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ABSTRACT

This article proves that any continuous multi-variable function can be approxi-
mated arbitrarily close by a linear combination of single-variable functions of the
inputs in a projected space. Using a set of independent neural networks to param-
eterize these feature functions of the projected inputs, we introduce their linear
combination as the projected neural additive model (PNAM): an extension of the
neural additive model (NAM) (cf. Agarwal et al. (2021)) that now enables univer-
sal approximation. While the couplings of the input variables bestow the PNAM
with the universal approximation property, they could diminish the interpretability
intrinsic to the NAM. As such, we propose regularization and post hoc techniques
to promote sparse solutions and enhance the interpretability of the PNAM. The
single-variable characteristic of the bases also enables us to convert them into
symbolic equations and dramatically reduces the number of required parameters.
We provide results from numerical experiments on invariants in knot theory, and
phase field theory for fracture of brittle solids to illustrate the expressivity and
interpretability of the PNAM.1

1 INTRODUCTION

While deep neural networks have become popular for a multitude of tasks due to their expressivity,
they come at the cost of interpretability (Murdoch et al., 2019). Of the myriad methods introduced to
address this issue, Agarwal et al. (2021) propose an alternative architecture, coined the neural addi-
tive model (NAM), by altering the connectivity of the network such that it becomes a linear combi-
nation of single-variable functions of the input variables, parameterized by independent multi-layer
perceptrons (MLPs). Although the values of these functions can provide a degree of interpretability,
the linear nature of the NAM in turn limits its expressivity. As a result, Phan et al. (2025) propose the
use of a learnable linear transformation before passing the inputs to the NAM (see Fig. 1), which we
refer to as the projected neural additive model (PNAM), to enhance the expressivity of the model.

Contribution. In this work, we prove that the PNAM is a universal approximator, elucidating its
ability to approximate any continuous function on a closed and bounded domain. In particular, we
first prove the polynomial reproducing property of the PNAM for an arbitrary number of variables
and orders, then employ the Stone–Weierstrass theorem to establish its universal approximation
property. To rectify the reduction in interpretability that the linear transformation may induce, we
introduce regularization techniques that (i) permit us to rank the importance of each input feature,
(ii) penalize unnecessary couplings between the inputs, and (iii) promote sparse solutions. We also
leverage the modularity of the PNAM to prune nonessential parameters before leveraging the single-
variable characteristic of its bases to convert them into symbolic equations. We apply the resultant
models for multi-output predictions. In the numerical experiments, we demonstrate the various
utilities of the PNAM, enabling users to dictate their desired degrees of accuracy and sparsity.

1We will open-source our code after the double-blind review process.
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Linear Linear

Nonlinear

Figure 1: Architecture of the PNAM.
The output ŷ is predicted via a lin-
ear combination of single-variable func-
tions, parameterized by independent
MLPs, which further are functions of
linear combinations of the inputs χ.
The transformation T and scaling co-
efficients ζ (both denoted with dashed
lines) can be optimized to yield sparser
(and more interpretable) solutions.

Related work. The PNAM is one of many architecture-
based models introduced to enhance the interpretability of
deep neural networks without compromising their expres-
sivity. Other neural network models include, but are not
limited to, Kolmogorov–Arnold networks (KANs) (Liu
et al., 2024), deep polynomial neural networks (Chrysos
et al., 2022), and graph neural networks with inductive bi-
ases (Cranmer et al., 2020). In addition, related sparsifi-
cation, pruning, and post hoc methods include the SINDy
algorithm (Brunton et al., 2016), structural pruning (Fang
et al., 2023), and gradient-based attribution (Sundarara-
jan et al., 2017). We note that while the PNAM can lead
to mathematical expressions, it is not ideal for recovering
physical laws with precise functional forms due to the po-
tentially large dimension of the linear transformation. We
reserve such tasks for proven symbolic regression (SR)
algorithms using reinforcement learning (Petersen et al.,
2019), physics-inspired strategies (Udrescu & Tegmark,
2020), and genetic programming (Cranmer, 2023).

2 PROJECTED NEURAL ADDITIVE MODELS

2.1 CONSTRUCTION

Given a training data set {X ,y} = {(χj , yj)}Dj=1, where
χ = {χi}Ni=1 is an input point, withN denoting the num-
ber of independent variables, y is the corresponding scalar
output label, and D is the number of input-output pairs,
the goal of supervised learning is to construct a func-
tion F that maps every input point to output label, that
is, y = F(χ): RN → R. Here, we hypothesize that
the multi-variable function F can be approximated by a
linear combination (or weighted sum) of single-variable
functions {fi}Mi=1, with M denoting the number of fea-
ture functions, of the inputs in a projected space to pro-
duce the dependent variable:

ŷ =

M∑
i=1

ζifi

 N∑
j=1

Tijχj

+ ε =

M∑
i=1

gi(zi) + ε, (1)

where ŷ is a parameterization of y, and ε is an error term introduced to represent noise in the data.
The projected variables z in Eq. 1 result from a linear transformation T of χ, that is, z = Tχ:
RN → RM . Moreover, each single-variable function fi: R → R and its corresponding scaling
coefficient ζi are represented by the function gi: R→ R for compactness.

The feature functions {fi} in Eq. 1 can be constructed using polynomials or neural networks. Here,
we parameterize y as a linear combination of MLPs:

ŷ =

M∑
i=1

ζiMLPi

 N∑
j=1

Tijχj ;W
(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

+ ε, (2)

where each fi is an MLP with L layers, learnable weights
{
W

(1)
i , . . . ,W

(L)
i

}
and biases{

s
(1)
i , . . . , s

(L−1)
i

}
, and element-wise activation function a:

MLPi

(
zi;W

(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

)
=

W
(L)
i a

(
W

(L−1)
i a

(
. . . a

(
W

(1)
i zi + s

(1)
i

)
. . .
)

+ s
(L−1)
i

)
.

(3)
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To enable the model to learn high-frequency functions, a Fourier feature mapping (Tancik et al.,
2020; Bahmani et al., 2024) can be leveraged to map a transformed input zi to

γi(zi) = [cos(2πBizi)
T, sin(2πBizi)

T]T, (4)

where each entry inBi is sampled from a Gaussian distributionN (0, σ2) with standard deviation σ
and is fixed after initialization, before passing it to Eq. 3. Let ζ = {ζi}Mi=1; as shown in Fig. 1, the
transformation T , scaling coefficients ζ, and error term ε in Eq. 2 can be encoded as two additional
weight matrices and one bias term, respectively. A simpler version of this construction is first
proposed in Phan et al. (2025) and corresponds to the PNAM, introduced (without a formal proof of
universal approximation) to overcome the limited expressivity of the NAM (Agarwal et al., 2021).

