, † indicates that the model has not seen
any categories and directly tests the performance of the unseen categories. The MAT-D48 indicates
that MAT utilizes the ground truth of future frames (48 frames in 12 seconds) during training. We
observe that the recent MAT method achieves better performance in the fully-supervised setting,
but its performance is poor in the base-to-novel setting. One can find that our OV-OAD model
outperforms the competition even without utilizing any training data. The results indicate that the
base-to-novel fine-tuning method is not suitable for direct application to the zero-shot online action
detection task. The limited availability of data may be a contributing factor to the unsuitability of the
base-to-novel fine-tuning approach for online motion detection models.

4.2 Ablations
Proxy Tasks. We aim to validate the effectiveness of the three proxy tasks we introduced, namely
current frame-text alignment, multi-label video-text alignment, and background mask proposal. As
reported in Table 4, our baseline model employs the multi-label video-text contrastive loss Lcontras

only, upon incorporating the current frame-text matching loss Lcurrent, we observed a substantial
improvement of 3.4% in mean Average Precision on the THUMOS’14 dataset. The performance
improvement is due to the model’s ability to capture spatio-temporal information from extended past
frames. In addition, the prediction of the background frame mask also leads to improvements, and
combining both results in optimal performance. This finding suggests that enhancing the model’s
capability to detect background frames is equally important.

Number of Layers and Frames. We first conduct an evaluation to assess the influence of inputting
different numbers of neighboring and past frames on the model’s performance. As depicted in Table
5, our OV-OAD model demonstrates flexibility with different frame choices, resulting in a maximum
performance variation of 1.6%. Note that, the highest mean Average Precision is achieved when
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utilizing Vt
N = 8 and Vt

P = 24. In addition, we investigate the effect of the number of network
layers in different blocks on the performance. The results are presented in Table 6, we find that
increasing the number of layers for the first Transformer Encoder of our action clustering block results
in a notable decline in performance. Conversely, a small number of layers for the last Transformer
Encoder proves to be sufficient.
Distant Neighboring-Frame Transformer. We further investigate the design of the proposed distant
neighboring-frame transformer block ΨDNTR. Unless specified otherwise, we employ 2-second
neighboring frames, 6-second distant past frames, and CLIP/ViT-B pre-trained features.
a) Can we remove the ΨDNTR block? To implement this, we directly input all 8-second sampled
video frames into our action clustering block, where the object-centered group module could easily
cluster frame tokens that exhibit similarity. To ensure fairness, we set the number of Transformer
layers in the action clustering block to be equal to the total Transformer layers in OV-OAD. As can be
seen from Table 7 (row 4 vs. row 1), OV-OAD exceeds this baseline clearly. This also demonstrates
the validity of our idea of applying neighboring frames to query spatio-temporal information from
distant past frames.

b) Can we remove the final Transformer encoder in ΨAC block? Experiments were conducted to
analyze the impact of removing the final transformer encoder on the model’s performance. The result
presented in the Table 7 (row 5 vs. row 4) indicates a marginal performance decrease of around 0.6%
upon removing the final transformer encoder. Additionally, this action results in a 15% reduction in
certain training parameters, specifically in the visual encoder.
c) Can ΨDNTR block be learned efficiently using the Transformer encoder unit? Here, we
aim to explore whether the ΨDNTR block can be learned efficiently using Transformer encoders
only. To be specific, we combine the neighboring with distant past frames and feed them into a
4-layer ΨDNTR block based on a standard Transformer encoder implementation. Table 7 (row 4
vs. row 2) illustrates that this baseline is clearly lower than our ΨDNTR block constituted by the
Transformer decoders. Furthermore, we introduced an additional layer of cross-attention after the
4-layer Transformer encoder to create a new baseline. We aim to assess the effectiveness of the
"bottleneck" design of cross-attention within the ΨDNTR block. Note that such an implementation
also completes the process of querying discriminative information from distant past frames. Table 7
(row 4 vs. row 3) shows that the cross-attention design does exhibit effectiveness, but it falls short of
achieving top performance.

d) Ablation for the Action Clustering Block. Here, we analyze the impact of an object-centric
decoder compared to a standard Transformer decoder unit within the action clustering block. Both
are designed to bind semantically similar static frames into a group embedding. Table 7 (row 5 vs.
row 4) demonstrate that the object-centered decoder outperforms the standard transformer decoder in
performance.

