

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROJECTED NEURAL ADDITIVE MODELS AS UNIVER- SAL APPROXIMATORS

Anonymous authors

Paper under double-blind review

ABSTRACT

This article proves that any continuous multi-variable function can be approximated arbitrarily close by a linear combination of single-variable functions of the inputs in a projected space. Using a set of independent neural networks to parameterize these feature functions of the projected inputs, we introduce their linear combination as the projected neural additive model (PNAM): an extension of the neural additive model (NAM) (cf. Agarwal et al. (2021)) that now enables universal approximation. While the couplings of the input variables bestow the PNAM with the universal approximation property, they could diminish the interpretability intrinsic to the NAM. As such, we propose regularization and post hoc techniques to promote sparse solutions and enhance the interpretability of the PNAM. The single-variable characteristic of the bases also allows us to convert them into symbolic equations and dramatically reduces the number of required parameters. **We provide results from numerical experiments on invariants in knot theory, phase field fracture mechanics, and the MNIST benchmark to illustrate the expressivity and interpretability of the PNAM.**¹

1 INTRODUCTION

While deep neural networks have become popular for a multitude of tasks due to their expressivity, they come at the cost of interpretability (Murdoch et al., 2019). Of the myriad methods introduced to address this issue, Agarwal et al. (2021) propose an alternative architecture, coined the neural additive model (NAM), by altering the connectivity of the network such that it becomes a linear combination of single-variable functions of the input variables, parameterized by independent multi-layer perceptrons (MLPs). Although the values of these functions can provide a degree of interpretability, the linear nature of the NAM in turn limits its expressivity. As a result, Phan et al. (2025) propose the use of a learnable linear transformation before passing the inputs to the NAM (see Fig. 1), which we refer to as the projected neural additive model (PNAM), to enhance the expressivity of the model.

Contribution. In this work, we prove that the PNAM is a universal approximator, elucidating its ability to approximate any continuous function on a closed and bounded domain. **In particular, we first prove the polynomial reproducing property of the PNAM for an arbitrary number of variables and orders using mathematical induction; we then employ the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990) to establish its universal approximation property.** The linear transformation enables the PNAM to capture complex couplings that the NAM and standard generalized additive models (GAMs) cannot, while also reducing the number of feature functions for high-dimensional problems with numerous inputs (Hastie & Tibshirani, 1986; Radenovic et al., 2022).

To rectify the reduction in interpretability that the linear transformation may induce, we introduce regularization techniques that (i) permit us to rank the importance of each input feature, (ii) penalize unnecessary couplings between the inputs, and (iii) promote sparse solutions. **While the NAM provides local comprehension by highlighting how the variables affect the predictions at every point, the PNAM offers global comprehension by identifying which variables are crucial for the overall predictive accuracy (Molnar, 2019; Rudin et al., 2022).** We further leverage the modularity of the PNAM to prune nonessential parameters and provide an option to convert the single-variable bases into symbolic equations. Applying the resultant models for multi-output predictions, we demonstrate, in

¹We will open-source our code after the double-blind review process.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
three numerical experiments, the various utilities of the PNAM, which allow users to dictate their desired degrees of accuracy and sparsity.

Related work. The PNAM is one of many architecture-based models introduced to enhance the interpretability of deep neural networks without compromising their expressivity. Other neural network models include, but are not limited to, Kolmogorov–Arnold networks (KANs) (Liu et al., 2024), deep polynomial neural networks (Chrysos et al., 2022), and graph neural networks with inductive biases (Cranmer et al., 2020). In addition, related sparsification, pruning, and post hoc methods include the SINDY algorithm (Brunton et al., 2016), structural pruning (Fang et al., 2023), and gradient-based attribution (Sundararajan et al., 2017). We emphasize that although we have equipped the PNAM with the ability to produce mathematical expressions, symbolic regression (SR) is primarily employed for pruning to reduce the number of parameters and to gain insight into the interactions of the input variables. Similar to the KAN, the PNAM is not intended for recovering physical laws with precise functional forms, as its additive nature prevents the PNAM from compactly approximating operators like division. Moreover, the number of feature functions is potentially large. As a result, we reserve such tasks for proven SR algorithms using reinforcement learning (Petersen et al., 2019), physics-inspired strategies (Udrescu & Tegmark, 2020), and genetic programming (Cranmer, 2023).

2 PROJECTED NEURAL ADDITIVE MODELS

2.1 CONSTRUCTION

Given a training data set $\{\mathcal{X}, \mathcal{Y}\} = \{(\chi_j, y_j)\}_{j=1}^D$, where $\chi = \{\chi_i\}_{i=1}^N$ is an input point, with N denoting the number of independent variables, y is the corresponding scalar output label, and D is the number of input-output pairs, the goal of supervised learning is to construct a function \mathcal{F} that maps every input point to output label, that is, $y = \mathcal{F}(\chi): \mathbb{R}^N \rightarrow \mathbb{R}$. Here, we hypothesize that the multi-variable function \mathcal{F} can be approximated by a linear combination (or weighted sum) of single-variable functions $\{f_i\}_{i=1}^M$, with M denoting the number of feature functions, of the inputs in a projected space to produce the dependent variable:

$$\hat{y} = \sum_{i=1}^M \zeta_i f_i \left(\sum_{j=1}^N T_{ij} \chi_j \right) + \epsilon = \sum_{i=1}^M g_i(z_i) + \epsilon, \quad (1)$$

where \hat{y} is a parameterization of y , and ϵ is an error term introduced to represent noise in the data. The projected variables \mathbf{z} in Eq. 1 result from a linear transformation \mathbf{T} of χ , that is, $\mathbf{z} = \mathbf{T}\chi: \mathbb{R}^N \rightarrow \mathbb{R}^M$. Moreover, each single-variable function $f_i: \mathbb{R} \rightarrow \mathbb{R}$ and its corresponding scaling coefficient ζ_i are represented by the function $g_i: \mathbb{R} \rightarrow \mathbb{R}$ for compactness.

The feature functions $\{f_i\}$ in Eq. 1 can be constructed using polynomials or neural networks. Here, we parameterize y as a linear combination of MLPs:

$$\hat{y} = \sum_{i=1}^M \zeta_i \text{MLP}_i \left(\sum_{j=1}^N T_{ij} \chi_j; \mathbf{W}_i^{(1)}, \dots, \mathbf{W}_i^{(L)}, \mathbf{s}_i^{(1)}, \dots, \mathbf{s}_i^{(L-1)} \right) + \epsilon, \quad (2)$$

Figure 1: Architecture of the PNAM. The output \hat{y} is predicted via a linear combination of single-variable functions, parameterized by independent MLPs, which further are functions of linear combinations of the inputs χ . The transformation \mathbf{T} and scaling coefficients ζ (both denoted with dashed lines) can be optimized to yield sparser (and more interpretable) solutions.

108 where each f_i is an MLP with L layers, learnable weights $\{\mathbf{W}_i^{(1)}, \dots, \mathbf{W}_i^{(L)}\}$ and biases
 109 $\{s_i^{(1)}, \dots, s_i^{(L-1)}\}$, and element-wise activation function a :

$$\begin{aligned} 112 \quad & \text{MLP}_i(z_i; \mathbf{W}_i^{(1)}, \dots, \mathbf{W}_i^{(L)}, s_i^{(1)}, \dots, s_i^{(L-1)}) = \\ 113 \quad & \mathbf{W}_i^{(L)} a \left(\mathbf{W}_i^{(L-1)} a \left(\dots a \left(\mathbf{W}_i^{(1)} z_i + s_i^{(1)} \right) \dots \right) + s_i^{(L-1)} \right). \\ 114 \quad & \\ 115 \end{aligned} \quad (3)$$

116 To enable the model to learn high-frequency functions, a Fourier feature mapping (Tancik et al.,
 117 2020; Bahmani et al., 2024) can be leveraged to map a transformed input z_i to

$$118 \quad \gamma_i(z_i) = [\cos(2\pi \mathbf{B}_i z_i)^T, \sin(2\pi \mathbf{B}_i z_i)^T]^T, \quad (4)$$

120 where each entry in \mathbf{B}_i is sampled from a Gaussian distribution $\mathcal{N}(0, \sigma^2)$ with standard deviation σ
 121 and is fixed after initialization, before passing it to Eq. 3. Let $\zeta = \{\zeta_i\}_{i=1}^M$; as shown in Fig. 1, the
 122 transformation \mathbf{T} , scaling coefficients ζ , and error term ϵ in Eq. 2 can be encoded as two additional
 123 weight matrices and one bias term, respectively. A simpler version of this construction is first
 124 proposed in Phan et al. (2025) and corresponds to the PNAM, introduced (without a formal proof of
 125 universal approximation) to overcome the limited expressivity of the NAM (Agarwal et al., 2021).

126 *Remark.* For the PNAM, each basis g_i in Eq. 1 is now a function of a transformed variable z_i ,
 127 as opposed to the original input χ_j for the NAM and other GAMs. The linear transformation \mathbf{T} ,
 128 leading to universal approximation, enables the PNAM to capture interactions between the inputs,
 129 such as $\chi_1 \chi_2$ in Example A.1, that the NAM cannot. Nevertheless, for each data point, examining
 130 $\{g_i\}$ no longer tells us how the inputs χ contribute to the prediction \hat{y} . Instead, we describe in
 131 Section 2.5 how one can examine \mathbf{T} , which is constant for all data points, to determine which inputs
 132 are important for predictive accuracy. This and other aspects of interpretability (e.g., dimensionality
 133 reduction and feature pruning) are entirely missing from fully connected MLPs.

134 2.2 UNIVERSAL APPROXIMATION

136 By the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990), polynomials are dense in the
 137 space of continuous functions, i.e., they can approximate any continuous function on a closed and
 138 bounded domain. As such, we can achieve universal approximation by reproducing polynomials.
 139 We show in Theorem A.1 that single-variable polynomials of the inputs in a projected space can be
 140 employed as the bases to approximate multi-variable polynomials. Instead of single-variable poly-
 141 nomials, one may also use the sum of one-dimensional (1D) neural networks of the projected inputs
 142 to achieve universal approximation. Since all such neural networks of single variables enjoy the uni-
 143 versal approximation property (Hornik et al., 1989; Leshno et al., 1993; Lu et al., 2017), implying
 144 that they can approximate polynomials, we immediately get the universal approximation property
 145 of the resulting multi-dimensional neural network. This approximation capability is formally stated
 146 in the following theorem.