2.2 UNIVERSAL APPROXIMATION

By the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990), polynomials are dense in the
space of continuous functions, i.e., they can approximate any continuous function on a closed and
bounded domain. As such, we can achieve universal approximation by reproducing polynomials.
We show in Theorem A.1 that single-variable polynomials of the inputs in a projected space can be
employed as the bases to approximate multi-variable polynomials. Instead of single-variable poly-
nomials, one may also use the sum of one-dimensional (1D) neural networks of the projected inputs
to achieve universal approximation. Since all such neural networks of single variables enjoy the uni-
versal approximation property (Hornik et al., 1989; Leshno et al., 1993; Lu et al., 2017), implying
that they can approximate polynomials, we immediately get the universal approximation property
of the resulting multi-dimensional neural network. This approximation capability is formally stated
in the following theorem.
Theorem 2.1. Let domain D be a compact space of N dimensions, and let F be a set of contin-
uous real-valued functions on D, containing the identity function and satisfying separability and
algebraic closure. For any ε > 0 and any function F1 in C(D), the set of continuous real-valued
functions on D, there exists a polynomial F2 in F such that

|F1(χ)−F2(χ)| < ε, (5)

for all χ ∈ D. Let G be a set of single-variable polynomials or 1D neural networks. There exists a
linear transformation T : RN → RM and a set of functions {gi: R→ R}Mi=1 in G such that

F2(χ) =

M∑
i=1

gi

 N∑
j=1

Tijχj

 (6)

and, by extension, ∣∣∣∣∣∣F1(χ)−
M∑
i=1

gi

 N∑
j=1

Tijχj

∣∣∣∣∣∣ < ε. (7)

Proof. Equation 5 is the standard result of the Stone–Weierstrass theorem (Stone, 1937; 1948; Cot-
ter, 1990), where F2 is a multi-variable polynomial. Furthermore, for the case where G is a set of
single-variable polynomials, Theorem A.1 proves that Eq. 6 is true. Thus, Eq. 7 follows. For the case
where G is a set of 1D fully connected feedforward neural networks (i.e., MLPs), its error bound
may even be tighter than that of the former case for the same projection dimension M . Due to the
universal approximation theorem of neural networks, single-variable MLPs that are sufficiently wide
(Hornik et al., 1989) or deep (Lu et al., 2017) and use a non-polynomial activation function (Leshno
et al., 1993) (e.g., the rectified linear unit (ReLU) function) can approximate not just polynomials,
but any continuous function.

2.3 EXTENSION TO MULTIPLE OUTPUTS

Now, let y = {{yij}Dj=1}Ki=1, ζ = {{ζij}Mj=1}Ki=1, and ε = {εi}Ki=1, with K denoting the number
of dependent variables. Equation 1 can be extended to multiple outputs {ŷi} as follows:

ŷi =

M∑
j=1

ζijfij

(
N∑
k=1

Tjkχk

)
+εi =

M∑
j=1

gij(zj)+εi, i = 1, 2, . . . ,K, (no sum over i) (8)
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where fij is the ith output of the jth vector-valued function (Xu et al., 2023). To show that Eq. 8
is a natural extension of Eq. 1, consider the extreme case where the bases {gij} share no common
inputs {zj} across {ŷi}. In that case, M =

∑K
i=1mi, with mi denoting the number of dimensions

required to approximate each ŷi. Equivalently, for each index i, the number of indices j for which
ζij and fij are nonzero is mi, yielding orthogonal bases {gij}. Along the lines of the universal
approximation theorem associated with fully connected feedforward neural networks, M can be
chosen to be arbitrarily large to approximate any set of continuous functions in theory.

2.4 LEARNING PROBLEM AND CONSTRAINTS FOR SPARSITY

Let Θ = {θi}Mi=1 =
{(
W

(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

)}M
i=1

denote all learnable parameters
of the MLPs. We optimize the learnable parameters of the PNAM by minimizing the following loss
function (in parentheses) for D training samples:

T ∗,Θ∗, ζ∗, ε∗ = arg min
T ,Θ,ζ,ε

(
L(y, ŷ(X ;T ,Θ, ζ, ε)) + LP

+
1

D
(w1`1 + w2`2) +

1

M
(w3`3 + w4`4 + w5`5)

)
,

(9)

where

L = − 1

D

K∑
i=1

D∑
j=1

yij log
exp(ŷi(χj ;T ,Θ, ζ, ε))∑K
k=1 exp(ŷk(χj ;T ,Θ, ζ, ε))

is the cross-entropy loss for classification, or

L =
1

KD

K∑
i=1

D∑
j=1

(yij − ŷi(χj ;T ,Θ, ζ, ε))2

is the mean squared error (MSE) for regression. Moreover, LP can be employed to impose any
additional physical constraints that restrict the space of admissible solutions (Czarnecki et al., 2017;
Raissi et al., 2019; Bastek et al., 2024).

To prevent overfitting and produce interpretable solutions, we use the following two constraints:

`1 = ||Θ||2, `2 =
∣∣∣∣{{{gij(χk;T ,Θ, ζ)}Dk=1}Mj=1}Ki=1

∣∣∣∣
2
, (10)

where `1 is the usual L2 regularization of the weights and biases (Krogh & Hertz, 1991),2 and `2
discourages {gij} from taking on large values (Agarwal et al., 2021). Considering that the inputs and
outputs are often scaled to small values in machine learning problems, the inclination for {gij} to be
small could be leveraged to determine the relative importance of the inputs. As we will exemplify
later, if any element in the linear transformation T is relatively large, its corresponding input feature
is more important than the others.

To further promote sparsity, we first define the singular value decomposition of T as follows:

T = Q1ΣQ
T
2 ,

whereQ1 andQ2 are orthonormal matrices of dimensions M ×M and N ×N , respectively, and Σ
is an M ×N diagonal matrix containing the min(M,N) singular values of T . Based on the metric

Φ(R1,R2) = ||I −R1R
T
2 ||F =

√
2(3− tr(R1RT

2 )), R1,R2 ∈ SO(3),

described in Huynh (2009) for measuring the distance between two 3D rotations, we leverage

`3 = Φ(I,Q1) + Φ(I,Q2) =
√

2(M +N − (trQ1 + trQ2)) (11)

to penalize unnecessary couplings between the inputs. In addition,

`4 = ||T ||1, `5 = ||ζ||1 (12)

are employed to encourage nonessential coefficients in T and ζ to go to zero (Tibshirani, 1996; Xu
et al., 2023; Bahmani et al., 2024).