On Adapting Text Encoder For our baseline approach, following the initialization of our OV-
OAD’s text encoder with the CLIP’s text encoder weights, we release the weights to continue training.
Then, we conduct experiments to explore the performance impact of two separate modifications: 1)
fix the full backbone parameters and 2) incorporate the Adapter structure. The results are depicted
in Table 8, one can see that leveraging the Adapter technique leads to a substantial improvement in
performance. Moreover, to achieve the best results, it is necessary to release the backbone parameter
and continue training.

4.2.1 Inference Speed.
We compared the model parameters and efficiency of our OV-OAD model with other methods on
a single NVIDIA Tesla V100 GPU, given in Tab. 9. Note traditional supervised learning methods,
the efficiency bottleneck of the system is primarily attributed to the optical flow computation and its
feature extraction. Our OV-OAD eliminates the need for optical flow computation and the extraction
of spatio-temporal features from the RGB image. The overall system achieves an impressive inference
speed of 292.3 frames per second (FPS). The findings indicate that our model has the potential to be
deployed on standard online video capture devices, enabling real-time action prediction capabilities.
In particular, LSTR demands a larger number of input frames for optimal performance, using 520
seconds of video for inference on THUMOS’14, while our OV-OAD utilizes only 8 seconds. This
means that LSTR requires 65 times more data than OV-OAD, which likely explains why our model’s
inference speed is six times faster. Furthermore, the primary speed bottleneck for LSTR is the
extraction of optical flow (8.1 FPS), whereas for our model, it is the extraction of image features
(292.3 FPS).
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Table 8: Ablation study on Text Encoder.
Pre-trained Fixed Adapter mAP (%)

✓ 36.7
✓ ✓ 35.8
✓ ✓ 37.5
✓ ✓ ✓ 35.5

Table 9: Efficiency comparison on parameter (M) and
inference speed (FPS)

Methods #Param
Frames Per Second

Optical
Flow

RGB
Feat

Flow
Feat Model

OadTR 75.8M
8.1 70.5 14.6

110.0
LSTR 58.0M 91.6
MAT 94.6M 72.6
OV-OAD 109.5M - 292.3 - 571.4

4.3 Limitations
End-to-end online motion detection systems require simultaneous learning of spatial and temporal
structures for optimal results. Our OV-OAD model utilizes the CLIP’s visual encoder to extract
features from pure images. This would cause the network to focus too much on modeling foreground-
centered spatial information at the expense of modeling spatio-temporal structure information. This
does not fit the requirements of action recognition for visual representations since learned RGB
features from a video commonly contain some of the temporal structural information, e.g., RGB
features extracted by TSN [39] have some of the properties of optical flow features. Therefore
extending OV-OAD to simultaneously model scenario and temporal information and enable action
recognition with an open vocabulary remains a challenging problem.
Failure Cases. Our objective is to identify categories that exhibit poor recognition as well as
those with high recognition rates. We provide a list of categories with the highest and lowest action
recognition average precision in Table 10. Additionally, we present visual samples of these categories
in Fig. 3. We find that the detection accuracy decreases in scenarios where the foreground of the
action is relatively low, and multiple actions share similar backgrounds (e.g., "CliffDiving" and
"CliffShot"). However, OV-OAD demonstrates better performance when the foreground or interacting
objects are more distinct, as observed in cases like "CleanJerk" and "PoleVault". These findings
suggest that future enhancements can focus on improving the recognition of fine-grained actions
through joint modeling of spatio-temporal information.

Table 10: Action classes with the highest and lowest performance on THUMOS’14.
Action Classes CleanJerk PoleVault GolfSwing CliffDiving BaseballPitch CricketBowling Billiards CricketShot
AP 72.38 67.88 63.56 49.08 13.17 20.27 22.65 24.38

Cricket BowingBaseball Pitch Cricket ShotBilliards

Figure 3: Failure recognition cases on THUMOS’14. We use the red box to indicate the location of
the action that is taking place.

