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Abstract
Global cooperation on climate change mitigation
is essential to limit temperature increases while
supporting long-term, equitable economic growth
and sustainable development. Achieving such
cooperation among diverse regions, each with
different incentives, in a dynamic environment
shaped by complex political and economic
factors, without a central authority, is a profoundly
challenging game-theoretic problem. This article
introduces RICE-N, a multi-region integrated as-
sessment model that simulates the global climate,
economy, and climate negotiations and agree-
ments. RICE-N uses multi-agent reinforcement
learning (MARL) to incentivize agents to develop
strategic behaviors based on the environmental dy-
namics and the actions of others. We present two
negotiation protocols: (1) Bilateral Negotiation,
an example protocol and (2) Basic Club, inspired
by Climate Clubs and the carbon border adjust-
ment mechanism (Nordhaus, 2015; Commission,
2022). When we compare their impact against a
no-negotiation baseline with various mitigation
strategies, we find that both protocols significantly
reduce temperature growth at the cost of a minor
drop in production while ensuring a more equitable
distribution of the emissions reduction costs.

1 Introduction
The latest Intergovernmental Panel on Climate Change
(IPCC) report emphasizes the urgent need for immediate
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action, warning that it is “now or never” to avert a climate
disaster (Pörtner et al., 2022). Ecosystems are drastically
changing: the Amazon rainforest is receding (Lovejoy & No-
bre, 2018) and polar ice sheets are melting (Boers & Rypdal,
2021; DeConto et al., 2021). Extreme weather events, in-
cluding the recent increase in coastal flooding and forest fires
are unequivocal warning signs (Kundzewicz, 2016; Schmidt
et al., 2022). These developments are increasingly being at-
tributed to climate change and driving towards a system-wide
tipping point (van Oldenborgh et al., 2021; Stott et al., 2016).

Climate change is a global issue impacting all. In response,
public and private financing have driven technological
innovation (e.g. in renewable energy) and community
initiatives for systemic change. However, mitigation
investments vary across countries due to social and economic
factors. For example, developing nations may prioritize basic
needs, while developed nations likely have more resources
to address climate impacts.1 This creates a ”tragedy of the
commons,” where self-interest can lead to harmful outcomes
for all (Gardiner, 2001).

As such, achieving and maintaining global cooperation is
crucial to achieve the Paris Agreement’s long-term goal
of limiting the global temperature rise above pre-industrial
levels to well below 2◦C (DeConto et al., 2021). At the same
time, it is important to maintain economic development,
including growth and inequality reduction. For instance,
international trade treaties, foreign investment, and tech-
nology transfer can help developing countries meet net-zero
targets while supporting global economic growth. Such
cooperation could be fostered through climate clubs, which
tackle barriers to climate action (Nordhaus, 2015).

From a modeling perspective, achieving and maintaining
global cooperation poses a complex game-theoretic problem
involving cooperation, communication, and competition. It
can be modeled with n strategic agents, each representing
a region or nation seeking to maximize their own utility
through policies aimed at their own socio-economic and

1Developing countries typically pay more to reduce emissions
than higher-income countries (Erickson et al., 2015).

1



AI for Global Climate Cooperation

climate goals, which may conflict with those of the other
agents. These agents interact through trade, diplomacy, or
foreign aid and investments, with cooperation manifesting
through mutual negotiation and agreements.

A key issue is the lack of central authority to enforce
cooperation or compliance with the agreements in the real
world. Therefore, it is essential to design negotiations and
agreements that promote sustained cooperation in mitigating
climate change while allowing all parties to achieve their
individual policy goals.

Such game-theoretic problems present unresolved technical
challenges. For instance, a key analysis in the 2022 IPCC
report predicts climate change under five different so-called
Shared Socio-Economic Pathways (SSPs), each based on
a set of predefined climate-economic policies for each global
region (Pörtner et al., 2022). However, a key limitation is that
it is unclear whether these policies would be implemented
by utility-maximizing actors, making it uncertain how likely
these scenarios are to occur or how robust they are to changes
in agent behavior over time.

Climate-economic policy tradeoffs are typically modeled
using integrated assessment models (IAMs), which quantify
the effects of economic activity and CO2 emissions on
global temperatures and long-term economic development.
A pioneering example is the Dynamic Integrated model
of Climate and Economy (DICE) from (Nordhaus, 2007),
which models the links among climate and economic factors,
such as population growth, technological change, CO2

emissions, global temperatures, and economic damages.
DICE uses a single global economy. The Regional Integrated
Model of Climate and Economy (RICE) extends DICE
to multiple regions (Nordhaus & Yang, 1996b) and can
include tariffs and trade (Nordhaus, 2015; Lessmann
et al., 2009). While widely used, RICE has its limitations,
such as unrealistic assumptions, lack of distributional
analysis, simplistic definition of regional interaction, and
no consideration of uncertainty (Pindyck, 2013; Farmer
et al., 2015; Gazzotti, 2022). Thus, RICE needs significant
modification in order to capture the strategic behavior in
climate negotiations. To address these issues, we draw
inspiration from agent-based modeling (Bonabeau, 2002)
as a bottom-up modeling framework and advances in MARL
to identify effective policies (Zheng et al., 2022a) and train
strategic agents (Silver et al., 2016; Vinyals et al., 2019).

Our main contributions are as follows:

RICE-N Integrated Assessment Model We introduce
RICE-N, an integrated climate-economic model based on
RICE (Nordhaus & Yang, 1996a). Designed as a simulation
tool for climate negotiations, RICE-N incorporates MARL
to model realistic interactions between agents. Furthermore,
RICE-N is modular, allowing flexibility to accommodate

various climate-economic model configurations.

Negotiation Protocols As RICE-N is built for modeling
negotiations, we develop two novel protocols: (1) Bilateral
Negotiation, a baseline protocol that provides simple
inter-agent communication; (2) Basic Club, a protocol
inspired by actual climate economic policy (Nordhaus, 2015;
Commission, 2022) to foster burden sharing among agents.

Analyzing Results To evaluate the Basic Club and
Bilateral Negotiation protocols, we compare the climate-
economic performance of agents trained with and without
these negotation protocols. Metrics include inequality in
emission reduction costs as %GDP and emissions. Compared
to agents trained without negotiation protocols, agents trained
under the negotiation protocols reduce temperature growth at
the cost of a minor drop in production while ensuring a more
equitable distribution of the emissions. Our code samples are
available here: https://github.com/mila-iqia/
climate-cooperation-competition

2 Related Work
Previous work has studied climate change through various
lenses: political economy and negotiations (Chan et al.,
2022; Bakaki, 2022), public perception and institutional
dynamics (Moore et al., 2022), and coalition formation
(Zenker, 2019). Although IAMs have been used to study
the impacts of political negotiation (Rochedo et al., 2018),
the game-theoretic aspects of climate cooperation using
machine learning and calibrated IAMs remain unexplored.

Climate negotiations have been analyzed using game theory,
from simple prisoner’s dilemma models (DeCanio & Frem-
stad, 2013) to more complex bargaining games with learning
(Smead et al., 2014; Greeven et al., 2016). However, these
simplified models often lack crucial real-world features like
multilateral settings, strategic behavior with multiple goals,
evolving dynamics, and agent heterogeneity (Madani, 2013).

Recent advances in multi-agent reinforcement learning
(MARL) offer new approaches to studying strategic behavior
in complex environments (Shoham & Leyton-Brown, 2008).
While MARL has been applied to climate-related problems
like HVAC optimization (Mai et al., 2024) and theoretical
cooperation studies (Jaques et al., 2019), it has not yet been
extended to rich, calibrated climate-economic simulations.
Our work addresses this gap by combining MARL with
detailed climate-economic modeling. For an extensive
review of related work, please refer to Appendix A.

3 The RICE-N Integrated Assessment Model
We introduce RICE-N, an IAM that further augments RICE
with a framework for negotiation protocols, and also includes
international trade and tariffs, following (Lessmann et al.,
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Figure 1. Schematic overview of how negotiation can lead to better outcomes in RICE-N. Each region (agent) uses a policy model
to make climate, economic, and trade decisions. For clarity, we show the flow of information and actions for a single agent only. Agents can
negotiate, but a negotiation protocol must be implemented, such as the example negotiation protocols in Section 4. At a high-level, at each
timestep, each policy chooses climate and economic actions based on the observations they receive. (TOP) If there is no negotiation protocol,
agents immediately decide their actions, which leads to high climate damage as can be seen in Figure 3. (BOTTOM) If a negotiation protocol
has been implemented, agents must first negotiate before performing actions. The outcome of all negotiations is agreements (or lack thereof),
which may be between two or more agents. In particular, an agreement may influence the remaining actions that an agent can take in the
climate and economic domains. For the same timestep, each agent then makes decisions with respect to the climate, economy, and trade.

2009)). As such, RICE-N shares climate, economic and
social characteristics with the real world.

In RICE-N, there are n regions, each modeled as an
independent decision-making agent. Regions interact
with each other and the environment through their actions:
setting a savings rate, mitigation rate, trades and tariffs, and
negotiation actions, for each time step.

RICE-N has two main components: negotiation and
climate-economic activity, see Figure 1. The activity
component simulates the physical actions of the agents and
the resulting evolution of the environment. The negotiation
component simulates communication between regions,
allowing them to influence each other’s behaviors and form
agreements. Agreements may, in turn, adjust the available
actions for each region during the activity stage.