147 **Theorem 2.1.** *Let \mathfrak{G} be a set of single-variable polynomials or 1D neural networks. Given any
 148 function \mathcal{F}_1 in the set of continuous real-valued functions $\mathcal{C}(\mathfrak{D})$ for a compact domain $\mathfrak{D} \subset \mathbb{R}^N$,
 149 there exists a linear transformation $\mathbf{T}: \mathbb{R}^N \rightarrow \mathbb{R}^M$ and a set of functions $\{g_i: \mathbb{R} \rightarrow \mathbb{R}\}_{i=1}^M$ in \mathfrak{G}
 150 such that*

$$152 \quad \left| \mathcal{F}_1(\chi) - \sum_{i=1}^M g_i \left(\sum_{j=1}^N T_{ij} \chi_j \right) \right| < \epsilon, \quad (5)$$

155 for all $\chi \in \mathfrak{D}$ and any $\epsilon > 0$.

159 *Proof.* By the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990), there exists a (multi-
 160 variable) polynomial \mathcal{F}_2 such that

$$161 \quad |\mathcal{F}_1(\chi) - \mathcal{F}_2(\chi)| < \epsilon/2. \quad (6)$$

162 Then for \mathcal{F}_2 , by Theorem A.1, we have
 163

$$164 \quad 165 \quad 166 \quad \mathcal{F}_2(\chi) = \sum_{i=1}^M \widehat{g}_i \left(\sum_{j=1}^N T_{ij} \chi_j \right) \quad (7)$$

167 with single-variable polynomials $\{\widehat{g}_i\}$. If \mathfrak{G} is a set of polynomials, we are done. If \mathfrak{G} represents
 168 neural networks, we know each polynomial \widehat{g}_i can be further approximated by a neural network g_i
 169 due to the universal approximation theorem of neural networks (Hornik et al., 1989; Leshno et al.,
 170 1993; Lu et al., 2017) in 1D. So, we can make
 171

$$172 \quad 173 \quad 174 \quad \left| \mathcal{F}_2(\chi) - \sum_{i=1}^M g_i \left(\sum_{j=1}^N T_{ij} \chi_j \right) \right| < \epsilon/2. \quad (8)$$

175 This result, together with Eqs. 6 and 7, completes the proof. \square
 176

178 2.3 EXTENSION TO MULTIPLE OUTPUTS

180 Now, let $\mathbf{y} = \{\{y_{ij}\}_{j=1}^D\}_{i=1}^K$, $\zeta = \{\{\zeta_{ij}\}_{j=1}^M\}_{i=1}^K$, and $\epsilon = \{\epsilon_i\}_{i=1}^K$, with K denoting the number
 181 of dependent variables. Equation 1 can be extended to multiple outputs $\{\widehat{y}_i\}$ as follows:
 182

$$183 \quad 184 \quad 185 \quad \widehat{y}_i = \sum_{j=1}^M \zeta_{ij} f_{ij} \left(\sum_{k=1}^N T_{jk} \chi_k \right) + \epsilon_i = \sum_{j=1}^M g_{ij}(z_j) + \epsilon_i, \quad i = 1, 2, \dots, K, \quad (\text{no sum over } i) \quad (9)$$

186 where f_{ij} is the i^{th} output of the j^{th} vector-valued function (Xu et al., 2023). To show that Eq. 9 is a
 187 natural extension of Eq. 1, consider the extreme case where the bases $\{g_{ij}\}$ share no common inputs
 188 $\{z_j\}$ across $\{\widehat{y}_i\}$. In that case, $M = \sum_{i=1}^K m_i$, with m_i denoting the number of dimensions required
 189 to approximate each \widehat{y}_i . Equivalently, for each index i , the number of indices j for which ζ_{ij} and f_{ij}
 190 are nonzero is m_i , yielding orthogonal bases $\{g_{ij}\}$. Along the lines of the universal approximation
 191 theorem associated with fully connected neural networks, M can be chosen to be arbitrarily large to
 192 approximate any set of continuous functions in theory.
 193

194 2.4 LEARNING PROBLEM AND CONSTRAINTS FOR SPARSITY

196 Let $\Theta = \{\theta_i\}_{i=1}^M = \left\{ \left(\mathbf{W}_i^{(1)}, \dots, \mathbf{W}_i^{(L)}, \mathbf{s}_i^{(1)}, \dots, \mathbf{s}_i^{(L-1)} \right) \right\}_{i=1}^M$ denote all learnable parameters
 197 of the MLPs. We optimize the learnable parameters of the PNAM by minimizing the following loss
 198 function (in parentheses) for D training samples:
 199

$$200 \quad 201 \quad 202 \quad 203 \quad 204 \quad \mathbf{T}^*, \Theta^*, \zeta^*, \epsilon^* = \arg \min_{\mathbf{T}, \Theta, \zeta, \epsilon} \left(\mathcal{L}(\mathbf{y}, \widehat{\mathbf{y}}(\mathbf{X}; \mathbf{T}, \Theta, \zeta, \epsilon)) + \mathcal{L}_P \right. \\ \left. + \frac{1}{D}(w_1 \ell_1 + w_2 \ell_2) + \frac{1}{M}(w_3 \ell_3 + w_4 \ell_4 + w_5 \ell_5) \right), \quad (10)$$

205 where

$$206 \quad 207 \quad 208 \quad \mathcal{L} = -\frac{1}{D} \sum_{i=1}^K \sum_{j=1}^D y_{ij} \log \frac{\exp(\widehat{y}_i(\chi_j; \mathbf{T}, \Theta, \zeta, \epsilon))}{\sum_{k=1}^K \exp(\widehat{y}_k(\chi_j; \mathbf{T}, \Theta, \zeta, \epsilon))}$$

209 is the cross-entropy loss for classification, or

$$210 \quad 211 \quad 212 \quad 213 \quad \mathcal{L} = \frac{1}{KD} \sum_{i=1}^K \sum_{j=1}^D (y_{ij} - \widehat{y}_i(\chi_j; \mathbf{T}, \Theta, \zeta, \epsilon))^2$$

214 is the mean squared error (MSE) for regression. Moreover, \mathcal{L}_P can be employed to impose any
 215 additional physical constraints that restrict the space of admissible solutions (Czarnecki et al., 2017;
 Raissi et al., 2019; Bastek et al., 2024).

216 To prevent overfitting and produce interpretable solutions, we use the following two constraints:
 217

$$\ell_1 = \|\boldsymbol{\Theta}\|_2, \quad \ell_2 = \left\| \left\{ \left\{ g_{ij}(\boldsymbol{\chi}_k; \mathbf{T}, \boldsymbol{\Theta}, \boldsymbol{\zeta}) \right\}_{k=1}^D \right\}_{j=1}^M \right\|_2, \quad (11)$$

219 where ℓ_1 is the usual L_2 regularization of the weights and biases (Krogh & Hertz, 1991),² and ℓ_2
 220 discourages $\{g_{ij}\}$ from taking on large values (Agarwal et al., 2021). Considering that the inputs and
 221 outputs are often scaled to small values in machine learning problems, the inclination for $\{g_{ij}\}$ to be
 222 small could be leveraged to determine the relative importance of the inputs. As we will exemplify
 223 later, if any element in the linear transformation \mathbf{T} is relatively large, its corresponding input feature
 224 is more important than the others.

225 To further promote sparsity, we first define the singular value decomposition of \mathbf{T} as follows:
 226

$$\mathbf{T} = \mathbf{Q}_1 \boldsymbol{\Sigma} \mathbf{Q}_2^T,$$

228 where \mathbf{Q}_1 and \mathbf{Q}_2 are orthonormal matrices of dimensions $M \times M$ and $N \times N$, respectively, and $\boldsymbol{\Sigma}$
 229 is an $M \times N$ diagonal matrix containing the $\min(M, N)$ singular values of \mathbf{T} . Based on the metric

$$\Phi(\mathbf{R}_1, \mathbf{R}_2) = \|\mathbf{I} - \mathbf{R}_1 \mathbf{R}_2^T\|_F = \sqrt{2(3 - \text{tr}(\mathbf{R}_1 \mathbf{R}_2^T))}, \quad \mathbf{R}_1, \mathbf{R}_2 \in SO(3),$$

232 described in Huynh (2009) for measuring the distance between two 3D rotations, we leverage

$$\ell_3 = \Phi(\mathbf{I}, \mathbf{Q}_1) + \Phi(\mathbf{I}, \mathbf{Q}_2) = \sqrt{2(M + N - (\text{tr} \mathbf{Q}_1 + \text{tr} \mathbf{Q}_2))} \quad (12)$$

233 to penalize unnecessary couplings between the inputs. In addition,

$$\ell_4 = \|\mathbf{T}\|_1, \quad \ell_5 = \|\boldsymbol{\zeta}\|_1 \quad (13)$$

234 are employed to encourage nonessential coefficients in \mathbf{T} and $\boldsymbol{\zeta}$ to go to zero (Tibshirani, 1996; Xu
 235 et al., 2023; Bahmani et al., 2024).

240 2.5 POST-PROCESSING AND SYMBOLIC REGRESSION

242 Upon successful training of the PNAM, post hoc analysis can be performed to further prune the
 243 model and enhance interpretability (Murdoch et al., 2019; Cheng et al., 2024). Due to the modularity
 244 of the PNAM, we propose three techniques to reduce the number of optimized parameters.

245 The first technique relies on the successful incorporation of the regularization constraint ℓ_2 in Eq. 11.
 246 Suppose the functions $\{g_{ij}\}$ are indeed small. In that case, we can examine the column-wise mean
 247 of the absolute values of the coefficients in the linear transformation (that is, $\frac{1}{M} \sum_{j=1}^M |T_{jk}|$), dubbed
 248 the mean absolute coefficients, to rank the importance of each input feature. Upon which, one may
 249 choose to keep only the top $n \leq N$ input features and zero out the columns of \mathbf{T} associated with
 250 the $(N - n)$ less important features. The second technique entails selecting two hyperparameters
 251 T_0 and ζ_0 for which entries $T_{jk} < T_0$ and $\zeta_{ij} < \zeta_0$, for $k = 1, 2, \dots, N$, $j = 1, 2, \dots, M$, and
 252 $i = 1, 2, \dots, K$, are set to zero.³

253 Finally, the third technique leverages the single-variable characteristic of the bases $\{g_{ij}\}$ to convert
 254 them into symbolic equations. Although any SR algorithm, such as DSR (Petersen et al., 2019) or
 255 AI Feynman (Udrescu & Tegmark, 2020), may be used to accomplish this task, here, we employ
 256 PySR (Cranmer, 2023), which utilizes genetic programming (Holland, 1992; Koza, 1994), for its
 257 extensive developer base and ease of use. To convert the i^{th} nonzero output of the j^{th} MLP into
 258 symbolic form, we employ the following loss function:

$$g_{ij}^* = \arg \min_{g_{ij}} \left(\frac{1}{D} \sum_{k=1}^D \left((\zeta_{ij} \text{MLP}_{ij}(z_j; \boldsymbol{\theta}_j)|_k - g_{ij}(z_j)|_k)^2 \right. \right. \\ \left. \left. + w_6 \left(\zeta_{ij} \frac{d\text{MLP}_{ij}(z_j; \boldsymbol{\theta}_j)}{dz_j} \Big|_k - \frac{dg_{ij}(z_j)}{dz_j} \Big|_k \right)^2 \right) \right), \quad (\text{no sum over } i \text{ and } j) \quad (14)$$

265 ²We opt for $\|\cdot\|_2$ as opposed to $\|\cdot\|_2^2$ so that the (expanded) loss terms in Eq. 10 for regularization
 266 constraints $\ell_1, \ell_2, \dots, \ell_5$ are similar in magnitude. Thus, weighting coefficients w_1, w_2, \dots, w_5 can be chosen
 267 together, thereby simplifying the space for hyperparameter search.

