Under review as a conference paper at ICLR 2026

PROJECTED NEURAL ADDITIVE MODELS AS UNIVER-
SAL APPROXIMATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

This article proves that any continuous multi-variable function can be approxi-
mated arbitrarily close by a linear combination of single-variable functions of the
inputs in a projected space. Using a set of independent neural networks to param-
eterize these feature functions of the projected inputs, we introduce their linear
combination as the projected neural additive model (PNAM): an extension of the
neural additive model (NAM) (cf.|Agarwal et al.[(2021)) that now enables univer-
sal approximation. While the couplings of the input variables bestow the PNAM
with the universal approximation property, they could diminish the interpretability
intrinsic to the NAM. As such, we propose regularization and post hoc techniques
to promote sparse solutions and enhance the interpretability of the PNAM. The
single-variable characteristic of the bases also allows us to convert them into sym-
bolic equations and dramatically reduces the number of required parameters. We
provide results from numerical experiments on invariants in knot theory, phase
field fracture mechanics, and the MNIST benchmark to illustrate the expressivity
and interpretability of the PNAMH

1 INTRODUCTION

While deep neural networks have become popular for a multitude of tasks due to their expressivity,
they come at the cost of interpretability (Murdoch et al.,[2019). Of the myriad methods introduced to
address this issue, |Agarwal et al.| (2021)) propose an alternative architecture, coined the neural addi-
tive model (NAM), by altering the connectivity of the network such that it becomes a linear combi-
nation of single-variable functions of the input variables, parameterized by independent multi-layer
perceptrons (MLPs). Although the values of these functions can provide a degree of interpretability,
the linear nature of the NAM in turn limits its expressivity. As a result, propose the
use of a learnable linear transformation before passing the inputs to the NAM (see Fig. [I)), which we
refer to as the projected neural additive model (PNAM), to enhance the expressivity of the model.

Contribution. In this work, we prove that the PNAM is a universal approximator, elucidating its
ability to approximate any continuous function on a closed and bounded domain. In particular, we
first prove the polynomial reproducing property of the PNAM for an arbitrary number of variables
and orders using mathematical induction; we then employ the Stone—Weierstrass theorem (Stone},
[1937; [1948}, [Cotter], [T990) to establish its universal approximation property. The linear transfor-
mation enables the PNAM to capture complex couplings that the NAM and standard generalized
additive models (GAMs) cannot, while also reducing the number of feature functions for high-
dimensional problems with numerous inputs (Hastie & Tibshirani, [[986} [Radenovic et al.} [2022).

To rectify the reduction in interpretability that the linear transformation may induce, we introduce
regularization techniques that (i) permit us to rank the importance of each input feature, (ii) penalize
unnecessary couplings between the inputs, and (iii) promote sparse solutions. While the NAM pro-
vides local comprehension by highlighting how the variables affect the predictions at every point, the
PNAM offers global comprehension by identifying which variables are crucial for the overall predic-
tive accuracy (Molnar] 2019} [Rudin et al}[2022)). We further leverage the modularity of the PNAM
to prune nonessential parameters and provide an option to convert the single-variable bases into
symbolic equations. Applying the resultant models for multi-output predictions, we demonstrate, in

"We will open-source our code after the double-blind review process.

Under review as a conference paper at ICLR 2026

three numerical experiments, the various utilities of the PNAM, which allow users to dictate their
desired degrees of accuracy and sparsity.

Related work. The PNAM is one of many architecture-

based models introduced to enhance the interpretability of

deep neural networks without compromising their expres- Nonlinear
sivity. Other neural network models include, but are not fi := MLP; @
limited to, Kolmogorov—Arnold networks (KANs) (Liu Linear

et al, 2024), deep polynomial neural networks (Chrysos ;

etal.,[2022), and graph neural networks with inductive bi-
ases (Cranmer et al. 2020). In addition, related sparsifi-
cation, pruning, and post hoc methods include the SINDy
algorithm (Brunton et al., 2016)), structural pruning (Fang
et al, [2023), and gradient-based attribution (Sundarara-
jan et al., [2017). We emphasize that although we have
equipped the PNAM with the ability to produce mathe-
matical expressions, symbolic regression (SR) is primar-
ily employed for pruning to reduce the number of pa-
rameters and to gain insight into the interactions of the
input variables. Similar to the KAN, the PNAM is not
intended for recovering physical laws with precise func-
tional forms, as its additive nature prevents the PNAM
from compactly approximating operators like division.
Moreover, the number of feature functions is potentially
large. As a result, we reserve such tasks for proven SR
algorithms using reinforcement learning (Petersen et al.|
2019)), physics-inspired strategies (Udrescu & Tegmark|

2020), and genetic programming (Cranmer, 2023)).

Linear

[T m =0

M
D Gifi(z) o=
i1

2 PROJECTED NEURAL ADDITIVE MODELS Figure 1: Architecture of the PNAM.

The output ¥ is predicted via a lin-
2.1 CONSTRUCTION ear combination of single-variable func-
tions, parameterized by independent
Given a training data set { X', y} = {(x;. yJ)}J 1> Where M ps which further are functions of
x = {x:}1L, is an input point, with N denoting the num- linear combinations of the inputs
ber of independent variables, y is the corresponding scalar The transformation T' and scaling co-
output label, and D is the number of input-output pairs, efficients ¢ (both denoted with dashed
the goal of supervised learning is to construct a func- lines) can be optimized to yield sparser
tion F that maps every input point to output label, that (and more interpretable) solutions.
is, y = F(x): RY — R. Here, we hypothesize that
the multi-variable function F can be approximated by a
linear combination (or weighted sum) of smgle variable functions {f;},, with M denoting the
number of feature functions, of the inputs in a projected space to produce the dependent variable:

M N M
T=> _Gfi | D Tiyxi | +e=> gilz) +e (1
=1 i=1

where 7 is a parameterization of y, and € is an error term introduced to represent noise in the data.
The projected variables z in Eq. [I] result from a linear transformation T of x, that is, z = T'x:
RN — RM_ Moreover, each single-variable function f;: R — R and its corresponding scaling
coefficient (; are represented by the function g;: R — R for compactness.

The feature functions { f;} in Eq. can be constructed using polynomials or neural networks. Here,
we parameterize y as a linear combination of MLPs:

M N
=N GMLP; [S T Wi, W s s | e)
=1

Jj=1

Under review as a conference paper at ICLR 2026

where each f; is an MLP with L layers, learnable weights {Wi(l),...,m(L)} and biases

{sgl), NN SEL_l) }, and element-wise activation function a:

VVi(L)a (Wi(L_l)a (..a (Wi(l)zi + sgl)) .) + SEL_1)> .

To enable the model to learn high-frequency functions, a Fourier feature mapping (Tancik et al.|
2020; [Bahmani et al.,[2024) can be leveraged to map a transformed input z; to

MLP, (zi;wi“),...,Wﬁ”,s(”,...,sgk”) -
3)

~i(z;) = [cos(QﬂBizi)T, sin(27rBizi)T}T, 4)

where each entry in B; is sampled from a Gaussian distribution A/(0, o) with standard deviation o
and is fixed after initialization, before passing it to Eq. [3} Let ¢ = {(;};,; as shown in Fig. |1} the
transformation T, scaling coefficients ¢, and error term € in Eq. [2]can be encoded as two additional
weight matrices and one bias term, respectively. A simpler version of this construction is first
proposed in (2025) and corresponds to the PNAM, introduced (without a formal proof of
universal approximation) to overcome the limited expressivity of the NAM (Agarwal et al., 202T).

Remark. For the PNAM, each basis g; in Eq. |I| is now a function of a transformed variable z;,
as opposed to the original input x; for the NAM and other GAMs. The linear transformation T,
leading to universal approximation, enables the PNAM to capture interactions between the inputs,
such as x1x2 in Example [AT] that the NAM cannot. Nevertheless, for each data point, examining
{gi} no longer tells us how the inputs x contribute to the prediction 7. Instead, we describe in
Section@how one can examine 7", which is constant for all data points, to determine which inputs
are important for predictive accuracy. This and other aspects of interpretability (e.g., dimensionality
reduction and feature pruning) are entirely missing from fully connected MLPs.

2.2 UNIVERSAL APPROXIMATION

By the Stone—Weierstrass theorem (Stone}, [1937}; [1948; [Cotter}, [1990)), polynomials are dense in the
space of continuous functions, i.e., they can approximate any continuous function on a closed and

bounded domain. As such, we can achieve universal approximation by reproducing polynomials.
We show in Theorem [A-T]that single-variable polynomials of the inputs in a projected space can be
employed as the bases to approximate multi-variable polynomials. Instead of single-variable poly-
nomials, one may also use the sum of one-dimensional (1D) neural networks of the projected inputs
to achieve universal approximation. Since all such neural networks of single variables enjoy the uni-
versal approximation property (Hornik et al.} [T989} [Leshno et al. (1993} [Lu et all, 2017), implying
that they can approximate polynomials, we immediately get the universal approximation property
of the resulting multi-dimensional neural network. This approximation capability is formally stated
in the following theorem.

Theorem 2.1. Let & be a set of single-variable polynomials or 1D neural networks. Given any
function F in the set of continuous real-valued functions C(®) for a compact domain ® C RY,
there exists a linear transformation T: RN — RM and a set of functions {g;: R — R}M, in &
such that

M N
F) =Y g [D Tijxs || <e ©)
i=1 j=1

Jorall x € © and any € > 0.