2We opt for || · ||2 as opposed to || · ||22 so that `1, `2, . . . , `5 are similar in magnitude, and thus, weighting
coefficients w1, w2, . . . , w5 can be chosen within proximity of each other.
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2.5 POST-PROCESSING AND SYMBOLIC REGRESSION

Upon successful training of the PNAM, post hoc analysis can be performed to further prune the
model and enhance interpretability (Murdoch et al., 2019; Cheng et al., 2024). Due to the modularity
of the PNAM, we propose three techniques to reduce the number of optimized parameters.

The first technique relies on the successful incorporation of the regularization term `2 in Eq. 10.
Suppose the functions {gij} are indeed small. In that case, we can examine the column-wise mean
of the absolute values of the coefficients in the linear transformation (that is, 1

M

∑M
j=1 |Tjk|), dubbed

the mean absolute coefficients, to rank the importance of each input feature. Upon which, one may
choose to keep only the top n ≤ N input features and zero out the columns of T associated with
the (N − n) less important features. The second technique entails selecting two hyperparameters
T0 and ζ0 for which entries Tjk < T0 and ζij < ζ0, for k = 1, 2, . . . , N , j = 1, 2, . . . ,M , and
i = 1, 2, . . . ,K, are set to zero.3

Finally, the third technique leverages the single-variable characteristic of the bases {gij} to convert
them into symbolic equations. Although any SR algorithm, such as DSR (Petersen et al., 2019) or
AI Feynman (Udrescu & Tegmark, 2020), may be used to accomplish this task, here, we employ
PySR (Cranmer, 2023), which utilizes genetic programming (Holland, 1992; Koza, 1994), for its
extensive developer base and ease of use. To convert the ith nonzero output of the jth MLP into
symbolic form, we employ the following loss function:

g∗ij = arg min
gij

(
1

D

D∑
k=1

(
(ζijMLPij(zj ;θj)|k − gij(zj)|k)2

+ w6

(
ζij

dMLPij(zj ;θj)

dzj

∣∣∣∣
k

− dgij(zj)

dzj

∣∣∣∣
k

)2
))

, (no sum over i and j)

(13)

where {gij} are mathematical expressions of single variables, and the weighting coefficient w6 may
be used to control the derivatives of the discovered functions. The sum of {gij} over j (with {εi})
then yields the outputs {ŷi} in Eq. 8. These post-processing steps can potentially reduce the tens
of thousands of parameters of the PNAM to tens or hundreds of parameters, while alleviating the
NP-hardness of multi-variable SR (Petersen et al., 2019; Virgolin & Pissis, 2022) and retaining the
accuracy of deep neural networks.

3 NUMERICAL EXPERIMENTS

In the following experiments, we illustrate the expressivity and interpretability of the PNAM, af-
forded by the linear transformation and post hoc analysis. The first experiment leverages an exten-
sive data set of mathematical knots from Davies et al. (2021) for (i) multi-label classification and (ii)
single-task regression. The second experiment employs limited data from a phase field simulation
of fracture propagation in Clayton et al. (2023) for multi-task regression, leveraging the additional
physical constraint term LP in Eq. 9 and derivative information via the weighting coefficient w6 in
Eq. 13. If not specified, LP is not used and w6 is set to zero in the experiment.

For all experiments, we hold out 20% of the data for testing; the remaining 80% undergo a training-
validation split of 80 and 20%, respectively. The PNAM is implemented using the PyTorch deep
learning library (Paszke et al., 2019) and SiLU4 (Hendrycks & Gimpel, 2016; Elfwing et al., 2018)
as the activation function a in Eq. 3. For the projection dimension M , we start with a square
projection in every experiment and increase or decrease M as appropriate. Unless otherwise stated,
we set weighting coefficients w1 = w2 = w3 = w4 = w5 = 0.01 for all classification tasks and
w1 = w2 = w3 = w4 = w5 = 0.001 for all regression tasks. We use a batch size of 256 samples and
the Adam optimizer (Kingma & Ba, 2014), employing an initial learning rate of 0.001 that decays
by a factor of 0.995 after every epoch, to train all neural networks. Each model is trained 10 times

3Either the first, the second, or a combination of both techniques may be used. Like M , w1, w2, . . . , w5,
and any other hyperparameters, the choices of n, T0, and ζ0 depend on the users and their desired degrees of
accuracy and sparsity.

4We observe that ReLU results in a smaller loss L in Eq. 9 than SiLU, but the bases {gij} that the PNAM
learns are more chaotic/non-smooth and require more parameters/operations to approximate via Eq. 13.
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Table 1: Performance of different neural network architectures for the multi-label classification
problem of predicting the signature of mathematical knots. The first two rows are reproduced from
Table 3 of Liu et al. (2024). See Liu et al. (2024) for definitions of G and k. In the next five rows,
the mean and standard deviation of the test accuracy are computed from 10 runs. In the last row, the
first hidden layer of the MLPs in the PNAM is replaced with a Fourier feature mapping (Eq. 4).

Method Architecture Parameter count Test accuracy
DM’s MLP 4 layers: [17, 300, 300, 300, 14] 3× 105 78.0%

KAN 2 layers: [17, 1, 14] (G = 3, k = 3) 2× 102 81.6%
Our MLP 3 layers: [17, 64, 32, 14] 1.2× 104 95.8± 0.1%

NAM 3 layers: 17× [1, 64, 32, 14] 2.1× 105 92.4± 0.2%
PNAM 3 layers: 17× [1, 64, 32, 14] 2.1× 105 95.0± 0.2%
PNAM 3 layers: 8× [1, 64, 32, 14] 9.8× 104 93.6± 0.4%
PNAM 3 layers: 8× [1, 2(32), 32, 14] (σ = 1) 9.8× 104 94.3± 0.3%

across 10 random seeds on a single NVIDIA A100-SXM4-40GB GPU. Each basis gij in Eq. 13 is
evolved for one minute using 30 populations of 30 expressions with a maximum complexity of 30;
all operators and leaf nodes have a complexity of one. Other relevant hyperparameters and training
details are delineated with the results.