Each simulation episode consists of H steps, each repre-
senting ∆ years (e.g, ∆ = 5). Thus, the simulation lasts for
H ×∆ simulation-years. At every step, the simulation goes
through the negotiation stages, and agreements are formed
between regions. The simulation then enters the activity
stage where each region takes actions that are affected by
the agreements formed during the negotiation stages.

Climate-economic dynamics overview. The state of
the world is characterized by global variables such as the

concentration of CO2 levels in the Earth’s atmosphere, and
the average global temperature, as well as region-specific
variables such as population, capital, technology level,
carbon intensity of economic activity, and balance of trade.
For more details, see Table 2 in Appendix B for variables
and Appendix H for calibration details.

RICE-N has climate and economic dynamics. The climate
dynamics model how CO2 levels in the atmosphere impacts
global temperatures. The economic dynamics model how
technology levels, capital, population, and gross domestic
production evolve. Notably, the climate dynamics impact
the economic dynamics through a damage function, which
describes how higher temperatures lead to losses in capital.

These dynamics depend on savings and mitigation rates
set by each agent, e.g., agents may choose to invest more
in climate change mitigation, but this may lower economic
productivity in the short-term.2 As global CO2 levels
and temperatures affect all agents, these dynamics mean

2In economic terms, variables such as capital, balance of trade,
carbon mass, and global temperature depend on the agents’ actions
and are called endogenous variables. On the other hand, variables
such as population, technology level, and carbon intensity of
economic activity are called exogenous, i.e., their values do not
depend on the agent’s actions. Note that the values of exogenous
variables can vary across steps in a predetermined manner.
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the decisions of each agent affect the climate-economic
outcomes for other agents, too.

The activity component encapsulates these dynamics. For
each step: 1. The gross output production for each region
is computed based on the state of the region, in particular,
its capital investment, labor (or population), and technology
factor. 2. The net economic output is the gross output
production reduced by climate damages from rising global
temperature, and the cost of efforts towards mitigation by this
region. 3. The region consumes domestic goods equal to the
quantity of the net economic output that is left after capital
investment and export. It also consumes foreign goods from
imports. 4. The consumption utility for each region from
consuming domestic and foreign goods is computed using
the Armington elasticity assumption that has become stan-
dard in international computable general equilibrium models
(Armington, 1969). This gives the reward corresponding
to each region in every step. For more details, please refer
to Appendix C.1 and Table 3 in Appendix B.

International trade and tariffs. RICE-N features
international trade to exchange and transfer goods between
agents, following (Lessmann et al., 2009). Here, agents are
modeled to seek diversity in their consumption according
to the Armington assumption (Armington, 1969), so they
want to consume goods produced by other agents and are
willing to export some of their own goods in exchange. Each
agent specifies the amount of goods it wishes to import and
sees its orders filled partially or fully, depending on the other
agents’ willingness to export. In addition, agents can choose
to impose import tariffs to restrict trading. Import tariffs
restrict the consumption of goods to which they are applied,
implicitly increasing their prices. These price increases
make imported goods without import tariffs more attractive.
Therefore, trade and tariffs force agents to engage with
other regions and be strategic, incentivizing negotiations and
agreements. See Appendix C.2 for more details.

Extensions The climate dynamics of DICE and RICE are
based on (Nordhaus, 2018; Kellett et al., 2019). Economic
analysis based on these dynamics suggests that optimal
policy paths limit global warming to 3.5◦C and lead to
net zero economies in the next century (Nordhaus, 2019).
Several works have criticized the trustworthiness of these
results due to shortcomings in the model, such as missing
representations of climate risk and uncertainty (Daniel et al.,
2019), unrealistic damage functions (Drupp & Hänsel, 2021)
and oversimplified climate dynamics (Mattauch et al., 2020).
Recent work has shown that updating the model with a
more realistic climate emulator and recent damage estimates
results in optimal trajectories that are more aligned with the
climate targets of the Paris agreement (Hänsel et al., 2020).

RICE-N’s modularity enables us to easily update the equa-
tions governing the dynamics, enabling comparison to exist-

ing studies with various setups. In particular, the climate, eco-
nomic and trade components are loosely coupled to enable
isolated extensions and modifications. The order in which the
dynamics act on the world state is determined in the global
climate and economy step() function, which can
accommodate extensions or modifications with minimal
changes. For example, similar to (Hänsel et al., 2020), we pro-
vide an updated and higher damage function based on a recent
meta analysis (Howard & Sterner, 2017). We also implement
the climate dynamics of the famous Finite Amplitude Impulse
Response (FaIR) model, an emissions-based climate model
that is also featured in the IPCC reports (Millar et al., 2017).

In Figure 2, we analyze different damage and climate
functions. We compare three baselines: agents that always
perform the minimum mitigation, the maximum mitigation
and agents trained with no negotiation. We see that the effect
of the damage function is marginal on the strategy of the
agents, and even higher damage does not steer them away
from maximizing their own utility. The choice of climate
dynamics clearly has an effect on the resulting possible
trajectories. The lowest emissions scenario for the DICE
dynamics limited warming to between 2.6◦C and 2.7◦C
by the end of the century. In contrast, the updated FaIR
dynamics show that 2◦C is still possible, which corresponds
roughly to the low GHG emission scenario (SSP1-2.6) of the
IPCC (Pörtner et al., 2022). As DICE2016 remains the most
ubiquitous model in use, we continue with the DICE2016
climate and damage functions for the remainder of the work.

4 Negotiation Protocols
A negotiation protocol is a communication channel through
which agents can make promises and demands that ultimately
constrain their behavior. We design RICE-N to be modular
such that its base dynamics can be used to test a variety of
different negotiation protocols.

In principle, a negotiation protocol can have many desirable
properties, including but not limited to the following (Nisan
et al., 2007; Luo et al., 2024):

• Incentive-compatibility: Agents have an incentive to act
according to their true preferences. (Pavan et al., 2014),

• Self-enforcing: No external body or agent is required to
enforce other agents to participate in negotiations and
adhere to agreements (Telser, 1980),

• Fairness: Agents get comparable utilities (Luo et al., 2024).

Negotiation steps occur prior to the climate and economic
step so that agents’ climate-economic behavior is influ-
enced by the outcome of negotiations through binding
commitments.

RICE-N is flexible enough to serve as a basis for different
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negotiation protocols. We implement two negotiation proto-
cols: Bilateral Negotiaton and Basic Club. The former serves
as an example to illustrate the key phases of negotiation, and
the latter is modeled on actual climate economic policy.

Bilateral Negotiation In addition to the base dynamics of
RICE-N, Bilateral Negotiation agents perform the following
steps:

• Proposal stage: At this stage, each agent i makes a
proposal, (µ̂i, µ̂j), to every other agent j where µ̂i

indicates the mitigation level that agent i promises and µ̂j

what agent i requests from agent j.

• Evaluation stage: At this stage, each agent observes the
proposals made to it in the preceding stage and takes an
action of accepting or rejecting each of the proposals.

• Commitment stage: At this stage, each agent commits to
the maximum mitigation rate of all accepted proposals.

Basic Club Basic Club is a multi-agent negotiation
protocol based on climate clubs and the Carbon Border
Adjustment Mechanism (CBAM) (Nordhaus, 2015; Commis-
sion, 2022). The former was initially proposed by William
Nordhaus and codified by Article 6 of the Paris Agreement; a
climate club is a coalition of regions that agree to a common
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Figure 2. Extensions to the base setup of the framework. RICE-N
is highly adaptable in that different components, such as the climate
model or damage function, can easily be exchanged. We compare
the basic no-negotiation baseline (see Section 6) over different
damage functions and climate dynamics. The DICE2016 damage
function and DICE2016 climate model are taken from (Nordhaus,
2018). The H&S damage function is based on the recent estimates
of (Hänsel et al., 2020), and the FaIR climate model is a famous
emission-based climate emulator (Millar et al., 2017). The H&S
damage function punishes temperature increases more strongly
than the DICE2016 damage function, but the effect is still too mild
during the roll-out period to lead to significant behavior changes
in the agents under the no-negotiation scenario. The FaIR climate
model implements more realistic climate dynamics and shows that
a path to 2◦C is still possible.

emission reduction target and impose a uniform tariff on all
goods coming from non-club members (Nordhaus, 2015;
2021b). The latter (i.e., CBAM) is a feature of the EU Green
Deal, aiming to address carbon leakage and facilitate net
zero emissions by 2050 (Commission, 2020; 2022). Basic
Club borrows the ideas of a uniform tariff on all goods and
a variable tariff value that depends on the emission reduction
target of the exporting country from Nordhaus and CBAM,
respectively (Nordhaus, 2015; Commission, 2020; 2022).
The legality of Basic Club with respect to World Trade
Organization compliance is described in Appendix J.

Formally, the Basic Club functions as follows:

• Proposal: Each agent i ∈ {1, ..., n} proposes µ̂i ∈ [0, 1],
indicative of the mitigation rate of the club they would like
to join.

• Evaluation: Each agent i ∈ {1, ..., n} evaluates proposals
µ̂j from other agents j ̸= i, by either accepting or rejecting
them. Let Ai be the set of mitigation rates of accepted
proposals for region i.

