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ABSTRACT

This article proves that any continuous multi-variable function can be approxi-
mated arbitrarily close by a linear combination of single-variable functions of the
inputs in a projected space. Using a set of independent neural networks to param-
eterize these feature functions of the projected inputs, we introduce their linear
combination as the projected neural additive model (PNAM): an extension of the
neural additive model (NAM) (cf. Agarwal et al. (2021)) that now enables univer-
sal approximation. While the couplings of the input variables bestow the PNAM
with the universal approximation property, they could diminish the interpretability
intrinsic to the NAM. As such, we propose regularization and post hoc techniques
to promote sparse solutions and enhance the interpretability of the PNAM. The
single-variable characteristic of the bases also allows us to convert them into sym-
bolic equations and dramatically reduces the number of required parameters. We
provide results from numerical experiments on invariants in knot theory, phase
field fracture mechanics, and the MNIST benchmark to illustrate the expressivity
and interpretability of the PNAM.1

1 INTRODUCTION

While deep neural networks have become popular for a multitude of tasks due to their expressivity,
they come at the cost of interpretability (Murdoch et al., 2019). Of the myriad methods introduced to
address this issue, Agarwal et al. (2021) propose an alternative architecture, coined the neural addi-
tive model (NAM), by altering the connectivity of the network such that it becomes a linear combi-
nation of single-variable functions of the input variables, parameterized by independent multi-layer
perceptrons (MLPs). Although the values of these functions can provide a degree of interpretability,
the linear nature of the NAM in turn limits its expressivity. As a result, Phan et al. (2025) propose the
use of a learnable linear transformation before passing the inputs to the NAM (see Fig. 1), which we
refer to as the projected neural additive model (PNAM), to enhance the expressivity of the model.

Contribution. In this work, we prove that the PNAM is a universal approximator, elucidating its
ability to approximate any continuous function on a closed and bounded domain. In particular, we
first prove the polynomial reproducing property of the PNAM for an arbitrary number of variables
and orders using mathematical induction; we then employ the Stone–Weierstrass theorem (Stone,
1937; 1948; Cotter, 1990) to establish its universal approximation property. The linear transfor-
mation enables the PNAM to capture complex couplings that the NAM and standard generalized
additive models (GAMs) cannot, while also reducing the number of feature functions for high-
dimensional problems with numerous inputs (Hastie & Tibshirani, 1986; Radenovic et al., 2022).

To rectify the reduction in interpretability that the linear transformation may induce, we introduce
regularization techniques that (i) permit us to rank the importance of each input feature, (ii) penalize
unnecessary couplings between the inputs, and (iii) promote sparse solutions. While the NAM pro-
vides local comprehension by highlighting how the variables affect the predictions at every point, the
PNAM offers global comprehension by identifying which variables are crucial for the overall predic-
tive accuracy (Molnar, 2019; Rudin et al., 2022). We further leverage the modularity of the PNAM
to prune nonessential parameters and provide an option to convert the single-variable bases into
symbolic equations. Applying the resultant models for multi-output predictions, we demonstrate, in

1We will open-source our code after the double-blind review process.
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three numerical experiments, the various utilities of the PNAM, which allow users to dictate their
desired degrees of accuracy and sparsity.

Linear Linear

Nonlinear

Figure 1: Architecture of the PNAM.
The output ŷ is predicted via a lin-
ear combination of single-variable func-
tions, parameterized by independent
MLPs, which further are functions of
linear combinations of the inputs χ.
The transformation T and scaling co-
efficients ζ (both denoted with dashed
lines) can be optimized to yield sparser
(and more interpretable) solutions.

Related work. The PNAM is one of many architecture-
based models introduced to enhance the interpretability of
deep neural networks without compromising their expres-
sivity. Other neural network models include, but are not
limited to, Kolmogorov–Arnold networks (KANs) (Liu
et al., 2024), deep polynomial neural networks (Chrysos
et al., 2022), and graph neural networks with inductive bi-
ases (Cranmer et al., 2020). In addition, related sparsifi-
cation, pruning, and post hoc methods include the SINDy
algorithm (Brunton et al., 2016), structural pruning (Fang
et al., 2023), and gradient-based attribution (Sundarara-
jan et al., 2017). We emphasize that although we have
equipped the PNAM with the ability to produce mathe-
matical expressions, symbolic regression (SR) is primar-
ily employed for pruning to reduce the number of pa-
rameters and to gain insight into the interactions of the
input variables. Similar to the KAN, the PNAM is not
intended for recovering physical laws with precise func-
tional forms, as its additive nature prevents the PNAM
from compactly approximating operators like division.
Moreover, the number of feature functions is potentially
large. As a result, we reserve such tasks for proven SR
algorithms using reinforcement learning (Petersen et al.,
2019), physics-inspired strategies (Udrescu & Tegmark,
2020), and genetic programming (Cranmer, 2023).

2 PROJECTED NEURAL ADDITIVE MODELS

2.1 CONSTRUCTION

Given a training data set {X ,y} = {(χj , yj)}Dj=1, where
χ = {χi}Ni=1 is an input point, withN denoting the num-
ber of independent variables, y is the corresponding scalar
output label, and D is the number of input-output pairs,
the goal of supervised learning is to construct a func-
tion F that maps every input point to output label, that
is, y = F(χ): RN → R. Here, we hypothesize that
the multi-variable function F can be approximated by a
linear combination (or weighted sum) of single-variable functions {fi}Mi=1, with M denoting the
number of feature functions, of the inputs in a projected space to produce the dependent variable:

ŷ =

M∑
i=1

ζifi

 N∑
j=1

Tijχj

+ ε =

M∑
i=1

gi(zi) + ε, (1)

where ŷ is a parameterization of y, and ε is an error term introduced to represent noise in the data.
The projected variables z in Eq. 1 result from a linear transformation T of χ, that is, z = Tχ:
RN → RM . Moreover, each single-variable function fi: R → R and its corresponding scaling
coefficient ζi are represented by the function gi: R→ R for compactness.

The feature functions {fi} in Eq. 1 can be constructed using polynomials or neural networks. Here,
we parameterize y as a linear combination of MLPs:

ŷ =

M∑
i=1

ζiMLPi

 N∑
j=1

Tijχj ;W
(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

+ ε, (2)
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where each fi is an MLP with L layers, learnable weights
{
W

(1)
i , . . . ,W

(L)
i

}
and biases{

s
(1)
i , . . . , s

(L−1)
i

}
, and element-wise activation function a:

MLPi

(
zi;W

(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

)
=

W
(L)
i a

(
W

(L−1)
i a

(
. . . a

(
W

(1)
i zi + s

(1)
i

)
. . .
)

+ s
(L−1)
i

)
.

(3)

To enable the model to learn high-frequency functions, a Fourier feature mapping (Tancik et al.,
2020; Bahmani et al., 2024) can be leveraged to map a transformed input zi to

γi(zi) = [cos(2πBizi)
T, sin(2πBizi)

T]T, (4)

where each entry inBi is sampled from a Gaussian distributionN (0, σ2) with standard deviation σ
and is fixed after initialization, before passing it to Eq. 3. Let ζ = {ζi}Mi=1; as shown in Fig. 1, the
transformation T , scaling coefficients ζ, and error term ε in Eq. 2 can be encoded as two additional
weight matrices and one bias term, respectively. A simpler version of this construction is first
proposed in Phan et al. (2025) and corresponds to the PNAM, introduced (without a formal proof of
universal approximation) to overcome the limited expressivity of the NAM (Agarwal et al., 2021).

Remark. For the PNAM, each basis gi in Eq. 1 is now a function of a transformed variable zi,
as opposed to the original input χj for the NAM and other GAMs. The linear transformation T ,
leading to universal approximation, enables the PNAM to capture interactions between the inputs,
such as χ1χ2 in Example A.1, that the NAM cannot. Nevertheless, for each data point, examining
{gi} no longer tells us how the inputs χ contribute to the prediction ŷ. Instead, we describe in
Section 2.5 how one can examine T , which is constant for all data points, to determine which inputs
are important for predictive accuracy. This and other aspects of interpretability (e.g., dimensionality
reduction and feature pruning) are entirely missing from fully connected MLPs.