268 ³Either the first, the second, or a combination of both techniques may be used. Like M, w_1, w_2, \dots, w_5 ,
 269 and any other hyperparameters, the choices of n, T_0 , and ζ_0 depend on the users and their desired degrees of
 accuracy and sparsity.

270 where $\{g_{ij}\}$ are mathematical expressions of single variables, and the weighting coefficient w_6 may
 271 be used to control the derivatives of the discovered functions. The sum of $\{g_{ij}\}$ over j (with $\{\epsilon_i\}$)
 272 then yields the outputs $\{\hat{y}_i\}$ in Eq. 9. These post-processing steps can potentially reduce the tens
 273 of thousands of parameters of the PNAM to tens or hundreds of parameters, while alleviating the
 274 NP-hardness of multi-variable SR (Petersen et al., 2019; Virgolin & Pissis, 2022) and retaining the
 275 accuracy of deep neural networks.

276

277

3 NUMERICAL EXPERIMENTS

278

280 In the following experiments, we illustrate the expressivity and interpretability of the PNAM, af-
 281 fforded by the linear transformation and post hoc analysis. The first experiment leverages an exten-
 282 sive data set of mathematical knots from Davies et al. (2021) for (i) multi-label classification and (ii)
 283 single-task regression. The second experiment employs limited data from a phase field simulation
 284 of fracture propagation in Clayton et al. (2023) for multi-task regression, leveraging the additional
 285 physical constraint term \mathcal{L}_P in Eq. 10 and derivative information via the weighting coefficient w_6
 286 in Eq. 14. If not specified, \mathcal{L}_P is not used and w_6 is set to zero in the experiment. **One auxiliary**
 287 **experiment is presented in Appendix A.5, which uses the MNIST data set (LeCun et al., 1998) to**
 288 **demonstrate the dimensionality reduction capability and visualize the input pruning mechanism of**
 289 **the PNAM for a high-dimensional image classification problem.**

290

291 For all experiments (excluding the one using the MNIST data set), we hold out 20% of the data
 292 for testing; the remaining 80% undergo a training-validation split of 80 and 20%, respectively. The
 293 PNAM is implemented using the PyTorch deep learning library (Paszke et al., 2019) and SiLU⁴
 294 (Hendrycks & Gimpel, 2016; Elfwing et al., 2018) as the activation function a in Eq. 3. **For the**
 295 **projection dimension M , we start with $M = 8$ or a square projection (whichever is smaller) in every**
 296 **experiment and increase or decrease M as appropriate.** Unless otherwise stated, we set weighting
 297 coefficients $w_1 = w_2 = w_3 = w_4 = w_5 = 0.01$ for all classification tasks and $w_1 = w_2 = w_3 =$
 298 $w_4 = w_5 = 0.001$ for all regression tasks.⁵ We use a batch size of 256 samples and the Adam
 299 optimizer (Kingma & Ba, 2014), employing an initial learning rate of 0.001 that decays by a factor
 300 of 0.995 after every epoch, to train all neural networks. All models are trained on a single NVIDIA
 301 A100-SXM4-40GB GPU. Each basis g_{ij} in Eq. 14 is evolved for one minute using 30 populations
 302 of 30 expressions with a maximum complexity of 30; all operators and leaf nodes have a complexity
 303 of one. Other relevant hyperparameters and training details are delineated with the results.

304

305

3.1 BENCHMARKING WITH KNOT THEORY

306

307 Established by a team of mostly Google DeepMind (DM) researchers (Davies et al., 2021), the data
 308 set of mathematical knots consists of 243,746 samples, each possessing 17 geometric invariants:
 309 adjoint torsion degree, torsion degree, short geodesic (real part), short geodesic (imaginary part),
 310 injectivity radius, Chern–Simons invariant, cusp volume, longitudinal translation, meridional trans-
 311 lation (imaginary part), meridional translation (real part), volume, and six symmetry groups. The
 312 goal of this problem is to use the aforementioned invariants to predict the signature of the knots,
 313 which can take on one of 14 values that are multiples of 2 from -12 to 14 . As such, this task can be
 314 framed as a classification problem with 14 labels or a single-output regression problem; both options
 315 have been explored to benchmark performance.

316

317 **Classification.** The first two rows of Table 1 are reproduced from Liu et al. (2024), which compare
 318 the performance of the MLP⁶ implemented by Davies et al. (2021) against that of the KAN. The
 319 next five rows detail our implementation of the MLP, the NAM, and three parameterizations of the

320

⁴We observe that ReLU results in a smaller loss \mathcal{L} in Eq. 10 than SiLU, but the bases $\{g_{ij}\}$ that the PNAM
 321 learns are more chaotic/non-smooth and require more parameters/operations to approximate via Eq. 14.

322

⁵We find that these coefficient values yield a robust trade-off between accuracy and sparsity due to the
 323 magnitude of \mathcal{L} relative to those of the regularization constraints in Eq. 10 for scaled variables.

324

325

⁶Inspections of the source code ([https://github.com/google-deepmind/mathematics_](https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb)
 326 [conjectures/blob/main/knot_theory.ipynb](https://github.com/google-deepmind/mathematics_conjectures/blob/main/knot_theory.ipynb)) reveal that the training of the MLP is terminated
 327 when the validation loss increases (i.e., an early stopping patience of one evaluation is employed), which may
 328 have led to underfitting.

324
 325 Table 1: Performance of different neural network architectures for the multi-label classification
 326 problem of predicting the signature of mathematical knots. The first two rows are reproduced from
 327 Table 3 of Liu et al. (2024). See Liu et al. (2024) for definitions of G and k . In the next five rows,
 328 the mean and standard deviation of the test accuracy are computed from 10 runs. In the last row, the
 329 first hidden layer of the MLP bases is replaced with a Fourier feature mapping (Eq. 4).

Method	Architecture	Parameter count	Test acc.
DM's MLP	4 layers: [17, 300, 300, 300, 14]	3×10^5	78.0%
KAN	2 layers: [17, 1, 14] ($G = 3, k = 3$)	2×10^2	81.6%
Our MLP	3 layers: [17, 64, 32, 14]	1.2×10^4	$95.8 \pm 0.1\%$
NAM	3 layers: $17 \times [1, 64, 32, 14]$	2.1×10^5	$92.4 \pm 0.2\%$
PNAM	3 layers: $17 \times [1, 64, 32, 14]$	2.1×10^5	$95.0 \pm 0.2\%$
PNAM	3 layers: $8 \times [1, 64, 32, 14]$	9.8×10^4	$93.6 \pm 0.4\%$
PNAM	3 layers: $8 \times [1, 2(32), 32, 14]$ ($\sigma = 1$)	9.8×10^4	$94.3 \pm 0.3\%$

330
 331
 332
 333
 334
 335
 336
 337
 338
 339 Table 2: Ranking of important input features based on their mean absolute coefficients for the PNAM
 340 with $M = 8$ in the penultimate row of Table 1. The mean and standard deviation of the test accuracy
 341 associated with using only the top n features are computed from their frequency across 10 runs.
 342

Rank	Input	Symbol	Frequency	Test acc.
1	Re(meridional translation)	χ_{10}	10/10	$55.1 \pm 3.5\%$
2	Longitudinal translation	χ_8	10/10	$74.2 \pm 1.5\%$
	Im(meridional translation)	χ_9	7/10	$78.1 \pm 2.4\%$
3	Cusp volume	χ_7	1/10	80.5%
	Im(short geodesic)	χ_4	1/10	73.5%
	Volume	χ_{11}	1/10	70.5%

350
 351
 352 PNAM, all using MLP(s) with two hidden layers of 64 and 32 neurons.⁷ We scale all inputs to have
 353 zero mean and unit variance and train the models for 50 epochs without early stopping. All five
 354 models achieve test accuracy greater than 90%, with the MLP performing the best and the NAM
 355 performing the worst. Although the accuracy of the PNAM can be improved by increasing M (e.g.,
 356 from 8 to 17) or replacing the first hidden layer of the MLP bases with a Fourier feature mapping
 357 (e.g., with $B \in \mathbb{R}^{32}$ and $\sigma = 1$), doing so increases the complexity of the learned functions.

358 For the PNAM with $M = 8$ and without the Fourier feature mapping, we present in Table 2 possible
 359 input variables that represent the three most important features by comparing the mean absolute
 360 coefficients of the linear transformation \mathbf{T} . Out of 10 runs, the meridional translation (real part) and
 361 longitudinal translation have the largest and second largest mean absolute coefficients, respectively,
 362 in all 10 runs, while the meridional translation (imaginary part) has the third largest mean absolute
 363 coefficient in seven runs. In addition, Table 2 reveals that keeping only coefficients in \mathbf{T} associated
 364 with the top $n = 3$ inputs and zeroing out all other coefficients, the PNAM can still achieve a test
 365 accuracy of 78.1% (see Fig. A.1 for more information). Our findings are consistent with Fig. 3 of
 366 Davies et al. (2021)⁸ and Fig. 4.3 of Liu et al. (2024), despite the fact that Davies et al. (2021) employ
 367 gradient-based attribution (Sundararajan et al., 2017) and Liu et al. (2024) leverage a specific KAN
 368 architecture with a hidden dimension of one to determine the relative importance of the inputs.

369 **Regression.** Davies et al. (2021) and Liu et al. (2024) then leverage the knowledge they acquire
 370 from the classification task to construct mathematical expressions for the signature of the knots,
 371 now as a single-output regression problem. Expression A in Table 3 corresponds to the equation
 372 handcrafted by Davies et al. (2021), and expressions B to F proceed from post-processing steps of

373 ⁷The number of parameters of the MLP, NAM, and PNAM is estimated as $O(LW^2)$, $O(NLW^2)$, and
 374 $O(MN + MLW^2)$, respectively, where W is the number of neurons in the widest layer. Compared to an
 375 MLP that uses the same L and W , the PNAM has approximately M times more parameters. Considering that
 376 memory requirements scale linearly with the number of parameters, the PNAM requires M times more memory
 377 and is thus slower to train than the MLP.