• Club Formation: We define the minimum mitigation rate
of agent i as µi = maxAi if Ai is not empty, otherwise,
it is 0. A club c is a subset of agents with a common
minimum mitigation rate µc.

• Sanctions: For each club c, non-members with lesser mini-
mum mitigation rates the club mitigation rate i.e., µj < µc

receive a tariff as the differences in rates i.e., τj,c = µc−µj .

Members and non-members with µj ≥ µc have τj,c = 0.

Exact descriptions of the action spaces for both protocols
can be found in Appendix C.3.

Binding Commitments Commitments are made binding
through action masks, which control the accessible action
space during the following step. For example, negotiation
could yield a binding commitment to a minimum of 20%
mitigation rate. Then, the action mask only allows setting
mitigation rates above that level for this region. We discuss
extensions beyond this paradigm in Section 7.

In Section 6, we will compare the climate-economic impacts
of Basic Club, Bilateral Negotiation and No Negotiation.

5 Modeling Strategic Agents using MARL
The negotiation protocols and the climate-economic
dynamics of RICE-N define a game-theoretic setup between
the different regions. We model the behavior of an agent i
using its policy πi (at|ot) that maps the agent’s observations
ot to a probability distribution over its actions at at time t.

Reason to use MARL Existing IAMs often use a pre-
determined policy for each agent that is fixed exogenously.
Such approaches would require handcrafted agent policies
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Figure 3. Comparison of climate-economic outcomes among
different baselines (minimum mitigation, maximum mitigation, and
no negotiation) against negotiation protocols (Bilateral negotiation
and Basic Club) with mean±1.96 stderr (see Section 6 for more
details). In respective order, we show the comparison of (a) global
temperature anomaly (lower is better), (b) global carbon emissions
(lower is better), (c) global output production (higher is better) and
(d) global consumption (higher is better). While no negotiation
performs best in the early stages of the simulation, it exhibits a
downward trend after 2090, suggesting that the adverse effects
of rising temperatures start to outweigh the economic benefits.
In contrast, Basic Club surpasses no negotiation economically
towards the end of the simulation while successfully maintaining
a lower increase in temperature anomaly and carbon emissions.

for each different negotiation protocol. Furthermore, the
reliability of the outcomes from the simulation would depend
on the modeled policies.

In contrast, we assume that each region strategically interacts
with the environment and other strategic agents in it.
Therefore, instead of manually setting the behavioral policy
πi, we use machine learning techniques to find policies that
seek to maximize the objectives of the agents, and hence
derive the agent policies endogenously.

Specifically, the agents are assumed to be utility-maximizing
such that each agent i optimizes its policy πi (at|ot) to
maximize its long-term aggregate γ-discounted utility:

max
πi

Eπ1,...,πn

[
H∑
t=0

γtri,t

]
, (1)

where ri,t is the utility of the region i at step t determined
by its aggregate consumptionCi,t as follows:

ri,t = Ui,t =
w

1− α
Li,t

((
Ci,t

Li,t

)1−α

− 1

)
, (2)

whereLi,t is the population of the region i at step t;w is the
welfare loss multiplier that decreases the utility that a given

region receives proportionally to how other regions tariff
that region’s exports (Nordhaus, 2021a) (see Appendix G
for more details); The parameter α ≥ 0 is the consumption
elasticity which can represent the degree of risk aversion
or the (un-)willingness of society to sacrifice consumption
today for consumption in the future. The discount factor γ
models the long-term value of rewards for the agents, and
as such it could differ across different agents. The discount
factor for each region is often updated with the changing
administration; in the absence of any consensus, we fix γ
to be homogeneous across agents as assumed in (Nordhaus,
2015). The aggregate consumptionCi,t in the above equation
is obtained by combining the domestic and foreign goods
consumption using the Armington model (Armington, 1969):

Ci,t =

ψdom(Ci,i,t)
λ +

∑
j ̸=i

ψfor(Ci,j,t)
λ

 1
λ

, (3)

Ci,j,t = xi,j,t(1− τi,j,t) ∀j ̸= i, (4)

where Ci,j,t is the foreign goods consumed after imposing
tariffs τi,j,t on the imported goods xi,j,t by region i from
region j at step t. ψdom and ψfor are shared parameters, and
λ is the Armington elasticity parameter that represents the
degree to which consumers are willing to switch between
domestic and imported goods when prices change.

Multi-agent reinforcement learning (MARL) Simu-
lating a utility-maximizing agent requires computing the
optimal policy for each agent3. Finding the optimal utility-
maximizing policy for each agent in response to complex en-
vironment dynamics and other agent policies naturally leads
to MARL; (Busoniu et al., 2008) provides a comprehensive
overview of the topic. In short, MARL extends single-agent
RL to find an optimal policy for each agent interacting in a dy-
namic environment to solve Equation 1. The RL framework
models how an agent’s actions affect the state of the environ-
ment and its rewards (utilities). Thus, an RL agent has to learn
to anticipate the long-term effects of its actions. This is espe-
cially true and challenging in multi-agent environments such
as RICE-N, where agent actions affect key climate-economic
metrics including global temperatures, capital investments,
carbon emissions, etc. In addition, MARL algorithms have
to deal with the additional game-theoretic challenge of each
agent’s response to the policies of other agents. This makes
the task of finding the optimal policy a moving target (until
a form of equilibrium is reached in the agent policies).

Equilibrium Concept In contrast to the original RICE
IAM (Nordhaus & Yang, 1996b), which discusses pure
strategy Nash equilibria, RICE-N employs reinforcement

3Although we assume the agents to be utility-maximizing, other
behavioral models could also be implemented in RICE-N.
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learning agents operating in a dynamic, partially observed
environment with expanded action spaces and evolving
negotiation protocols. As such, there is no single, fixed
equilibrium concept that applies across all scenarios modeled
in RICE-N. Instead, the emergent behavior of agents can
approximate different forms of equilibria depending on the
structure of the negotiation protocol:

1. Equilibrium type: The negotiation protocol can give rise
to the introduction of previously irrelevant equilibrium
concepts, such as correlated equilibria from a stochastic
protocol.

2. Punishment and enforcement: Action spaces that include
tariffs or sanctions can affect the equilibrium and introduce
the possibility of self-enforcement through collective
punishment for defection.

3. Non-binding agreements: If commitment masks are
relaxed to allow cheap talk, other solution concepts such
as coalition-proof Nash equilibria become relevant (Bern-
heim et al., 1987).

4. Information structure: The negotiation protocol can affect
what information is public vs private.

Thus, equilibrium behavior in RICE-N is not defined a priori,
but emerges from the interaction of learning dynamics,
available actions and the design of the negotiation process.

Implementing RL Agents Our code includes both CPU
and GPU implementations of the full RL pipeline using A2C
(Mnih et al., 2016). RICE-N can also be used with other
RL implementations. Our base implementation models each
RL agent using a neural network policy that shares weights
across agents, but uses agent-specific inputs. The architec-
ture of the network can be adjusted, e.g., the number of layers
and the dimension of each layer. Agent policies use separate
heads for each action. To distinguish between agents, the
policy model’s input contains agent-specific features, e.g.,
their population, capital, technology factor, damage function,
and a one-hot representation of the region’s index, as well
as the public state of the world (e.g., climate conditions). In
addition, each agent receives information about negotiations,
e.g., the latest proposals made to and by this agent, or the min-
imum mitigation rate agreed upon by this agent. Depending
on the negotiation protocol, not all observations and actions
are relevant to each agent. How negotiations evolve depends
on the specifics of the protocol and the different actions exe-
cuted by the agent, e.g., proposals for other agents, decisions
on proposals made by other agents, and setting mitigation
and savings rates that may or may not be in line with what
was agreed upon.

6 Evaluating Negotiation Protocols
In this section, we use RICE-N to analyze the climate
and economic outcomes of the basic club and bilateral

negotiation protocols (see Section 4). We compare the
climate-economic outcomes of these protocols with three
baselines, namely a minimal mitigation policy, a maximal
mitigation policy, and a mitigation with no negotiation policy.
We also examine the (group) fairness of these protocols
across regional contributions by calculating the Gini Index of
various climate-economic variables measured by RICE-N.

Experimental Setup To compare outcomes with and
without negotiation, we train five models consisting of (i)
Basic Club, (ii) Bilateral Negotiation, (iii) a no negotiation
baseline, (iv) Maximum mitigation, and (v) Minimum
mitigation. The latter two models can only mitigate either
the maximum or minimum possible amount, respectively;
all other actions in (iv) and (v) are trained as normal. Each
model is trained for 30, 000 episodes. For evaluation, we
gather 50 rollouts of each model using a unique seed per run
to ensure a varied distribution of outputs. For more details
about the concrete time series, please refer to Appendix M.

Negotiation Protocols Can Improve Climate-Economic
Outcomes. In Figure 3, we illustrate the global temper-
ature anomaly, carbon emissions, output production and
consumption across time steps. To establish upper and lower
bounds in performance, we also compare our findings to
maximal and minimal mitigation strategies. The former
consists of the maximum possible emissions reductions per
time step and the latter features no emissions reduction.

We see that Basic Club and Bilateral Negotiation perform
vastly better than the minimal mitigation and no negotiation
baselines, with temperature increase and carbon emission
outcomes nearly matching the maximal mitigation baseline.