2.2 UNIVERSAL APPROXIMATION

By the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990), polynomials are dense in the
space of continuous functions, i.e., they can approximate any continuous function on a closed and
bounded domain. As such, we can achieve universal approximation by reproducing polynomials.
We show in Theorem A.1 that single-variable polynomials of the inputs in a projected space can be
employed as the bases to approximate multi-variable polynomials. Instead of single-variable poly-
nomials, one may also use the sum of one-dimensional (1D) neural networks of the projected inputs
to achieve universal approximation. Since all such neural networks of single variables enjoy the uni-
versal approximation property (Hornik et al., 1989; Leshno et al., 1993; Lu et al., 2017), implying
that they can approximate polynomials, we immediately get the universal approximation property
of the resulting multi-dimensional neural network. This approximation capability is formally stated
in the following theorem.

Theorem 2.1. Let G be a set of single-variable polynomials or 1D neural networks. Given any
function F1 in the set of continuous real-valued functions C(D) for a compact domain D ⊂ RN ,
there exists a linear transformation T : RN → RM and a set of functions {gi: R → R}Mi=1 in G
such that ∣∣∣∣∣∣F1(χ)−

M∑
i=1

gi

 N∑
j=1

Tijχj

∣∣∣∣∣∣ < ε, (5)

for all χ ∈ D and any ε > 0.

Proof. By the Stone–Weierstrass theorem (Stone, 1937; 1948; Cotter, 1990), there exists a (multi-
variable) polynomial F2 such that

|F1(χ)−F2(χ)| < ε/2. (6)

3
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Then for F2, by Theorem A.1, we have

F2(χ) =

M∑
i=1

ĝi

 N∑
j=1

Tijχj

 (7)

with single-variable polynomials {ĝi}. If G is a set of polynomials, we are done. If G represents
neural networks, we know each polynomial ĝi can be further approximated by a neural network gi
due to the universal approximation theorem of neural networks (Hornik et al., 1989; Leshno et al.,
1993; Lu et al., 2017) in 1D. So, we can make∣∣∣∣∣∣F2(χ)−

M∑
i=1

gi

 N∑
j=1

Tijχj

∣∣∣∣∣∣ < ε/2. (8)

This result, together with Eqs. 6 and 7, completes the proof.

2.3 EXTENSION TO MULTIPLE OUTPUTS

Now, let y = {{yij}Dj=1}Ki=1, ζ = {{ζij}Mj=1}Ki=1, and ε = {εi}Ki=1, with K denoting the number
of dependent variables. Equation 1 can be extended to multiple outputs {ŷi} as follows:

ŷi =

M∑
j=1

ζijfij

(
N∑
k=1

Tjkχk

)
+εi =

M∑
j=1

gij(zj)+εi, i = 1, 2, . . . ,K, (no sum over i) (9)

where fij is the ith output of the jth vector-valued function (Xu et al., 2023). To show that Eq. 9 is a
natural extension of Eq. 1, consider the extreme case where the bases {gij} share no common inputs
{zj} across {ŷi}. In that case,M =

∑K
i=1mi, withmi denoting the number of dimensions required

to approximate each ŷi. Equivalently, for each index i, the number of indices j for which ζij and fij
are nonzero is mi, yielding orthogonal bases {gij}. Along the lines of the universal approximation
theorem associated with fully connected neural networks, M can be chosen to be arbitrarily large to
approximate any set of continuous functions in theory.

2.4 LEARNING PROBLEM AND CONSTRAINTS FOR SPARSITY

Let Θ = {θi}Mi=1 =
{(
W

(1)
i , . . . ,W

(L)
i , s

(1)
i , . . . , s

(L−1)
i

)}M
i=1

denote all learnable parameters
of the MLPs. We optimize the learnable parameters of the PNAM by minimizing the following loss
function (in parentheses) for D training samples:

T ∗,Θ∗, ζ∗, ε∗ = arg min
T ,Θ,ζ,ε

(
L(y, ŷ(X ;T ,Θ, ζ, ε)) + LP

+
1

D
(w1`1 + w2`2) +

1

M
(w3`3 + w4`4 + w5`5)

)
,

(10)

where

L = − 1

D

K∑
i=1

D∑
j=1

yij log
exp(ŷi(χj ;T ,Θ, ζ, ε))∑K
k=1 exp(ŷk(χj ;T ,Θ, ζ, ε))

is the cross-entropy loss for classification, or

L =
1

KD

K∑
i=1

D∑
j=1

(yij − ŷi(χj ;T ,Θ, ζ, ε))2

is the mean squared error (MSE) for regression. Moreover, LP can be employed to impose any
additional physical constraints that restrict the space of admissible solutions (Czarnecki et al., 2017;
Raissi et al., 2019; Bastek et al., 2024).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To prevent overfitting and produce interpretable solutions, we use the following two constraints:

`1 = ||Θ||2, `2 =
∣∣∣∣{{{gij(χk;T ,Θ, ζ)}Dk=1}Mj=1}Ki=1

∣∣∣∣
2
, (11)

where `1 is the usual L2 regularization of the weights and biases (Krogh & Hertz, 1991),2 and `2
discourages {gij} from taking on large values (Agarwal et al., 2021). Considering that the inputs and
outputs are often scaled to small values in machine learning problems, the inclination for {gij} to be
small could be leveraged to determine the relative importance of the inputs. As we will exemplify
later, if any element in the linear transformation T is relatively large, its corresponding input feature
is more important than the others.

To further promote sparsity, we first define the singular value decomposition of T as follows:

T = Q1ΣQ
T
2 ,

whereQ1 andQ2 are orthonormal matrices of dimensions M ×M and N ×N , respectively, and Σ
is an M ×N diagonal matrix containing the min(M,N) singular values of T . Based on the metric

Φ(R1,R2) = ||I −R1R
T
2 ||F =

√
2(3− tr(R1RT

2 )), R1,R2 ∈ SO(3),

described in Huynh (2009) for measuring the distance between two 3D rotations, we leverage

`3 = Φ(I,Q1) + Φ(I,Q2) =
√

2(M +N − (trQ1 + trQ2)) (12)

to penalize unnecessary couplings between the inputs. In addition,

`4 = ||T ||1, `5 = ||ζ||1 (13)

are employed to encourage nonessential coefficients in T and ζ to go to zero (Tibshirani, 1996; Xu
et al., 2023; Bahmani et al., 2024).

2.5 POST-PROCESSING AND SYMBOLIC REGRESSION

Upon successful training of the PNAM, post hoc analysis can be performed to further prune the
model and enhance interpretability (Murdoch et al., 2019; Cheng et al., 2024). Due to the modularity
of the PNAM, we propose three techniques to reduce the number of optimized parameters.

The first technique relies on the successful incorporation of the regularization constraint `2 in Eq. 11.
Suppose the functions {gij} are indeed small. In that case, we can examine the column-wise mean
of the absolute values of the coefficients in the linear transformation (that is, 1

M

∑M
j=1 |Tjk|), dubbed

the mean absolute coefficients, to rank the importance of each input feature. Upon which, one may
choose to keep only the top n ≤ N input features and zero out the columns of T associated with
the (N − n) less important features. The second technique entails selecting two hyperparameters
T0 and ζ0 for which entries Tjk < T0 and ζij < ζ0, for k = 1, 2, . . . , N , j = 1, 2, . . . ,M , and
i = 1, 2, . . . ,K, are set to zero.3

Finally, the third technique leverages the single-variable characteristic of the bases {gij} to convert
them into symbolic equations. Although any SR algorithm, such as DSR (Petersen et al., 2019) or
AI Feynman (Udrescu & Tegmark, 2020), may be used to accomplish this task, here, we employ
PySR (Cranmer, 2023), which utilizes genetic programming (Holland, 1992; Koza, 1994), for its
extensive developer base and ease of use. To convert the ith nonzero output of the jth MLP into
symbolic form, we employ the following loss function:

g∗ij = arg min
gij

(
1

D

D∑
k=1

(
(ζijMLPij(zj ;θj)|k − gij(zj)|k)2

+ w6

(
ζij

dMLPij(zj ;θj)

dzj

∣∣∣∣
k

− dgij(zj)

dzj

∣∣∣∣
k

)2
))

, (no sum over i and j)

(14)

2We opt for || · ||2 as opposed to || · ||22 so that the (expanded) loss terms in Eq. 10 for regularization
constraints `1, `2, . . . , `5 are similar in magnitude. Thus, weighting coefficients w1, w2, . . . , w5 can be chosen
together, thereby simplifying the space for hyperparameter search.