378 ⁸Note that Davies et al. (2021) swap the naming of the real and imaginary parts of the meridional translation
 379 in their code/figure (see footnote 6).

378

379 Table 3: Mathematical expressions for the knot data set. Inputs χ_7 , χ_8 , χ_9 , and χ_{10} are the cusp
 380 volume, longitudinal translation, meridional translation (imaginary part), and meridional translation
 381 (real part), respectively. Expressions A to F are reproduced from Table 4 of Liu et al. (2024). A
 382 factor of $\frac{1}{2}$ is added to expression A for consistency with DeepMind’s findings (Davies et al., 2021;
 383 2024). Expression D has missing parentheses, so it cannot be evaluated. A factor of $\frac{1}{2}$ is added to
 384 expression E for consistency with expression A. For expressions G and H, bases $\{g_{ij}\}$ in Eq. 14
 385 use addition, subtraction, multiplication, and square as operators; they additionally use exponential,
 386 sine, and tangent for expression I. Every constant in the expressions is counted as a parameter. See
 387 our code to reproduce these results.

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	ID Expression	PC [†]	Discovered by	Eval. of test acc.		Total acc.
				Reported	Our	
	A $\frac{\chi_8 \chi_{10}}{2(\chi_{10}^2 + \chi_9^2)}$	3	Human (DM)	83.1%	74.5%	73.8%
	B $-0.02 \sin(4.98 \chi_9 + 0.85) + 0.08 4.02 \chi_{10} + 6.28 - 0.52 - 0.04 e^{-0.88(1 - 0.45 \chi_8)^2}$	12	[3, 1] KAN	62.6%	27.0%	26.8%
	C $0.17 \tan(-1.51 + 0.1e^{-1.43(1 - 0.4 \chi_9)^2 + 0.09e^{-0.06(1 - 0.21 \chi_8)^2}} + 1.32e^{-3.18(1 - 0.43 \chi_{10})^2})$	17	[3, 1, 1] KAN	71.9%	41.7%	41.5%
	D $0.32 \tan(0.03 \chi_8 - 6.59) + 1 - 0.11e^{-1.77(0.31 - \chi_9)^2} - 1.09e^{-7.6(0.65(1 - 0.01 \chi_8)^3 + 0.27 \arctan(0.53 \chi_9 - 0.6) + 0.09 + \exp(-2.58(1 - 0.36 \chi_{10})^2))}$	29	[3, 2, 1] KAN	84.0%	—	—
	E $\frac{4.76 \chi_8 \chi_{10}}{2(3.09 \chi_9 + 6.05 \chi_{10}^2 + 3.54 \chi_8^2)}$	7	[3, 2, 1] KAN + Padé approx.	82.8%	79.3%	79.3%
	F $\frac{2.94 - 2.92(1 - 0.10 \chi_{10})^2}{0.32(0.18 - \chi_10)^2 + 5.36(1 - 0.04 \chi_8)^2 + 0.50}$	13	[3, 1] KAN [3, 1] KAN	77.8%	27.0%	26.8%
	G $12.766(0.132(-\chi_{10} + 0.035 \chi_8 + 0.157)^2 + 0.592(-0.23 \chi_{10} + 0.008 \chi_8 + 1)^2(0.162 \chi_{10} - 0.006 \chi_8 + 0.076 - 1)^4 + 7.202(0.871 \chi_{10} + 0.029 \chi_8 - (0.229 \chi_{10} + 0.008 \chi_8 - 0.103)(0.229 \chi_{10} + 0.008 \chi_8 + 0.159(\chi_{10} + 0.033 \chi_8 - 0.449)^2 + 0.625) - 0.173)^2 - 10.643)$	31	$8 \times [1, 64, 32, 1]$ PNAM ($n = 2$)	—	75.9%	75.7%
	H $26((0.096 \chi_{10} - 0.002 \chi_7 + 0.004 \chi_8 - 0.237)(0.267 \chi_{10} - 0.004 \chi_7 + 0.011 \chi_8 + 0.119(\chi_{10} - 0.016 \chi_7 + 0.04 \chi_8 - 0.316)^2 - 1)^2 + 0.133)(0.734 \chi_{10} - 0.012 \chi_7 + 0.029 \chi_8 + 0.418) + 2.054(0.589 \chi_{10} + 0.018 \chi_7 - 0.027 \chi_8 + 1)^2 - 4.056(\chi_{10} + 0.031 \chi_7 - 0.046 \chi_8 + 0.195)^2(0.107 \chi_{10} + 0.003 \chi_7 - 0.005 \chi_8 - 0.064(\chi_{10} + 0.031 \chi_7 - 0.046 \chi_8 + 0.087(\chi_{10} + 0.031 \chi_7 - 0.046 \chi_8 - 0.165(\chi_{10} + 0.031 \chi_7 - 0.046 \chi_8 + 0.195)^2 + 0.195)^2 + 1)^2 - 0.895$	52	$8 \times [1, 64, 32, 1]$ PNAM ($n = 3$)	—	81.2%	80.9%
	I $2.574 \chi_{10} + 0.078 \chi_7 - 0.13 \chi_8 + 26(0.233(-\chi_{10} + 0.016 \chi_7 - 0.04 \chi_8 - 0.597)^2 \sin^2(0.367 \chi_{10} - 0.006 \chi_7 + 0.015 \chi_8 - 0.719) + \sin(0.777 \chi_{10} - 0.013 \chi_7 + 0.031 \chi_8 + 0.262))(\chi_{10} + 0.168 \chi_{10} - 0.003 \chi_7 + 0.007 \chi_8 - 0.053) + 15.626(-\sin(0.54 \chi_{10} + 0.017 \chi_7 - 0.025 \chi_8 + 0.105) - 0.049)^2(-0.165 \chi_{10} - 0.005 \chi_7 + 0.008 \chi_8 - 0.645) + 0.509$	34	$8 \times [1, 64, 32, 1]$ PNAM ($n = 3$)	—	81.4%	81.0%

[†] Parameter count is abbreviated as PC.

415

416

417

418

419

420

421 KANs trained using only the three most relevant invariants (Liu et al., 2024). Davies et al. (2021)
 422 originally report a test accuracy between 70–80% for expression A in their implementation, while
 423 Liu et al. (2024) report a test accuracy of 83.1%. Since the accuracy appears to depend on the test
 424 set that results from a random data split, we evaluate all expressions on our test set and the entire
 425 knot data set (denoted as “Our” and “Total acc.” in Table 3), in addition to the values reported by
 426 Liu et al. (2024) for expressions A to F.

427 Here, we demonstrate that the PNAM in Table A.1—trained using all invariants and the same setup
 428 described in the classification task but without any knowledge of prior results—can be converted into
 429 symbolic equations with merely tens of parameters. We emphasize that expressions G to I in Table
 430 3 are artificial constructs of the PNAM after pruning. Their particular forms are less crucial and
 431 would likely change as more analysis becomes available. Instead, what is crucial is the capability of
 the PNAM to discover pertinent relationships as new data and invariants are introduced.

432 Of the runs summarized in Table A.2, expressions H and I are obtained from the run depicted in
 433 Fig. A.2, with $n = 3$ and the cusp volume⁹ as the third most important feature. Although the cusp
 434 volume is not explicitly stated in Davies et al. (2021) and Liu et al. (2024) as an invariant relevant for
 435 predictive accuracy, the PNAM discovers a potential relationship between the cusp volume and the
 436 signature of the knots that could improve accuracy. Furthermore, comparing expressions E and G
 437 suggests that the PNAM can achieve accuracy similar to that of the KAN, despite the PNAM using
 438 only two invariants without relying on additional assumptions. For additional analyses of how the
 439 weighting coefficients in Eq. 10 affect the performance of the PNAM, see Fig. A.5.

440 441 3.2 PHASE FIELD THEORY FOR FRACTURE OF BRITTLE SOLIDS

442 In this common solid mechanics problem, we examine the relationship between the expressivity of
 443 the PNAM and its projection dimension M . The data set simply contains 96 data points,¹⁰ homog-
 444 enized from a phase field simulation of fracture in boron carbide (B_4C) with isotropic elasticity and
 445 isotropic fracture energy from Clayton et al. (2023), for quasi-static extension up to peak load. Given
 446 the homogenized values of the axial strain, order parameter, and magnitude of the material gradient
 447 of the order parameter, the goal of this problem is to predict the average strain energy, phase energy,
 448 and axial stress. Considering that the stress is calculated as the derivative of the sum of the strain
 449 energy and phase energy with respect to the strain, we frame this task as a two-output regression
 450 problem. The MSE is employed as \mathcal{L} in Eq. 10 to predict the strain energy and phase energy; to
 451 predict the stress, we use the following form of the constraint term \mathcal{L}_P :¹¹

$$452 \mathcal{L}_P = \frac{w_{P1}}{D} \sum_{k=1}^D \left((y'_{1,1} + y'_{2,1})|_k - \frac{\partial(\hat{y}_1(\chi; \mathbf{T}, \Theta, \zeta, \epsilon) + \hat{y}_2(\chi; \mathbf{T}, \Theta, \zeta, \epsilon))}{\partial \chi_1} \Big|_k \right)^2,$$

455 where $y'_{1,1}$ and $y'_{2,1}$ are the derivatives of the strain energy and phase energy, respectively, with
 456 respect to the strain (χ_1). We set weighting coefficient $w_{P1} = 1$.

458 All variables are scaled to have zero min and unit max. Table 4 depicts the performance of the MLP,
 459 the NAM, and four parameterizations of the PNAM, all using MLP(s) with three hidden layers of 256
 460 neurons and set to train for 5000 epochs with an early stopping patience of 50 epochs. On average,
 461 the test MSE of the PNAM decreases as we increase M (cf. Phan et al. (2025)). Nevertheless, a run
 462 of the PNAM with $M = 8$ turns out to be the model that achieves the smallest MSE. Therefore, we
 463 leverage $w_6 = 1$ in Eq. 14, which ensures accurate predictions of the stress, to convert this neural
 464 network model with approximately 10^6 parameters into symbolic form with roughly 100 parameters.
 465 As illustrated in Figs. A.7 and A.8, by employing SiLU as the activation function a in Eq. 3, we are
 466 able to approximate all bases $\{g_{ij}\}$ as polynomials of single variables in Table 5. Predictions of the
 467 strain energy, phase energy, and stress for the linear combinations of these polynomials are portrayed
 468 in Fig. A.9, achieving a test MSE of 2.25×10^{-5} .