Economically, however, Bilateral Negotiation falls relatively
short while Basic Club is not significantly worse than
the minimum mitigation, maximum mitigation and no
negotiation baselines at the last time step. In fact, Basic Club
ends with steady output growth, as opposed to the slowing
economic growth of the minimum mitigation and no negotia-
tion baselines. The distribution of mitigation strategies under
different negotiation protocols is visible in Appendix L.

For global consumption, we see that no negotiation performs
best, but this trend is unlikely to continue considering the
decrease in economic production observed in later time steps
because the damage from the increasing temperature would
significantly limit the sustained economic growth in the
long term. Minimum mitigation performs second best, but
Basic Club results in nearly as much consumption at the last
time step, which, paired with its promising steady growth
in economic output, looks to result in more sustainable
outcomes in the long run.

Overall, the large room of improvement in the global
temperature levels at the expense of relatively much smaller
difference in production output shows the value of these
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protocols. To assess the robustness of our results, we
conduct a sensitivity analysis on selected parameters based
on economic theory, which are the discount factor, welfare
loss weight, consumption substitution rate, and relative
preference for domestic goods. The results, discussed in
Appendix K, confirm that our findings over differnt scenarios
are stable under changes in critical model parameters.

Negotiation Protocols Impact Fairness To measure
the (group) fairness of outcomes across climate economic
variables of interest, we use the Gini index (Gini, 1912), a
statistical measure used to quantify the inequality of variables
xwithin a population. The Gini Index ranges from 0 (perfect
equality) to 1 (absolute inequality) on the variable of interest

G(x) =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x̄

(5)

where n is the number of agents, and x̄ represents the mean.

Table 1 (left) illustrates the degree of inequality of different
negotiation protocols across regions with respect to abate-
ment cost, mitigation rate, carbon emission and consumption.
We first note that both Basic Club and Bilateral negotiation
result in lower inequality than No Negotiation when it comes
to abatement cost, mitigation rate and carbon emissions.
That is, the economic burden of emission reduction is
more equitably shared when agents have the opportunity to
negotiate with one another about their emissions reduction
targets. The inequality of carbon emissions itself is less
impacted, as the carbon intensity is a largely region specific
parameter. However, for the mitigation rate, the Bilateral
Negotiation seems to have a significantly lower Gini Index
than the Basic Club. Although this may appear desirable,
it may not be optimal for all regions to contribute equally to
mitigation efforts. In fact, in Table 1 (right), if we contrast the
Global Output Production and the Global Carbon Emissions
of Basic Club and Bilateral Negotiation, it seems that Basic
Club achieves significantly better economic outcomes at the
cost of a slight increase in temperature while maintaining
a similar Gini Index for consumption.

Discussion and Analysis From a climate oriented per-
spective, Bilateral Negotiation outperforms Basic Club. This
stems from the commitment mechanism used. Bilateral Ne-
gotiation agents take the maximum of all accepted proposals
and requests. Early on in training, those proposals exhibit a
high degree of randomness. Hence, the maximum of random
proposals is often near the maximum possible mitigation rate.
We emphasize that Bilateral Negotiation is intended as an ex-
ample for RICE-N users which can illustrate the basic steps of
negotiation and is not a realistic negotiation protocol. While
Basic Club performs comparable, it involves a much smaller
proposal action space, and is designed to reflect more realistic
climate policy with real-world climate negotiations (Com-
mission, 2022; Nordhaus, 2015; Commission, 2020).

While Bilateral Negotiation has limited real-world applica-
bility, the O(n2) communication complexity for n agents
is inefficient for large-scale international negotiations.
Moreover, bilateral negotiations can lead to contradictory
agreements with no feasible solution. This challenge
underscores why most international climate negotiations opt
for multilateral forums where all parties collectively discuss
and agree upon terms, as exemplified by the United Nations
Framework Convention on Climate Change (UNFCCC)
process (Mantlana & Jegede, 2022).

From a climate justice standpoint, both the Basic Club and
Bilateral Negotiation protocols evaluated in this study do
not adequately consider regional differences. The high
mitigation rates achieved by these protocols may not be
equitable or desirable for regions whose historical emissions
are typically lower than those of others.

Potential Policy Implications Our findings suggest that
the Basic Club protocol holds promise as a basis for real-
world climate policy. However, the impacts of climate clubs
and of border adjustment mechanisms depend significantly
on how they are implemented. Without complementary
measures such as redistribution and technology transfer,
these mechanisms risk functioning as de facto carbon taxes
on developing countries that are heavily reliant on carbon-
intensive development pathways (Goldthau & Tagliapietra,
2022; Perdana & Vielle, 2022). One way to mitigate this
risk is through instruments like the Loss and Damage Fund,
which can support climate justice and compensate vulner-
able countries for harms that are difficult to avoid or adapt
to (Boyd et al., 2021). That said, we caution that the outcomes
observed in our framework should not be interpreted as direct
predictions for real-world negotiations. Rather, RICE-N
offers a simulation platform to explore, test, and compare
the dynamics and consequences of alternative climate policy
designs under controlled and transparent assumptions.

7 Limitations
RICE-N can be improved in a number of aspects. Firstly,
we do not make use of regional damages and temperatures,
which are captured by other RICE models. Representing
regional disparities is critical for analyzing model outcomes
from a climate justice perspective (Gazzotti et al., 2021).
Secondly, there are longer time horizon versions of RICE
currently available (Biswas et al., 2024) that extend the
simulation up to 300 years. Furthermore, RICE-N does
not represent damage disparities within regions (Dennig
et al., 2015) which may obscure the mediating role of
socioeconomic class on climate damages. Finally, the
reasoning and decision-making logic behind the negotiation
process remains a black box and lacks interpretability, as
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Table 1. Climate-economic outcomes and Gini index at the last time step (year 2115). In bold are the best results. If two results are not
significantly different, we bold both.

GINI INDEX CLIMATE-ECONOMIC OUTCOMES

NEGOTIATION ABATEMENT MITIGATION CARBON CONSUMPTION TEMP. OUTPUT CARBON CONSUMPTION
PROTOCOL COST (%GDP) RATE (%) (GtC) (USD trillion) (◦C) (USD trillion) (GtC) (USD trillion)

None 0.695±0.018 0.405±0.018 0.654±0.008 0.529±0.002 5.121±0.032 233.6±3.9 1697.2±25.6 8.96±0.04
Bilateral 0.333±0.005 0.011±0.007 0.565±0.020 0.540±0.004 3.34±0.03 209.4±5.5 487.0±15.2 8.33±0.05
Basic Club 0.339±0.006 0.030±0.006 0.579±0.017 0.541±0.003 3.422±0.018 235.1±5.0 534.7±9.50 8.55±0.05

it directly stems from the actions of agents trained through
multi-agent reinforcement learning (MARL) algorithms.

In addition to addressing the aforementioned shortcomings,
we aim to extend RICE-N in the following directions. We
plan to integrate multi-level reinforcement learning (Zheng
et al., 2022b) to model the negotiation protocol of the
Conference of the Parties. Moreover, we aim to explore the
inclusion of a welfare redistribution mechanism (Orlov et al.,
2024) as a component of negotiation. Additionally, we are ex-
ploring the use of JAX (Bradbury et al., 2018) to significantly
enhance the performance of RICE-N. This would enable
wide-scale sensitivity analysis across simulation parameters.
Furthermore, we will leverage large language models to
enhance the interpretability of the negotiation process. In
our current setup, agents cannot deviate from agreed-upon
actions for the specified time step (5 years). While this
assumption simplifies analysis and isolates the impact of the
negotiation mechanism, it does not reflect the uncertainty and
strategic mistrust present in real-world climate negotiations
(e.g., countries withdrawing from agreements). Future
work should explore the incorporation of non-binding
commitments, which would allow agents to deviate from
agreements and engage in strategic communication or cheap
talk (Crawford & Sobel, 1982; Caparros, 2016).

8 Conclusion
In this paper, we introduced RICE-N, a novel integrated as-
sessment model that combines climate-economic dynamics
with multi-agent reinforcement learning to simulate global
climate negotiations and agreements. RICE-N offers a flex-
ible framework for testing various negotiation protocols and
their impact on long-term climate and economic outcomes.
We demonstrated the utility of RICE-N by implementing and
comparing two negotiation protocols: Bilateral Negotiation
and Basic Club. Our results show that both protocols can
lead to improved climate outcomes compared to scenarios
without negotiation while maintaining comparable economic
performance. Notably, the Basic Club protocol, inspired
by real-world climate policy proposals, achieved a balance
between emissions reduction and economic growth that
surpassed the no-negotiation baseline in the long term.
Beyond this specific application, RICE-N offers value to a

range of research and policy communities. Machine learning
researchers can leverage the modular RL component to
benchmark different reinforcement learning algorithms in
a dynamic, real-world-calibrated environment. Climate sci-
entists can use the framework to compare alternative climate
modules and damage functions under consistent economic
and strategic assumptions. Governments may apply it to
test the robustness of proposed climate-economic policies to
strategic behavior and to anticipate potential impacts on inter-
national trade. International organizations, such as the OECD
or WTO, could use the tool to analyze the distributional
and economic trade-offs associated with alternative climate
policy designs and negotiation strategies. It contributes
to the development of more robust and equitable climate
policies, supporting efforts to mitigate climate change while
maintaining sustainable economic development.
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Impact Statement
The goal of this work is to produce a climate-economic
model that helps foster robust, durable negotiation protocols.
Tools for collective cooperation such as RICE-N can help
us move toward more sustainable, fair, and long-lasting
climate-economic outcomes. However, such tools can lead
to unintended consequences, including the carbon footprint
of using RICE-N, economic inequality due to its limitations
on the applicability to the real world.