Proof. By the Stone-Weierstrass theorem (Stonel, [1937} [1948} [Cotter], [1990)), there exists a (multi-
variable) polynomial F5 such that

|F1(x) — Fa2(x)| < €/2. (6)

Under review as a conference paper at ICLR 2026

Then for F», by Theorem[AT] we have
M N
F00) =3 | D Tijx; ()
i—1 j=1

with single-variable polynomials {g;}. If & is a set of polynomials, we are done. If & represents
neural networks, we know each polynomial g; can be further approximated by a neural network g;
due to the universal approximation theorem of neural networks (Hornik et al. [T989}; [Leshno et al.]

1993} [Lu et al.L 2017) in 1D. So, we can make

M N
P00 =Y g | D Tixs || <e/2. (8)

i=1 j=1
This result, together with Eqs.[6]and[7} completes the proof. O

2.3 EXTENSION TO MULTIPLE OUTPUTS

Now, let y = {{yi; }121 11, ¢ = {{¢i; 1L}, and € = {e;}[X,, with K denoting the number
of dependent variables. Equationcan be extended to multiple outputs {7; } as follows:

M N M
Ui = ZCijf@‘j (Z Tijk> +e = Zgij(zj)—kei, i=1,2,...,K, (nosumoveri) (9)
j=1 k=1 j=1

where f;; is the i*" output of the j** vector-valued function l, 2023)). To show that Eq.Elis a
natural extension of Eq. |1} consider the extreme case where the bases {g;; } share no common inputs

{z;} across {y; }. In that case, M = Zfil m;, with m; denoting the number of dimensions required
to approximate each 7;. Equivalently, for each index 4, the number of indices j for which ¢;; and f;;
are nonzero is m;, yielding orthogonal bases {g;;}. Along the lines of the universal approximation
theorem associated with fully connected neural networks, M can be chosen to be arbitrarily large to
approximate any set of continuous functions in theory.

2.4 LEARNING PROBLEM AND CONSTRAINTS FOR SPARSITY

M
Let ® = {6;}M, = { (Wi(l), ey Wi(L), 52(1)’ cey sz(»L_l)) } denote all learnable parameters

i=1
of the MLPs. We optimize the learnable parameters of the PNAM by minimizing the following loss
function (in parentheses) for D training samples:

T*,©° ¢*,¢" = argmin (c<y, G(X:T.©.¢.¢) + Lo
T,0.¢,e

)) (10)

+ 5(w1€1 + wals) + M(wsﬁs + waly + w5£5)),

where

K D .
1 exp(¥i(x:T,0,¢, €
L= L33 ylog oI OGT 0.6, 6)
i=1 j=1 Yo exp(Wk(x;: T, ©,¢,€))

is the cross-entropy loss for classification, or

K D
1 P
L= %D ZZ(%; —5i(x;; T, ©,¢,€))*

i=1 j=1

is the mean squared error (MSE) for regression. Moreover, Lp can be employed to impose any
additional physical constraints that restrict the space of admissible solutions (Czarnecki et al.| 2017}
[Raissi et al, 2019} [Bastek et al., 2024).

Under review as a conference paper at ICLR 2026

To prevent overfitting and produce interpretable solutions, we use the following two constraints:
6=18l2 2= |[{{{g:;00: T, 0, O} 1L], (11

where /7 is the usual Lo regularization of the weights and biases (Krogh & Hertz, 1991)E] and /o
discourages {g;; } from taking on large values (Agarwal et al., 2021). Considering that the inputs and
outputs are often scaled to small values in machine learning problems, the inclination for {g;; } to be
small could be leveraged to determine the relative importance of the inputs. As we will exemplify
later, if any element in the linear transformation 7" is relatively large, its corresponding input feature
is more important than the others.

To further promote sparsity, we first define the singular value decomposition of T as follows:
T = QlEan

where @ and Q> are orthonormal matrices of dimensions M x M and N x N, respectively, and
isan M x N diagonal matrix containing the min(M, N) singular values of T'. Based on the metric

®(Ry,Ry) = ||I — RRY||r = \/2(3 —tr(RiRY)), Ry, Ry € SO(3),

described in |[Huynh|(2009) for measuring the distance between two 3D rotations, we leverage

l3 =®(I,Q1) + (I,Qz2) = V2(M + N — (rQ; + trQ>)) (12)
to penalize unnecessary couplings between the inputs. In addition,
=T}y, L =]IClh (13)

are employed to encourage nonessential coefficients in T" and ¢ to go to zero (Tibshirani, |1996} Xu
et al., [2023; | Bahmani et al., [2024).

2.5 POST-PROCESSING AND SYMBOLIC REGRESSION

Upon successful training of the PNAM, post hoc analysis can be performed to further prune the
model and enhance interpretability (Murdoch et al.,|2019;|Cheng et al.,|2024). Due to the modularity
of the PNAM, we propose three techniques to reduce the number of optimized parameters.

The first technique relies on the successful incorporation of the regularization constraint /5 in Eq.
Suppose the functions {g;; } are indeed small. In that case, we can examine the column-wise mean
of the absolute values of the coefficients in the linear transformation (that is, ﬁ Z]Ail |Tjx|), dubbed
the mean absolute coefficients, to rank the importance of each input feature. Upon which, one may
choose to keep only the top n < N input features and zero out the columns of T associated with
the (N — n) less important features. The second technique entails selecting two hyperparameters
Ty and (o for which entries T, < Tp and (;; < (o, for k = 1,2,...,N, 5 = 1,2,..., M, and
i=1,2,..., K, are set to zeroE]

Finally, the third technique leverages the single-variable characteristic of the bases {g;;} to convert
them into symbolic equations. Although any SR algorithm, such as DSR (Petersen et al., 2019) or
Al Feynman (Udrescu & Tegmark| [2020), may be used to accomplish this task, here, we employ
PySR (Cranmer, 2023), which utilizes genetic programming (Holland, [1992} |[Koza, |1994), for its
extensive developer base and ease of use. To convert the i*" nonzero output of the 5" MLP into
symbolic form, we employ the following loss function:

D
. .1
gij = argmin (D > ((CijMLPij(zj§ 0,)|k — 9i5(2)[x)?

9is k=1
2
> >> , (nosum over ¢ and 7)
k

>We opt for || - ||2 as opposed to || - ||3 so that the (expanded) loss terms in Eq. [L0| for regularization

(14)
dMLPU (ZJ, 03)
de

~ dgij(z)
k dz;

+ we <C¢j

constraints £, £, . .., {5 are similar in magnitude. Thus, weighting coefficients w1, wa, . .., ws can be chosen
together, thereby simplifying the space for hyperparameter search.
3Either the first, the second, or a combination of both techniques may be used. Like M, w1, w2, ..., ws,

and any other hyperparameters, the choices of n, T, and (o depend on the users and their desired degrees of
accuracy and sparsity.

Under review as a conference paper at ICLR 2026

where {g;; } are mathematical expressions of single variables, and the weighting coefficient ws may
be used to control the derivatives of the discovered functions. The sum of {g;;} over j (with {¢;})
then yields the outputs {g;} in Eq. El These post-processing steps can potentially reduce the tens
of thousands of parameters of the PNAM to tens or hundreds of parameters, while alleviating the
NP-hardness of multi-variable SR (Petersen et al., 2019; |Virgolin & Pissis, [2022)) and retaining the
accuracy of deep neural networks.

3 NUMERICAL EXPERIMENTS

In the following experiments, we illustrate the expressivity and interpretability of the PNAM, af-
forded by the linear transformation and post hoc analysis. The first experiment leverages an exten-
sive data set of mathematical knots from Davies et al.|(2021) for (i) multi-label classification and (ii)
single-task regression. The second experiment employs limited data from a phase field simulation
of fracture propagation in |Clayton et al.|(2023) for multi-task regression, leveraging the additional
physical constraint term Lp in Eq. [I0]and derivative information via the weighting coefficient wg
in Eq.[T4] If not specified, Lp is not used and wg is set to zero in the experiment. One auxiliary
experiment is presented in Appendix [A.5] which uses the MNIST data set (LeCun et al [T998) to
demonstrate the dimensionality reduction capability and visualize the input pruning mechanism of
the PNAM for a high-dimensional image classification problem.

For all experiments (excluding the one using the MNIST data set), we hold out 20% of the data
for testing; the remaining 80% undergo a training-validation split of 80 and 20%, respectively. The
PNAM is implemented using the PyTorch deep learning library (Paszke et al.l 2019) and SiLUE|
(Hendrycks & Gimpel, 2016} [Elfwing et al., [2018) as the activation function « in Eq. El For the
projection dimension M, we start with M = 8 or a square projection (whichever is smaller) in every
experiment and increase or decrease M as appropriate. Unless otherwise stated, we set weighting
coefficients w1 = wy = w3 = wy = ws = 0.01 for all classification tasks and wq; = wy = w3 =
wy = ws = 0.001 for all regression tasksE| We use a batch size of 256 samples and the Adam
optimizer (Kingma & Bal 2014)), employing an initial learning rate of 0.001 that decays by a factor
of 0.995 after every epoch, to train all neural networks. All models are trained on a single NVIDIA
A100-SXM4-40GB GPU. Each basis g;; in Eq. @is evolved for one minute using 30 populations
of 30 expressions with a maximum complexity of 30; all operators and leaf nodes have a complexity
of one. Other relevant hyperparameters and training details are delineated with the results.