469 470 4 CONCLUSION

471 We prove the universal approximation property of the PNAM and demonstrate its superior prediction
 472 capability compared to the NAM in three numerical experiments. By increasing the dimension
 473 of the linear transformation, the PNAM can achieve performance comparable to or even surpass that
 474 of the MLP. Moreover, we leverage the modularity of the PNAM to gain insight into important input
 475 features, prune unnecessary parameters, and convert the model into symbolic form. However, as a
 476 stand-alone model, the PNAM is not meant to replace the MLP, NAM, or even classical SR. Rather,
 477 it serves as an alternative to obtain a better trade-off between expressivity and interpretability—
 478 achieving the accuracy of the MLP and retaining a degree of interpretability of the NAM, all while
 479 being relatively straightforward to train and optimize. Further studies are required before we can

480 ⁹The cusp volume is equivalent to the multiplication of the longitudinal translation and the imaginary part
 481 of the meridional translation (see Fig. 4.4(b) of Liu et al. (2024)).

482 ¹⁰The phase field data set is open-source with our code and can be used to study the benign or catastrophic
 483 overfitting of overparameterized neural networks (Mallinar et al., 2022) for a physical system.

484 ¹¹Ginzburg–Landau kinetics (Gurtin, 1996), or its quasi-static reduction in the present case, could be added
 485 as a constraint if one has access to the loading rate and the Laplacian of the order parameter. See Miehe et al.
 (2010) for background on phase field fracture mechanics and corresponding numerical models.

486
 487 Table 4: Performance of different neural network architectures for the multi-output regression prob-
 488 lem of predicting the strain energy, phase energy, and stress. The mean and standard deviation of
 489 the test MSE for all three variables are computed from 10 runs.

Method	Architecture	Parameter count	Test MSE
MLP	4 layers: [3, 256, 256, 256, 2]	2.6×10^5	$(7.05 \pm 2.02) \times 10^{-5}$
NAM	4 layers: 3 × [1, 256, 256, 256, 2]	7.9×10^5	$(1.12 \pm 0.62) \times 10^{-4}$
PNAM	4 layers: 3 × [1, 256, 256, 256, 2]	7.9×10^5	$(3.31 \pm 2.11) \times 10^{-4}$
PNAM	4 layers: 8 × [1, 256, 256, 256, 2]	2.1×10^6	$(1.34 \pm 0.91) \times 10^{-4}$
PNAM	4 layers: 16 × [1, 256, 256, 256, 2]	4.2×10^6	$(8.01 \pm 3.76) \times 10^{-5}$
PNAM	4 layers: 32 × [1, 256, 256, 256, 2]	8.4×10^6	$(6.47 \pm 2.71) \times 10^{-5}$

490
 491
 492
 493
 494
 495
 496
 497
 498 Table 5: Mathematical expressions for the phase field data set. Inputs χ_1 , χ_2 , and χ_3 are the strain,
 499 order parameter, and material gradient of the order parameter, respectively. To convert the PNAM
 500 with $M = 8$ in Table 4 and $T_0 = \zeta_0 = 0.05$ into symbolic form, bases $\{g_{ij}\}$ in Eq. 14 use addition,
 501 subtraction, multiplication, and square as operators. Counting every constant in $\{g_{ij}\}$ and $\{z_j\}$ as a
 502 parameter, the symbolic form has 112 parameters and achieves a test MSE of 2.25×10^{-5} .
 503

Basis	Expression	Input	Expression
$g_{1,1}$	$-z_1^3 + 1.524z_1^2 + z_1 + ((-z_1 + (z_1 - 0.028)^2 + 0.75)^2 - 0.102)^2 - 0.269$	z_1	$203.741\chi_1 + 1.87\chi_2 - 3.048\chi_3$
$g_{2,1}$	$z_1^2 - (z_1 - 0.597)(z_1 - 0.291)(1.378z_1(0.786z_1 - 1)^4 + 0.525z_1 - 0.074) - 0.093$		
$g_{1,2}$	$z_2^3(0.147 - 0.074z_2) + 0.383z_2^2 + 0.119z_2 - 0.119$	z_2	$235.816\chi_1 - 0.461\chi_2 + 2.333\chi_3$
$g_{2,2}$	$-10.229z_2(0.003 - 0.002z_2^2) + 0.011$		
$g_{1,3}$	$0.967z_3(z_3 - 1.108)(-3.255z_3^3 + z_3 - 1.418) - 2z_3 + 0.07$	z_3	$-114.828\chi_1 + 1.284\chi_2 + 12.089\chi_3$
$g_{2,3}$	$1.046z_3 + 2.265(z_3 - 0.403)^2(0.65z_3^3 - z_3^2 + 0.835)^2 - 0.25$		
$g_{1,4}$	$-z_4(0.009z_4 + 0.069) + 0.005$	z_4	$-185.754\chi_1 + 1.866\chi_2 + 2.19\chi_3$
$g_{2,4}$	0		
$g_{1,5}$	$0.118z_5(2z_5 + 0.217)(0.033z_5^2(z_5 + 1) - z_5 + 3.239) - 0.116$	z_5	$190.698\chi_1 + 0.282\chi_2 + 6.271\chi_3$
$g_{2,5}$	$-z_5(-0.03z_5 + 0.003(0.772z_5(z_5 - 0.466)^2 - z_5 + 0.596)^2 + 0.009) - 0.002$		
$g_{1,6}$	0	z_6	$1.503\chi_2$
$g_{2,6}$	$z_6(0.003z_6^2 + 0.009z_6 - 0.043) + 0.016$		
$g_{1,7}$	$z_7(z_7^{10}(z_7 + 0.917)^2 - 0.014) + 0.079z_7 - 0.087) - 0.029$	z_7	$-119.681\chi_1 + 0.531\chi_2 - 5.929\chi_3$
$g_{2,7}$	$-0.004z_7^3 + 0.009z_7^2 + 0.024z_7 + 0.007$		
$g_{1,8}$	$0.003 - 0.009z_8$	z_8	$-27.984\chi_1 - 0.769\chi_2 + 6.628\chi_3$
$g_{2,8}$	0		

521
 522 recommend the PNAM, because of its modularity, as a backbone in graph neural networks or trans-
 523 formers, which may allow us to prune the vast number of parameters of these models and accelerate
 524 inference during test time.

526 REFERENCES

527
 528 R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, R. Caruana, and G. E. Hinton. Neural
 529 additive models: Interpretable machine learning with neural nets. *Advances in Neural Information
 530 Processing Systems*, 34(359):4699–4711, 2021.

531
 532 B. Bahmani, H. S. Suh, and W.C. Sun. Discovering interpretable elastoplasticity models via the neu-
 533 ral polynomial method enabled symbolic regressions. *Computer Methods in Applied Mechanics
 534 and Engineering*, 422:116827, 2024.

535
 536 J.-H. Bastek, W.C. Sun, and D. M. Kochmann. Physics-informed diffusion models. *arXiv preprint
 537 arXiv:2403.14404*, 2024.

538
 539 S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
 540 identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*,
 113(15):3932–3937, 2016.

540 H. Cheng, M. Zhang, and J. Q. Shi. A survey on deep neural network pruning: Taxonomy, com-
 541 parison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis and Machine*
 542 *Intelligence*, 46(12):10558–10578, 2024.

543

544 G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and S. Zafeiriou. Deep polyno-
 545 mial neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(8):
 546 4021–4034, 2022.

547 J. D. Clayton, J. Knap, and R. B. Leavy. On rate dependence and anisotropy in phase field modeling
 548 of polycrystalline fracture. *Mechanics of Materials*, 180:104606, 2023.

549

550 N. E. Cotter. The Stone–Weierstrass theorem and its application to neural networks. *IEEE Transac-*
 551 *tions on Neural Networks*, 1(4):290–295, 1990.

552 M. Cranmer. Interpretable machine learning for science with PySR and SymbolicRegression.jl.
 553 *arXiv preprint arXiv:2305.01582*, 2023.

554

555 M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho. Discov-
 556 ering symbolic models from deep learning with inductive biases. *Advances in Neural Information*
 557 *Processing Systems*, 33(1462):17429–17442, 2020.

558 W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu. Sobolev training for
 559 neural networks. *Advances in Neural Information Processing Systems*, 30:4281–4290, 2017.

560

561 A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn, P. Battaglia,
 562 C. Blundell, A. Juhász, et al. Advancing mathematics by guiding human intuition with AI. *Nature*,
 563 600:70–74, 2021.

564

565 A. Davies, A. Juhász, M. Lackenby, and N. Tomašev. The signature and cusp geometry of hyperbolic
 566 knots. *Geometry & Topology*, 28(5):2313–2343, 2024.

567

568 S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
 569 approximation in reinforcement learning. *Neural Networks*, 107:3–11, 2018.

570

571 G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang. DepGraph: Towards any structural pruning.
 572 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 16091–16101, 2023.

573

574 M. E. Gurtin. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce
 575 balance. *Physica D: Nonlinear Phenomena*, 92(3-4):178–192, 1996.

576

577 T. Hastie and R. Tibshirani. Generalized additive models. *Statistical Science*, 1(3):297–310, 1986.

578

579 D. Hendrycks and K. Gimpel. Gaussian error linear units (GELUs). *arXiv preprint*
 580 *arXiv:1606.08415*, 2016.

581

582 J. H. Holland. *Adaptation in Natural and Artificial Systems: An Introductory Analysis with Appli-*
 583 *cations to Biology, Control, and Artificial Intelligence*. MIT Press, Cambridge, 1992.

584

585 K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
 586 mators. *Neural Networks*, 2(5):359–366, 1989.

587

588 D. Q. Huynh. Metrics for 3D rotations: Comparison and analysis. *Journal of Mathematical Imaging*
 589 *and Vision*, 35:155–164, 2009.

590

591 D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 592 *arXiv:1412.6980*, 2014.

593

J. R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4:87–112, 1994.

A. Krogh and J. Hertz. A simple weight decay can improve generalization. *Advances in Neural*
Information Processing Systems, 4:950–957, 1991.

594 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 595 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 596

597 M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a non-
 598 polynomial activation function can approximate any function. *Neural Networks*, 6(6):861–867,
 599 1993.

600 Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou, and M. Tegmark. KAN:
 601 Kolmogorov–Arnold networks. *arXiv preprint arXiv:2404.19756*, 2024.
 602

603 Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from
 604 the width. *Advances in Neural Information Processing Systems*, 30:6232–6240, 2017.
 605

606 N. Macon and A. Spitzbart. Inverses of Vandermonde matrices. *The American Mathematical
 607 Monthly*, 65(2):95–100, 1958.

608 N. Mallinar, J. Simon, A. Abedsoltan, P. Pandit, M. Belkin, and P. Nakkiran. Benign, tempered, or
 609 catastrophic: A taxonomy of overfitting. *Advances in Neural Information Processing Systems*, 35
 610 (87):1182–1195, 2022.
 611

612 C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of
 613 fracture: Variational principles and multi-field FE implementations. *International Journal for
 614 Numerical Methods in Engineering*, 83(10):1273–1311, 2010.