3.1 BENCHMARKING WITH KNOT THEORY

Established by a team of mostly Google DeepMind (DM) researchers (Davies et al., 2021), the
data set of mathematical knots contains 243,746 samples, each possessing 17 geometric invariants:
adjoint torsion degree, torsion degree, short geodesic (real part), short geodesic (imaginary part),
injectivity radius, Chern–Simons invariant, cusp volume, longitudinal translation, meridional trans-
lation (imaginary part), meridional translation (real part), volume, and six symmetry groups. The
goal of this problem is to use the aforementioned invariants to predict the signature of the knots,
which can take on one of 14 values that are multiples of 2 from −12 to 14. As such, this task can be
framed as a classification problem with 14 labels or a single-output regression problem; both options
have been explored to benchmark performance.

Classification. The first two rows of Table 1 are reproduced from Liu et al. (2024), which compare
the performance of the MLP5 implemented by Davies et al. (2021) against that of the KAN. The
next five rows detail our implementation of the MLP, the NAM, and three parameterizations of the
PNAM, all using MLP(s) with two hidden layers of 64 and 32 neurons.6 We scale all inputs to have
zero mean and unit variance and train the models for 50 epochs without early stopping. All five
models achieve test accuracy greater than 90%, with the MLP performing the best and the NAM
performing the worst. Although the accuracy of the PNAM can be improved by increasing M (e.g.,
from 8 to 17) or replacing the first hidden layer of the MLPs with a Fourier feature mapping (e.g.,
withB ∈ R32 and σ = 1), doing so increases the complexity of the learned functions.

For the PNAM with M = 8 and without the Fourier feature mapping, we present in Table 2 possible
input variables that represent the three most important features by comparing the mean absolute
coefficients of the linear transformation T . Out of 10 runs, the meridional translation (real part) and
longitudinal translation have the largest and second largest mean absolute coefficients, respectively,
in all 10 runs, while the meridional translation (imaginary part) has the third largest mean absolute
coefficient in seven runs. In addition, Table 2 reveals that keeping only coefficients in T associated
with the top n = 3 inputs and zeroing out all other coefficients, the PNAM can still achieve a test
accuracy of 78.1% (see Fig. A.1 for more information). Our findings are consistent with Fig. 3 of

5Inspections of the source code (https://github.com/google-deepmind/mathematics_
conjectures/blob/main/knot_theory.ipynb) reveal that the training of the MLP is terminated
when the validation loss increases (i.e., an early stopping patience of one evaluation is employed), which may
have led to underfitting.

6The number of parameters of the MLP, NAM, and PNAM is estimated as O(LW 2), O(NLW 2), and
O(MLW 2), respectively, where W is the number of neurons in the widest layer.

6

https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb
https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb
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Table 2: Ranking of important input features based on their mean absolute coefficients for the PNAM
withM = 8 in the penultimate row of Table 1. The mean and standard deviation of the test accuracy
associated with using only the top n features are computed from their frequency in 10 runs.

Rank Input Symbol Frequency Test accuracy
1 Re(meridional translation) χ10 10/10 55.1± 3.5%
2 Longitudinal translation χ8 10/10 74.2± 1.5%

3

Im(meridional translation) χ9 7/10 78.1± 2.4%
Cusp volume χ7 1/10 80.5%

Im(short geodesic) χ4 1/10 73.5%
Volume χ11 1/10 70.5%

Davies et al. (2021)7 and Fig. 4.3 of Liu et al. (2024), despite the fact that Davies et al. (2021) employ
gradient-based attribution (Sundararajan et al., 2017) and Liu et al. (2024) leverage a specific KAN
architecture with a hidden dimension of one to determine the relative importance of the inputs.

Regression. Davies et al. (2021) and Liu et al. (2024) then leverage the knowledge they acquire
from the classification task to construct mathematical expressions for the signature of the knots, now
as a single-output regression problem. Formula A in Table 3 corresponds to the equation handcrafted
by Davies et al. (2021), and formulas B to F proceed from post-processing steps of KANs trained
using only relevant invariants (Liu et al., 2024). Davies et al. (2021) originally report a test accuracy
between 70–80% for formula A in their implementation, while Liu et al. (2024) report a test accuracy
of 83.1%. Since the accuracy appears to be highly dependent on the test set that results from a
random data split, we evaluate all formulas on our test set and the entire knot data set.

Here, we demonstrate that the PNAM in Table A.1—trained using all invariants and the same setup
described in the classification task but without any knowledge of prior results—can be converted
into symbolic equations with merely tens of parameters. We emphasize that formulas G to I in Table
3 are artificial constructs of the PNAM after pruning. Their particular forms are less crucial and
would likely change as more analysis becomes available. Instead, what is crucial is the capability of
the PNAM to discover pertinent relationships as new data and invariants are introduced.

Of the runs summarized in Table A.2, formulas H and I are obtained from the run depicted in
Fig. A.2, with n = 3 and the cusp volume8 as the third most important feature. Although the cusp
volume is not explicitly stated in Davies et al. (2021) and Liu et al. (2024) as an invariant relevant
for predictive accuracy, the PNAM discovers a potential relationship between the cusp volume and
the signature of the knots that could improve accuracy. Furthermore, comparing formulas E and G
suggests that the PNAM can achieve similar accuracy to the KAN despite the PNAM using only two
invariants without relying on additional assumptions. For additional analyses of how the weighting
coefficients in Eq. 9 affect the performance of the PNAM, see Fig. A.3.

3.2 PHASE FIELD THEORY FOR FRACTURE OF BRITTLE SOLIDS

In this common solid mechanics problem, we explore the relationship between the expressivity of
the PNAM and its projection dimension M . The data set simply contains 96 data points,9 homoge-
nized from a phase field simulation of fracture in boron carbide (B4C) with isotropic elasticity and
isotropic fracture energy from Clayton et al. (2023), for quasi-static extension up to peak load. Given
the homogenized values of the axial strain, order parameter, and magnitude of the material gradient
of the order parameter, the goal of this problem is to predict the average strain energy, phase energy,
and axial stress. Considering that the stress is calculated as the derivative of the sum of the strain
energy and phase energy with respect to the strain, we frame this task as a two-output regression
problem. The MSE is employed as L in Eq. 9 to predict the strain energy and phase energy; to

7Note that Davies et al. (2021) swap the naming of the real and imaginary parts of the meridional translation
in their code/figure (see footnote 5).