3.1 BENCHMARKING WITH KNOT THEORY

Established by a team of mostly Google DeepMind (DM) researchers (Davies et al., [2021), the data
set of mathematical knots consists of 243,746 samples, each possessing 17 geometric invariants:
adjoint torsion degree, torsion degree, short geodesic (real part), short geodesic (imaginary part),
injectivity radius, Chern—Simons invariant, cusp volume, longitudinal translation, meridional trans-
lation (imaginary part), meridional translation (real part), volume, and six symmetry groups. The
goal of this problem is to use the aforementioned invariants to predict the signature of the knots,
which can take on one of 14 values that are multiples of 2 from —12 to 14. As such, this task can be
framed as a classification problem with 14 labels or a single-output regression problem; both options
have been explored to benchmark performance.

Classification. The first two rows of Table |I| are reproduced from Liu et al.[(2024)), which compare
the performance of the MLPE| implemented by Davies et al. (2021) against that of the KAN. The
next five rows detail our implementation of the MLP, the NAM, and three parameterizations of the

*We observe that ReLU results in a smaller loss £ in Eq. than SiLU, but the bases {g;; } that the PNAM
learns are more chaotic/non-smooth and require more parameters/operations to approximate via Eq. @

SWe find that these coefficient values yield a robust trade-off between accuracy and sparsity due to the
magnitude of £ relative to those of the regularization constraints in Eq.[T0]for scaled variables.

SInspections of the source code (https://github.com/ google-deepmind/mathematics_
conjectures/blob/main/knot_theory.ipynb) reveal that the training of the MLP is terminated
when the validation loss increases (i.e., an early stopping patience of one evaluation is employed), which may
have led to underfitting.

https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb
https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb

Under review as a conference paper at ICLR 2026

Table 1: Performance of different neural network architectures for the multi-label classification
problem of predicting the signature of mathematical knots. The first two rows are reproduced from
Table 3 of Liu et al.| (2024)). See Liu et al.| (2024) for definitions of G and k. In the next five rows,
the mean and standard deviation of the test accuracy are computed from 10 runs. In the last row, the
first hidden layer of the MLP bases is replaced with a Fourier feature mapping (Eq. [).

Method Architecture Parameter count Test acc.
DM’s MLP 4 layers: [17, 300, 300, 300, 14] 3 x 10° 78.0%
KAN 2 layers: [17,1,14] (G =3, k = 3) 2 x 102 81.6%
Our MLP 3 layers: [17, 64, 32, 14] 1.2 x 10% 95.8+0.1%
NAM 3 layers: 17 x [1, 64,32, 14] 2.1 x 10° 92.4+0.2%
PNAM 3 layers: 17 x [1,64, 32, 14] 2.1 x 10° 95.0 & 0.2%
PNAM 3 layers: 8 x [1, 64,32, 14] 9.8 x 10* 93.6 + 0.4%

PNAM 3 layers: 8 x [1,2(32),32,14] (o = 1) 9.8 x 10* 94.3 4 0.3%

Table 2: Ranking of important input features based on their mean absolute coefficients for the PNAM
with M = 8 in the penultimate row of Table[I] The mean and standard deviation of the test accuracy
associated with using only the top n features are computed from their frequency across 10 runs.

Rank Input Symbol Frequency Test acc.
1 Re(meridional translation) X10 10/10 55.1+ 3.5%
2 Longitudinal translation X8 10/10 74.2+£1.5%
Im(meridional translation) X9 7/10 78.1 +2.4%
3 Cusp volume X7 1/10 80.5%
Im(short geodesic) X4 1/10 73.5%
Volume X11 1/10 70.5%

PNAM, all using MLP(s) with two hidden layers of 64 and 32 neurons We scale all inputs to have
zero mean and unit variance and train the models for 50 epochs without early stopping. All five
models achieve test accuracy greater than 90%, with the MLP performing the best and the NAM
performing the worst. Although the accuracy of the PNAM can be improved by increasing M (e.g.,
from 8 to 17) or replacing the first hidden layer of the MLP bases with a Fourier feature mapping
(e.g., with B € R3? and o = 1), doing so increases the complexity of the learned functions.

For the PNAM with M = 8 and without the Fourier feature mapping, we present in Table 2] possible
input variables that represent the three most important features by comparing the mean absolute
coefficients of the linear transformation 7T". Out of 10 runs, the meridional translation (real part) and
longitudinal translation have the largest and second largest mean absolute coefficients, respectively,
in all 10 runs, while the meridional translation (imaginary part) has the third largest mean absolute
coefficient in seven runs. In addition, Table [2] reveals that keeping only coefficients in T" associated
with the top n = 3 inputs and zeroing out all other coefficients, the PNAM can still achieve a test
accuracy of 78.1% (see Fig. for more information). Our findings are consistent with Fig. 3 of
Davies et al.| (2021 and Fig. 4.3 of|[Liu et al.|(2024]), despite the fact thatDavies et al.[(2021) employ
gradient-based attribution (Sundararajan et al., | 2017) and |Liu et al.| (2024)) leverage a specific KAN
architecture with a hidden dimension of one to determine the relative importance of the inputs.

Regression. Davies et al.| (2021) and [Liu et al.| (2024) then leverage the knowledge they acquire
from the classification task to construct mathematical expressions for the signature of the knots,
now as a single-output regression problem. Expression A in Table [3] corresponds to the equation
handcrafted by |Davies et al.| (2021), and expressions B to F proceed from post-processing steps of

"The number of parameters of the MLP, NAM, and PNAM is estimated as O(LW?), O(NLW?), and
O(MN + MLW?), respectively, where W is the number of neurons in the widest layer. Compared to an
MLP that uses the same L and W, the PNAM has approximately M times more parameters. Considering that
memory requirements scale linearly with the number of parameters, the PNAM requires M times more memory
and is thus slower to train than the MLP.

8Note that|Davies et al.| (2021) swap the naming of the real and imaginary parts of the meridional translation
in their code/figure (see footnote@).

Under review as a conference paper at ICLR 2026

Table 3: Mathematical expressions for the knot data set. Inputs x7, Xxs, X9, and X1 are the cusp
volume, longitudinal translation, meridional translation (imaginary part), and meridional translation
(real part), respectively. Expressions A to F are reproduced from Table 4 of |[Liu et al.| (2024). A
factor of % is added to expression A for consistency with DeepMind’s findings (Davies et al., 2021}
2024). Expression D has missing parentheses, so it cannot be evaluated. A factor of % is added to
expression E for consistency with expression A. For expressions G and H, bases {g;;} in Eq.
use addition, subtraction, multiplication, and square as operators; they additionally use exponential,
sine, and tangent for expression I. Every constant in the expressions is counted as a parameter. See
our code to reproduce these results.

Eval. of test acc.

) P
ID Expression PCT Discovered by “Repored Our Total acc.
A e 3 Human (DM) 83.1% 745% 73.8%
— =1 [—0.52 —
B ng?jggﬁf’g’g?;?‘&’)+0‘08‘4‘02X10+6'28| 052=" 12 3 1]KAN 626% 27.0% 26.8%
0de—0-
an(— —1.43(1—0.4x9)? +0.09¢ ~0-08(1—0-21x)
¢ 017tan(-1.51+0.le ’ T 17 B1L,1]IKAN 719% 417% 41.5%

1_326—3.18(1—0.43)(10)2)

—0.09 + 1.04 exp(—9.59(—0.62 sin(0.61x 10 + 7.26)) —
p 032 tan(0.03xs — 6.59) +1-— 0.116_1'77(0'31_X9)2)2 — 29 [3,2, 1] KAN 84.0% _ _
1.09¢=7-6(0:65(1-0.01x8)° { (.97 arctan(0.53xo — 0.6) + o

0.09 + exp(—2.58(1 — ().36X10)2))

4.76x8 X1 3,2, 11 KAN
B e 7]approx. 82.8% 793% 793%
F 0.32(0.182;9;10)zéﬂ.lliii?il—(]é(l)‘z’l))(s)2+0.50 13 EH ﬁﬁg 71.8% 27.0% 26.8%
12.766(0.132(—x10 + 0.035xs + 0.157)% +
0.592(—0.23x10 + 0.008xs + 1)2(0.162x10 — 0.006xs + 8 x [1,64,32,1]
G 0.076) — 1)* +7.202(0.871x10 + 0.029xs — (0.229x10 + 31 PNAM - 75.9% 75.7%
0.008xs — 0.103)(0.229x10 + 0.008xs + 0.159(x10 + (n=2)
0.033xs — 0.449)% + 0.625) — 0.173)% — 10.643
26((0.096x10 — 0.002x7 + 0.004xs — 0.237)(0.267x10 —
0.004x7 +0.011xg + 0.119(x10 — 0.016x7 + 0.04xs —
0.316)% — 1) + 0.133)(0.734x10 — 0.012x7 + 0.029xs +
0.418) + 2.054(0.589x10 + 0.018x7 — 0.027xs + 1) — 8 x [1,64,32,1] _
H 4.056(x10 + 0.031x7 — 0.046xs + 0.195)%(0.107x10 + 52 PNAM 81.2% 80.9%
0.003x7 — 0.005xs — 0.064(x10 + 0.031x7 — 0.046xs + (n=3)
0.087(x10 4 0.031x7 — 0.046 5 — 0.165(x10 + 0.031x7 —
0.046xs + 0.195)% 4 0.195)% + 0.195)% + 1) — 0.895
2.574x10 + 0.078x7 — 0.13x5 + 26(0.233(—x10 +
0.016x7 — 0.04xg — 0.597)% sin®(0.367x 19 — 0.006x7 +
0.015xs — 0.719) + sin(0.777x19 — 0.013x7 + 0.031xs + 8 x [1,64,32,1] _
! 0.262))(0.168x19 — 0.003x7 + 0.007xs — 0.053) + 34 PNAM 81.4% 81.0%
15.626(— sin(0.54x10 + 0.017x7 — 0.025xs + 0.105) — (n=3)

0.049)2(—0.165x19 — 0.005x7 + 0.008xs — 0.645) + 0.509
T Parameter count is abbreviated as PC.