3Either the first, the second, or a combination of both techniques may be used. Like M , w1, w2, . . . , w5,
and any other hyperparameters, the choices of n, T0, and ζ0 depend on the users and their desired degrees of
accuracy and sparsity.
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where {gij} are mathematical expressions of single variables, and the weighting coefficient w6 may
be used to control the derivatives of the discovered functions. The sum of {gij} over j (with {εi})
then yields the outputs {ŷi} in Eq. 9. These post-processing steps can potentially reduce the tens
of thousands of parameters of the PNAM to tens or hundreds of parameters, while alleviating the
NP-hardness of multi-variable SR (Petersen et al., 2019; Virgolin & Pissis, 2022) and retaining the
accuracy of deep neural networks.

3 NUMERICAL EXPERIMENTS

In the following experiments, we illustrate the expressivity and interpretability of the PNAM, af-
forded by the linear transformation and post hoc analysis. The first experiment leverages an exten-
sive data set of mathematical knots from Davies et al. (2021) for (i) multi-label classification and (ii)
single-task regression. The second experiment employs limited data from a phase field simulation
of fracture propagation in Clayton et al. (2023) for multi-task regression, leveraging the additional
physical constraint term LP in Eq. 10 and derivative information via the weighting coefficient w6

in Eq. 14. If not specified, LP is not used and w6 is set to zero in the experiment. One auxiliary
experiment is presented in Appendix A.5, which uses the MNIST data set (LeCun et al., 1998) to
demonstrate the dimensionality reduction capability and visualize the input pruning mechanism of
the PNAM for a high-dimensional image classification problem.

For all experiments (excluding the one using the MNIST data set), we hold out 20% of the data
for testing; the remaining 80% undergo a training-validation split of 80 and 20%, respectively. The
PNAM is implemented using the PyTorch deep learning library (Paszke et al., 2019) and SiLU4

(Hendrycks & Gimpel, 2016; Elfwing et al., 2018) as the activation function a in Eq. 3. For the
projection dimensionM , we start withM = 8 or a square projection (whichever is smaller) in every
experiment and increase or decrease M as appropriate. Unless otherwise stated, we set weighting
coefficients w1 = w2 = w3 = w4 = w5 = 0.01 for all classification tasks and w1 = w2 = w3 =
w4 = w5 = 0.001 for all regression tasks.5 We use a batch size of 256 samples and the Adam
optimizer (Kingma & Ba, 2014), employing an initial learning rate of 0.001 that decays by a factor
of 0.995 after every epoch, to train all neural networks. All models are trained on a single NVIDIA
A100-SXM4-40GB GPU. Each basis gij in Eq. 14 is evolved for one minute using 30 populations
of 30 expressions with a maximum complexity of 30; all operators and leaf nodes have a complexity
of one. Other relevant hyperparameters and training details are delineated with the results.

3.1 BENCHMARKING WITH KNOT THEORY

Established by a team of mostly Google DeepMind (DM) researchers (Davies et al., 2021), the data
set of mathematical knots consists of 243,746 samples, each possessing 17 geometric invariants:
adjoint torsion degree, torsion degree, short geodesic (real part), short geodesic (imaginary part),
injectivity radius, Chern–Simons invariant, cusp volume, longitudinal translation, meridional trans-
lation (imaginary part), meridional translation (real part), volume, and six symmetry groups. The
goal of this problem is to use the aforementioned invariants to predict the signature of the knots,
which can take on one of 14 values that are multiples of 2 from −12 to 14. As such, this task can be
framed as a classification problem with 14 labels or a single-output regression problem; both options
have been explored to benchmark performance.

Classification. The first two rows of Table 1 are reproduced from Liu et al. (2024), which compare
the performance of the MLP6 implemented by Davies et al. (2021) against that of the KAN. The
next five rows detail our implementation of the MLP, the NAM, and three parameterizations of the

4We observe that ReLU results in a smaller loss L in Eq. 10 than SiLU, but the bases {gij} that the PNAM
learns are more chaotic/non-smooth and require more parameters/operations to approximate via Eq. 14.

5We find that these coefficient values yield a robust trade-off between accuracy and sparsity due to the
magnitude of L relative to those of the regularization constraints in Eq. 10 for scaled variables.

6Inspections of the source code (https://github.com/google-deepmind/mathematics_
conjectures/blob/main/knot_theory.ipynb) reveal that the training of the MLP is terminated
when the validation loss increases (i.e., an early stopping patience of one evaluation is employed), which may
have led to underfitting.
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Table 1: Performance of different neural network architectures for the multi-label classification
problem of predicting the signature of mathematical knots. The first two rows are reproduced from
Table 3 of Liu et al. (2024). See Liu et al. (2024) for definitions of G and k. In the next five rows,
the mean and standard deviation of the test accuracy are computed from 10 runs. In the last row, the
first hidden layer of the MLP bases is replaced with a Fourier feature mapping (Eq. 4).

Method Architecture Parameter count Test acc.
DM’s MLP 4 layers: [17, 300, 300, 300, 14] 3× 105 78.0%

KAN 2 layers: [17, 1, 14] (G = 3, k = 3) 2× 102 81.6%
Our MLP 3 layers: [17, 64, 32, 14] 1.2× 104 95.8± 0.1%

NAM 3 layers: 17× [1, 64, 32, 14] 2.1× 105 92.4± 0.2%
PNAM 3 layers: 17× [1, 64, 32, 14] 2.1× 105 95.0± 0.2%
PNAM 3 layers: 8× [1, 64, 32, 14] 9.8× 104 93.6± 0.4%
PNAM 3 layers: 8× [1, 2(32), 32, 14] (σ = 1) 9.8× 104 94.3± 0.3%

Table 2: Ranking of important input features based on their mean absolute coefficients for the PNAM
withM = 8 in the penultimate row of Table 1. The mean and standard deviation of the test accuracy
associated with using only the top n features are computed from their frequency across 10 runs.

Rank Input Symbol Frequency Test acc.
1 Re(meridional translation) χ10 10/10 55.1± 3.5%
2 Longitudinal translation χ8 10/10 74.2± 1.5%

3

Im(meridional translation) χ9 7/10 78.1± 2.4%
Cusp volume χ7 1/10 80.5%

Im(short geodesic) χ4 1/10 73.5%
Volume χ11 1/10 70.5%

PNAM, all using MLP(s) with two hidden layers of 64 and 32 neurons.7 We scale all inputs to have
zero mean and unit variance and train the models for 50 epochs without early stopping. All five
models achieve test accuracy greater than 90%, with the MLP performing the best and the NAM
performing the worst. Although the accuracy of the PNAM can be improved by increasing M (e.g.,
from 8 to 17) or replacing the first hidden layer of the MLP bases with a Fourier feature mapping
(e.g., withB ∈ R32 and σ = 1), doing so increases the complexity of the learned functions.

For the PNAM with M = 8 and without the Fourier feature mapping, we present in Table 2 possible
input variables that represent the three most important features by comparing the mean absolute
coefficients of the linear transformation T . Out of 10 runs, the meridional translation (real part) and
longitudinal translation have the largest and second largest mean absolute coefficients, respectively,
in all 10 runs, while the meridional translation (imaginary part) has the third largest mean absolute
coefficient in seven runs. In addition, Table 2 reveals that keeping only coefficients in T associated
with the top n = 3 inputs and zeroing out all other coefficients, the PNAM can still achieve a test
accuracy of 78.1% (see Fig. A.1 for more information). Our findings are consistent with Fig. 3 of
Davies et al. (2021)8 and Fig. 4.3 of Liu et al. (2024), despite the fact that Davies et al. (2021) employ
gradient-based attribution (Sundararajan et al., 2017) and Liu et al. (2024) leverage a specific KAN
architecture with a hidden dimension of one to determine the relative importance of the inputs.

Regression. Davies et al. (2021) and Liu et al. (2024) then leverage the knowledge they acquire
from the classification task to construct mathematical expressions for the signature of the knots,
now as a single-output regression problem. Expression A in Table 3 corresponds to the equation
handcrafted by Davies et al. (2021), and expressions B to F proceed from post-processing steps of

7The number of parameters of the MLP, NAM, and PNAM is estimated as O(LW 2), O(NLW 2), and
O(MN + MLW 2), respectively, where W is the number of neurons in the widest layer. Compared to an
MLP that uses the same L and W , the PNAM has approximately M times more parameters. Considering that
memory requirements scale linearly with the number of parameters, the PNAM requiresM times more memory
and is thus slower to train than the MLP.