5 Conclusion
In our study, we take the initial step towards leveraging text learning for online action detection without
explicit human supervision. Our findings demonstrate that by employing OV-OAD, reproductions
acquired from large-scale video-text pairs, even with noise, can be successfully transferred to online
action detection in a zero-shot manner. Moreover, we highlight that the conventional approach of
base-to-novel fine-tuning does not yield favorable results on traditional online action detection test
datasets. Instead, we illustrate that similar semantic frames can be directly clustered and transferred
to downstream action detection datasets using abundant textual supervision.
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Table 11: Video-Text model evaluation on THUMOS’14.

Methods Arch THUMOS’14

mAP (%)
ViCLIP-I ViT/B 23.0
ViCLIP-II ViT/B 24.1
ViCLIP-I ViT/L 25.7
ViCLIP-II ViT/L 26.3
CLIP-I ViT/B 28.0
CLIP-II ViT/B 29.1
OV-OAD ViT/B 37.5

Table 12: The impact of PAC for zero-shot performance on THUMOS’14.

Weight of PAC THUMOS’14 mAP (%)
1.0 37.5
0.0 34.1

A Appendix

A.1 More Ablations

Can we use the Video-Text model as a visual extractor? Another promising visual extractor to
consider is employing a video-text model, instead of an image-text model, utilizing a sliding window
approach. We opted for ViCLIP [42], a straightforward video-text baseline model, to directly assess
its performance for zero-shot online motion detection on the THUMOS’14 dataset. Following the
pre-training settings of [42], we employed a sliding window that samples 8 frames for input into
the visual encoder, aligning with the CLIP-II methodology. Moreover, we exclusively fed the last
frame of the sliding window, aligning with the CLIP-I approach. The Table 11 showcases the results,
indicating that employing the video-text pretraining model directly for zero-shot inference in online
action detection results in unsatisfactory performance. Although ViCLIP can leverage information
from the entire video during pretraining, its ability to capture only very brief video frames during
online motion detection inference limits its performance significantly.

Can we remove PAC? During inference, the prediction of the current frame comprises two
components: the action clustering block (PAC ) and the distant neighboring frame Transformer block
(PDNTR), as indicated in Section 3.3. As illustrated in the Table 12, excluding the scores of PAC

leads to significant performance drops.

A.2 Dataset Preparation

ANet. ActivityNet v1.3 is an innovative and expansive benchmark dataset designed for human
activity understanding in videos. It serves as a comprehensive resource to address the challenges
of recognizing and analyzing a wide range of complex human activities relevant to everyday life.
The main objective of ANet is to provide a diverse collection of video samples that cover a broad
spectrum of human activities. Currently, the dataset offers samples from 203 distinct activity classes,
ensuring a comprehensive representation of various actions and behaviors. On average, there are 137
untrimmed videos available per class, with each video containing an average of 1.41 instances of the
corresponding activity. In total, the dataset comprises an impressive 849 hours of video content.

It is worth noting that ANet’s annotation is not performed on live frames due to cost considerations.
It only annotates the time points of meaningful actions present in a video, and not every semantic
action is annotated. Since it filters the video before annotation, the duration of each video is relatively
short and the proportion of background frames in the video is relatively low. After our statistics, its
background frames account for 35.82% of the total frames. Most of the researchers use ANet as a
pre-training dataset for action recognition. Instead, we deal with it as a video text dataset. When
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processing the ANet dataset, we employ the prompting project combined with the original action tags
as keywords for sentence construction.

InternVid-5K. InternVid is a significant multimodal dataset that focuses on video-centric learning
for multimodal understanding and generation tasks. It serves as a valuable resource for developing
powerful and transferable video-text representations. The InternVid dataset is vast, comprising over
7 million videos with a cumulative duration of nearly 760,000 hours. Within this extensive video
collection, there are 234 million video clips available, each accompanied by detailed descriptions that
consist of a total of 4.1 billion words. The dataset’s multimodal nature combines visual and textual
information, enabling researchers to explore the relationship between videos and their accompanying
descriptions.