KANS trained using only the three most relevant invariants (Liu et al.| 2024). |Davies et al.| (2021
originally report a test accuracy between 70-80% for expression A in their implementation, while
Liu et al.| (2024) report a test accuracy of 83.1%. Since the accuracy appears to depend on the test
set that results from a random data split, we evaluate all expressions on our test set and the entire
knot data set (denoted as “Our” and “Total acc.” in Table [3), in addition to the values reported by
Liu et al.| (2024])) for expressions A to F.

Here, we demonstrate that the PNAM in Table [A T} —trained using all invariants and the same setup
described in the classification task but without any knowledge of prior results—can be converted into
symbolic equations with merely tens of parameters. We emphasize that expressions G to I in Table
(] are artificial constructs of the PNAM after pruning. Their particular forms are less crucial and
would likely change as more analysis becomes available. Instead, what is crucial is the capability of
the PNAM to discover pertinent relationships as new data and invariants are introduced.

Under review as a conference paper at ICLR 2026

Of the runs summarized in Table [A.2] expressions H and I are obtained from the run depicted in
Fig. with n = 3 and the cusp volumg’|as the third most important feature. Although the cusp
volume is not explicitly stated in|Davies et al.|(2021) and|Liu et al.|(2024)) as an invariant relevant for
predictive accuracy, the PNAM discovers a potential relationship between the cusp volume and the
signature of the knots that could improve accuracy. Furthermore, comparing expressions E and G
suggests that the PNAM can achieve accuracy similar to that of the KAN, despite the PNAM using
only two invariants without relying on additional assumptions. For additional analyses of how the
weighting coefficients in Eq.[T0]affect the performance of the PNAM, see Fig.

3.2 PHASE FIELD THEORY FOR FRACTURE OF BRITTLE SOLIDS

In this common solid mechanics problem, we examine the relationship between the expressivity of
the PNAM and its projection dimension M. The data set simply contains 96 data pointsm homog-
enized from a phase field simulation of fracture in boron carbide (B,C) with isotropic elasticity and
isotropic fracture energy from|Clayton et al.|(2023)), for quasi-static extension up to peak load. Given
the homogenized values of the axial strain, order parameter, and magnitude of the material gradient
of the order parameter, the goal of this problem is to predict the average strain energy, phase energy,
and axial stress. Considering that the stress is calculated as the derivative of the sum of the strain
energy and phase energy with respect to the strain, we frame this task as a two-output regression
problem. The MSE is employed as £ in Eq.[10]to predict the strain energy and phase energy; to
predict the stress, we use the following form of the constraint term Cp
2
)
k

6(@\1 (X; T7 67 C7 6) + Q\Q(X7 T7 ®a C? 6))
ox1

where yj ; and y5 ; are the derivatives of the strain energy and phase energy, respectively, with

respect to the strain (y1). We set weighting coefficient wp; = 1.

D
wp1

er =S ((Wha + skl -

All variables are scaled to have zero min and unit max. Table[d]depicts the performance of the MLP,
the NAM, and four parameterizations of the PNAM, all using MLP(s) with three hidden layers of 256
neurons and set to train for 5000 epochs with an early stopping patience of 50 epochs. On average,
the test MSE of the PNAM decreases as we increase M (cf.Phan et al.[|(2025)). Nevertheless, a run
of the PNAM with M = 8 turns out to be the model that achieves the smallest MSE. Therefore, we
leverage wg = 1 in Eq. which ensures accurate predictions of the stress, to convert this neural
network model with approximately 106 parameters into symbolic form with roughly 100 parameters.
As illustrated in Figs. and[A.8] by employing SiLU as the activation function a in Eq.[3] we are
able to approximate all bases {g;;} as polynomials of single variables in Table Predictions of the
strain energy, phase energy, and stress for the linear combinations of these polynomials are portrayed
in Fig.[A.9] achieving a test MSE of 2.25 x 10~°.

4 CONCLUSION

We prove the universal approximation property of the PNAM and demonstrate its superior predic-
tion capability compared to the NAM in three numerical experiments. By increasing the dimension
of the linear transformation, the PNAM can achieve performance comparable to or even surpass that
of the MLP. Moreover, we leverage the modularity of the PNAM to gain insight into important input
features, prune unnecessary parameters, and convert the model into symbolic form. However, as a
stand-alone model, the PNAM is not meant to replace the MLP, NAM, or even classical SR. Rather,
it serves as an alternative to obtain a better trade-off between expressivity and interpretability—
achieving the accuracy of the MLP and retaining a degree of interpretability of the NAM, all while
being relatively straightforward to train and optimize. Further studies are required before we can

The cusp volume is equivalent to the multiplication of the longitudinal translation and the imaginary part
of the meridional translation (see Fig. 4.4(b) of |Liu et al.| (2024)).

10The phase field data set is open-source with our code and can be used to study the benign or catastrophic
overfitting of overparameterized neural networks (Mallinar et al.| [2022) for a physical system.

”Ginzburg—Landau kinetics (Gurtin, |1996), or its quasi-static reduction in the present case, could be added
as a constraint if one has access to the loading rate and the Laplacian of the order parameter. See|Miehe et al.
(2010) for background on phase field fracture mechanics and corresponding numerical models.

Under review as a conference paper at ICLR 2026

Table 4: Performance of different neural network architectures for the multi-output regression prob-
lem of predicting the strain energy, phase energy, and stress. The mean and standard deviation of
the test MSE for all three variables are computed from 10 runs.

Method Architecture Parameter count Test MSE

MLP 4 layers: [3, 256, 256, 256, 2] 2.6 x 10° (7.05 £2.02) x 10~°
NAM 4 layers: 3 x [1,256, 256, 256, 2] 7.9 x 10° (1.124+0.62) x 10~4
PNAM 4 layers: 3 x [1, 256,256, 256, 2] 7.9 x 10° (3.31+£2.11) x 1074
PNAM 4 layers: 8 x [1, 256,256,256, 2] 2.1 x 108 (1.34 £ 0.91) x 1074
PNAM 4 layers: 16 x [1,256, 256, 256, 2] 4.2 x 108 (8.01 £3.76) x 10~°
PNAM 4 layers: 32 x [1,256, 256, 256, 2] 8.4 x 108 (6.47 +2.71) x 1075

Table 5: Mathematical expressions for the phase field data set. Inputs x1, X2, and 3 are the strain,
order parameter, and material gradient of the order parameter, respectively. To convert the PNAM
with M = 8 1in Table and Ty = (o = 0.05 into symbolic form, bases {g;; } in Eq. use addition,
subtraction, multiplication, and square as operators. Counting every constant in {g;;} and {z;} as a
parameter, the symbolic form has 112 parameters and achieves a test MSE of 2.25 x 107°.

Basis Expression Input Expression
—23 + 1.5242% + 21 + ((—21 + (21 — 0.028)Z + 0.75)% —
gL 0.102)2 — 0.269
22 — (21 — 0.597)(21 — 0.291)(1.37821(0.78621 — 1)* +
9215252 — 0.074) — 0.093
g1z 73(0.147 — 0.07422) + 0.38323 + 0.11925 — 0.119
g2 —10.22925(0.003 — 0.00223) + 0.011
913 0.96723(z3 — 1.108)(—3.25523 + 23 — 1.418) — 223 + 0.07
g23 1.04623 4+ 2.265(z3 — 0.403)2(0.6523 — 22 + 0.835)% — 0.25
912 —24(0.009z4 + 0.069) + 0.005
g2a O
915 0.11825(225 + 0.217)(0.03322 (25 + 1) — 25 + 3.239) — 0.116
—25(—0.0325 + 0.003(0.77225 (25 — 0.466)% — 25 + 0.596)> + | 25 190.698x1 + 0.282x2 + 6.271x3
925 0.009) — 0.002
916 0 2 1.503
g26 26(0.00322 4 0.00926 — 0.043) + 0.016 6 OLIX2
g1 21(22(28%(z7 + 0.917)% = 0.014) + 0.079z7 — 0.087) — 0.029
g27 —0.00422 4 0.009z2 + 0.024z7 + 0.007
g1s 0.003 — 0.00925
g2 0O

z1 203.741x; + 1.87x2 — 3.048xs

zo 235.816x; — 0.461ys + 2.333x3

z5 —114.828x1 + 1.284y5 + 12.089y3

24 —185.754x1 + 1.866x2 + 2.19x3

2z —119.681x1 4 0.531y2 — 5.929x3

25 —27.984x; — 0.769ys + 6.6283

recommend the PNAM, because of its modularity, as a backbone in graph neural networks or trans-
formers, which may allow us to prune the vast number of parameters of these models and accelerate
inference during test time.

REFERENCES

R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton. Neural
additive models: Interpretable machine learning with neural nets. Advances in Neural Information
Processing Systems, 34(359):4699-4711, 2021.