8Note that Davies et al. (2021) swap the naming of the real and imaginary parts of the meridional translation
in their code/figure (see footnote 6).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Mathematical expressions for the knot data set. Inputs χ7, χ8, χ9, and χ10 are the cusp
volume, longitudinal translation, meridional translation (imaginary part), and meridional translation
(real part), respectively. Expressions A to F are reproduced from Table 4 of Liu et al. (2024). A
factor of 1

2 is added to expression A for consistency with DeepMind’s findings (Davies et al., 2021;
2024). Expression D has missing parentheses, so it cannot be evaluated. A factor of 1

2 is added to
expression E for consistency with expression A. For expressions G and H, bases {gij} in Eq. 14
use addition, subtraction, multiplication, and square as operators; they additionally use exponential,
sine, and tangent for expression I. Every constant in the expressions is counted as a parameter. See
our code to reproduce these results.

ID Expression PC† Discovered by Eval. of test acc. Total acc.Reported Our

A χ8χ10

2(χ2
10+χ

2
9)

3 Human (DM) 83.1% 74.5% 73.8%

B −0.02 sin(4.98χ9 + 0.85) + 0.08|4.02χ10 + 6.28| − 0.52 − 12 [3, 1] KAN 62.6% 27.0% 26.8%
0.04e−0.88(1−0.45χ8)

2

C 0.17 tan(−1.51 + 0.1e−1.43(1−0.4χ9)
2+0.09e−0.06(1−0.21χ8)2

+ 17 [3, 1, 1] KAN 71.9% 41.7% 41.5%
1.32e−3.18(1−0.43χ10)

2

)

D

−0.09 + 1.04 exp(−9.59(−0.62 sin(0.61χ10 + 7.26)) −
29 [3, 2, 1] KAN 84.0% − −0.32 tan(0.03χ8 − 6.59) + 1− 0.11e−1.77(0.31−χ9)

2)2 −
1.09e−7.6(0.65(1−0.01χ8)

3

+ 0.27 arctan(0.53χ9 − 0.6) +
0.09 + exp(−2.58(1− 0.36χ10)2))

E 4.76χ8χ10

2(3.09χ9+6.05χ2
10+3.54χ2

9)
7 [3, 2, 1] KAN 82.8% 79.3% 79.3%

+ Padé approx.

F 2.94−2.92(1−0.10χ10)
2

0.32(0.18−χ10)2+5.36(1−0.04χ8)2+0.50
13 [3,1] KAN

[3,1] KAN
77.8% 27.0% 26.8%

G

12.766(0.132(−χ10 + 0.035χ8 + 0.157)2 +

31 − 75.9% 75.7%
0.592(−0.23χ10 + 0.008χ8 + 1)2(0.162χ10 − 0.006χ8 + 8× [1, 64, 32, 1]
0.076)− 1)4 + 7.202(0.871χ10 + 0.029χ8 − (0.229χ10 + PNAM
0.008χ8 − 0.103)(0.229χ10 + 0.008χ8 + 0.159(χ10 + (n = 2)
0.033χ8 − 0.449)2 + 0.625)− 0.173)2 − 10.643

H

26((0.096χ10 − 0.002χ7 + 0.004χ8 − 0.237)(0.267χ10 −

52 − 81.2% 80.9%

0.004χ7 + 0.011χ8 + 0.119(χ10 − 0.016χ7 + 0.04χ8 −
0.316)2 − 1)2 + 0.133)(0.734χ10 − 0.012χ7 + 0.029χ8 +
0.418) + 2.054(0.589χ10 + 0.018χ7 − 0.027χ8 + 1)2 − 8× [1, 64, 32, 1]
4.056(χ10 + 0.031χ7 − 0.046χ8 + 0.195)2(0.107χ10 + PNAM
0.003χ7 − 0.005χ8 − 0.064(χ10 + 0.031χ7 − 0.046χ8 + (n = 3)
0.087(χ10 + 0.031χ7 − 0.046χ8 − 0.165(χ10 + 0.031χ7 −
0.046χ8 + 0.195)2 + 0.195)2 + 0.195)2 + 1)2 − 0.895

I

2.574χ10 + 0.078χ7 − 0.13χ8 + 26(0.233(−χ10 +

34 − 81.4% 81.0%

0.016χ7 − 0.04χ8 − 0.597)2 sin2(0.367χ10 − 0.006χ7 +
0.015χ8 − 0.719) + sin(0.777χ10 − 0.013χ7 + 0.031χ8 + 8× [1, 64, 32, 1]
0.262))(0.168χ10 − 0.003χ7 + 0.007χ8 − 0.053) + PNAM
15.626(− sin(0.54χ10 + 0.017χ7 − 0.025χ8 + 0.105) − (n = 3)
0.049)2(−0.165χ10 − 0.005χ7 + 0.008χ8 − 0.645) + 0.509

† Parameter count is abbreviated as PC.

KANs trained using only the three most relevant invariants (Liu et al., 2024). Davies et al. (2021)
originally report a test accuracy between 70–80% for expression A in their implementation, while
Liu et al. (2024) report a test accuracy of 83.1%. Since the accuracy appears to depend on the test
set that results from a random data split, we evaluate all expressions on our test set and the entire
knot data set (denoted as “Our” and “Total acc.” in Table 3), in addition to the values reported by
Liu et al. (2024) for expressions A to F.

Here, we demonstrate that the PNAM in Table A.1—trained using all invariants and the same setup
described in the classification task but without any knowledge of prior results—can be converted into
symbolic equations with merely tens of parameters. We emphasize that expressions G to I in Table
3 are artificial constructs of the PNAM after pruning. Their particular forms are less crucial and
would likely change as more analysis becomes available. Instead, what is crucial is the capability of
the PNAM to discover pertinent relationships as new data and invariants are introduced.
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Of the runs summarized in Table A.2, expressions H and I are obtained from the run depicted in
Fig. A.2, with n = 3 and the cusp volume9 as the third most important feature. Although the cusp
volume is not explicitly stated in Davies et al. (2021) and Liu et al. (2024) as an invariant relevant for
predictive accuracy, the PNAM discovers a potential relationship between the cusp volume and the
signature of the knots that could improve accuracy. Furthermore, comparing expressions E and G
suggests that the PNAM can achieve accuracy similar to that of the KAN, despite the PNAM using
only two invariants without relying on additional assumptions. For additional analyses of how the
weighting coefficients in Eq. 10 affect the performance of the PNAM, see Fig. A.5.

3.2 PHASE FIELD THEORY FOR FRACTURE OF BRITTLE SOLIDS

In this common solid mechanics problem, we examine the relationship between the expressivity of
the PNAM and its projection dimension M . The data set simply contains 96 data points,10 homog-
enized from a phase field simulation of fracture in boron carbide (B4C) with isotropic elasticity and
isotropic fracture energy from Clayton et al. (2023), for quasi-static extension up to peak load. Given
the homogenized values of the axial strain, order parameter, and magnitude of the material gradient
of the order parameter, the goal of this problem is to predict the average strain energy, phase energy,
and axial stress. Considering that the stress is calculated as the derivative of the sum of the strain
energy and phase energy with respect to the strain, we frame this task as a two-output regression
problem. The MSE is employed as L in Eq. 10 to predict the strain energy and phase energy; to
predict the stress, we use the following form of the constraint term LP:11

LP =
wP1

D

D∑
k=1

(
(y′1,1 + y′2,1)|k −

∂(ŷ1(χ;T ,Θ, ζ, ε) + ŷ2(χ;T ,Θ, ζ, ε))

∂χ1

∣∣∣∣
k

)2

,

where y′1,1 and y′2,1 are the derivatives of the strain energy and phase energy, respectively, with
respect to the strain (χ1). We set weighting coefficient wP1 = 1.