8The cusp volume is equivalent to the multiplication of the longitudinal translation and the imaginary part
of the meridional translation (see Fig. 4.4(b) of Liu et al. (2024)).

9The phase field data set is open-source with our code and can be used to study the benign or catastrophic
overfitting of overparameterized neural networks (Mallinar et al., 2022) for a physical system.
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Table 3: Mathematical expressions for the knot data set. Inputs χ7, χ8, χ9, and χ10 are the cusp
volume, longitudinal translation, meridional translation (imaginary part), and meridional translation
(real part), respectively. Formulas A to F are reproduced from Table 4 of Liu et al. (2024). A factor
of 1

2 is added to formula A for consistency with DeepMind’s findings (Davies et al., 2021; 2024).
Formula D has missing parentheses, so it cannot be evaluated. A factor of 1

2 is added to formula E for
consistency with formula A. For formulas G and H, bases {gij} in Eq. 13 use addition, subtraction,
multiplication, and square as operators; they additionally use exponential, sine, and tangent for
formula I. Every constant is counted as a parameter. See our code to reproduce these results.

ID Formula PC† Discovered by Eval. of test acc. Total acc.Reported Our

A χ8χ10

2(χ2
10+χ

2
9)

3 Human (DM) 83.1% 74.5% 73.8%

B −0.02 sin(4.98χ9 + 0.85) + 0.08|4.02χ10 + 6.28| − 0.52 − 12 [3, 1] KAN 62.6% 27.0% 26.8%
0.04e−0.88(1−0.45χ8)

2

C 0.17 tan(−1.51 + 0.1e−1.43(1−0.4χ9)
2+0.09e−0.06(1−0.21χ8)2

+ 17 [3, 1, 1] KAN 71.9% 41.7% 41.5%
1.32e−3.18(1−0.43χ10)

2

)

D

−0.09 + 1.04 exp(−9.59(−0.62 sin(0.61χ10 + 7.26)) −
29 [3, 2, 1] KAN 84.0% − −0.32 tan(0.03χ8 − 6.59) + 1− 0.11e−1.77(0.31−χ9)

2)2 −
1.09e−7.6(0.65(1−0.01χ8)

3

+ 0.27 arctan(0.53χ9 − 0.6) +
0.09 + exp(−2.58(1− 0.36χ10)2))

E 4.76χ8χ10

2(3.09χ9+6.05χ2
10+3.54χ2

9)
7 [3, 2, 1] KAN 82.8% 79.3% 79.3%

+ Padé approx.

F 2.94−2.92(1−0.10χ10)
2

0.32(0.18−χ10)2+5.36(1−0.04χ8)2+0.50
13 [3,1] KAN

[3,1] KAN
77.8% 27.0% 26.8%

G

12.766(0.132(−χ10 + 0.035χ8 + 0.157)2 +

31 − 75.9% 75.7%
0.592(−0.23χ10 + 0.008χ8 + 1)2(0.162χ10 − 0.006χ8 + 8× [1, 64, 32, 1]
0.076)− 1)4 + 7.202(0.871χ10 + 0.029χ8 − (0.229χ10 + PNAM
0.008χ8 − 0.103)(0.229χ10 + 0.008χ8 + 0.159(χ10 + (n = 2)
0.033χ8 − 0.449)2 + 0.625)− 0.173)2 − 10.643

H

26((0.096χ10 − 0.002χ7 + 0.004χ8 − 0.237)(0.267χ10 −

52 − 81.2% 80.9%

0.004χ7 + 0.011χ8 + 0.119(χ10 − 0.016χ7 + 0.04χ8 −
0.316)2 − 1)2 + 0.133)(0.734χ10 − 0.012χ7 + 0.029χ8 +
0.418) + 2.054(0.589χ10 + 0.018χ7 − 0.027χ8 + 1)2 − 8× [1, 64, 32, 1]
4.056(χ10 + 0.031χ7 − 0.046χ8 + 0.195)2(0.107χ10 + PNAM
0.003χ7 − 0.005χ8 − 0.064(χ10 + 0.031χ7 − 0.046χ8 + (n = 3)
0.087(χ10 + 0.031χ7 − 0.046χ8 − 0.165(χ10 + 0.031χ7 −
0.046χ8 + 0.195)2 + 0.195)2 + 0.195)2 + 1)2 − 0.895

I

2.574χ10 + 0.078χ7 − 0.13χ8 + 26(0.233(−χ10 +

34 − 81.4% 81.0%

0.016χ7 − 0.04χ8 − 0.597)2 sin2(0.367χ10 − 0.006χ7 +
0.015χ8 − 0.719) + sin(0.777χ10 − 0.013χ7 + 0.031χ8 + 8× [1, 64, 32, 1]
0.262))(0.168χ10 − 0.003χ7 + 0.007χ8 − 0.053) + PNAM
15.626(− sin(0.54χ10 + 0.017χ7 − 0.025χ8 + 0.105) − (n = 3)
0.049)2(−0.165χ10 − 0.005χ7 + 0.008χ8 − 0.645) + 0.509

† Parameter count is abbreviated as PC.

predict the stress, we use the following form of the constraint term LP:10

LP =
wP1

D

D∑
k=1

(
(y′1,1 + y′2,1)|k −

∂(ŷ1(χ;T ,Θ, ζ, ε) + ŷ2(χ;T ,Θ, ζ, ε))

∂χ1

∣∣∣∣
k

)2

,

where y′1,1 and y′2,1 are the derivatives of the strain energy and phase energy, respectively, with
respect to the strain (χ1). We set the weighting coefficient wP1 = 1.

All variables are scaled to have zero min and unit max. Table 4 depicts the performance of the MLP,
the NAM, and four parameterizations of the PNAM, all using MLP(s) with three hidden layers of 256
neurons and set to train for 5000 epochs with an early stopping patience of 50 epochs. On average,
the test MSE of the PNAM decreases as we increase M (cf. Phan et al. (2025)). Nevertheless, a run
of the PNAM with M = 8 turns out to be the model that achieves the smallest MSE. Therefore, we
leverage w6 = 1 in Eq. 13, which ensures accurate predictions of the stress, to convert this neural

10Ginzburg–Landau kinetics (Gurtin, 1996), or its quasi-static reduction in the present case, could be added
as a constraint if one has access to the loading rate and the Laplacian of the order parameter. See Miehe et al.
(2010) for background on phase field fracture mechanics and corresponding numerical models.
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Table 4: Performance of different neural network architectures for the multi-output regression prob-
lem of predicting the strain energy, phase energy, and stress. The mean and standard deviation of
the test MSE for all three variables are computed from 10 runs.