B. Bahmani, H. S. Suh, and W.C. Sun. Discovering interpretable elastoplasticity models via the neu-
ral polynomial method enabled symbolic regressions. Computer Methods in Applied Mechanics
and Engineering, 422:116827, 2024.

J.-H. Bastek, W.C. Sun, and D. M. Kochmann. Physics-informed diffusion models. arXiv preprint
arXiv:2403.14404, 2024.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse

identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
113(15):3932-3937, 2016.

10

Under review as a conference paper at ICLR 2026

H. Cheng, M. Zhang, and J. Q. Shi. A survey on deep neural network pruning: Taxonomy, com-
parison, analysis, and recommendations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(12):10558-10578, 2024.

G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and S. Zafeiriou. Deep polyno-
mial neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(8):
4021-4034, 2022.

J. D. Clayton, J. Knap, and R. B. Leavy. On rate dependence and anisotropy in phase field modeling
of polycrystalline fracture. Mechanics of Materials, 180:104606, 2023.

N. E. Cotter. The Stone—Weierstrass theorem and its application to neural networks. IEEE Transac-
tions on Neural Networks, 1(4):290-295, 1990.

M. Cranmer. Interpretable machine learning for science with PySR and SymbolicRegression.jl.
arXiv preprint arXiv:2305.01582, 2023.

M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho. Discov-
ering symbolic models from deep learning with inductive biases. Advances in Neural Information
Processing Systems, 33(1462):17429-17442, 2020.

W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu. Sobolev training for
neural networks. Advances in Neural Information Processing Systems, 30:4281-4290, 2017.

A. Davies, P. Velickovié, L. Buesing, S. Blackwell, D. Zheng, N. Tomasev, R. Tanburn, P. Battaglia,
C. Blundell, A. Juhdsz, et al. Advancing mathematics by guiding human intuition with Al. Nature,
600:70-74, 2021.

A. Davies, A. Juhdsz, M. Lackenby, and N. Tomasev. The signature and cusp geometry of hyperbolic
knots. Geometry & Topology, 28(5):2313-2343, 2024.

S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3-11, 2018.

G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang. DepGraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16091-16101, 2023.

M. E. Gurtin. Generalized Ginzburg—Landau and Cahn—Hilliard equations based on a microforce
balance. Physica D: Nonlinear Phenomena, 92(3-4):178-192, 1996.

T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1(3):297-310, 1986.

D. Hendrycks and K. Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge, 1992.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359-366, 1989.

D. Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Journal of Mathematical Imaging
and Vision, 35:155-164, 2009.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4:87-112, 1994.

A. Krogh and J. Hertz. A simple weight decay can improve generalization. Advances in Neural
Information Processing Systems, 4:950-957, 1991.

11

Under review as a conference paper at ICLR 2026

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a non-
polynomial activation function can approximate any function. Neural Networks, 6(6):861-867,
1993.

Z.Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljaci¢, T. Y. Hou, and M. Tegmark. KAN:
Kolmogorov—Arnold networks. arXiv preprint arXiv:2404.19756, 2024.

Z.Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from
the width. Advances in Neural Information Processing Systems, 30:6232-6240, 2017.

N. Macon and A. Spitzbart. Inverses of Vandermonde matrices. The American Mathematical
Monthly, 65(2):95-100, 1958.

N. Mallinar, J. Simon, A. Abedsoltan, P. Pandit, M. Belkin, and P. Nakkiran. Benign, tempered, or
catastrophic: A taxonomy of overfitting. Advances in Neural Information Processing Systems, 35
(87):1182-1195, 2022.

C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of
fracture: Variational principles and multi-field FE implementations. International Journal for
Numerical Methods in Engineering, 83(10):1273-1311, 2010.

C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
Leanpub, 2019.

W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Definitions, methods, and appli-
cations in interpretable machine learning. Proceedings of the National Academy of Sciences, 116
(44):22071-22080, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems, 32(721):8026-8037, 2019.

B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gra-
dients. arXiv preprint arXiv:1912.04871, 2019.

N. N. Phan, W.C. Sun, and J. D. Clayton. HYDRA: Symbolic feature engineering of overparam-
eterized Eulerian hyperelasticity models for fast inference time. Computer Methods in Applied
Mechanics and Engineering, 437:117792, 2025.

F. Radenovic, A. Dubey, and D. Mahajan. Neural basis models for interpretability. Advances in
Neural Information Processing Systems, 35(612):8414-8426, 2022.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686-707, 2019.

C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning:
Fundamental principles and 10 grand challenges. Statistic Surveys, 16:1-85, 2022.

M. H. Stone. Applications of the theory of Boolean rings to general topology. Transactions of the
American Mathematical Society, 41(3):375-481, 1937.

M. H. Stone. The generalized Weierstrass approximation theorem. Mathematics Magazine, 21(4):
167-184, 1948.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
Conference on Machine Learning, volume 70, pp. 3319-3328. PMLR, 2017.

12

Under review as a conference paper at ICLR 2026

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoor-
thi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low

dimensional domains. Advances in Neural Information Processing Systems, 33(632):7537-7547,
2020.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267-288, 1996.

L. R. Turner. Inverse of the Vandermonde matrix with applications. Technical report, NASA Lewis
Research Center, Cleveland, OH (United States), 1966.

S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression.
Science Advances, 6(16):eaay2631, 2020.

M. Virgolin and S. P. Pissis. Symbolic regression is NP-hard. arXiv preprint arXiv:2207.01018,
2022.

S. Xu, Z. Bu, P. Chaudhari, and I. J. Barnett. Sparse neural additive model: Interpretable deep
learning with feature selection via group sparsity. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, volume 3, pp. 343-359. Springer, 2023.

A APPENDIX

A.1 POLYNOMIAL REPRODUCING

Here, we prove the polynomial reproducing property, namely, any multi-variable polynomial F
of x € R¥ can be reproduced by a linear combination of {g;}, where g;(2;) is a single-variable
polynomial of z; = Zjvzl Ti;x;, foreach i = 1,2,..., M. The main proof can be established
for arbitrary dimensions with mathematical induction. The base case for this proof by induction is
conducted in two dimensions.

First, we present a lemma that verifies the reproducing property for a special case in two dimensions,
which can be used to prove the general case.

Lemma A.1. For any monomial X' x4, there exists a linear transformation T: RY — RM where
N=2and M =p+q+ 1, withT;; = 1 and T;2 = ¢;, and a set of coefficients {(;} such that

M-1

M N
Xix3 = ZQ’ ZTz‘ij = Glx1 +cixa)P . (A.D
=1 \j=1

V-

=1

Proof. Let us expand each term of the summation on the right-hand side of Eq. [A.T] and collect
terms with the same polynomial orders. We get the following equivalent form:

M
Xxd =Y Gl + cixa)"H
i=1

p+q M 4

+q— +q—

=Y D mCi<pmq>X§”x’2’ o,
m=0 i=1

Comparing the coefficients of the polynomials on both sides, for any choice of {¢; }, we end up with
an M x M system of linear equations for {(;} as follows:

- 1 .
+ + + r
o ql ¢ q1 % q1 cqul d 7
fraThopramh gramt o hraT C2 -I:Fq B
czl)+q_2 cg+q—2 Cg+q—2 o CPA;-‘J_2 CS = 5mp < P 2 ! > 3
: : : : o :
1 1 1 1 i 1 i

13

Under review as a conference paper at ICLR 2026

where d,,), is the Kronecker delta. Each equation of the linear system can be written compactly as

M + -1
Zciﬂrqmg(smp(p q)) m=0,1,....,p+gq.

m

To show that we can find {¢;, (;} satisfying the system, we note that the coefficient matrix forms
a so-called Vandermonde matrix (Macon & Spitzbart, [1958} [Turner, [1966)), which is invertible as
long as {c;} is taken to be any set of mutually different constants, that is, ¢; # ¢; for ¢ # j. This
completes the proof. O

Even for this simple case, we may observe the nonuniqueness in the construction of the linear
transformation. Therefore, it is reasonable to expect that, for specific application problems involving
machine learning, one may optimize the transformation to achieve effective representations in a
possibly low-dimensional feature space. We give some illustrations in the following example.

Example A.1. We present some instances where the actual value of M could be smaller than p +
q + 1. In fact, for p = q = 1, we have

1 \? 1 \?
X1X2 = <X1 + 4X2) - (Xl - 4X2))

corresponding to M = 2. For the trivial case of p = 0 or ¢ = 0, we may simply use the identity
transformation with M = N = 1. There are also examples that have a smaller value of M than
the input dimension N = 2, such as x? + 2x1x2 + X5 = 22, where z; = X1 + X, for which
M =1 < 2 = N. This again illustrates the effect of possible dimensionality reduction via a
suitable transformation.

Next, we consider the extension of Lemma[A.T] Since a product of polynomials of single variables
fi(x1) and f>(x2) can be written as linear combinations of monomials {x}x%}, LemmalA.1|can be
easily extended to a slightly more general form.

Lemma A.2. For any polynomial of (x1,x2) € R? having the product form fi(x1)f2(x2), there
exists a linear transformation T: R? — RM, where M = deg(f1) + deg(f2) + 1, and a set of
single-variable polynomials {g;: R — R}, such that

M
fi(xa) fa(xz) Zgz i1x1 + Tiax2), (A.2)

=1

where {deg(f;)}2_, denote the degrees of the single-variable polynomials f; and fo, the highest
exponents of the Varlables x1 and x9 in f1 and f5, respectively, with nonzero coefficients.