All variables are scaled to have zero min and unit max. Table 4 depicts the performance of the MLP,
the NAM, and four parameterizations of the PNAM, all using MLP(s) with three hidden layers of 256
neurons and set to train for 5000 epochs with an early stopping patience of 50 epochs. On average,
the test MSE of the PNAM decreases as we increase M (cf. Phan et al. (2025)). Nevertheless, a run
of the PNAM with M = 8 turns out to be the model that achieves the smallest MSE. Therefore, we
leverage w6 = 1 in Eq. 14, which ensures accurate predictions of the stress, to convert this neural
network model with approximately 106 parameters into symbolic form with roughly 100 parameters.
As illustrated in Figs. A.7 and A.8, by employing SiLU as the activation function a in Eq. 3, we are
able to approximate all bases {gij} as polynomials of single variables in Table 5. Predictions of the
strain energy, phase energy, and stress for the linear combinations of these polynomials are portrayed
in Fig. A.9, achieving a test MSE of 2.25× 10−5.

4 CONCLUSION

We prove the universal approximation property of the PNAM and demonstrate its superior predic-
tion capability compared to the NAM in three numerical experiments. By increasing the dimension
of the linear transformation, the PNAM can achieve performance comparable to or even surpass that
of the MLP. Moreover, we leverage the modularity of the PNAM to gain insight into important input
features, prune unnecessary parameters, and convert the model into symbolic form. However, as a
stand-alone model, the PNAM is not meant to replace the MLP, NAM, or even classical SR. Rather,
it serves as an alternative to obtain a better trade-off between expressivity and interpretability—
achieving the accuracy of the MLP and retaining a degree of interpretability of the NAM, all while
being relatively straightforward to train and optimize. Further studies are required before we can

9The cusp volume is equivalent to the multiplication of the longitudinal translation and the imaginary part
of the meridional translation (see Fig. 4.4(b) of Liu et al. (2024)).

10The phase field data set is open-source with our code and can be used to study the benign or catastrophic
overfitting of overparameterized neural networks (Mallinar et al., 2022) for a physical system.

11Ginzburg–Landau kinetics (Gurtin, 1996), or its quasi-static reduction in the present case, could be added
as a constraint if one has access to the loading rate and the Laplacian of the order parameter. See Miehe et al.
(2010) for background on phase field fracture mechanics and corresponding numerical models.
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Table 4: Performance of different neural network architectures for the multi-output regression prob-
lem of predicting the strain energy, phase energy, and stress. The mean and standard deviation of
the test MSE for all three variables are computed from 10 runs.

Method Architecture Parameter count Test MSE
MLP 4 layers: [3, 256, 256, 256, 2] 2.6× 105 (7.05± 2.02)× 10−5

NAM 4 layers: 3× [1, 256, 256, 256, 2] 7.9× 105 (1.12± 0.62)× 10−4

PNAM 4 layers: 3× [1, 256, 256, 256, 2] 7.9× 105 (3.31± 2.11)× 10−4

PNAM 4 layers: 8× [1, 256, 256, 256, 2] 2.1× 106 (1.34± 0.91)× 10−4

PNAM 4 layers: 16× [1, 256, 256, 256, 2] 4.2× 106 (8.01± 3.76)× 10−5

PNAM 4 layers: 32× [1, 256, 256, 256, 2] 8.4× 106 (6.47± 2.71)× 10−5

Table 5: Mathematical expressions for the phase field data set. Inputs χ1, χ2, and χ3 are the strain,
order parameter, and material gradient of the order parameter, respectively. To convert the PNAM
with M = 8 in Table 4 and T0 = ζ0 = 0.05 into symbolic form, bases {gij} in Eq. 14 use addition,
subtraction, multiplication, and square as operators. Counting every constant in {gij} and {zj} as a
parameter, the symbolic form has 112 parameters and achieves a test MSE of 2.25× 10−5.

Basis Expression Input Expression

g1,1
−z31 + 1.524z21 + z1 + ((−z1 + (z1 − 0.028)2 + 0.75)2 −

z1 203.741χ1 + 1.87χ2 − 3.048χ3
0.102)2 − 0.269

g2,1
z21 − (z1 − 0.597)(z1 − 0.291)(1.378z1(0.786z1 − 1)4 +
0.525z1 − 0.074)− 0.093

g1,2 z32(0.147− 0.074z2) + 0.383z22 + 0.119z2 − 0.119
z2 235.816χ1 − 0.461χ2 + 2.333χ3g2,2 −10.229z2(0.003− 0.002z22) + 0.011

g1,3 0.967z3(z3 − 1.108)(−3.255z33 + z3 − 1.418)− 2z3 + 0.07
z3 −114.828χ1 + 1.284χ2 + 12.089χ3g2,3 1.046z3 + 2.265(z3 − 0.403)2(0.65z33 − z23 + 0.835)2 − 0.25

g1,4 −z4(0.009z4 + 0.069) + 0.005
z4 −185.754χ1 + 1.866χ2 + 2.19χ3g2,4 0

g1,5 0.118z5(2z5 + 0.217)(0.033z25(z5 + 1)− z5 + 3.239)− 0.116
z5 190.698χ1 + 0.282χ2 + 6.271χ3g2,5

−z5(−0.03z5 + 0.003(0.772z5(z5 − 0.466)2 − z5 + 0.596)2 +
0.009)− 0.002

g1,6 0
z6 1.503χ2g2,6 z6(0.003z26 + 0.009z6 − 0.043) + 0.016

g1,7 z7(z27(z107 (z7 + 0.917)2 − 0.014) + 0.079z7 − 0.087)− 0.029
z7 −119.681χ1 + 0.531χ2 − 5.929χ3g2,7 −0.004z37 + 0.009z27 + 0.024z7 + 0.007

g1,8 0.003− 0.009z8 z8 −27.984χ1 − 0.769χ2 + 6.628χ3g2,8 0

recommend the PNAM, because of its modularity, as a backbone in graph neural networks or trans-
formers, which may allow us to prune the vast number of parameters of these models and accelerate
inference during test time.
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Kolmogorov–Arnold networks. arXiv preprint arXiv:2404.19756, 2024.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from
the width. Advances in Neural Information Processing Systems, 30:6232–6240, 2017.

N. Macon and A. Spitzbart. Inverses of Vandermonde matrices. The American Mathematical
Monthly, 65(2):95–100, 1958.

N. Mallinar, J. Simon, A. Abedsoltan, P. Pandit, M. Belkin, and P. Nakkiran. Benign, tempered, or
catastrophic: A taxonomy of overfitting. Advances in Neural Information Processing Systems, 35
(87):1182–1195, 2022.

C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of
fracture: Variational principles and multi-field FE implementations. International Journal for
Numerical Methods in Engineering, 83(10):1273–1311, 2010.

C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
Leanpub, 2019.

W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. Definitions, methods, and appli-
cations in interpretable machine learning. Proceedings of the National Academy of Sciences, 116
(44):22071–22080, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems, 32(721):8026–8037, 2019.

B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gra-
dients. arXiv preprint arXiv:1912.04871, 2019.

N. N. Phan, W.C. Sun, and J. D. Clayton. HYDRA: Symbolic feature engineering of overparam-
eterized Eulerian hyperelasticity models for fast inference time. Computer Methods in Applied
Mechanics and Engineering, 437:117792, 2025.

F. Radenovic, A. Dubey, and D. Mahajan. Neural basis models for interpretability. Advances in
Neural Information Processing Systems, 35(612):8414–8426, 2022.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning:
Fundamental principles and 10 grand challenges. Statistic Surveys, 16:1–85, 2022.

M. H. Stone. Applications of the theory of Boolean rings to general topology. Transactions of the
American Mathematical Society, 41(3):375–481, 1937.

M. H. Stone. The generalized Weierstrass approximation theorem. Mathematics Magazine, 21(4):
167–184, 1948.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
Conference on Machine Learning, volume 70, pp. 3319–3328. PMLR, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoor-
thi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Processing Systems, 33(632):7537–7547,
2020.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

L. R. Turner. Inverse of the Vandermonde matrix with applications. Technical report, NASA Lewis
Research Center, Cleveland, OH (United States), 1966.

S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression.
Science Advances, 6(16):eaay2631, 2020.

M. Virgolin and S. P. Pissis. Symbolic regression is NP-hard. arXiv preprint arXiv:2207.01018,
2022.

S. Xu, Z. Bu, P. Chaudhari, and I. J. Barnett. Sparse neural additive model: Interpretable deep
learning with feature selection via group sparsity. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, volume 3, pp. 343–359. Springer, 2023.