The annotations provided by InternVid for this paper offer valuable information, but they pose
challenges for our pre-training process. This is because video annotations generated using large
models of image-text often contain text noise and inconsistencies. Additionally, these annotations
tend to be concentrated in specific segments, lacking homogeneity. These features present difficulties
for online action recognition tasks. To address these challenges, we conducted a thorough examination
of the syntax in InternVid’s text data and identified certain speech defects in the annotations. We
filtered the training samples extensively to mitigate these issues. Initially, we selected 100,000
videos by sorting them based on the total number of annotated entries in each long-term video.
Subsequently, we applied additional filtering based on the ratio of annotated frames to the total
number of frames. Through this process, we selected 5000 samples of temporal text-pair data to form
the InternVid-5K dataset. Depending on the acceptance of the paper, we plan to release the metafile
of the modified dataset, which incorporates the aforementioned alterations, to further improve the
quality and consistency of the annotations.

A.3 Benchmarks

THUMOS’14. The THUMOS’14 (THUMOS 2014) dataset is a significant video dataset widely
used for action detection and recognition tasks. In the THUMOS’14 dataset, there are 220 videos in
the validation set and 212 videos in the testing set that have been annotated with temporal boundaries.
These annotations provide precise information about the start and end times of specific actions
within the videos. With its extensive video collection, class diversity, and temporal annotations, the
THUMOS’14 dataset serves as a valuable resource for advancing state-of-the-art in action detection
research.

TVSeries. The TVSeries Dataset is a comprehensive and realistic large-scale dataset specifically
designed for action detection tasks. It encompasses a total of 16 hours of video content extracted
from six recent TV series. The dataset includes a diverse range of scenes and contexts, offering a
representative sample of real-world action scenarios. Within the TVSeries Dataset, there are thirty
distinct action classes defined, covering a wide spectrum of human activities. Each action instance in
the dataset is meticulously annotated with precise start and end times, providing valuable temporal
information for action detection algorithms.

FineAction. FineAction comprises 103,000 temporal instances across 106 action categories, an-
notated within 17,000 untrimmed videos. The dataset offers new opportunities and challenges for
online action detection, characterized by finely defined action classes, diverse attributes, multiple
instance annotations, and concurrent actions from various classes. With around 4,000 uncut videos
categorized into 106 classes like “Household Activities", “Personal Care", “Socializing", “Relaxing",
“Sports", and “Exercise", FineAction sets the stage for innovative research.

EPIC-KITCHENS-100. EPIC-KITCHENS-100 (EK100) includes first-person perspective shots
and significantly differs from the ANet data distribution. EK100 contains 100 hours of video, 20
million frames, and 90,000 action segments across 45 environments, with narrations mapped to
97 verb classes and 300 noun classes. This dataset addresses various challenges such as action
recognition, detection, and anticipation, offering a platform to assess model generalization across
time and diverse contexts.
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A.4 Explain the Performance Differences on THUMOS’14 and TVSeries.

The case of pre-training with ANet. The variance in improvements between THUMOS’14 and
the TV series can be attributed to the resemblances in data distribution across these two datasets and
our utilization of ANet. The substantial boost of OV-OAD on THUMOS’14 can be attributed to ANet
encompassing a broader array of action categories. By employing a method of close comparison in
natural language, we identified 8 similar action phrases within THUMOS’14’s 20 action categories,
constituting 40% of its overall categories. In the TV series dataset, we identified 9 similar action
categories out of 30, equating to 30% of its total categories.

Using different pre-training datasets. Similarly, OV-OAD achieves better performance on THU-
MOS’14 due to the fact that ANet covers a wider range of action categories than IVid. Using the
same natural language tools, we compared the coverage ratios of ANet and IVid for THUMOS
categories, which stood at 40% and 15%, respectively. To elaborate, when contrasting the IVid and
THUMOS datasets, we considered 500 high-frequency verbs as the action categories for IVid. Then,
we pinpointed 3 categories from them that were similar to THUMOS’14.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Sec. 4.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: TODO
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed the datasets, models, and experimental procedures
used in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released our code, data, and OV-OAD models at https://github.
com/OpenGVLab/OV-OAD.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides extensive information about the statistical significance of
our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments compute resources have been discussed in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully follow the ethics guidelines of NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Sec. 4.3.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use publicly available datasets, benchmarks, and models for training and
evaluation, free from any possible harm toward individuals or groups.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We use publicly available datasets, benchmarks, and models for training and
evaluation, free from any possible harm toward individuals or groups.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We use publicly available datasets, benchmarks, and models for training and
evaluation, free from any possible harm toward individuals or groups.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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