Proof. Let us express the two single-variable polynomials as

filxa) Za;DXU f2(x2) quXQ

Expanding the product on the left-hand side of Eq.[A2]and applylng Lemmal[A-T]to each term in the
product, we get

deg(f1) deg(f2) p+q+1

f (Xl f2 X2 Z Z apb Z Cpqz X1 +Cpqu2) q’

where subscripts p and ¢ are introduced for {¢;, (;} to elucidate that a different transformation T of
dimensions (p+ ¢ + 1) x 2 is employed for each monomial. However, due to the freedom of choice
in the construction of each T, the same T of dimensions (deg(f1) + deg(f2) + 1) x 2 can be used
for all pairwise product terms. This choice stems from the fact that the innermost summation has
a final upper limit of M = deg(f1) + deg(f2) + 1. Replacing p + ¢ + 1 and ¢,q; with M and ¢;,
respectively, we can move this summation to the outside:

M deg(f1) deg(f2)

f Xl f2 X2 Z Z Z ap qCpqz X1+¢ X2)p+q

i=1 p=0 q=0

14

Under review as a conference paper at ICLR 2026

resulting in Eq.[A.2] where

9i(Tinx1 + Tiax2) = Z Zapqupqi(Xl + cix2)P T T =1, Tio = c;.
p q

Another consequence is the reproducing property for arbitrary polynomials in two dimensions.
Lemma A.3. For any polynomial F = F(x1,X2) of (x1,X2) € R?, there exists a linear trans-
formation T: R? — RM, where M = deg(F) + 1, and a set of single-variable polynomials {g;:

R — R}M | such that
M

Flxi:x2) = Y gi(Taxa + Tiaxa)- (A.3)
=1

Proof. Note that deg(F) refers to the degree of the multi-variable polynomial, given by the highest

degree of the monomials {x}x%} in F. Lemmacan be proved by expanding F(x1, x2), which
produces the same set of monomials as the product of f1(x1) and f2(x2) in Lemma [A.2] where

deg(F) = deg(f1) + deg(f2). This realization concludes the proof.

Finally, we employ mathematical induction to extend the result to any input dimension.

Theorem A.1. For any polynomial F = F(x) = F(x1,---,Xn) of X € RY, there exists a linear
transformation T: RN — RM | for some M that could be chosen to depend only on deg(F) and N
(e.g., M = deg(F) + N — 1), and a set of single-variable polynomials {g;: R — R}, such that

M N
Fxu-xn) =Yg [D Tuxs | - (A4)
i=1 j=1

Proof. Once we have shown that Theorem[A.T|holds for a particular input dimension (e.g., N = 2),
by leveraging the inductive hypothesis to show that it also holds for IV 4+ 1, the theorem must hold
for all subsequent NV, in accordance with the principle of mathematical induction. For N = 2, the
polynomial reproducing property has been proved in Lemma|[A.3]

Assume that Theorem[A.T|holds for an arbitrary input dimension N. We then consider a polynomial
F =F(X1s---,XN>XN+1)- It can be written as

P
‘/—:(Xla"'aXNaXN-‘rl) = Z‘Fp(xla"'va)Xg)V—i-l?
p=0

for some polynomials {]—'p}gzo. By the inductive hypothesis, we have a linear transformation Tiy:
RN — RMo and a set of polynomials {{gy: }3 }1_, such that

M N
Fp(X15--- XN) = Zﬁpi(zm,i)a i = ZTm,z‘ij~ (A.5)
i=1 j=1
As aresult,
P Mn
F(X15-- - XN XN+1) = Zzgpi(zm,i)){%+1'
p=0 i=1

By Lemma for each product term g, (zo1.:) X' 1 in the summation, there exists a linear trans-

formation Ty that maps any pair (2o s, XN+1) tO RMm+1 gych that, for each choice of the indices P
and 4, the product g,;(zm i) X 1 1s a sum of single-variable polynomials in the transformed space
RMm+1 where

Composing T together with all fm, we get a linear transformation Ty y; from RV F! o RMst+1

such that F(x1,..., XN, Xn~N+1) is a linear combination of polynomials {gi}f\i"f“ of single vari-
ables z € RM=+1, Thus, Theorem holds for input dimension N + 1. This completes the
induction process and the proof. O

15

Under review as a conference paper at ICLR 2026

As noted in Example [A-T] due to the nonuniqueness of the transformation, it is possible to achieve
more effective and potentially low-dimensional representations through learning and optimization.

A.2 ADDITIONAL RESULTS FOR KNOT THEORY: CLASSIFICATION

Figure[A.T|shows a complete ranking of the inputs and the associated test accuracy of using the top
n inputs from one of the runs summarized in Table 2}

16. Adjoint torsion degree
8. Torsion degree
6. Re(short geodesic)
4. Im(short geodesic) —
9. Injectivity radius
14. Chern-Simons
5. Cusp volume =
2. Longitudinal translation —
3. Im(meridional translation) —
1. Re(meridional translation) —
7. Volume
10. Symmetry: 0
17. Symmetry: D3
15. Symmetry: D,
13. Symmetry: D¢
11. Symmetry: Dg
12. Symmetry: 5 +%

0.0
0.0 0.1 0.2 0.3 0.4 17161514131211109 8 7 6 5 4 3 2 1

(a) Mean absolute coefficient b) Top n inputs

Figure A.1: One complete instance of the ranking and accuracy reported in Table 2] (a) Relative
importance of the input features based on their mean absolute coefficients, and (b) test accuracy
associated with using the top n features in (a).

A.3 ADDITIONAL RESULTS FOR KNOT THEORY: REGRESSION

Table[A T|compares the performance of the NAM with 17 bases against that of the PNAM with eight
bases, both of which can be converted into symbolic equations after training. Considering the poor
performance of the NAM, we proceed with just the PNAM. Similar to Table 2} Table [A.2] suggests
that the meridional translation (real part) and longitudinal translation are the most and second most
important invariants, respectively. Nevertheless, solely comparing the mean absolute coefficients
may not be sufficient, as unimportant features could be incorrectly ranked as important. We can,
however, eliminate these features by examining the accuracy associated with including them, since
including an unimportant feature does not improve accuracy compared to the corresponding case
with one less input.

Table A.1: Performance of different neural network architectures for the single-output regression
problem of predicting the signature of mathematical knots. The mean and standard deviation of the
test accuracy are computed from 10 runs.

Method Architecture Parameter count Test acc.
MLP 3 layers: [17, 64, 32, 1] 1.2 x 107 94.7 + 0.2%
NAM 3layers: 17 x [1,64,32,1] 2.1 x 10° 65.0 + 0.2%

PNAM 3layers: 8 x [1,64,32, 1] 9.8 x 10* 85.5 +0.3%

Figure[A-2]shows a complete ranking of the inputs and the associated test accuracy of using the top n
inputs from one of the runs summarized in Table[A.2] The ranking in Fig.[A:2{d) is determined from
the mean absolute coefficients of the linear transformation T in Fig.[A-2[b). This linear transforma-
tion (i) consists mainly of diagonal elements due to the constraint {3 in Eq.[12|and (ii) is sparse due
to the constraint ¢4 in Eq.[I3] The transformation T" with n = 3 in Fig.[A.2(c) and the scaling coef-
ficients ¢ of just two nonzero bases in Fig.[A.2(a) are then leveraged to construct expressions H and
I in Table[3} Despite evolving each basis for only one minute using a few basic operators, Fig. [AJ]
demonstrates that SR can consistently approximate the single-variable bases because of their simple
1D nature. Expressions H and I achieve test accuracy of 81.2 and 81.4%, respectively, comparable
to the test accuracy of 81.3% in Fig.[A2Je) for n = 3 inputs. Moreover, Table[A3]reveals that both
expressions are more than two times faster for inference than a fully connected MLP.

16

Under review as a conference paper at ICLR 2026

Table A.2: Ranking of important input features based on their mean absolute coefficients for the
PNAM in Table [AT] The mean and standard deviation of the test accuracy associated with using
only the top n features are computed from their frequency across 10 runs.

Rank Input Symbol Frequency Test acc.

1 Re(meridional translation) X10 10/10 55.7+1.2%
> Longitudinal translation Xs 6/10 74.8 £ 1.4%
Torsion degree X2 4/10 54.9 £ 0.5%
Torsion degree X2 3/10 76.4 + 0.4%
Re(short geodesic) X3 3/10 61.8+7.3%
3 Longitudinal translation Xs 2/10 76.5 £ 0.2%

Cusp volume X7 1/10 81.3%

Im(short geodesic) X4 1/10 74.3%

0.04

e aci
0.02 |
-
T 0.00 0.00
—0.05 —-0.05

-0.10 -0.10

-0.15 -0.15
ADR 0K 7K P4 9K 04 04 9K % S % K K % X K S 020 AR PR DK 9K 84 1K BK O % % 3K 9K K K 020

L R

-0.02

~0.04 -0.25 -025

@ (b) 1 (©)

15. Adjoint torsion degree
12. Torsion degree
4. Re(short geodesic)
5. Im(short geodesic)
8. Injectivity radius
7. Chern-Simons
3. Cusp volume
2. Longitudinal translation =
14. Im(meridional translation)
1. Re(meridional translation) e e e e
11. Volume
16. Symmetry: 0
6. Symmetry: D3
17. Symmetry: D,
13. Symmetry: D¢
9. Symmetry: Dg
10. Symmetry: 5 +%

0.00 0.01 0.02 0.03 0.04 0.05 1716151413121110 9 8 7 6 5 4 3 2 1
(@ Mean absolute coefficient (e) Top n inputs

Figure A.2: One complete instance of the ranking and accuracy reported in Table [A2] along with
optimized parameters of the PNAM. (a) Scaling coefficients ¢ pior to post-processing, (b) linear
transformation 1" pior to post-processing, (c) T with n = 3 and rows corresponding to columns of
¢ in (a) having a value of zero set to zero, (d) relative importance of the input features based on their
mean absolute coefficients of T" in (b), and (e) test accuracy associated with using the top n features
in (d).