Carbon footprint It is important to acknowledge that
using RICE-N inevitably results in carbon emissions.
Therefore, we encourage users to consider their energy usage
when running experiments and offset their carbon emissions.

Economic Inequality As previously discussed, economic
inequality is inevitably intertwined with climate change. The
consideration of approaches that address climate change
should always include the economic inequalities that they
could impact.

Real World Potential and Limits It is important to note
that predictions in RICE-N will eventually differ from actual
outcomes due to inherent real-world complexity and the
limitations of simulation dynamics. Therefore, decision
makers should consider these limitations, and the possible
gaps between simulated and real outcomes before making
any policy decisions.
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Semmler, W. Feedback, dynamics, and optimal control in
climate economics. Annual Reviews in Control, 47:7–20,
2019.

Kundzewicz, Z. Extreme weather events and their conse-
quences. 23:59–69, 2016. doi: 10.1515/IGBP-2016-0005.
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A Extend Related Work
Multi-agent aspects of climate change. Previous work has studied the connection between political economy, negotiations,
and climate change. Empirical work has found that previous climate summits have had inconsistent or too little impact (Chan
et al., 2022; Bakaki, 2022). The impact of social dynamics has been studied in a stylized climate-social model, finding that
public perception and institutional responsiveness are important to explain variations in emissions (Moore et al., 2022). The
formation of coalitions and agreements under climate negotiations has also been studied from a game-theory perspective
(Zenker, 2019). IAMs have also been used to study the impact of political bargaining on the economic burden required to
meet climate targets (Rochedo et al., 2018). However, to the best of our knowledge, no work has analyzed the game-theoretic
aspects of climate cooperation using machine learning and calibrated IAMs.

Social dilemmas. Our work also is also one of the social dilemmas, situations where selfish agents act to lead to collective
outcomes. These dilemmas are also a subset of general-sum games. Prominent examples of social dilemmas include the
Iterated Prisoner’s Dilemma (Rapoport & Chammah, 1965), where two agents repeatedly decide whether to cooperate or
defect, and the Coin Game (Lerer & Peysakhovich, 2018), in which two agents navigate a 3×3 grid to collect coins that appear
in red or blue. Agents receive rewards for collecting any coin but incur penalties when their opponent collects a coin of their
own color, creating tension between selfish coin-collecting and the Pareto-optimal “color-aligned” strategy. Another example
is the Negotiation Game (Cao et al., 2018), where two agents simultaneously propose how to divide valuable items, each
striving to secure items they highly value while risking worse outcomes if both demand large shares of the same limited
resources. Furthermore, Diplomacy (Paquette), an adaptation of the classic Diplomacy board game tailored for multi-agent
research, requires players to negotiate alliances, coordinate actions, and balance cooperative and adversarial incentives to
expand territorial control without overextending themselves.

Strategic behavior and climate change. Game theory has long studied the collective behavior of self-interested agents,
e.g., the tragedy of the commons (Hardin, 1968), negotiation and agreements of agents with conflicting and common
goals (Schelling, 1980). Certain works have analyzed international negotiations on climate collaboration and agreements
regarding economic activity and climate efforts, e.g., imposing tariffs on countries that do not mitigate sufficiently.
Experimental research highlights the collective action dynamics of climate cooperation. Uncertainty about the likelihood
of catastrophic scenarios (Barrett & Dannenberg, 2012; Milinski et al., 2008) and interagent inequality (Dannenberg et al.,
2015) has been found to hinder cooperation; however, interagent communication (Loschel et al., 2011) and early mitigation
commitments facilitates it (Dannenberg et al., 2015). Climate negotiations have been studied using mathematical games, e.g.,
coordination games or prisoner’s dilemmas (DeCanio & Fremstad, 2013). However, the reliability of such simplified models
for real-world policy has been called into question. In particular, these games lack (i) a multilateral, rather than bilateral,
setting, (ii) strategic behavior from agents with multiple, possibly conflicting, goals, (iii) evolving climate dynamics and
changing agent behavior that lead to non-equilibrium outcomes, and (iv) heterogeneity among agents (Madani, 2013).

Subsequent work has gone beyond equilibrium analysis by modeling climate negotiations as a bargaining game in which
agents learn, albeit in a highly simplified manner (Smead et al., 2014). Climate scenarios could be studied through the
emergence of climate mitigation from these games with learning, in which regions can cooperate or compete (Greeven
et al., 2016). Furthermore, other work has studied the difficulty of long-term climate collaboration (Carney, 2015), as well
as potential mechanisms for overcoming associated issues (Nordhaus, 2015).

Multi-agent reinforcement learning (MARL) MARL has emerged in recent years as an attractive framework that studies
how to train utility-maximizing agents that may communicate, cooperate, or compete. This is a rich area of research that
intersects machine learning with game theory, economics, and other domains (Shoham & Leyton-Brown, 2008). Games
can be classified as cooperative, competitive, or a mixture of both. In fully cooperative games, agents learn to work together,
e.g., to lower the carbon power consumption of heating, ventilation and air conditioning (HVAC) systems (Mai et al., 2024;
Hanumaiah & Genc, 2021; Yu et al., 2020), or in the game of Hanabi (Yu et al., 2021). On the other hand, in a competitive
game, agents may need to find strategies to defeat opponents, e.g., in Diplomacy (Paquette et al., 2019) and Go (Schrittwieser
et al., 2020). However, many games are neither purely competitive nor purely cooperative (Duque et al., 2024). These are
called mixed-motive games since incentives of agents are partly misaligned. A common and extensively studied example
is public goods games (PGG) which describes the social dilemma between collaboration (contributing to common pot) which
is the Pareto optimal outcome, and the free riding (keeping the resource for oneself) (Anderson et al., 1998; Santos et al.,
2008; Orzan et al., 2024). In the context of climate change, it has also been studied studied (Tavoni et al., 2011).

Beyond abstract games, MARL has been increasingly applied to real-world scenarios where cooperation and competition are in-
tertwined. For instance, Wang et al.(Wang et al., 2021) applied MARL to large-scale traffic signal control, balancing individual
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intersection throughput with global traffic flow. In energy systems, May et al.(May & Huang, 2023) used MARL to model and
optimize peer-to-peer prosumer markets, where agents must trade off self-interest and collective grid stability. Similarly, Hou et
al. (Hou et al., 2025) introduce InvestESG, a MARL benchmark where agents need to navigate the trade-off between short-term
profit goals and long-term climate resilience by strategically investing in mitigation, greenwashing, and adaptation measures.

Recent work has explored the link between MARL and negotiation (Cao et al., 2018), as well as cooperation in social
dilemmas and collaboration on climate change (Jaques et al., 2019; Chelarescu, 2021; Le Gléau et al., 2022). As such, MARL
is an attractive framework to analyze climate outcomes which takes strategic behavior into account. However, previous
work has largely considered highly stylized environments and has not yet been applied to rich calibrated climate-economic
simulations; our work fills this gap.

B Parameters and variables
Tables 2, 3, 4, 5 and 7 list all (calibrated) parameters and variables.

Table 2. World-state variables. Global type variables correspond to the entire world, whereas regional type variables correspond to
each region. Endogenous variables are those which are affected by the agent actions, whereas exogenous variables are those that are
predetermined and not affected by agent actions. Note that the values of endogenous variables can vary across steps in a predetermined
manner. Notation: indices are separated from subscripts referring to a name by semicolons (;). For instance, the parameter θ1
varies in time t and by region i, which is denoted as θ1;i,t.

Variable Type Symbol Description
Carbon Mass Global, endogenous Mt, [MAT

t ,MUP
t ,MLO

t ] A three-dimensional vector that indicates the
average carbon accumulation in the atmosphere,
upper oceans, and lower oceans.

Temperature Global, endogenous Tt, [TAT
t , TLO

t ] A two-dimensional vector that indicates the
average temperature of the atmosphere and the
lower ocean.

Population Regional, exogenous Li,t Population and the labor in a region.
Technology Regional, exogenous Ai,t Technology factor in the production function of

a region.
Capital Regional, endogenous Ki,t Total capital accumulated by a region.
Carbon intensity of
economic activity

Regional, exogenous σi,t A scalar coefficient that gives the emissions
resulting from economic production.

Balance of trade Regional, endogenous Di,t Surplus or deficit from international trade
activities.

Cost of mitigation
efforts

Global, endogenous θ1;i,t An estimate of the cost of mitigation efforts.

Emission due to land
use

Regional, exogenous ELand
t Carbon emission for land use in a specific region.

Table 3. Agent-action variables.
Variable Symbol Description
Savings rate si,t The fraction of output production to be invested in capital.
Mitigation rate µi,t The fraction of mitigation efforts by a region.
Import tariffs τi,j,t The fraction of imports that are converted to tariff revenue.
Export limits pxi,t The fraction of domestic production that regions are willing to export.
Import bids bi,j,t The amount of production each region is willing to import from other

regions.