Method Architecture Parameter count Test MSE
MLP 4 layers: [3, 256, 256, 256, 2] 2.6× 105 (7.05± 2.02)× 10−5

NAM 4 layers: 3× [1, 256, 256, 256, 2] 7.9× 105 (1.12± 0.62)× 10−4

PNAM 4 layers: 3× [1, 256, 256, 256, 2] 7.9× 105 (3.31± 2.11)× 10−4

PNAM 4 layers: 8× [1, 256, 256, 256, 2] 2.1× 106 (1.34± 0.91)× 10−4

PNAM 4 layers: 16× [1, 256, 256, 256, 2] 4.2× 106 (8.01± 3.76)× 10−5

PNAM 4 layers: 32× [1, 256, 256, 256, 2] 8.4× 106 (6.47± 2.71)× 10−5

Table 5: Mathematical expressions for the phase field data set. Inputs χ1, χ2, and χ3 are the strain,
order parameter, and material gradient of the order parameter, respectively. To convert the PNAM
with M = 8 in Table 4 and T0 = ζ0 = 0.05 into symbolic form, bases {gij} in Eq. 13 use addition,
subtraction, multiplication, and square as operators. Counting every constant in {gij} and {zj} as a
parameter, the symbolic form has 112 parameters and achieves a test MSE of 2.25× 10−5.

Basis Formula Input Formula

g1,1
−z31 + 1.524z21 + z1 + ((−z1 + (z1 − 0.028)2 + 0.75)2 −

z1 203.741χ1 + 1.87χ2 − 3.048χ3
0.102)2 − 0.269

g2,1
z21 − (z1 − 0.597)(z1 − 0.291)(1.378z1(0.786z1 − 1)4 +
0.525z1 − 0.074)− 0.093

g1,2 z32(0.147− 0.074z2) + 0.383z22 + 0.119z2 − 0.119
z2 235.816χ1 − 0.461χ2 + 2.333χ3g2,2 −10.229z2(0.003− 0.002z22) + 0.011

g1,3 0.967z3(z3 − 1.108)(−3.255z33 + z3 − 1.418)− 2z3 + 0.07
z3 −114.828χ1 + 1.284χ2 + 12.089χ3g2,3 1.046z3 + 2.265(z3 − 0.403)2(0.65z33 − z23 + 0.835)2 − 0.25

g1,4 −z4(0.009z4 + 0.069) + 0.005
z4 −185.754χ1 + 1.866χ2 + 2.19χ3g2,4 0

g1,5 0.118z5(2z5 + 0.217)(0.033z25(z5 + 1)− z5 + 3.239)− 0.116
z5 190.698χ1 + 0.282χ2 + 6.271χ3g2,5

−z5(−0.03z5 + 0.003(0.772z5(z5 − 0.466)2 − z5 + 0.596)2 +
0.009)− 0.002

g1,6 0
z6 1.503χ2g2,6 z6(0.003z26 + 0.009z6 − 0.043) + 0.016

g1,7 z7(z27(z107 (z7 + 0.917)2 − 0.014) + 0.079z7 − 0.087)− 0.029
z7 −119.681χ1 + 0.531χ2 − 5.929χ3g2,7 −0.004z37 + 0.009z27 + 0.024z7 + 0.007

g1,8 0.003− 0.009z8 z8 −27.984χ1 − 0.769χ2 + 6.628χ3g2,8 0

network model with approximately 106 parameters into symbolic form with roughly 100 parameters.
As illustrated in Figs. A.4 and A.5, by employing SiLU as the activation function a in Eq. 3, we are
able to approximate all bases {gij} as polynomials of single variables in Table 5. Predictions of the
strain energy, phase energy, and stress for the linear combinations of these polynomials are portrayed
in Fig. A.6, achieving a test MSE of 2.25× 10−5.

4 CONCLUSION

We prove the universal approximation property of the PNAM and demonstrate its superior prediction
capability compared to the NAM in two numerical experiments. By increasing the dimension of the
linear transformation, the PNAM can achieve similar performance to or even outperform the MLP.
Moreover, we leverage the modularity of the PNAM to gain insight into important input features,
prune unnecessary parameters, and convert the model into symbolic form. However, as a stand-alone
model, the PNAM is not meant to replace the MLP, NAM, or even classical SR. Rather, it serves as
an alternative to obtain a better trade-off between expressivity and interpretability—achieving the
accuracy of the MLP and retaining a degree of interpretability of the NAM, all while being relatively
straightforward to train. Further studies are required before we can recommend the PNAM, because
of its modularity, as a backbone in graph neural networks or transformers, which may enable us to
prune the vast number of parameters of these models and accelerate inference during test time.
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A APPENDIX

A.1 POLYNOMIAL REPRODUCING

Here, we prove the polynomial reproducing property, namely, any multi-variable polynomial F
of χ ∈ RN can be reproduced by a linear combination of {gi}, where gi(zi) is a single-variable
polynomial of zi =

∑N
j=1 Tijχj , for each i = 1, 2, . . . ,M . The main proof can be established

for arbitrary dimensions with mathematical induction. The base case for this proof by induction is
conducted in two dimensions.

First, we present a lemma that verifies the reproducing property for a special case in two dimensions,
which can be used to prove the general case.
Lemma A.1. For any monomial χp1χ

q
2, there exists a linear transformation T : RN → RM , where

N = 2 and M = p+ q + 1, with Ti1 = 1 and Ti2 = ci, and a set of coefficients {ζi} such that

χp1χ
q
2 =

M∑
i=1

ζi

 N∑
j=1

Tijχj

M−1

=

M∑
i=1

ζi(χ1 + ciχ2)p+q. (A.1)

Proof. Let us expand each term of the summation on the right-hand side of Eq. A.1 and collect
terms with the same polynomial orders. We get the following equivalent form:

χp1χ
q
2 =

M∑
i=1

ζi(χ1 + ciχ2)p+q

=

p+q∑
m=0

M∑
i=1

cp+q−mi ζi

(
p+ q
m

)
χm1 χ

p+q−m
2 .