Recall that the above results correspond to weighting coefficients w; = wy = w3 = wy =
ws = 0.001, chosen to balance the trade-off between accuracy and sparsity. While increas-
ing the weighting coefficients can make the PNAM sparser, Fig. [A.4] indicates that overprioritiz-
ing sparsity can lead to less stable training, resulting in poorer performance. Specifically, setting
wy = wy = wy = wy = ws = 0.01 results in such a sparse T" (see the small coefficient values in
Fig.[A3]c)) that the accuracy in Fig.[A3]d) is poor regardless of n. On the other hand, Fig. [A.3]b)
suggests that setting w; = wy = w3 = wy = ws = 0, thereby deactivating the regularization
constraints, improves (reduces) the accuracy for large (small) n due to the extensive number of co-
efficients with large values (the erroneous ranking of the input features) in Fig.[A.5|a). Although the
exact ranking may not be correct, this model can still narrow down a set of variables (e.g., n = 6)
that is relevant for predictive accuracy while remaining competitive with the MLP in Table[A]]

17

Under review as a conference paper at ICLR 2026

— PNAM
041\ -- SR

-

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
zZ
(a) !

—— PNAM

-

0.4

0.3

0.2

g1,1

0.1

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

(b) “

Figure A.3: Reproducibility of SR for learning 1D functions. Both sets of bases (PNAM) are from
the run in Fig.[A72] with (a) the two bases (SR) comprising expression H and (b) the two bases (SR)
comprising expression I in Table[3] The neural network parameterization of the PNAM, expression
H, and expression I all use n = 3 features and achieve test accuracy of about 81%.

Table A.3: Training and inference times of the neural networks in Table[A.T} along with inference
times of expressions G to I in Table[3] Each basis comprising expressions G to I is evolved for one
minute. Training times are obtained from an NVIDIA A100-SXM4-40GB GPU, while inference
times are obtained from an Apple M1 CPU with 8GB of memory. The test accuracy is repeated to
aid comparison.

Method Training time (s/epoch) Inference time (ns/sample) Test acc.
MLP 2.1 290 94.7+ 0.2%
NAM 14 4300 65.0 + 0.2%

PNAM 8.9 2100 85.5 + 0.3%

Expression G — 78 75.9%
Expression H — 130 81.2%
Expression I — 120 81.4%

A.4 ADDITIONAL RESULTS FOR PHASE FIELD THEORY

In Table[A-4] we provide training and inference times of the neural networks in Table] in addition
to the inference time of the symbolic form in Table[5] As expected, training and inference times of
the PNAM increase with the projection dimension M. However, similar to Table[A3] converting the
PNAM into a compact expression yields faster inference. Since the evaluations of its 1D bases are
independent of each other, we plan to parallelize their evaluations in the future to further accelerate
training and inference. On the other hand, Fig.[A-6|reveals that increasing M improves performance,
which may lead to overfitting after saturation. For the most accurate PNAM, we plot and compare
its MLP bases with their symbolic approximations (the polynomials {g;;} in Table , along with
their derivatives, in Figs.[A7]and [A-8] Test predictions of the average strain energy, phase energy,
and axial stress for the linear combinations of the symbolic bases are shown in Fig.

18

Under review as a conference paper at ICLR 2026

= Train (0) = Train (0.001) = Train (0.01)
=+ Val (0) ~==+ Val (0.001) +=++ Val (0.01)

10724

Total loss

0 10 20 30 40 50

Epoch

Figure A.4: Effects of weighting coefficients w; = wy = w3 = wy = ws = a constant on the
convergence of the PNAM for the knot data set. Total loss corresponds to the loss function in Eq.
The three NAMs use the same projection dimension M = 8, and each basis of the PNAMs is an
MLP with two hidden layers of 64 and 32 neurons.

1.0
17. Adjoint torsion degree

4. Torsion degree

7. Re(short geodesic)

1. Im(short geodesic)

8. Injectivity radius

16. Chern-Simons

5. Cusp volume

6. Longitudinal translation
9. Im(meridional translation)
2. Re(meridional translation)
3. Volume

12. Symmetry: 0

15. Symmetry: D3

10. Symmetry: Dy

11. Symmetry: Dg

14. Symmetry: Dg
13. Symmetry: £ +%

0.0
0.0 0.1 0.2 0.3 0.4 17161514131211109 8 7 6 5 4 3 2 1

() Mean absolute coefficient b) Top n inputs

1.0

8. Adjoint torsion degree 0.9
2. Torsion degree
3. Re(short geodesic) 0.8
4. Im(short geodesic)
5. Injectivity radius) 0.7
6. Chem-Simons 2 0.c| 1N 1N 1N 1 I RN o
7. Cusp volume 0.6
10. Longitudinal translation E II
17. Im(meridional translation) 505
1. Re(meridional translation) | 8 0.4

14. Volume

15. Symmetry: 0 0.3
9. Symmetry: D3 :
12. Symmetry: Dy
11. Symmetry: Dg

0.2

16. Symmetry: Dg
13. Symmetry: £ +£

0.1

! 0.0
0.00000.00250.00500.00750.01000.0125 17161514 13121110 9 87 654321
(c) Mean absolute coefficient (@) Top n inputs

Figure A.5: Effects of weighting coefficients w; = we = w3 = wy = ws = aconstant on
the input ranking and test accuracy of the PNAM for the knot data set. Weighting coefficients
w1 = wy = w3z = wy = wys = 0 for (a) and (b); wy; = wy = w3 = wy = ws = 0.01 for (c) and (d).
(a) and (c): Relative importance of the input features based on their mean absolute coefficients. (b)
and (d): Test accuracy associated with using the top n features in (a) and (c), respectively. Results
for wy = wy = w3y = wy = ws = 0.001 are provided in Fig.[A.2|d) and (e). Training and validation
histories of the loss function for these three PNAMs are shown in Fig.[A.4]

A.5 HIGH-DIMENSIONAL IMAGE CLASSIFICATION WITH THE MNIST DATA SET

To demonstrate that the PNAM can efficiently handle high-dimensional problems with numerous
inputs, we evaluate its performance on the MNIST data set (LeCun et all,[T998)), highlighting its di-

19

Under review as a conference paper at ICLR 2026

Table A.4: Training and inference times of the neural networks in Table[d] along with the inference
time of the combined expression (i.e., the sum of the linear combinations of {g;} and {g2;}) in
Table [5] Each nonzero basis g;; is evolved for one minute. Training times are obtained from an
NVIDIA A100-SXM4-40GB GPU, while inference times are obtained from an Apple M1 CPU
with 8GB of memory. The test MSE is repeated to aid comparison.

Method Training time (s/epoch) Inference time (ps/sample) Test MSE
MLP 1.1 27 (7.05£2.02) x 107°
NAM 3.0 61 (1.124£0.62) x 107
PNAM (M = 3) 32 58 (3.31 £2.11) x 1074
PNAM (M = 8) 6.8 150 (1.34+£0.91) x 1074
PNAM (M = 16) 13 320 (8.01 £3.76) x 10~°
PNAM (M = 32) 26 610 (6.47 £2.71) x 107>
Expression (Table S} - 17 2.25 x 107
—— Train (M =3)
- val (M=3)
~— Train (M =8)
101 oo Val (M=8)
0 —— Train (M =16)
0 - Val (M=16)
o
- = Train (M =32)
8 - val (M=32)
Q
1072
0 500 1000 1500 2000 2500

Epoch

Figure A.6: Effects of the projection dimension M on the convergence of the PNAM for the phase
field data set. Total loss corresponds to the loss function in Eq. Each basis of the four PNAMs is
an MLP with three hidden layers of 256 neurons; all models are trained using weighting coefficients
W1 = W2 = W3 = Wq4 = Wy = 0.001.

mensionality reduction capability and providing visual insight into its input pruning mechanism. The
MNIST data set contains 70,000 images of handwritten digits from 0 to 9, each of size 28 x 28 pix-
els, partitioned into 60,000 images for training/validation and 10,000 images for testing. Each image
is reshaped into a 784-dimensional feature vector and normalized, resulting in a high-dimensional
classification task where the model must map dense feature vectors to their corresponding digit la-
bels. This experiment illustrates the ability of the PNAM to preserve interpretability while achieving
strong predictive accuracy by identifying and utilizing only the most informative inputs, effectively
pruning irrelevant features.