C The Activity Component: Climate, Economics, Trade, and Tariffs

C.1 Climate and Economic Dynamics

We now describe the RICE-N dynamics developed from DICE and RICE models by (Nordhaus, 2018; Kellett et al., 2019)
that govern the evolution of the world state from time t to t+ 1 for the different regions. Note that variables without an agent
index are global quantities.
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Table 4. Agent-specific constants.
Variable Symbol Description
Initial population L0;i The initial population for a specific region.
Population convergence target La;i The estimated convergence population for a specific region.
Population convergence rate lg;i How fast the current population converges.
Initial capital K0;i The initial capital for a specific region.
Initial carbon intensity σ0;i The initial carbon intensity for a specific region.
Carbon intensity parameters gσ;i and δσ;i The decay speed of the carbon intensity.
Initial technology factor A0;i The initial carbon technology factor for a specific region.
Technology factor parameter gi,A and δi,A The update pattern of the technology factor.
Initial land use emission EL0;i The initial land use emission for a specific region.
Land use emission parameter δEL;i The depreciation rate for the land use emission in a specific region.

Table 5. Global constants.
Variable Symbol Description
Capital elasticity of production γ The contribution from capital and population to the economy.
Armington substitution parameter λ How substitutable consumption goods from different regions are.
Long term welfare discount rate ρ How much short-term welfare is weighted versus long-term welfare.
capital depreciation rate ΦK The capital depreciation rate.
Backstop technology pb Price of a backstop technology that can remove carbon dioxide from the

atmosphere.
Backstop technology parameter δpb The decay speed of the cost of backstop technology.
Mitigation efficiency parameter θ2 The efficiency loss component of mitigation
Domestic share parameter ψdom The relative preference for domestic goods
Foreign share parameter ψfor The relative preference for foreign goods

Carbon mass. The total carbon mass in the climate system is given by:

Mt+1 = ΦMMt +BM

∑
i

Ei,t, (6)

Ei,t = ELand
t + σi,t(1− µi,t)Yi,t, (7)

Mt
.
=
[
MAT

t MUP
t MLO

t

]⊤ ∈ R3, (8)

ΦM
.
=

 ζ11 ζ12 0
ζ21 ζ22 ζ23
0 ζ32 ζ33

 , (9)

BM
.
=

 ξ2
0
0

 . (10)

This describes a three-reservoir model of the global carbon cycle, in whichMAT describes the average mass of carbon in
the atmosphere, MUP is the average mass of carbon in the upper ocean, andMLO the average mass of carbon in the deep
or lower ocean, see Figure 5. ΦM is the Markov transition matrix describing how carbon transfer between different reservoirs.
BM describes how the weight of carbon emission affects the carbon accumulation in the reservoirs.

Global temperature. Ultimately, increasing carbon mass leads to rising temperatures:

Tt+1 = ΦTTt +BTFt, (11)

Tt
.
=
[
TAT
t T LO

t

]⊤ ∈ R2, (12)

Ft = F2× log2

(
MAT

t

MAT,1750

)
, (13)

ΦT
.
=

[
ϕ11 ϕ12
ϕ21 ϕ22

]
, (14)

BT
.
=

[
ξ1
0

]
. (15)
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Similar to the carbon mass dynamic, there are two layers in the energy balance model, see Figure 4. TAT is the combined
average temperature in atmosphere, land surface, and upper ocean (simply referred to as the “atmospheric layer” hereafter).
TLO is the temperature in the lower ocean. ΦT is the Markov transition matrix describing how heat transfers between different
layers. BT describes how carbon mass contributes to the temperature increases.

Output production. The production in a region is given by the total factor productivity (TFP) (Comin, 2010) formula:

Yi,t = Ai,tK
γ
i,tL

1−γ
i,t . (41)

Production depends on three factors: total factor productivity (“technology”)At, capitalKt, and laborLt. This production
function is common in the economic literature and used in the DICE/RICE models. The capital elasticity γ ∈ [0, 1] explains
the different levels of contribution of capital and labor.

Population. The number of people in a region, denotedLt grows as:

Li,t+1 = Li,t

(
1 + La;i

1 + Li,t

)lg;i

. (39)

There are two parameters La;i and lg;i. La;i represents the convergence population of region i and lg;i shows how fast the
populationLi,t converge toLa;i. Please refer to the Appendix H for a more detailed analysis and the calibration procedure.

Level of technology. The technology factor At describes how efficient production is, i.e., how many units of output a
region achieves given fixed capital and labor:

Ai,t+1 = (eη + gA;ie
−δA;i∆(t−1))Ai,t. (40)

Here, η represents the long-term growth of economics which is usually larger than 0, gA represents the short-term part of
economics growth, and δA represents the speed of decay of short-term growth factor. ∆ is the time difference between steps.
We use η = 0.33% as in (Nordhaus, 2018).

Capital. The amount of capital evolves as:

ΦK
.
= (1− δK)

∆
, (16)

Ki,t+1 = ΦK,iKi,t +∆
(
1− a1TAT

t − a2
(
TAT
t

)2)
(17)

×
(
1− θ1;i,tµθ2

i,t

)
Yi,tsi,t. (18)

The evolution of the capital comes from two parts. The first part is capital inherited from the previous period with depreciation.
In the second part, st is a control variable which represents the investment/savings rate (as a fraction of production). That is,
as a base amount, the economy invests/saves a total of Yi,tsi,t which yields new capital. This base amount is further modified
by 2 multipliers: the damage function and mitigation/abatement costs, which are discussed below.

Damage function. The climate damage function represents the economic damage due to climate change, e.g., increases
in the atmosphere temperature TAT

t . That is, in Equation 37, the fraction of new capital is modified by the damage function

1− a1TAT
t − a2

(
TAT
t

)2
, (19)

following (Nordhaus, 2015). That is, higher temperatures lead to less new capital. Similarly, 1 − θ1;i,tµθ2
t is the fraction

of new capital after taking into account carbon emission mitigation. Mitigating carbon emissions more (higher µt) means
(dirty) production needs to be lowered, hence yields less new capital.

Mitigation (abatement) cost. Following (Kellett et al., 2019), for a mitigation rate µi,t, the mitigation cost is

θ1;i,tµ
θ2
i,tYi,tsi,t, (20)

where θ1;i,t is given by Equation 38. This represents the loss in capital growth due to a fraction of production being used
for mitigation.
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Figure 4. The two-reservoir temperature model.

Figure 5. The three-reservoir carbon mass model.

Carbon intensity of economic activity. A critical part of the model is the interaction between the climate and economic
parts. Specifically, the RICE model describes how production leads to carbon emissions:

ELand
t = EL0 · (1− δEL)

t−1
, (21)

Ei,t = ELand
t + σi,tAi,t(1− µi,t)Yi,t (22)

σi,t+1 = σi,te
−gσ;i(1−δσ;i)

∆(t−1)∆. (23)

HereEland
t is the carbon emission due to (changes in) land use,EL0 is the carbon emission in the base year, and δEL is the

speed of decrease of changes in land use. The rates 0 < δEL < 1, 0 < δL0 < 1 are free parameters. Due to a lack of data,
Eland

t is set to be the same for each region.

Ei,t is the total carbon emission,Eland
t is emission from natural sources, whileEi,t − Eland

t is emission caused by economic
activity. σi,tAi,t is the effective carbon intensity of economic activity: a higher technology factor lead to higher emissions, but
can be modulated by lower σ (which can be thought of as the degree of “clean” production). µi,t ∈ [0, 1] is a control variable
called the abatement (ratio), which represents the proportion of the economics contributing to reducing carbon emission.
Furthermore, we have 2 parameters gσ and δσ that are fitted to data. gσ is the rate of decrease in carbon emissions.

C.2 Trade

We now describe the international trade dynamics and the resulting regional consumption and utilities. Regions trade by
exporting their own consumption goods and importing other regions’ consumption goods at a fixed unit price4.

Agent actions. Each region i at time tmust first specify a desired basket of consumption goods bi,t = [bi,1,t, ..., bi,k,t] that
they are willing to import from the other regions. These desired imports form a matrix of bidsBt such that the import bid by re-
gion i for goods from j at time t is bi,j,t ≥ 0, i.e., the amount of goods region i is willing to import from region j at time t is bi,j,t.

Regions also set an upper bound pxi,t ∈ [0, 1] on the proportion of their own consumption goods that they are willing to export.

Tariffs. Regions can also choose to impose import tariffs on other regions. We denote an import tariff imposed by region
i on a region j by τi,j,t ∈ [0, 1]. If region i imposes an import tariff τi,j,t ∈ [0, 1] on region j, region i consumes

Ci,j,t = xi,j,t(1− τi,j,t), (24)

and τi,j,txi,j,t is added to a reserve fund specific to that region.

Consumption. Consumption of domestic goodsCi,i,t is determined according to gross output, the savings rate and exports:

Ci,i,t = (1− si,t)Qi,t −
∑
j ̸=i

xj,i,t. (25)

4More generally, prices should be dynamic, but the current implementation does not support this.
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The aggregated consumptionCi,t at time t for region i is given by the Armington elasticity model (Lessmann et al., 2009))
as follows:

Ci,t =

ψdom(Ci,i,t)
λ +

∑
j ̸=i

ψfor(Ci,j,t)
λ

 1
λ

. (26)

C.3 Negotiations

Here, we outline the extra state representations and actions that are introduced when either of our two negotiation protocols
is active in the simulation. These variables are used in the negotiation phases, which are detailed in Section 4, on top of the
already available variables in Tables 2, 3, 4, 5 and 7.