Comparing the coefficients of the polynomials on both sides, for any choice of {ci}, we end up with
an M ×M system of linear equations for {ζi} as follows:

cp+q1 cp+q2 cp+q3 . . . cp+qM

cp+q−11 cp+q−12 cp+q−13 . . . cp+q−1M

cp+q−21 cp+q−22 cp+q−23 . . . cp+q−2M
...

...
...

. . .
...

1 1 1 . . . 1



ζ1
ζ2
ζ3
...
ζM

 = δmp



1
1
p+q(

p+ q
2

)−1
...
1


,
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where δmp is the Kronecker delta. Each equation of the linear system can be written compactly as
M∑
i=1

cp+q−mi ζi = δmp

(
p+ q
m

)−1
, m = 0, 1, . . . , p+ q.

To show that we can find {ci, ζi} satisfying the system, we note that the coefficient matrix forms
a so-called Vandermonde matrix (Macon & Spitzbart, 1958; Turner, 1966), which is invertible as
long as {ci} is taken to be any set of mutually different constants, that is, ci 6= cj for i 6= j. This
completes the proof.

Even for this simple case, we may observe the nonuniqueness in the construction of the linear
transformation. Therefore, it is reasonable to expect that, for specific application problems involving
machine learning, one may optimize the transformation to achieve effective representations in a
possibly low-dimensional feature space. We give some illustrations in the following example.
Example A.1. We present some instances where the actual value of M could be smaller than p +
q + 1. In fact, for p = q = 1, we have

χ1χ2 =

(
χ1 +

1

4
χ2

)2

−
(
χ1 −

1

4
χ2

)2

,

corresponding to M = 2. For the trivial case of p = 0 or q = 0, we may simply use the identity
transformation with M = N = 1. There are also examples that have a smaller value of M than
the input dimension N = 2, such as χ2

1 + 2χ1χ2 + χ2
2 = z21 , where z1 = χ1 + χ2, for which

M = 1 < 2 = N . This again illustrates the effect of possible dimensionality reduction via a
suitable transformation.

Next, we consider the extension of Lemma A.1. Since a product of polynomials of single variables
f1(χ1) and f2(χ2) can be written as linear combinations of monomials {χp1χ

q
2}, Lemma A.1 can

easily be extended to a slightly more general form.
Lemma A.2. For any polynomial of (χ1, χ2) ∈ R2 having the product form f1(χ1)f2(χ2), there
exists a linear transformation T : R2 → RM , where M = deg(f1) + deg(f2) + 1, and a set of
single-variable polynomials {gi: R→ R}Mi=1 such that

f1(χ1)f2(χ2) =

M∑
i=1

gi(Ti1χ1 + Ti2χ2). (A.2)

Proof. Let us express the two single-variable polynomials as

f1(χ1) =
∑
p

apχ
p
1, f2(χ2) =

∑
q

bqχ
q
2.

Expanding the product on the left-hand side of Eq. A.2 and applying Lemma A.1 to each term in the
product, we get

f1(χ1)f2(χ2) =

deg(f1)∑
p=0

deg(f2)∑
q=0

apbq

p+q+1∑
i=1

ζpqi(χ1 + cpqiχ2)p+q,

where subscripts p and q are introduced for {ci, ζi} to elucidate that a different transformation T of
dimensions (p+ q+ 1)× 2 is employed for each monomial. However, due to the freedom of choice
in the construction of each T , the same T of dimensions (deg(f1) + deg(f2) + 1)× 2 can be used
for all pairwise product terms. This choice stems from the fact that the innermost summation has
a final upper limit of M = deg(f1) + deg(f2) + 1. Replacing p + q + 1 and cpqi with M and ci,
respectively, we can move this summation to the outside:

f1(χ1)f2(χ2) =

M∑
i=1

deg(f1)∑
p=0

deg(f2)∑
q=0

apbqζpqi(χ1 + ciχ2)p+q,

resulting in Eq. A.2, where

gi(Ti1χ1 + Ti2χ2) =
∑
p

∑
q

apbqζpqi(χ1 + ciχ2)p+q; Ti1 = 1, Ti2 = ci.
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Another consequence is the reproducing property for arbitrary polynomials in two dimensions.
Lemma A.3. For any polynomial F = F(χ1, χ2) of (χ1, χ2) ∈ R2, there exists a linear trans-
formation T : R2 → RM , where M = deg(F) + 1, and a set of single-variable polynomials {gi:
R→ R}Mi=1 such that

F(χ1, χ2) =

M∑
i=1

gi(Ti1χ1 + Ti2χ2). (A.3)

Proof. Note that deg(F) refers to the degree of the multi-variable polynomial, given by the highest
degree of the monomials {χp1χ

q
2} in F . Lemma A.3 can be proved by expanding F(χ1, χ2), which

produces the same set of monomials as the product of f1(χ1) and f2(χ2) in Lemma A.2, where
deg(F) = deg(f1) + deg(f2). This realization concludes the proof.

Finally, we employ mathematical induction to extend the result to any input dimension.
Theorem A.1. For any polynomial F = F(χ) = F(χ1, . . . , χN ) of χ ∈ RN , there exists a linear
transformation T : RN → RM , for some M that could be chosen to depend only on deg(F) and N
(e.g., M = deg(F) +N − 1), and a set of single-variable polynomials {gi: R→ R}Mi=1 such that

F(χ1, . . . , χN ) =

M∑
i=1

gi

 N∑
j=1

Tijχj

 . (A.4)

Proof. Once we have shown that Theorem A.1 holds for a particular input dimension (e.g., N = 2),
by leveraging the inductive hypothesis to show that it also holds for N + 1, the theorem must hold
for all subsequent N , in accordance with the principle of mathematical induction. For N = 2, the
polynomial reproducing property has been proved in Lemma A.3.

Assume that Theorem A.1 holds for an arbitrary input dimensionN . We then consider a polynomial
F = F(χ1, . . . , χN , χN+1). It can be written as

F(χ1, . . . , χN , χN+1) =

P∑
p=0

Fp(χ1, . . . , χN )χpN+1,

for some polynomials {Fp}Pp=0. By the inductive hypothesis, we have a linear transformation TN:
RN → RMN and a set of polynomials {{g̃pi}MN

i=1 }Pp=0 such that

Fp(χ1, . . . , χN ) =

MN∑
i=1

g̃pi(zN,i), zN,i =

N∑
j=1

TN,ijχj . (A.5)

As a result,

F(χ1, . . . , χN , χN+1) =

P∑
p=0

MN∑
i=1

g̃pi(zN,i)χ
p
N+1.