In Table [A25] we compare PNAMSs against a standard NAM and conventional MLPs, all of which
are trained for up to 1000 epochs with an early stopping patience of 50 epochs. First, the linear
transformation T" allows us to project the original 784-dimensional vector into a lower-dimensional
feature space of size M. Even with a small M = 8, the resulting PNAM outperforms the standard
NAM, despite the latter requiring one basis per input and having nearly 100 times more parameters.
Second, increasing M enhances the expressivity of the PNAM, allowing it to fit the training data
perfectly (see Fig.[A.I0) and achieve a test accuracy of 98.1% for M = 64. Third, although PNAMs
perform similarly to MLPs, suggesting comparable expressive power in practice, they retain the key
advantage of interpretability. Unlike black-box MLPs, PNAMs offer insight into which variables
are crucial for predictive accuracy, enabling model transparency and post hoc analysis.

Figure[ATT]illustrates that the PNAM produces a consistent ranking of the feature importance across
different values of M, demonstrating robustness in its learned feature sensitivity. This consistency

20

Under review as a conference paper at ICLR 2026

1.00 0.05
0.005

0.75 0.00

91,2

S 0.000

g1,3

-
50.50
o -0.05
0.25

-0.10 -0.005

0.00

0.0 0.2 04 0.6 0.8

—0.068
—0.069
<
~=—0.070
(=)}

—0.071

—0.072

0.0033

g1,8

0.0032

0.0031
0.0 0.2 0.4 0.6 0.8 -04 -03 -0.2 -0.1 0.0 -0.01 0.00 0.01 0.02
Zs Z7 Zg

—— PNAM
--- SR

—0.008575
-0.10

©

-
i-0.12 o
5 S -0.008580

)

-0.14

—0.008585
-04 -03 -0.2 -0.1 0.0 0.00 0.02
z7 Zg

Figure A.7: Bases {g1,} and their derivatives. The expressions of {g;;} are presented in TableEl

Table A.5: Performance of different neural network architectures for the multi-label classification
problem of predicting handwritten digits from the MNIST data set. Training and validation histories
of the accuracy for the PNAMs are provided in Fig.[A.T0]

Method Architecture Parameter count Training acc. Test acc.
MLP 3 layers: [784, 64, 32, 10] 1.2 x 10* 99.9% 96.1%
MLP 3 layers: [784, 128, 64, 10] 4.9 x 10* 99.9% 96.3%
MLP 4 layers: [784, 128, 64, 32, 10] 6.6 x 10* 99.9% 96.7%
MLP 4 layers: [784, 256, 128, 64, 10] 2.6 x 10° 99.9% 97.1%
NAM 3 layers: 784 x [1, 64, 32,10] 9.6 x 108 95.0% 93.0%
PNAM 3 layers: 8 x [1, 64, 32,10] 1.0 x 105 96.0% 94.7%
PNAM 3 layers: 16 x [1, 64, 32,10] 2.1 x 10° 98.5% 96.7%
PNAM 3 layers: 32 x [1,64,32,10] 4.2 x 10° 100% 97.5%
PNAM 3 layers: 64 x [1,64,32,10] 8.4 x 10° 100% 98.1%

supports effective pruning of nonessential inputs with minimal impact on accuracy. Specifically, for
the PNAM with M = 64, we remove the least important pixels and visualize two progressively
smaller subsets in Fig. [A.12] Keeping only the top 400 and 200 relevant pixels, this model still
achieves test accuracy of 98.0 and 94.0%, respectively. Visual inspection of the remaining pixels re-
veals that they occupy semantically meaningful regions, allowing human observers to easily identify
the underlying digit classes. Further insight is provided by Fig.[A.T3] which shows that the majority
of predictive information is concentrated in a small number of dominant singular values, enabling
both dimensionality reduction and feature pruning.

Finally, we examine the impact of weighting coefficients w1, wo, ..., ws on the performance of the
PNAM. Similar to the trend observed in Fig. [A:4] Fig. [A.T4] indicates that increasing the weight-
ing coefficients leads to less stable training as the optimization objectives shift from prioritizing
predictive accuracy to enforcing sparsity. Nevertheless, as shown in Table[A-6] these weighting co-

21

Under review as a conference paper at ICLR 2026

0.006
,\-0.004

S
0.002

0.000

-04 -03 -02 -0.1 0.0
z7

0.024
-0.036

. 0.022

. ©—0.038 ~

S < +5i0.020
-0.040

0.018
-0.042

0.016
-04 -03 -02 -01 0.0

Figure A.8: Bases {g2;} and their derivatives. The expressions of {g,;} are presented in Table[5]

0.6
0.6 « True 5 « True + True
=] — Ppred 'EO' 01 — Pred 0.5{ — Pred
o o
505 s -
= Zo1s S04
504 5 s
203 2010 a2
o o So2
£02 @ g9
T © 0.05 <
nol T 0.1
0.0 0.00 0.0
0.0000 0.0005 0.0010 0.0015 0.0020 0.00 0.05 010 015 020 0.25 0.0000 0.0005 0.0010 0.0015 0.0020
(a) Strain (b) Order parameter (C) Strain

Figure A.9: Test predictions for the linear combinations of the polynomials {g;;} in Table|5| (a)
Linear combination of {g1;}, (b) linear combination of {gs;}, and (c) derivative of the sum of the
linear combinations of {g1;} and {go, } with respect to the strain.

efficients can be tuned to obtain a desired trade-off between accuracy and sparsity, tailored to the
specific needs of the users.

22

Under review as a conference paper at ICLR 2026

0.8
—— Train (M =8) 1.000
0.7 «+e+ Val (M=38) 0.975 e e e e e LD ot e
Train (M = 16) BRI,
0.6 Val (M = 16) 0.950
: O o PPN PN
W o —— Train (M=32) - FE e AT
Ao . _ 0 0.925 -
3 Val.(M 32) I —— Train (M =38)
= 0.4 —— Train (M =64) S 0.900 .. Val (M=8)
g s - Val (M =64) Y Train (M =16)
<o <C 0.875 Val (M = 16)
= Train (M =32)
0.2
0.850 -+ Val (M=32)
01 0.825 —— Train (M = 64)
-+ Val (M=64)
0.0 0.800
0 100 200 300 400 500 600 0 100 200 300 400 500 600
E h E h
(a) poc (b) poc

Figure A.10: Effects of the projection dimension M on the convergence and accuracy of the PNAM
for the MNIST data set. Training and validation histories of (a) the loss function in Eq. ﬁljl and (b)
accuracy. Each basis of the four PNAMs is an MLP with two hidden layers of 64 and 32 neurons;
all models are trained using weighting coefficients w; = we = w3z = wy = ws = 0.01.

1.0

0.9
0.8

0.7
o
o 06

—_

3 0.5

9

D 0.4
037 — =38
0.2 M=16

—_— M=32

0.1y __ M=64

0.0
800 700 600 500 400 300 200 100 0

Top n inputs

Figure A.11: Impact of input pruning on the test accuracy for the PNAMs in Table[A'5] Unimportant
inputs are pruned according to their mean absolute coefficients (see Section[2.5).

SR ® ¢ ke ¥
BEUGR Ev 5 R

(b)
Figure A.12: Demonstration of important inputs for the PNAM with projection dimension M = 64
in Fig. [A-TT] Shown are the first 10 unique handwritten digits in the MNIST test set, arranged from
0to 9, using (a) n = 400 (~50%) and (b) n = 200 (~25%) most relevant pixels, which achieve test
accuracy of 98.0 and 94.0%, respectively.

Table A.6: Trade-off between accuracy and sparsity due to weighting coefficients wy = wy = ws =
wy = ws = a constant for the PNAMs in Fig. An element T}, < 10~* is considered zero,
since setting such an element to zero has little to no effect on the test accuracy.

Weighting coefficients Training acc. Testacc. Percent of zero T}y,

0.001 95.6% 94.3% 14.1%
0.01 96.0% 94.7% 32.8%
0.1 95.7% 94.7% 68.9%

1 90.9% 91.3% 76.5%

23

Under review as a conference paper at ICLR 2026

Singular value (T)

o
=
o

20 30 40 50 60

Figure A.13: Singular values of the linear transformation T" for the PNAMs in Table[A.5] The linear
decay and sudden drop in magnitude of the singular values on a log scale suggest that we can prune
coefficients in T" without severely degrading performance.

—— Train (0.001) 0.95
5 - Val (0.001)
~— Train (0.01)
- Val (0.01)
0wt —— Train (0.1) >0'90 R = G
3 © Yal(01) 3 i S —— Train (0.001)
—3 = Train (1) 5 o "'i" :
o] . val (1) 3085 : i - Val (0.001)
46 . O 3 H ~— Train (0.01)
2 ivi < kil -..+ Val (0.01)
) osol |} —— Train (0.1)
1 H -es Val (0.1)
H = Train (1)
0 e Ry 0.75 - Val (1)
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) Epoch (b) Epoch

Figure A.14: Effects of weighting coefficients w1 = we = w3 = w4 = ws = a constant on the
convergence and accuracy of the PNAM for the MNIST data set. Training and validation histories of
(a) the loss function in Eq.[T0Jand (b) accuracy. The four NAMs use the same projection dimension
M = 8, and each basis of the PNAMs is an MLP with two hidden layers of 64 and 32 neurons.

24

	Introduction
	Projected neural additive models
	Construction
	Universal approximation
	Extension to multiple outputs
	Learning problem and constraints for sparsity
	Post-processing and symbolic regression

	Numerical experiments
	Benchmarking with knot theory
	Phase field theory for fracture of brittle solids

	Conclusion
	Appendix
	Polynomial reproducing
	Additional results for knot theory: classification
	Additional results for knot theory: regression
	Additional results for phase field theory
	High-dimensional image classification with the MNIST data set