Table 6 presents the agent actions required by the Bilateral Negotiation and Basic Club protocols. These actions are additionally
incorporated into the observation space of the agents at each timestep as bilateral observations, meaning that an agent will
observe its own negotiation action and the action of other agents when it is part of that negotiation. In addition, each agent
observes an additional indicator that signals the current phase of the environment (proposal, evaluation, or no negotiation step).
Lastly, agents also privately observe the outcome of their negotiation: their minimum mitigation rate or club mitigation rate µc.

We note that other negotiation protocols may modify these action and observations spaces as needed.

Table 6. Agent-action variables introduced when one of our negotiation protocols is enabled in RICE-N. These variables are
additionally added as bilateral observations to the observation space. In the Basic Club protocol however, the request action is excluded,
and each agent proposes a single mitigation rate to all agents. The result of these negotiation actions sets an agent’s minimum mitigation
rate or club mitigation rate µc.

Variable Symbol Description
Proposed mitigation rate µ̂i,j,t / µ̂i,t The minimum mitigation rate proposed by agent i to agent j. In basic

club, a single proposal is made by each agent to all other agents.
Requested mitigation rate µ̄i,j,t The minimum mitigation rate requested from agent j by agent i. Only

used in the Bilateral Negotiation protocol and not in Basic Club.
Proposal decisions ei,j,t The decision of agent i on the proposal and request by agent j.

D RICE-N dynamics
At a high-level, Equations 35 and 36 capture climate dynamics (temperature and carbon mass), while Equations 37, 39, 40,
and 41 capture economic dynamics. Finally, Equation 42 captures the carbon-intensity of production, providing a key link
between the climate and economic sectors.

E Computational Complexity
The computational complexity of our MARL approach is driven by the number of regionsN (i.e., agents). Since each agent’s
action space scales linearly with n, the total action space across all agents grows quadratically (O(n2)). However, the number
of agents in our setting is naturally bounded by the number of countries on the planet. Currently, training 27 agents for
100 thousand episodes takes approximately 3 hours on a 30 CPU cluster. Future efforts will be directed at more efficient
implementations using JAX-based acceleration and model parallelism to improve runtime, which will enable large-scale
sensitivity analyses and experiments.

F Creating a 27-Region Simulation
We feature n = 27 fictitious regions in our simulation. These are inspired by merging and splitting real-world countries,
but are not exactly the same as real-world regions.

We used real data from the World Bank API (WorldBank, 2022), e.g., GDP, capital stock, population, and CO2-quivalent
(CO2eq) emissions. Furthermore, the World Bank groups countries into regions, including Sub-Saharan Africa, South Asia,
North America, the Middle East and North Africa, Latin America and the Caribbean, Europe and Central Asia, East Asia
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Algorithm 1 Activity Component (implemented by Climate and economy simulation step()) Note that we only
list input state variables and omit model parameters.
Require: exogenous emissions, land emissions, intensity, production factor, labor, capital,

previous global temperature, previous government balance
Require: actions : mitigation rates, saving rates, tariffs, export rate limit, desired imports

for each region do
mitigation cost← f(intensity) ▷ Equation 38
damages← f(previous global temperature) ▷ Equation 19
abatement cost← f(mitigation rate, mitigation cost) ▷ Equation 20

production← f(production factor, capital, labor) ▷ Equation 41
gross output← f(damages, abatement cost, production) ▷ Equation 41
government balance← f(interest rate, previous government balance)
investment← f(saving rate, gross output) ▷Using Equation 37

scaled imports← f(gross output, desired imports) ▷ Equation 55
debt ratio← f(previous government balance) ▷ Equation 56
scaled imports← f(scaled imports, debt ratio) ▷ Equation 57

end for
for each region do

max potential exports← f(gross output, investment, export rate limit) ▷ Equation 58
Scaled imports← f(scaled imports, max potential exports) ▷ Equation 59

end for
for each region do

tariff-ed imports, tariff revenue← f(scaled imports, tariffs) ▷ Equation 24
domestic consumption← f(savings, gross output, scaled imports) ▷ Equation 25
aggregate consumption← f(domestic consumption, tariff-ed imports) ▷ Equation 26
utility← f(labor, aggregate consumption) ▷ Equation 2
government balance← f(imports, exports) ▷ Equation 60

end for
temperature← f(previous temperature, previous carbon mass, exogenous emissions)
carbon mass← f(previous carbon mass, intensity, mitigation rate, production, land emissions)
for each region do

capital← f(capital, investment) ▷ Equation 37
labor← f(labor) ▷ Equation 39
production factor← f(capital) ▷ Equation 40
carbon intensity← f(carbon intensity) ▷ Equation 42

end for

and Pacific. In each region, the different countries (or sub-regions) are classified into 4 income groups: high income, upper
middle income, lower middle income, and low income.

Merging regions. We assume the GDP, capital stock, and population for the regions are additive. We also assume the
gross CO2eq emissions across the regions are additive. Thus, we have

Km =
∑
i

Ki, (27)

Lm =
∑
i

Li, (28)

Ym =
∑
i

Yi, where Yi := AiK
γ
i L

1−γ
i , (29)

Am =
Ym

Kγ
mL

1−γ
m

, (30)

σm =

∑
i σiYi
Ym

. (31)
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Note that the production function is not scale-invariant:

Yt = (AtKt)
γ(AtLt)

1−γ (32)

c · Yt = (c ·AtKt)
γ(c ·AtLt)

1−γ (33)

̸= (c ·At)(c ·Kt)
γ(c · Lt)

1−γ , ∀c > 0. (34)

Hence, one cannot get the technology after merging multiple regions by simply adding the individual technology levels.
Rather, the combined technology factor is imputed from the combined productions, labor, and capital.

Tt+1 = ΦTTt +BT

(
F2× log2

(
MAT

t

MAT,1750

)
+ F EX

t

)
, (35)

Mt+1 = ΦMMt +BM

(∑
i

σi,t(1− µi,t)Yi,t + ELand
t

)
, (36)

Ki,t+1 = ΦK,iKi,t +∆
(
1− a1TAT

t − a2
(
TAT
t

)2)(
1− θ1;i,tµθ2

i,t

)
Yi,tsi,t, (37)

θ1;i,t =
pb

1000 · θ2
(1− δpb)t−1 · σi,t, (38)

Li,t+1 = Li,t

(
1 + La;i

1 + Li,t

)lg;i

, (39)

Ai,t+1 = (eη + gA;ie
−δA;i∆(t−1))Ai,t, (40)

Yi,t = Ai,tK
γ
i,tL

1−γ
i,t , (41)

σi,t+1 = σi,te
−gσ;i(1−δσ;i)

∆(t−1)∆. (42)

Splitting large regions. To avoid huge economies that dominate the fictitious world, we split large economies into pieces
based on predetermined fractions ci and random sampledAi:∑

i

ci = 1, (43)

Li = ciLm, (44)
Yi = ciYm, (45)

Ki =
Yi

AiL
1−γ
i

, (46)

σi = σm. (47)

G Welfloss
Welfloss, w stands for loss of welfare due to imposed tariffs (Nordhaus, 2015). w relies on wl, the unit of welfare loss per
unit of tariff which Nordhaus calibrates to .4.

wl = .4 (48)

wi,t = 1− wl
∑
j

bi,j,t
Yi,t

τi,j,t (49)

H Model Calibration
The structural parameters of the RICE-N simulation were calibrated to meet the following objectives:
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1. Temperatures match the real data in different versions of RICE-N with 3 regions, 7 regions, 20 regions, 27 regions, and
189 regions, under 0% and 100% mitigation.

2. The optimistic-pessimistic temperature outcomes fit the projects of Shared Socioeconomic Pathways in the IPCC Sixth
Assessment Report (Pörtner et al., 2022) (2◦C - 5◦C increase in the year of 2100). Each region optimizes the target
without negotiation and direct cooperation in the pessimistic case. In the optimistic case, regions negotiate with each
other using the baseline bilateral negotiation protocol. Please also notice that in the extremely pessimistic case that
regions ignore climate change at all and always choose 0% mitigation and 100% savings, the temperature leads to
approximately 7◦C increase in the year 2100.

The parameters that we estimated and the corresponding estimation methods are listed below:

• The dynamic parameters for total factor productivityA: gA and δA.

• The capital K: for the regions whose capital data is not available, we use a KNN regressor (Buitinck et al., 2013) to
estimate it.

• The dynamic parameters for population L: lg; similarly, for the regions whose convergence population data is not
available, we use a KNN regressor to estimate it.

• The initial carbon intensity σ0: for the regions whose capital data is not available, we use a KNN regressor to estimate it.

• KNN regressor: Because all regions have GDP and population data, we use them as features. For each region that lacks
emission data and capital data, we find the nearest 5 neighbors according to its GDP and population. We use the average
of the 5 neighbors’ emission data and capital data as the estimated values.