A APPENDIX

A.1 POLYNOMIAL REPRODUCING

Here, we prove the polynomial reproducing property, namely, any multi-variable polynomial F
of χ ∈ RN can be reproduced by a linear combination of {gi}, where gi(zi) is a single-variable
polynomial of zi =

∑N
j=1 Tijχj , for each i = 1, 2, . . . ,M . The main proof can be established

for arbitrary dimensions with mathematical induction. The base case for this proof by induction is
conducted in two dimensions.

First, we present a lemma that verifies the reproducing property for a special case in two dimensions,
which can be used to prove the general case.
Lemma A.1. For any monomial χp1χ

q
2, there exists a linear transformation T : RN → RM , where

N = 2 and M = p+ q + 1, with Ti1 = 1 and Ti2 = ci, and a set of coefficients {ζi} such that

χp1χ
q
2 =

M∑
i=1

ζi

 N∑
j=1

Tijχj

M−1

=

M∑
i=1

ζi(χ1 + ciχ2)p+q. (A.1)

Proof. Let us expand each term of the summation on the right-hand side of Eq. A.1 and collect
terms with the same polynomial orders. We get the following equivalent form:

χp1χ
q
2 =

M∑
i=1

ζi(χ1 + ciχ2)p+q

=

p+q∑
m=0

M∑
i=1

cp+q−mi ζi

(
p+ q
m

)
χm1 χ

p+q−m
2 .

Comparing the coefficients of the polynomials on both sides, for any choice of {ci}, we end up with
an M ×M system of linear equations for {ζi} as follows:

cp+q1 cp+q2 cp+q3 . . . cp+qM

cp+q−11 cp+q−12 cp+q−13 . . . cp+q−1M

cp+q−21 cp+q−22 cp+q−23 . . . cp+q−2M
...

...
...

. . .
...

1 1 1 . . . 1



ζ1
ζ2
ζ3
...
ζM

 = δmp



1
1
p+q(

p+ q
2

)−1
...
1


,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where δmp is the Kronecker delta. Each equation of the linear system can be written compactly as
M∑
i=1

cp+q−mi ζi = δmp

(
p+ q
m

)−1
, m = 0, 1, . . . , p+ q.

To show that we can find {ci, ζi} satisfying the system, we note that the coefficient matrix forms
a so-called Vandermonde matrix (Macon & Spitzbart, 1958; Turner, 1966), which is invertible as
long as {ci} is taken to be any set of mutually different constants, that is, ci 6= cj for i 6= j. This
completes the proof.

Even for this simple case, we may observe the nonuniqueness in the construction of the linear
transformation. Therefore, it is reasonable to expect that, for specific application problems involving
machine learning, one may optimize the transformation to achieve effective representations in a
possibly low-dimensional feature space. We give some illustrations in the following example.
Example A.1. We present some instances where the actual value of M could be smaller than p +
q + 1. In fact, for p = q = 1, we have

χ1χ2 =

(
χ1 +

1

4
χ2

)2

−
(
χ1 −

1

4
χ2

)2

,

corresponding to M = 2. For the trivial case of p = 0 or q = 0, we may simply use the identity
transformation with M = N = 1. There are also examples that have a smaller value of M than
the input dimension N = 2, such as χ2

1 + 2χ1χ2 + χ2
2 = z21 , where z1 = χ1 + χ2, for which

M = 1 < 2 = N . This again illustrates the effect of possible dimensionality reduction via a
suitable transformation.

Next, we consider the extension of Lemma A.1. Since a product of polynomials of single variables
f1(χ1) and f2(χ2) can be written as linear combinations of monomials {χp1χ

q
2}, Lemma A.1 can be

easily extended to a slightly more general form.
Lemma A.2. For any polynomial of (χ1, χ2) ∈ R2 having the product form f1(χ1)f2(χ2), there
exists a linear transformation T : R2 → RM , where M = deg(f1) + deg(f2) + 1, and a set of
single-variable polynomials {gi: R→ R}Mi=1 such that

f1(χ1)f2(χ2) =

M∑
i=1

gi(Ti1χ1 + Ti2χ2), (A.2)

where {deg(fi)}2i=1 denote the degrees of the single-variable polynomials f1 and f2, the highest
exponents of the variables χ1 and χ2 in f1 and f2, respectively, with nonzero coefficients.

Proof. Let us express the two single-variable polynomials as

f1(χ1) =
∑
p

apχ
p
1, f2(χ2) =

∑
q

bqχ
q
2.

Expanding the product on the left-hand side of Eq. A.2 and applying Lemma A.1 to each term in the
product, we get

f1(χ1)f2(χ2) =

deg(f1)∑
p=0

deg(f2)∑
q=0

apbq

p+q+1∑
i=1

ζpqi(χ1 + cpqiχ2)p+q,

where subscripts p and q are introduced for {ci, ζi} to elucidate that a different transformation T of
dimensions (p+ q+ 1)× 2 is employed for each monomial. However, due to the freedom of choice
in the construction of each T , the same T of dimensions (deg(f1) + deg(f2) + 1)× 2 can be used
for all pairwise product terms. This choice stems from the fact that the innermost summation has
a final upper limit of M = deg(f1) + deg(f2) + 1. Replacing p + q + 1 and cpqi with M and ci,
respectively, we can move this summation to the outside:

f1(χ1)f2(χ2) =

M∑
i=1

deg(f1)∑
p=0

deg(f2)∑
q=0

apbqζpqi(χ1 + ciχ2)p+q,
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resulting in Eq. A.2, where

gi(Ti1χ1 + Ti2χ2) =
∑
p

∑
q

apbqζpqi(χ1 + ciχ2)p+q; Ti1 = 1, Ti2 = ci.

Another consequence is the reproducing property for arbitrary polynomials in two dimensions.
Lemma A.3. For any polynomial F = F(χ1, χ2) of (χ1, χ2) ∈ R2, there exists a linear trans-
formation T : R2 → RM , where M = deg(F) + 1, and a set of single-variable polynomials {gi:
R→ R}Mi=1 such that

F(χ1, χ2) =

M∑
i=1

gi(Ti1χ1 + Ti2χ2). (A.3)

Proof. Note that deg(F) refers to the degree of the multi-variable polynomial, given by the highest
degree of the monomials {χp1χ

q
2} in F . Lemma A.3 can be proved by expanding F(χ1, χ2), which

produces the same set of monomials as the product of f1(χ1) and f2(χ2) in Lemma A.2, where
deg(F) = deg(f1) + deg(f2). This realization concludes the proof.

Finally, we employ mathematical induction to extend the result to any input dimension.
Theorem A.1. For any polynomial F = F(χ) = F(χ1, . . . , χN ) of χ ∈ RN , there exists a linear
transformation T : RN → RM , for some M that could be chosen to depend only on deg(F) and N
(e.g., M = deg(F) +N − 1), and a set of single-variable polynomials {gi: R→ R}Mi=1 such that

F(χ1, . . . , χN ) =

M∑
i=1

gi

 N∑
j=1

Tijχj

 . (A.4)

Proof. Once we have shown that Theorem A.1 holds for a particular input dimension (e.g., N = 2),
by leveraging the inductive hypothesis to show that it also holds for N + 1, the theorem must hold
for all subsequent N , in accordance with the principle of mathematical induction. For N = 2, the
polynomial reproducing property has been proved in Lemma A.3.

Assume that Theorem A.1 holds for an arbitrary input dimensionN . We then consider a polynomial
F = F(χ1, . . . , χN , χN+1). It can be written as

F(χ1, . . . , χN , χN+1) =

P∑
p=0

Fp(χ1, . . . , χN )χpN+1,

for some polynomials {Fp}Pp=0. By the inductive hypothesis, we have a linear transformation TN:
RN → RMN and a set of polynomials {{g̃pi}MN

i=1 }Pp=0 such that

Fp(χ1, . . . , χN ) =

MN∑
i=1

g̃pi(zN,i), zN,i =

N∑
j=1

TN,ijχj . (A.5)

As a result,

F(χ1, . . . , χN , χN+1) =

P∑
p=0

MN∑
i=1

g̃pi(zN,i)χ
p
N+1.

By Lemma A.2, for each product term g̃pi(zN,i)χ
p
N+1 in the summation, there exists a linear trans-

formation T̃N that maps any pair (zN,i, χN+1) to RMN+1 such that, for each choice of the indices p
and i, the product g̃pi(zN,i)χ

p
N+1 is a sum of single-variable polynomials in the transformed space

RMN+1 , where
MN + P = MN+1 = deg(F) +N.