615 C. Molnar. *Interpretable Machine Learning: A Guide for Making Black Box Models Explainable*.
 616 Leanpub, 2019.
 617

618 W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Definitions, methods, and applica-
 619 tions in interpretable machine learning. *Proceedings of the National Academy of Sciences*, 116
 620 (44):22071–22080, 2019.
 621

622 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
 623 L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. *Advances
 624 in Neural Information Processing Systems*, 32(721):8026–8037, 2019.

625 B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. Deep
 626 symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
 627 gradients. *arXiv preprint arXiv:1912.04871*, 2019.
 628

629 N. N. Phan, W.C. Sun, and J. D. Clayton. HYDRA: Symbolic feature engineering of overparam-
 630 eterized Eulerian hyperelasticity models for fast inference time. *Computer Methods in Applied
 631 Mechanics and Engineering*, 437:117792, 2025.

632 F. Radenovic, A. Dubey, and D. Mahajan. Neural basis models for interpretability. *Advances in
 633 Neural Information Processing Systems*, 35(612):8414–8426, 2022.
 634

635 M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
 636 ing framework for solving forward and inverse problems involving nonlinear partial differential
 637 equations. *Journal of Computational Physics*, 378:686–707, 2019.
 638

639 C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning:
 640 Fundamental principles and 10 grand challenges. *Statistic Surveys*, 16:1–85, 2022.

641 M. H. Stone. Applications of the theory of Boolean rings to general topology. *Transactions of the
 642 American Mathematical Society*, 41(3):375–481, 1937.
 643

644 M. H. Stone. The generalized Weierstrass approximation theorem. *Mathematics Magazine*, 21(4):
 645 167–184, 1948.
 646

647 M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In *International
 648 Conference on Machine Learning*, volume 70, pp. 3319–3328. PMLR, 2017.

648 M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthy,
 649 J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low
 650 dimensional domains. *Advances in Neural Information Processing Systems*, 33(632):7537–7547,
 651 2020.

652 R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
 653 Society Series B: Statistical Methodology*, 58(1):267–288, 1996.

654 L. R. Turner. Inverse of the Vandermonde matrix with applications. Technical report, NASA Lewis
 655 Research Center, Cleveland, OH (United States), 1966.

656 S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression.
 657 *Science Advances*, 6(16):eaay2631, 2020.

658 M. Virgolin and S. P. Pissis. Symbolic regression is NP-hard. *arXiv preprint arXiv:2207.01018*,
 659 2022.

660 S. Xu, Z. Bu, P. Chaudhari, and I. J. Barnett. Sparse neural additive model: Interpretable deep
 661 learning with feature selection via group sparsity. In *Joint European Conference on Machine
 662 Learning and Knowledge Discovery in Databases*, volume 3, pp. 343–359. Springer, 2023.

663

664 A APPENDIX

665 A.1 POLYNOMIAL REPRODUCING

666 Here, we prove the polynomial reproducing property, namely, any multi-variable polynomial \mathcal{F}
 667 of $\chi \in \mathbb{R}^N$ can be reproduced by a linear combination of $\{g_i\}$, where $g_i(z_i)$ is a single-variable
 668 polynomial of $z_i = \sum_{j=1}^N T_{ij}\chi_j$, for each $i = 1, 2, \dots, M$. The main proof can be established
 669 for arbitrary dimensions with mathematical induction. The base case for this proof by induction is
 670 conducted in two dimensions.

671 First, we present a lemma that verifies the reproducing property for a special case in two dimensions,
 672 which can be used to prove the general case.

673 **Lemma A.1.** *For any monomial $\chi_1^p\chi_2^q$, there exists a linear transformation $\mathbf{T}: \mathbb{R}^N \rightarrow \mathbb{R}^M$, where
 674 $N = 2$ and $M = p + q + 1$, with $T_{i1} = 1$ and $T_{i2} = c_i$, and a set of coefficients $\{\zeta_i\}$ such that*

$$675 \chi_1^p\chi_2^q = \sum_{i=1}^M \zeta_i \left(\sum_{j=1}^N T_{ij}\chi_j \right)^{M-1} = \sum_{i=1}^M \zeta_i (\chi_1 + c_i\chi_2)^{p+q}. \quad (\text{A.1})$$

676 *Proof.* Let us expand each term of the summation on the right-hand side of Eq. A.1 and collect
 677 terms with the same polynomial orders. We get the following equivalent form:

$$678 \chi_1^p\chi_2^q = \sum_{i=1}^M \zeta_i (\chi_1 + c_i\chi_2)^{p+q} \\ 679 = \sum_{m=0}^{p+q} \sum_{i=1}^M c_i^{p+q-m} \zeta_i \binom{p+q}{m} \chi_1^m \chi_2^{p+q-m}.$$

680 Comparing the coefficients of the polynomials on both sides, for any choice of $\{c_i\}$, we end up with
 681 an $M \times M$ system of linear equations for $\{\zeta_i\}$ as follows:

$$682 \begin{bmatrix} c_1^{p+q} & c_2^{p+q} & c_3^{p+q} & \dots & c_M^{p+q} \\ c_1^{p+q-1} & c_2^{p+q-1} & c_3^{p+q-1} & \dots & c_M^{p+q-1} \\ c_1^{p+q-2} & c_2^{p+q-2} & c_3^{p+q-2} & \dots & c_M^{p+q-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \\ \vdots \\ \zeta_M \end{bmatrix} = \delta_{mp} \begin{bmatrix} \frac{1}{p+q} \\ \frac{1}{p+q} \\ \left(\frac{p+q}{2}\right)^{-1} \\ \vdots \\ 1 \end{bmatrix},$$

702 where δ_{mp} is the Kronecker delta. Each equation of the linear system can be written compactly as
 703

$$704 \quad \sum_{i=1}^M c_i^{p+q-m} \zeta_i = \delta_{mp} \left(\begin{array}{c} p+q \\ m \end{array} \right)^{-1}, \quad m = 0, 1, \dots, p+q.$$

707 To show that we can find $\{c_i, \zeta_i\}$ satisfying the system, we note that the coefficient matrix forms
 708 a so-called Vandermonde matrix (Macon & Spitzbart, 1958; Turner, 1966), which is invertible as
 709 long as $\{c_i\}$ is taken to be any set of mutually different constants, that is, $c_i \neq c_j$ for $i \neq j$. This
 710 completes the proof. \square

711 Even for this simple case, we may observe the nonuniqueness in the construction of the linear
 712 transformation. Therefore, it is reasonable to expect that, for specific application problems involving
 713 machine learning, one may optimize the transformation to achieve effective representations in a
 714 possibly low-dimensional feature space. We give some illustrations in the following example.

715 **Example A.1.** *We present some instances where the actual value of M could be smaller than $p + q + 1$. In fact, for $p = q = 1$, we have*

$$718 \quad \chi_1 \chi_2 = \left(\chi_1 + \frac{1}{4} \chi_2 \right)^2 - \left(\chi_1 - \frac{1}{4} \chi_2 \right)^2,$$

720 corresponding to $M = 2$. For the trivial case of $p = 0$ or $q = 0$, we may simply use the identity
 721 transformation with $M = N = 1$. There are also examples that have a smaller value of M than
 722 the input dimension $N = 2$, such as $\chi_1^2 + 2\chi_1\chi_2 + \chi_2^2 = z_1^2$, where $z_1 = \chi_1 + \chi_2$, for which
 723 $M = 1 < 2 = N$. This again illustrates the effect of possible dimensionality reduction via a
 724 suitable transformation.

725 Next, we consider the extension of Lemma A.1. Since a product of polynomials of single variables
 726 $f_1(\chi_1)$ and $f_2(\chi_2)$ can be written as linear combinations of monomials $\{\chi_1^p \chi_2^q\}$, Lemma A.1 can be
 727 easily extended to a slightly more general form.

729 **Lemma A.2.** *For any polynomial of $(\chi_1, \chi_2) \in \mathbb{R}^2$ having the product form $f_1(\chi_1)f_2(\chi_2)$, there
 730 exists a linear transformation $\mathbf{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^M$, where $M = \deg(f_1) + \deg(f_2) + 1$, and a set of
 731 single-variable polynomials $\{g_i: \mathbb{R} \rightarrow \mathbb{R}\}_{i=1}^M$ such that*

$$732 \quad f_1(\chi_1)f_2(\chi_2) = \sum_{i=1}^M g_i(T_{i1}\chi_1 + T_{i2}\chi_2), \quad (\text{A.2})$$

735 where $\{\deg(f_i)\}_{i=1}^2$ denote the degrees of the single-variable polynomials f_1 and f_2 , the highest
 736 exponents of the variables χ_1 and χ_2 in f_1 and f_2 , respectively, with nonzero coefficients.

738 *Proof.* Let us express the two single-variable polynomials as

$$740 \quad f_1(\chi_1) = \sum_p a_p \chi_1^p, \quad f_2(\chi_2) = \sum_q b_q \chi_2^q.$$

742 Expanding the product on the left-hand side of Eq. A.2 and applying Lemma A.1 to each term in the
 743 product, we get

$$745 \quad f_1(\chi_1)f_2(\chi_2) = \sum_{p=0}^{\deg(f_1)} \sum_{q=0}^{\deg(f_2)} a_p b_q \sum_{i=1}^{p+q+1} \zeta_{pqi} (\chi_1 + c_{pqi} \chi_2)^{p+q},$$

748 where subscripts p and q are introduced for $\{c_i, \zeta_i\}$ to elucidate that a different transformation \mathbf{T} of
 749 dimensions $(p+q+1) \times 2$ is employed for each monomial. However, due to the freedom of choice
 750 in the construction of each \mathbf{T} , the same \mathbf{T} of dimensions $(\deg(f_1) + \deg(f_2) + 1) \times 2$ can be used
 751 for all pairwise product terms. This choice stems from the fact that the innermost summation has
 752 a final upper limit of $M = \deg(f_1) + \deg(f_2) + 1$. Replacing $p+q+1$ and c_{pqi} with M and c_i ,
 753 respectively, we can move this summation to the outside:

$$754 \quad f_1(\chi_1)f_2(\chi_2) = \sum_{i=1}^M \sum_{p=0}^{\deg(f_1)} \sum_{q=0}^{\deg(f_2)} a_p b_q \zeta_{pqi} (\chi_1 + c_i \chi_2)^{p+q},$$

756 resulting in Eq. A.2, where
 757

$$758 \quad g_i(T_{i1}\chi_1 + T_{i2}\chi_2) = \sum_p \sum_q a_p b_q \zeta_{pqi} (\chi_1 + c_i \chi_2)^{p+q}; \quad T_{i1} = 1, \quad T_{i2} = c_i.$$