By Lemma A.2, for each product term g̃pi(zN,i)χ
p
N+1 in the summation, there exists a linear trans-

formation T̃N that maps any pair (zN,i, χN+1) to RMN+1 such that, for each choice of the indices p
and i, the product g̃pi(zN,i)χ

p
N+1 is a sum of single-variable polynomials in the transformed space

RMN+1 , where
MN + P = MN+1 = deg(F) +N.

Composing TN together with all T̃N, we get a linear transformation TN+1 from RN+1 to RMN+1

such that F(χ1, . . . , χN , χN+1) is a linear combination of polynomials {gi}
MN+1

i=1 of single vari-
ables z ∈ RMN+1 . Thus, Theorem A.1 holds for input dimension N + 1. This completes the
induction process and the proof.

As noted in Example A.1, due to the nonuniqueness of the transformation, it is possible to achieve
more effective and potentially low-dimensional representations through learning and optimization.

14
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A.2 ADDITIONAL RESULTS FOR KNOT THEORY: CLASSIFICATION

Figure A.1 shows a complete ranking of the inputs and the associated test accuracy of using the top
n inputs from one of the runs summarized in Table 2.
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Figure A.1: One complete instance of the ranking and accuracy reported in Table 2. (a) Relative
importance of the input features based on their mean absolute coefficients, and (b) test accuracy
associated with using the top n features in (a).

A.3 ADDITIONAL RESULTS FOR KNOT THEORY: REGRESSION

Table A.1 compares the performance of the NAM with 17 bases against that of the PNAM with eight
bases, both of which can be converted into symbolic equations after training. Considering the poor
performance of the NAM, we proceed with just the PNAM. Similar to Table 2, Table A.2 suggests
that the meridional translation (real part) and longitudinal translation are the most and second most
important invariants, respectively. Nevertheless, solely comparing the mean absolute coefficients is
not ideal, as unimportant features can be ranked as important. We can, however, eliminate these
features by examining the accuracy associated with including them, since including an unimportant
feature does not improve the accuracy compared to the corresponding case with one less input.

Table A.1: Performance of the NAM and PNAM for the single-output regression problem of pre-
dicting the signature of mathematical knots. The mean and standard deviation of the test accuracy
are computed from 10 runs.

Method Architecture Parameter count Test accuracy
NAM 3 layers: 17× [1, 64, 32, 1] 2.1× 105 65.0± 0.2%

PNAM 3 layers: 8× [1, 64, 32, 1] 9.8× 104 85.5± 0.3%

Table A.2: Ranking of important input features based on their mean absolute coefficients for the
PNAM in Table A.1. The mean and standard deviation of the test accuracy associated with using
only the top n features are computed from their frequency in 10 runs.

Rank Input Symbol Frequency Test accuracy
1 Re(meridional translation) χ10 10/10 55.7± 1.2%

2 Longitudinal translation χ8 6/10 74.8± 1.4%
Torsion degree χ2 4/10 54.9± 0.5%

3

Torsion degree χ2 3/10 76.4± 0.4%
Re(short geodesic) χ3 3/10 61.8± 7.3%

Longitudinal translation χ8 2/10 76.5± 0.2%
Cusp volume χ7 1/10 81.3%

Im(short geodesic) χ4 1/10 74.3%
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Figure A.2 shows a complete ranking of the inputs and the associated test accuracy of using the top
n inputs from one of the runs summarized in Table A.2. The ranking in Fig. A.2(d) is determined
from the mean absolute coefficients of the linear transformation T in Fig. A.2(b). This linear trans-
formation (i) consists mainly of diagonal elements due to the constraint `3 in Eq. 11 and (ii) is sparse
due to the constraint `4 in Eq. 12. The transformation T with n = 3 in Fig. A.2(c) and the scaling
coefficients ζ of just two nonzero bases in Fig. A.1(a) are leveraged to construct formulas H and I
in Table 3, which have comparable test accuracy to Fig. A.1(e) for n = 3.

Recall that these results correspond to weighting coefficients w1 = w2 = w3 = w4 = w5 = 0.001,
chosen to balance the trade-off between accuracy and sparsity. Figure A.3(b) reveals that setting
w1 = w2 = w3 = w4 = w5 = 0 improves (reduces) the accuracy for large (small) n due to the
extensive number of coefficients with large values (the erroneous ranking of the input features) in
Fig. A.3(a). Although the exact ranking may not be correct, the PNAM can still narrow down a set
of variables (e.g., n = 6) that contains some of the most important variables. On the other hand,
setting w1 = w2 = w3 = w4 = w5 = 0.01 results in such a sparse T (see the small coefficient
values in Fig. A.3(c)) such that the accuracy in Fig. A.3(d) is poor regardless of n.

A.4 ADDITIONAL RESULTS FOR PHASE FIELD THEORY

The polynomials {gij} in Table 5, along with their derivatives, are plotted and compared with their
neural network parameterizations in Figs. A.4 and A.5. We provide test predictions of the average
strain energy, phase energy, and axial stress for the linear combinations of these polynomials in
Fig. A.6.
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Figure A.2: One complete instance of the ranking and accuracy reported in Table A.2, along with the
optimized parameters. (a) Unmodified scaling coefficients ζ, (b) unmodified linear transformation
T , (c) T with n = 3 and rows corresponding to columns of ζ in (a) having a value of zero eliminated,
(d) relative importance of the input features based on their mean absolute coefficients of T in (b),
and (e) test accuracy associated with using the top n features in (d).
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Figure A.3: Effects of weighting coefficientsw1, w2, . . . , w5 for a PNAM with the same architecture
as the PNAM in Table A.1. Weighting coefficients w1 = w2 = w3 = w4 = w5 = 0 for (a) and (b);
w1 = w2 = w3 = w4 = w5 = 0.01 for (c) and (d). (a) and (c): Relative importance of the input
features based on their mean absolute coefficients. (b) and (d): Test accuracy associated with using
the top n features in (a) and (c), respectively.
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Figure A.4: Bases {g1j} and their derivatives. The expressions of {g1j} are presented in Table 5.
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Figure A.5: Bases {g2j} and their derivatives. The expressions of {g2j} are presented in Table 5.
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Figure A.6: Test predictions for the linear combinations of the polynomials {gij} in Table 5. (a)
Linear combination of {g1j}, (b) linear combination of {g2j}, and (c) derivative of the sum of the
linear combinations of {g1j} and {g2j} with respect to the strain.
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