Composing TN together with all T̃N, we get a linear transformation TN+1 from RN+1 to RMN+1

such that F(χ1, . . . , χN , χN+1) is a linear combination of polynomials {gi}
MN+1

i=1 of single vari-
ables z ∈ RMN+1 . Thus, Theorem A.1 holds for input dimension N + 1. This completes the
induction process and the proof.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

As noted in Example A.1, due to the nonuniqueness of the transformation, it is possible to achieve
more effective and potentially low-dimensional representations through learning and optimization.

A.2 ADDITIONAL RESULTS FOR KNOT THEORY: CLASSIFICATION

Figure A.1 shows a complete ranking of the inputs and the associated test accuracy of using the top
n inputs from one of the runs summarized in Table 2.

(a)
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Figure A.1: One complete instance of the ranking and accuracy reported in Table 2. (a) Relative
importance of the input features based on their mean absolute coefficients, and (b) test accuracy
associated with using the top n features in (a).

A.3 ADDITIONAL RESULTS FOR KNOT THEORY: REGRESSION

Table A.1 compares the performance of the NAM with 17 bases against that of the PNAM with eight
bases, both of which can be converted into symbolic equations after training. Considering the poor
performance of the NAM, we proceed with just the PNAM. Similar to Table 2, Table A.2 suggests
that the meridional translation (real part) and longitudinal translation are the most and second most
important invariants, respectively. Nevertheless, solely comparing the mean absolute coefficients
may not be sufficient, as unimportant features could be incorrectly ranked as important. We can,
however, eliminate these features by examining the accuracy associated with including them, since
including an unimportant feature does not improve accuracy compared to the corresponding case
with one less input.

Table A.1: Performance of different neural network architectures for the single-output regression
problem of predicting the signature of mathematical knots. The mean and standard deviation of the
test accuracy are computed from 10 runs.

Method Architecture Parameter count Test acc.
MLP 3 layers: [17, 64, 32, 1] 1.2× 104 94.7± 0.2%
NAM 3 layers: 17× [1, 64, 32, 1] 2.1× 105 65.0± 0.2%

PNAM 3 layers: 8× [1, 64, 32, 1] 9.8× 104 85.5± 0.3%

Figure A.2 shows a complete ranking of the inputs and the associated test accuracy of using the top n
inputs from one of the runs summarized in Table A.2. The ranking in Fig. A.2(d) is determined from
the mean absolute coefficients of the linear transformation T in Fig. A.2(b). This linear transforma-
tion (i) consists mainly of diagonal elements due to the constraint `3 in Eq. 12 and (ii) is sparse due
to the constraint `4 in Eq. 13. The transformation T with n = 3 in Fig. A.2(c) and the scaling coef-
ficients ζ of just two nonzero bases in Fig. A.2(a) are then leveraged to construct expressions H and
I in Table 3. Despite evolving each basis for only one minute using a few basic operators, Fig. A.3
demonstrates that SR can consistently approximate the single-variable bases because of their simple
1D nature. Expressions H and I achieve test accuracy of 81.2 and 81.4%, respectively, comparable
to the test accuracy of 81.3% in Fig. A.2(e) for n = 3 inputs. Moreover, Table A.3 reveals that both
expressions are more than two times faster for inference than a fully connected MLP.
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Table A.2: Ranking of important input features based on their mean absolute coefficients for the
PNAM in Table A.1. The mean and standard deviation of the test accuracy associated with using
only the top n features are computed from their frequency across 10 runs.

Rank Input Symbol Frequency Test acc.
1 Re(meridional translation) χ10 10/10 55.7± 1.2%

2 Longitudinal translation χ8 6/10 74.8± 1.4%
Torsion degree χ2 4/10 54.9± 0.5%

3

Torsion degree χ2 3/10 76.4± 0.4%
Re(short geodesic) χ3 3/10 61.8± 7.3%

Longitudinal translation χ8 2/10 76.5± 0.2%
Cusp volume χ7 1/10 81.3%

Im(short geodesic) χ4 1/10 74.3%
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Figure A.2: One complete instance of the ranking and accuracy reported in Table A.2, along with
optimized parameters of the PNAM. (a) Scaling coefficients ζ pior to post-processing, (b) linear
transformation T pior to post-processing, (c) T with n = 3 and rows corresponding to columns of
ζ in (a) having a value of zero set to zero, (d) relative importance of the input features based on their
mean absolute coefficients of T in (b), and (e) test accuracy associated with using the top n features
in (d).

Recall that the above results correspond to weighting coefficients w1 = w2 = w3 = w4 =
w5 = 0.001, chosen to balance the trade-off between accuracy and sparsity. While increas-
ing the weighting coefficients can make the PNAM sparser, Fig. A.4 indicates that overprioritiz-
ing sparsity can lead to less stable training, resulting in poorer performance. Specifically, setting
w1 = w2 = w3 = w4 = w5 = 0.01 results in such a sparse T (see the small coefficient values in
Fig. A.5(c)) that the accuracy in Fig. A.5(d) is poor regardless of n. On the other hand, Fig. A.5(b)
suggests that setting w1 = w2 = w3 = w4 = w5 = 0, thereby deactivating the regularization
constraints, improves (reduces) the accuracy for large (small) n due to the extensive number of co-
efficients with large values (the erroneous ranking of the input features) in Fig. A.5(a). Although the
exact ranking may not be correct, this model can still narrow down a set of variables (e.g., n = 6)
that is relevant for predictive accuracy while remaining competitive with the MLP in Table A.1.
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Figure A.3: Reproducibility of SR for learning 1D functions. Both sets of bases (PNAM) are from
the run in Fig. A.2, with (a) the two bases (SR) comprising expression H and (b) the two bases (SR)
comprising expression I in Table 3. The neural network parameterization of the PNAM, expression
H, and expression I all use n = 3 features and achieve test accuracy of about 81%.

Table A.3: Training and inference times of the neural networks in Table A.1, along with inference
times of expressions G to I in Table 3. Each basis comprising expressions G to I is evolved for one
minute. Training times are obtained from an NVIDIA A100-SXM4-40GB GPU, while inference
times are obtained from an Apple M1 CPU with 8GB of memory. The test accuracy is repeated to
aid comparison.

Method Training time (s/epoch) Inference time (ns/sample) Test acc.
MLP 2.1 290 94.7± 0.2%
NAM 14 4300 65.0± 0.2%

PNAM 8.9 2100 85.5± 0.3%
Expression G − 78 75.9%
Expression H − 130 81.2%
Expression I − 120 81.4%

A.4 ADDITIONAL RESULTS FOR PHASE FIELD THEORY

In Table A.4, we provide training and inference times of the neural networks in Table 4, in addition
to the inference time of the symbolic form in Table 5. As expected, training and inference times of
the PNAM increase with the projection dimensionM . However, similar to Table A.3, converting the
PNAM into a compact expression yields faster inference. Since the evaluations of its 1D bases are
independent of each other, we plan to parallelize their evaluations in the future to further accelerate
training and inference. On the other hand, Fig. A.6 reveals that increasingM improves performance,
which may lead to overfitting after saturation. For the most accurate PNAM, we plot and compare
its MLP bases with their symbolic approximations (the polynomials {gij} in Table 5), along with
their derivatives, in Figs. A.7 and A.8. Test predictions of the average strain energy, phase energy,
and axial stress for the linear combinations of the symbolic bases are shown in Fig. A.9.
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Figure A.4: Effects of weighting coefficients w1 = w2 = w3 = w4 = w5 = a constant on the
convergence of the PNAM for the knot data set. Total loss corresponds to the loss function in Eq. 10.
The three NAMs use the same projection dimension M = 8, and each basis of the PNAMs is an
MLP with two hidden layers of 64 and 32 neurons.
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Figure A.5: Effects of weighting coefficients w1 = w2 = w3 = w4 = w5 = a constant on
the input ranking and test accuracy of the PNAM for the knot data set. Weighting coefficients
w1 = w2 = w3 = w4 = w5 = 0 for (a) and (b); w1 = w2 = w3 = w4 = w5 = 0.01 for (c) and (d).
(a) and (c): Relative importance of the input features based on their mean absolute coefficients. (b)
and (d): Test accuracy associated with using the top n features in (a) and (c), respectively. Results
forw1 = w2 = w3 = w4 = w5 = 0.001 are provided in Fig. A.2(d) and (e). Training and validation
histories of the loss function for these three PNAMs are shown in Fig. A.4.