□

761 Another consequence is the reproducing property for arbitrary polynomials in two dimensions.
 762

763 **Lemma A.3.** *For any polynomial $\mathcal{F} = \mathcal{F}(\chi_1, \chi_2)$ of $(\chi_1, \chi_2) \in \mathbb{R}^2$, there exists a linear trans-
 764 formation $\mathbf{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^M$, where $M = \deg(\mathcal{F}) + 1$, and a set of single-variable polynomials $\{g_i: \mathbb{R} \rightarrow \mathbb{R}\}_{i=1}^M$ such that*

$$766 \quad \mathcal{F}(\chi_1, \chi_2) = \sum_{i=1}^M g_i(T_{i1}\chi_1 + T_{i2}\chi_2). \quad (\text{A.3})$$

□

769 *Proof.* Note that $\deg(\mathcal{F})$ refers to the degree of the multi-variable polynomial, given by the highest
 770 degree of the monomials $\{\chi_1^p \chi_2^q\}$ in \mathcal{F} . Lemma A.3 can be proved by expanding $\mathcal{F}(\chi_1, \chi_2)$, which
 771 produces the same set of monomials as the product of $f_1(\chi_1)$ and $f_2(\chi_2)$ in Lemma A.2, where
 772 $\deg(\mathcal{F}) = \deg(f_1) + \deg(f_2)$. This realization concludes the proof. □

774 Finally, we employ mathematical induction to extend the result to any input dimension.

775 **Theorem A.1.** *For any polynomial $\mathcal{F} = \mathcal{F}(\chi) = \mathcal{F}(\chi_1, \dots, \chi_N)$ of $\chi \in \mathbb{R}^N$, there exists a linear
 776 transformation $\mathbf{T}: \mathbb{R}^N \rightarrow \mathbb{R}^M$, for some M that could be chosen to depend only on $\deg(\mathcal{F})$ and N
 777 (e.g., $M = \deg(\mathcal{F}) + N - 1$), and a set of single-variable polynomials $\{g_i: \mathbb{R} \rightarrow \mathbb{R}\}_{i=1}^M$ such that*

$$778 \quad \mathcal{F}(\chi_1, \dots, \chi_N) = \sum_{i=1}^M g_i \left(\sum_{j=1}^N T_{ij} \chi_j \right). \quad (\text{A.4})$$

782 *Proof.* Once we have shown that Theorem A.1 holds for a particular input dimension (e.g., $N = 2$),
 783 by leveraging the inductive hypothesis to show that it also holds for $N + 1$, the theorem must hold
 784 for all subsequent N , in accordance with the principle of mathematical induction. For $N = 2$, the
 785 polynomial reproducing property has been proved in Lemma A.3.

786 Assume that Theorem A.1 holds for an arbitrary input dimension N . We then consider a polynomial
 787 $\mathcal{F} = \mathcal{F}(\chi_1, \dots, \chi_N, \chi_{N+1})$. It can be written as

$$789 \quad \mathcal{F}(\chi_1, \dots, \chi_N, \chi_{N+1}) = \sum_{p=0}^P \mathcal{F}_p(\chi_1, \dots, \chi_N) \chi_{N+1}^p,$$

792 for some polynomials $\{\mathcal{F}_p\}_{p=0}^P$. By the inductive hypothesis, we have a linear transformation $\mathbf{T}_{\mathfrak{N}}:$
 793 $\mathbb{R}^N \rightarrow \mathbb{R}^{M_{\mathfrak{N}}}$ and a set of polynomials $\{\tilde{g}_{pi}\}_{i=1}^{M_{\mathfrak{N}}} \}_{p=0}^P$ such that

$$794 \quad \mathcal{F}_p(\chi_1, \dots, \chi_N) = \sum_{i=1}^{M_{\mathfrak{N}}} \tilde{g}_{pi}(z_{\mathfrak{N},i}), \quad z_{\mathfrak{N},i} = \sum_{j=1}^N T_{\mathfrak{N},ij} \chi_j. \quad (\text{A.5})$$

797 As a result,

$$798 \quad \mathcal{F}(\chi_1, \dots, \chi_N, \chi_{N+1}) = \sum_{p=0}^P \sum_{i=1}^{M_{\mathfrak{N}}} \tilde{g}_{pi}(z_{\mathfrak{N},i}) \chi_{N+1}^p.$$

801 By Lemma A.2, for each product term $\tilde{g}_{pi}(z_{\mathfrak{N},i}) \chi_{N+1}^p$ in the summation, there exists a linear trans-
 802 formation $\tilde{\mathbf{T}}_{\mathfrak{N}}$ that maps any pair $(z_{\mathfrak{N},i}, \chi_{N+1})$ to $\mathbb{R}^{M_{\mathfrak{N}+1}}$ such that, for each choice of the indices p
 803 and i , the product $\tilde{g}_{pi}(z_{\mathfrak{N},i}) \chi_{N+1}^p$ is a sum of single-variable polynomials in the transformed space
 804 $\mathbb{R}^{M_{\mathfrak{N}+1}}$, where

$$805 \quad M_{\mathfrak{N}} + P = M_{\mathfrak{N}+1} = \deg(\mathcal{F}) + N.$$

806 Composing $\mathbf{T}_{\mathfrak{N}}$ together with all $\tilde{\mathbf{T}}_{\mathfrak{N}}$, we get a linear transformation $\mathbf{T}_{\mathfrak{N}+1}$ from \mathbb{R}^{N+1} to $\mathbb{R}^{M_{\mathfrak{N}+1}}$
 807 such that $\mathcal{F}(\chi_1, \dots, \chi_N, \chi_{N+1})$ is a linear combination of polynomials $\{g_i\}_{i=1}^{M_{\mathfrak{N}+1}}$ of single vari-
 808 ables $z \in \mathbb{R}^{M_{\mathfrak{N}+1}}$. Thus, Theorem A.1 holds for input dimension $N + 1$. This completes the
 809 induction process and the proof. □

810 As noted in Example A.1, due to the nonuniqueness of the transformation, it is possible to achieve
 811 more effective and potentially low-dimensional representations through learning and optimization.
 812

813 A.2 ADDITIONAL RESULTS FOR KNOT THEORY: CLASSIFICATION

815 Figure A.1 shows a complete ranking of the inputs and the associated test accuracy of using the top
 816 n inputs from one of the runs summarized in Table 2.

830 Figure A.1: One complete instance of the ranking and accuracy reported in Table 2. (a) Relative
 831 importance of the input features based on their mean absolute coefficients, and (b) test accuracy
 832 associated with using the top n features in (a).

833 A.3 ADDITIONAL RESULTS FOR KNOT THEORY: REGRESSION

836 Table A.1 compares the performance of the NAM with 17 bases against that of the PNAM with eight
 837 bases, both of which can be converted into symbolic equations after training. Considering the poor
 838 performance of the NAM, we proceed with just the PNAM. Similar to Table 2, Table A.2 suggests
 839 that the meridional translation (real part) and longitudinal translation are the most and second most
 840 important invariants, respectively. Nevertheless, solely comparing the mean absolute coefficients
 841 may not be sufficient, as unimportant features could be incorrectly ranked as important. We can,
 842 however, eliminate these features by examining the accuracy associated with including them, since
 843 including an unimportant feature does not improve accuracy compared to the corresponding case
 844 with one less input.

846 Table A.1: Performance of different neural network architectures for the single-output regression
 847 problem of predicting the signature of mathematical knots. The mean and standard deviation of the
 848 test accuracy are computed from 10 runs.

Method	Architecture	Parameter count	Test acc.
MLP	3 layers: [17, 64, 32, 1]	1.2×10^4	$94.7 \pm 0.2\%$
NAM	3 layers: $17 \times [1, 64, 32, 1]$	2.1×10^5	$65.0 \pm 0.2\%$
PNAM	3 layers: $8 \times [1, 64, 32, 1]$	9.8×10^4	$85.5 \pm 0.3\%$

854 Figure A.2 shows a complete ranking of the inputs and the associated test accuracy of using the top n
 855 inputs from one of the runs summarized in Table A.2. The ranking in Fig. A.2(d) is determined from
 856 the mean absolute coefficients of the linear transformation \mathbf{T} in Fig. A.2(b). This linear transformation
 857 (i) consists mainly of diagonal elements due to the constraint ℓ_3 in Eq. 12 and (ii) is sparse due
 858 to the constraint ℓ_4 in Eq. 13. The transformation \mathbf{T} with $n = 3$ in Fig. A.2(c) and the scaling coeffi-
 859 cients ζ of just two nonzero bases in Fig. A.2(a) are then leveraged to construct expressions H and
 860 I in Table 3. Despite evolving each basis for only one minute using a few basic operators, Fig. A.3
 861 demonstrates that SR can consistently approximate the single-variable bases because of their simple
 862 1D nature. Expressions H and I achieve test accuracy of 81.2 and 81.4%, respectively, comparable
 863 to the test accuracy of 81.3% in Fig. A.2(e) for $n = 3$ inputs. Moreover, Table A.3 reveals that both
 864 expressions are more than two times faster for inference than a fully connected MLP.

864

865
866
867
Table A.2: Ranking of important input features based on their mean absolute coefficients for the
PNAM in Table A.1. The mean and standard deviation of the test accuracy associated with using
only the top n features are computed from their frequency across 10 runs.

868

Rank	Input	Symbol	Frequency	Test acc.
1	Re(meridional translation)	χ_{10}	10/10	55.7 \pm 1.2%
2	Longitudinal translation	χ_8	6/10	74.8 \pm 1.4%
	Torsion degree	χ_2	4/10	54.9 \pm 0.5%
	Torsion degree	χ_2	3/10	76.4 \pm 0.4%
	Re(short geodesic)	χ_3	3/10	61.8 \pm 7.3%
3	Longitudinal translation	χ_8	2/10	76.5 \pm 0.2%
	Cusp volume	χ_7	1/10	81.3%
	Im(short geodesic)	χ_4	1/10	74.3%

877

878

879

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909
910
911
912
913
914
915
916
917
Figure A.2: One complete instance of the ranking and accuracy reported in Table A.2, along with
optimized parameters of the PNAM. (a) Scaling coefficients ζ prior to post-processing, (b) linear
transformation T prior to post-processing, (c) T with $n = 3$ and rows corresponding to columns of
 ζ in (a) having a value of zero set to zero, (d) relative importance of the input features based on their
mean absolute coefficients of T in (b), and (e) test accuracy associated with using the top n features
in (d).