H.1 Population dynamic calibration

DenotingL∞;i := limt→∞ Li,t, in the limit t→∞we have:

L∞;i = L∞;i

(
1 + La,i

1 + L∞;i

)lg;i

, (50)

1 =

(
1 + La;i

1 + L∞

)lg;i

. (51)

As long as lg;i is not zero,L∞;i = La;i. Thus,La;i is the long-term population size and a free parameter that is fitted to data.
Assuming {Li,t}t=1,2,... is monotonically increasing or decreasing, the absolute value of lg;i represents how fast it converges to
La;i. The closerLi,t is to monotonically increasing or monotonically decreasing in the real data, the easier it is to fit lg;i andLa;i.

To fit the population parameters, we take logs on both sides of Equation 39:

logLi,t+1 =

logLi,t + lg;i(log (1 + La;i)− log (1 + Li,t+1)), (52)

where logLi,t+1 − logLi,t and log (1 + Li,t) are given by the data. log (1 + Li,t) and lg;i can then be estimated by linear
regression.

H.2 Technology dynamic calibration

We estimate both gA and δA from the existing data {At}i=1···n by solving a regression problem:

g∗a;i, δ
∗
a;i = argmax

ga;i,δA,i

Li,t (53)

Li,t = ||Ai,t+1 − (exp η + gA,i exp (−δA,i∆(t− 1)))Ai,t||2. (54)

This can be solved by numerical optimization algorithms, e.g., as provided in SciPy (Virtanen et al., 2020).

Because the emissions data from the World Bank API do not fit the form of the σ dynamic as assumed by DICE2016, use
the DICE2016 parameter values for gσ and δσ .

24



AI for Global Climate Cooperation

Table 7. Calibrated parameters for 27 regions
Region ID A0 K0 L0 La δA gA lg σ0

1 1.872 0.239 476.878 669.594 0.139 0.122 0.034 0.456
2 8.405 3.304 68.395 93.497 0.188 0.103 0.058 0.529
3 3.558 0.109 64.122 135.074 0.161 0.127 0.026 0.816
4 1.927 1.424 284.699 465.308 0.244 0.134 0.024 1.221
5 8.111 0.268 28.141 23.574 0.163 0.106 -0.057 0.290
6 4.217 3.184 548.754 560.054 0.170 0.095 0.080 0.302
7 2.491 0.044 46.489 59.988 0.058 0.049 0.037 0.420
8 2.525 1.080 69.194 100.016 0.346 0.079 0.029 1.010
9 2.460 0.184 513.737 1867.771 1.839 0.462 0.017 0.310

10 12.158 2.642 38.101 56.990 0.131 0.063 0.020 0.350
11 0.993 0.160 522.482 1830.325 0.086 0.065 0.019 0.235
12 5.000 2.289 165.293 230.191 0.183 0.071 0.027 0.419
13 29.854 2.020 165.751 216.927 0.088 0.075 -0.002 0.254
14 23.315 3.039 109.395 143.172 0.088 0.075 -0.002 0.254
15 29.854 0.687 56.355 73.755 0.088 0.075 -0.002 0.254
16 10.922 0.606 705.465 532.497 0.096 0.168 -0.016 0.781
17 9.634 0.608 465.607 351.448 0.096 0.168 -0.016 0.781
18 8.621 0.453 239.858 181.049 0.096 0.168 -0.016 0.781
19 3.190 0.129 690.002 723.513 0.054 0.068 -0.013 0.949
20 2.034 0.381 455.401 477.518 0.054 0.068 -0.013 0.949
21 13.220 16.295 502.410 445.861 0.252 0.074 -0.033 0.170
22 3.190 0.044 234.601 245.994 0.054 0.068 -0.013 0.949
23 6.387 1.094 317.880 287.533 0.194 0.237 -0.053 0.840
24 2.481 0.090 94.484 102.997 0.203 0.201 0.037 1.665
25 10.853 17.554 222.891 168.351 0.005 0.000 -0.012 0.285
26 4.135 1.002 103.294 87.418 0.158 0.123 -0.063 0.601
27 2.716 1.034 573.818 681.210 0.097 0.101 0.043 0.638

I Trade constraints
To ensure that total imports and total exports match, three constraints are enforced on regions’ trade flows.

1. For each region i, if the region’s total desired imports from other regions exceed its own gross output, then the imports
are scaled to sum up to the region’s gross output. We enforce the constraint that

∑
i̸=j bi,j,t ≤ Qi,t, which is to say

that a region may not import more goods than its current gross output capacity. This constraint helps the agents avoid
insurmountable debt, thereby stabilizing trade balances over the entire time period while also easing learning. If a region’s
desired imports exceed its production capacity, then its import bids are scaled down to size :

bi,j,t ← bi,j,t min

{
1,

Qi,t∑
i ̸=j bi,j,t

}
. (55)

2. Regions are allowed to carry a (positive or negative) trade balanceDi,t. At the start of each new time step, each region’s
trade balance, positive or negative, accumulates interest at a fixed rate of 10%. Based on this balance, a region’s
debt-to-initial-capital ratio is determined and the imports are scaled according to this ratio:

di,t = 10
Di,t

K0
, (56)

bi,j,t ← bi,j,t(1 + di,t). (57)

3. If other regions’ total desired imports from region i exceed region i’s upper bound on exports xmax
i,t , then the bids for goods

from region i are scaled proportionally to xmax
i,t . Otherwise, each region receives its full import bid from region i. In other
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words, region i cannot export more goods at time t than it could consume at time t, so other regions will import less from
region i.

xmax
i,t = min(pxi,tQi,t, Qi,t − Ii,t), (58)

xi,j,t = bi,j,t min

{
1,

xmax
i,t∑

j ̸=i bi,j,t

}
. (59)

After all constraints have been applied, the trade balance for the next period is calculated:

Di,t+1 = Di,t +∆

∑
j ̸=i

xj,i,t −
∑
j ̸=i

xi,j,t

 . (60)

J Legal Framework
Tariff enforced mechanisms, such as Basic Club, must comply with the World Trade Organization’s (WTO) General Agreement
on Tariff and Trade (GATT); specifically, the “most favored nation” clause which requires that tariffs be non-discriminatory.
At face value, Basic Club would appear to violate the clause; however, exceptions are made in the following circumstances:

• The agreement promotes one of the GATT article XX (g) objectives; namely, “relating to the conservation of exhaustible
natural resources.”

• The agreement should contribute to the objective.

• The agreement should not discriminate between countries. If it appears to, then its discrimination must be on the grounds
justifies the rationale.

This legal framework has precedent since the 1998 WTO Appellate Body Report “United States - Import Prohibition of
Certain Shrimp and Shrimp Productions” (Shaffer, 1999). Basic Club inherits this legal framework with respect to GATT
compliance. Furthermore, tariffs can be WTO compliant if they correct existing trade imbalances, as is the case with carbon
leaking regions which have a competitive advantage, or are used as a punitive measure against misconduct (Pihl, 2020;
Mavroidis & de Melo, 2015).

K Sensitivity Analysis
We carry out a sensitivity analysis to test the robustness of the results under different parameter settings. Since the space
of possible configurations is large, we perform a sensitivity analysis over a subset of economically relevant parameters,
namely the discount factor, welfare loss weight, consumption substitution rate and relative preference for domestic goods.
Figure Appendix J shows the percentage change in outcome variables of interest across different scenarios when critical
model parameters are perturbed by a multiplication factor ranging from 0.96 to 1.04. The maximum percentage change is
3.16% while the mean is−0.22% and the medium is−0.36%. We thus conclude that the dynamics are stable, corresponding
to changes in critical model parameters.

L Mitigation Distribution
To explore the range of strategies that emerge under different negotiation protocols, we analyze the distribution of final
mitigation rates of each agent. This clarifies for each negotiation protocol what proportion of agents are ambitious mitigators,
free-riders, or low-effort mitigators. Results are visible in Figure 9.

M Detailed Outcome and Fairness Times Series
Figure 7 and Figure 8, provide the timeseries and equity of various variables over relevant scenarios. The bump in carbon
emissions within the first time steps is a result of the constraint that regions cannot abruptly change their mitigation rate, but
only adapt it stepwise, leading to a slow ramp-up of mitigation at the start of the rollout. Even with the maximum mitigation
rate, a base emission level remains, as land emissions are assumed to be non-reducible.
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Figure 6. Sensitivity analysis: heatmap showing the percentage change in variables of interest (including Temperature, Carbon Emissions,
GDP) across different scenarios (x-axis) when critical model parameters (including the discount factor, welfare loss weight, consumption
substitution rate and relative preference for domestic goods) are perturbed by a multiplication factor of (1+∆). The parameter∆ varies from
−0.04 to0.04 (y-axis). For example, looking at the bottom left corner of the Temperature Change heatmap, a4% decrease in the model param-
eters leads to an increase in final temperature of 0.41%. Overall, the variables of interest are rather insensitive to changes in the model param-
eter values. For reference, the global temperature anomaly increases by over 200% from 2015 to 2115 in the Maximum mitigation scenario.
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(a) (b)

(c) (d)

Figure 7. Time series of key variables across various scenarios.
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(a) (b)

(c) (d)

Figure 8. Equity of key variables across various scenarios.

Figure 9. We compare the distribution of final mitigation rates across 50 seeds. Under the default, no negotiation, most regions either free ride
or reduce≤ 30% of their emissions. Under the Basic Club and Bilateral Negotiation, the majority of agents reduce 80% of their emissions.
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