A.5 HIGH-DIMENSIONAL IMAGE CLASSIFICATION WITH THE MNIST DATA SET

To demonstrate that the PNAM can efficiently handle high-dimensional problems with numerous
inputs, we evaluate its performance on the MNIST data set (LeCun et al., 1998), highlighting its di-
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Table A.4: Training and inference times of the neural networks in Table 4, along with the inference
time of the combined expression (i.e., the sum of the linear combinations of {g1j} and {g2j}) in
Table 5. Each nonzero basis gij is evolved for one minute. Training times are obtained from an
NVIDIA A100-SXM4-40GB GPU, while inference times are obtained from an Apple M1 CPU
with 8GB of memory. The test MSE is repeated to aid comparison.

Method Training time (s/epoch) Inference time (µs/sample) Test MSE
MLP 1.1 27 (7.05± 2.02)× 10−5

NAM 3.0 61 (1.12± 0.62)× 10−4

PNAM (M = 3) 3.2 58 (3.31± 2.11)× 10−4

PNAM (M = 8) 6.8 150 (1.34± 0.91)× 10−4

PNAM (M = 16) 13 320 (8.01± 3.76)× 10−5

PNAM (M = 32) 26 610 (6.47± 2.71)× 10−5

Expression (Table 5) − 17 2.25× 10−5
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Figure A.6: Effects of the projection dimension M on the convergence of the PNAM for the phase
field data set. Total loss corresponds to the loss function in Eq. 10. Each basis of the four PNAMs is
an MLP with three hidden layers of 256 neurons; all models are trained using weighting coefficients
w1 = w2 = w3 = w4 = w5 = 0.001.

mensionality reduction capability and providing visual insight into its input pruning mechanism. The
MNIST data set contains 70,000 images of handwritten digits from 0 to 9, each of size 28× 28 pix-
els, partitioned into 60,000 images for training/validation and 10,000 images for testing. Each image
is reshaped into a 784-dimensional feature vector and normalized, resulting in a high-dimensional
classification task where the model must map dense feature vectors to their corresponding digit la-
bels. This experiment illustrates the ability of the PNAM to preserve interpretability while achieving
strong predictive accuracy by identifying and utilizing only the most informative inputs, effectively
pruning irrelevant features.

In Table A.5, we compare PNAMs against a standard NAM and conventional MLPs, all of which
are trained for up to 1000 epochs with an early stopping patience of 50 epochs. First, the linear
transformation T allows us to project the original 784-dimensional vector into a lower-dimensional
feature space of size M . Even with a small M = 8, the resulting PNAM outperforms the standard
NAM, despite the latter requiring one basis per input and having nearly 100 times more parameters.
Second, increasing M enhances the expressivity of the PNAM, allowing it to fit the training data
perfectly (see Fig. A.10) and achieve a test accuracy of 98.1% forM = 64. Third, although PNAMs
perform similarly to MLPs, suggesting comparable expressive power in practice, they retain the key
advantage of interpretability. Unlike black-box MLPs, PNAMs offer insight into which variables
are crucial for predictive accuracy, enabling model transparency and post hoc analysis.

Figure A.11 illustrates that the PNAM produces a consistent ranking of the feature importance across
different values of M , demonstrating robustness in its learned feature sensitivity. This consistency
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Figure A.7: Bases {g1j} and their derivatives. The expressions of {g1j} are presented in Table 5.

Table A.5: Performance of different neural network architectures for the multi-label classification
problem of predicting handwritten digits from the MNIST data set. Training and validation histories
of the accuracy for the PNAMs are provided in Fig. A.10.

Method Architecture Parameter count Training acc. Test acc.
MLP 3 layers: [784, 64, 32, 10] 1.2× 104 99.9% 96.1%
MLP 3 layers: [784, 128, 64, 10] 4.9× 104 99.9% 96.3%
MLP 4 layers: [784, 128, 64, 32, 10] 6.6× 104 99.9% 96.7%
MLP 4 layers: [784, 256, 128, 64, 10] 2.6× 105 99.9% 97.1%
NAM 3 layers: 784× [1, 64, 32, 10] 9.6× 106 95.0% 93.0%

PNAM 3 layers: 8× [1, 64, 32, 10] 1.0× 105 96.0% 94.7%
PNAM 3 layers: 16× [1, 64, 32, 10] 2.1× 105 98.5% 96.7%
PNAM 3 layers: 32× [1, 64, 32, 10] 4.2× 105 100% 97.5%
PNAM 3 layers: 64× [1, 64, 32, 10] 8.4× 105 100% 98.1%

supports effective pruning of nonessential inputs with minimal impact on accuracy. Specifically, for
the PNAM with M = 64, we remove the least important pixels and visualize two progressively
smaller subsets in Fig. A.12. Keeping only the top 400 and 200 relevant pixels, this model still
achieves test accuracy of 98.0 and 94.0%, respectively. Visual inspection of the remaining pixels re-
veals that they occupy semantically meaningful regions, allowing human observers to easily identify
the underlying digit classes. Further insight is provided by Fig. A.13, which shows that the majority
of predictive information is concentrated in a small number of dominant singular values, enabling
both dimensionality reduction and feature pruning.

Finally, we examine the impact of weighting coefficients w1, w2, . . . , w5 on the performance of the
PNAM. Similar to the trend observed in Fig. A.4, Fig. A.14 indicates that increasing the weight-
ing coefficients leads to less stable training as the optimization objectives shift from prioritizing
predictive accuracy to enforcing sparsity. Nevertheless, as shown in Table A.6, these weighting co-
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Figure A.8: Bases {g2j} and their derivatives. The expressions of {g2j} are presented in Table 5.
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Figure A.9: Test predictions for the linear combinations of the polynomials {gij} in Table 5. (a)
Linear combination of {g1j}, (b) linear combination of {g2j}, and (c) derivative of the sum of the
linear combinations of {g1j} and {g2j} with respect to the strain.

efficients can be tuned to obtain a desired trade-off between accuracy and sparsity, tailored to the
specific needs of the users.
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Figure A.10: Effects of the projection dimension M on the convergence and accuracy of the PNAM
for the MNIST data set. Training and validation histories of (a) the loss function in Eq. 10 and (b)
accuracy. Each basis of the four PNAMs is an MLP with two hidden layers of 64 and 32 neurons;
all models are trained using weighting coefficients w1 = w2 = w3 = w4 = w5 = 0.01.
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Figure A.11: Impact of input pruning on the test accuracy for the PNAMs in Table A.5. Unimportant
inputs are pruned according to their mean absolute coefficients (see Section 2.5).

(a) (b)

Figure A.12: Demonstration of important inputs for the PNAM with projection dimension M = 64
in Fig. A.11. Shown are the first 10 unique handwritten digits in the MNIST test set, arranged from
0 to 9, using (a) n = 400 (∼50%) and (b) n = 200 (∼25%) most relevant pixels, which achieve test
accuracy of 98.0 and 94.0%, respectively.

Table A.6: Trade-off between accuracy and sparsity due to weighting coefficients w1 = w2 = w3 =
w4 = w5 = a constant for the PNAMs in Fig. A.14. An element Tjk < 10−4 is considered zero,
since setting such an element to zero has little to no effect on the test accuracy.

Weighting coefficients Training acc. Test acc. Percent of zero Tjk
0.001 95.6% 94.3% 14.1%
0.01 96.0% 94.7% 32.8%
0.1 95.7% 94.7% 68.9%
1 90.9% 91.3% 76.5%
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Figure A.13: Singular values of the linear transformation T for the PNAMs in Table A.5. The linear
decay and sudden drop in magnitude of the singular values on a log scale suggest that we can prune
coefficients in T without severely degrading performance.
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Figure A.14: Effects of weighting coefficients w1 = w2 = w3 = w4 = w5 = a constant on the
convergence and accuracy of the PNAM for the MNIST data set. Training and validation histories of
(a) the loss function in Eq. 10 and (b) accuracy. The four NAMs use the same projection dimension
M = 8, and each basis of the PNAMs is an MLP with two hidden layers of 64 and 32 neurons.
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