Recall that the above results correspond to weighting coefficients $w_1 = w_2 = w_3 = w_4 = w_5 = 0.001$, chosen to balance the trade-off between accuracy and sparsity. While increasing the weighting coefficients can make the PNAM sparser, Fig. A.4 indicates that overprioritizing sparsity can lead to less stable training, resulting in poorer performance. Specifically, setting $w_1 = w_2 = w_3 = w_4 = w_5 = 0.01$ results in such a sparse T (see the small coefficient values in Fig. A.5(c)) that the accuracy in Fig. A.5(d) is poor regardless of n . On the other hand, Fig. A.5(b) suggests that setting $w_1 = w_2 = w_3 = w_4 = w_5 = 0$, thereby deactivating the regularization constraints, improves (reduces) the accuracy for large (small) n due to the extensive number of coefficients with large values (the erroneous ranking of the input features) in Fig. A.5(a). Although the exact ranking may not be correct, this model can still narrow down a set of variables (e.g., $n = 6$) that is relevant for predictive accuracy while remaining competitive with the MLP in Table A.1.

Figure A.3: Reproducibility of SR for learning 1D functions. Both sets of bases (PNAM) are from the run in Fig. A.2, with (a) the two bases (SR) comprising expression H and (b) the two bases (SR) comprising expression I in Table 3. The neural network parameterization of the PNAM, expression H, and expression I all use $n = 3$ features and achieve test accuracy of about 81%.

Table A.3: Training and inference times of the neural networks in Table A.1, along with inference times of expressions G to I in Table 3. Each basis comprising expressions G to I is evolved for one minute. Training times are obtained from an NVIDIA A100-SXM4-40GB GPU, while inference times are obtained from an Apple M1 CPU with 8GB of memory. The test accuracy is repeated to aid comparison.

Method	Training time (s/epoch)	Inference time (ns/sample)	Test acc.
MLP	2.1	290	$94.7 \pm 0.2\%$
NAM	14	4300	$65.0 \pm 0.2\%$
PNAM	8.9	2100	$85.5 \pm 0.3\%$
Expression G	—	78	75.9%
Expression H	—	130	81.2%
Expression I	—	120	81.4%

A.4 ADDITIONAL RESULTS FOR PHASE FIELD THEORY

In Table A.4, we provide training and inference times of the neural networks in Table 4, in addition to the inference time of the symbolic form in Table 5. As expected, training and inference times of the PNAM increase with the projection dimension M . However, similar to Table A.3, converting the PNAM into a compact expression yields faster inference. Since the evaluations of its 1D bases are independent of each other, we plan to parallelize their evaluations in the future to further accelerate training and inference. On the other hand, Fig. A.6 reveals that increasing M improves performance, which may lead to overfitting after saturation. For the most accurate PNAM, we plot and compare its MLP bases with their symbolic approximations (the polynomials $\{g_{ij}\}$ in Table 5), along with their derivatives, in Figs. A.7 and A.8. Test predictions of the average strain energy, phase energy, and axial stress for the linear combinations of the symbolic bases are shown in Fig. A.9.

A.5 HIGH-DIMENSIONAL IMAGE CLASSIFICATION WITH THE MNIST DATA SET

To demonstrate that the PNAM can efficiently handle high-dimensional problems with numerous inputs, we evaluate its performance on the MNIST data set (LeCun et al., 1998), highlighting its di-

1026

1027 Table A.4: Training and inference times of the neural networks in Table 4, along with the inference
 1028 time of the combined expression (i.e., the sum of the linear combinations of $\{g_{1j}\}$ and $\{g_{2j}\}$) in
 1029 Table 5. Each nonzero basis g_{ij} is evolved for one minute. Training times are obtained from an
 1030 NVIDIA A100-SXM4-40GB GPU, while inference times are obtained from an Apple M1 CPU
 1031 with 8GB of memory. The test MSE is repeated to aid comparison.

1032

Method	Training time (s/epoch)	Inference time (μs/sample)	Test MSE
MLP	1.1	27	$(7.05 \pm 2.02) \times 10^{-5}$
NAM	3.0	61	$(1.12 \pm 0.62) \times 10^{-4}$
PNAM ($M = 3$)	3.2	58	$(3.31 \pm 2.11) \times 10^{-4}$
PNAM ($M = 8$)	6.8	150	$(1.34 \pm 0.91) \times 10^{-4}$
PNAM ($M = 16$)	13	320	$(8.01 \pm 3.76) \times 10^{-5}$
PNAM ($M = 32$)	26	610	$(6.47 \pm 2.71) \times 10^{-5}$
Expression (Table 5)	—	17	2.25×10^{-5}

1040

1041

1054

1055

Figure A.6: Effects of the projection dimension M on the convergence of the PNAM for the phase
 field data set. Total loss corresponds to the loss function in Eq. 10. Each basis of the four PNAMs is
 an MLP with three hidden layers of 256 neurons; all models are trained using weighting coefficients
 $w_1 = w_2 = w_3 = w_4 = w_5 = 0.001$.

1056

1057

1058

1059

1060

1061

dimensionality reduction capability and providing visual insight into its input pruning mechanism. The
 MNIST data set contains 70,000 images of handwritten digits from 0 to 9, each of size 28×28 pixels,
 partitioned into 60,000 images for training/validation and 10,000 images for testing. Each image
 is reshaped into a 784-dimensional feature vector and normalized, resulting in a high-dimensional
 classification task where the model must map dense feature vectors to their corresponding digit la-
 bels. This experiment illustrates the ability of the PNAM to preserve interpretability while achieving
 strong predictive accuracy by identifying and utilizing only the most informative inputs, effectively
 pruning irrelevant features.

1062

1063

1064

1065

1066

1067

1068

In Table A.5, we compare PNAMs against a standard NAM and conventional MLPs, all of which
 are trained for up to 1000 epochs with an early stopping patience of 50 epochs. First, the linear
 transformation T allows us to project the original 784-dimensional vector into a lower-dimensional
 feature space of size M . Even with a small $M = 8$, the resulting PNAM outperforms the standard
 NAM, despite the latter requiring one basis per input and having nearly 100 times more parameters.
 Second, increasing M enhances the expressivity of the PNAM, allowing it to fit the training data
 perfectly (see Fig. A.10) and achieve a test accuracy of 98.1% for $M = 64$. Third, although PNAMs
 perform similarly to MLPs, suggesting comparable expressive power in practice, they retain the key
 advantage of interpretability. Unlike black-box MLPs, PNAMs offer insight into which variables
 are crucial for predictive accuracy, enabling model transparency and post hoc analysis.

1079

Figure A.11 illustrates that the PNAM produces a consistent ranking of the feature importance across
 different values of M , demonstrating robustness in its learned feature sensitivity. This consistency

Figure A.7: Bases $\{g_{1j}\}$ and their derivatives. The expressions of $\{g_{1j}\}$ are presented in Table 5.

Table A.5: Performance of different neural network architectures for the multi-label classification problem of predicting handwritten digits from the MNIST data set. Training and validation histories of the accuracy for the PNAMs are provided in Fig. A.10.

Method	Architecture	Parameter count	Training acc.	Test acc.
MLP	3 layers: [784, 64, 32, 10]	1.2×10^4	99.9%	96.1%
MLP	3 layers: [784, 128, 64, 10]	4.9×10^4	99.9%	96.3%
MLP	4 layers: [784, 128, 64, 32, 10]	6.6×10^4	99.9%	96.7%
MLP	4 layers: [784, 256, 128, 64, 10]	2.6×10^5	99.9%	97.1%
NAM	3 layers: $784 \times [1, 64, 32, 10]$	9.6×10^6	95.0%	93.0%
PNAM	3 layers: $8 \times [1, 64, 32, 10]$	1.0×10^5	96.0%	94.7%
PNAM	3 layers: $16 \times [1, 64, 32, 10]$	2.1×10^5	98.5%	96.7%
PNAM	3 layers: $32 \times [1, 64, 32, 10]$	4.2×10^5	100%	97.5%
PNAM	3 layers: $64 \times [1, 64, 32, 10]$	8.4×10^5	100%	98.1%

supports effective pruning of nonessential inputs with minimal impact on accuracy. Specifically, for the PNAM with $M = 64$, we remove the least important pixels and visualize two progressively smaller subsets in Fig. A.12. Keeping only the top 400 and 200 relevant pixels, this model still achieves test accuracy of 98.0 and 94.0%, respectively. Visual inspection of the remaining pixels reveals that they occupy semantically meaningful regions, allowing human observers to easily identify the underlying digit classes. Further insight is provided by Fig. A.13, which shows that the majority of predictive information is concentrated in a small number of dominant singular values, enabling both dimensionality reduction and feature pruning.

Finally, we examine the impact of weighting coefficients w_1, w_2, \dots, w_5 on the performance of the PNAM. Similar to the trend observed in Fig. A.4, Fig. A.14 indicates that increasing the weighting coefficients leads to less stable training as the optimization objectives shift from prioritizing predictive accuracy to enforcing sparsity. Nevertheless, as shown in Table A.6, these weighting co-

Figure A.8: Bases $\{g_{2j}\}$ and their derivatives. The expressions of $\{g_{2j}\}$ are presented in Table 5.

Figure A.9: Test predictions for the linear combinations of the polynomials $\{g_{ij}\}$ in Table 5. (a) Linear combination of $\{g_{1j}\}$, (b) linear combination of $\{g_{2j}\}$, and (c) derivative of the sum of the linear combinations of $\{g_{1j}\}$ and $\{g_{2j}\}$ with respect to the strain.

efficients can be tuned to obtain a desired trade-off between accuracy and sparsity, tailored to the specific needs of the users.

1233
1234
1235
1236

Table A.6: Trade-off between accuracy and sparsity due to weighting coefficients $w_1 = w_2 = w_3 = w_4 = w_5 = \text{a constant}$ for the PNAMs in Fig. A.14. An element $T_{jk} < 10^{-4}$ is considered zero, since setting such an element to zero has little to no effect on the test accuracy.

1237

Weighting coefficients	Training acc.	Test acc.	Percent of zero T_{jk}
0.001	95.6%	94.3%	14.1%
0.01	96.0%	94.7%	32.8%
0.1	95.7%	94.7%	68.9%
1	90.9%	91.3%	76.5%

1238
1239
1240
1241

Figure A.13: Singular values of the linear transformation \mathbf{T} for the PNAMs in Table A.5. The linear decay and sudden drop in magnitude of the singular values on a log scale suggest that we can prune coefficients in \mathbf{T} without severely degrading performance.

Figure A.14: Effects of weighting coefficients $w_1 = w_2 = w_3 = w_4 = w_5 = \text{a constant}$ on the convergence and accuracy of the PNAM for the MNIST data set. Training and validation histories of (a) the loss function in Eq. 10 and (b) accuracy. The four NAMs use the same projection dimension $M = 8$, and each basis of the PNAMs is an MLP with two hidden layers of 64 and 32 neurons.