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Abstract

In many settings, machine learning models may be used to inform decisions that
impact individuals or entities who interact with the model. Such entities, or agents,
may game model decisions by manipulating their inputs to the model to obtain
better outcomes and maximize some utility. We consider a multi-agent setting
where the goal is to identify the “worst offenders:” agents that are gaming most
aggressively. However, identifying such agents is difficult without being able
to evaluate their utility function. Thus, we introduce a framework featuring a
gaming deterrence parameter, a scalar that quantifies an agent’s (un)willingness
to game. We show that this gaming parameter is only partially identifiable. By
recasting the problem as a causal effect estimation problem where different agents
represent different “treatments,” we prove that a ranking of all agents by their
gaming parameters is identifiable. We present empirical results in a synthetic data
study validating the usage of causal effect estimation for gaming detection and
show in a case study of diagnosis coding behavior in the U.S. that our approach
highlights features associated with gaming.

1 Introduction

Machine learning (ML) models often guide decisions that impact individuals or entities. Attributes
describing an individual or entity are often inputs to such models. In response, such entities may
modify their attributes to obtain a more desirable outcome. But changing one’s attributes may be costly
due to the difficulty of generating supporting evidence, or penalties for fraud. This behavior is called
gaming or strategic adaptation [1]. Strategic adaptation frames gaming as “utility maximization:”
agents change their attributes to maximize a payout, but incur a cost for modifying attributes.

As an illustrative example, we turn to the health insurance industry. In the United States (U.S.),
contracted health insurance companies report their enrollees’ diagnoses to the government, which
calculates a payout based on reported diagnoses via a publicly available model [2]. The payout is
intended to support care of the enrollee in relation to the diagnosis. Companies may attempt to
maximize payouts by reporting extraneous diagnoses, an illegal practice known as “upcoding” [3].
Despite increasing awareness of upcoding [3, 4, 5, 6], upcoding costs U.S. taxpayers over $12B U.S.
dollars annually [7], even with substantial investment in audits ($100.7M U.S. dollars, 2023 [8])
and payout changes to adjust for gaming [9, 10]. Since audits may not scale and often overlook
fraud [11, 12], tools for flagging gaming-prone agents could help target audits. Beyond health
insurance, gaming emerges in responses to credit-scoring algorithms [13, 14] and driver responses to
rider allocation algorithms in ride-sharing apps [15].
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Figure 1: Left: Two agents with gaming deterrence parameters λ1 = 30 (purple) and λ2 = 50 (blue)
maximize utility (reward R - cost c) with respect to diagnosis rate. Gaming costs increase in λ(·),
and lower an agent’s optimal diagnosis rate (stars). Center: Agents’ observed decisions reflect
utility-maximizing behavior. Right: A decision-maker computes a payout based on agent decisions.

In this work, we study how one can identify agents with the highest propensity to strategically
manipulate their inputs given a dataset of agents and their observed model inputs. A supervised
approach is infeasible since fraud/gaming labels are unavailable in our setting. A common paradigm
for fraud/gaming detection is unsupervised anomaly detection. However, gamed attributes may not
be outlier-like. The perspective of gaming as utility-maximizing behavior in strategic classifica-
tion provides an alternative to existing fraud/gaming detection methods. Many works in strategic
classification (e.g., [1]) assume known utility functions and identical feature manipulation costs
across agents, which assists in identifying an agent’s “optimal” gaming behavior. However, such
assumptions may not always apply. For example, in U.S. Medicare, due to the rarity of penalties
for upcoding, it is unclear how to quantify the cost of fraud. Furthermore, due to the large number
of companies contracted with U.S. Medicare, with distinct incentives (e.g., for-profit vs. non-profit
groups) and disjoint populations of patients, there may be heterogeneity in feature manipulation costs.

To bridge this gap, we propose a novel framework for modeling agent utilities by introducing a
gaming deterrence parameter, which scales the perceived cost (to the agent) of gaming. First, we
show that directly estimating the gaming parameter is not possible: the best we can do is a lower
bound on the gaming deterrence parameter. However, by re-casting gaming detection as a causal effect
estimation problem, where each agent represents a “treatment,” we prove that a ranking of agents
based on their gaming deterrence parameter is recoverable. Thus, we propose a causally-motivated
ranking algorithm that produces a ranking of agents. Practically, agents most likely to game under
our ranking could be flagged for further monitoring/auditing. While our framework is inspired by
health insurance fraud, it applies more broadly to instances of gaming where multiple agents are
gaming an ML-guided decision.

We evaluate the performance of causal effect estimators for gaming detection in a synthetic dataset.
Empirically, causal approaches rank the worst offenders higher than existing non-causal approaches
that screen based on payouts/randomly, as well as anomaly detection methods. We then verify in a
real-world U.S. Medicare claims dataset that causal effect estimation yields rankings correlated with
the prevalence of for-profit healthcare providers, a suspected driver of gaming [4, 16].

In summary: we 1) extend strategic classification to model differences in gaming behavior across
agents (Section 3), 2) prove that point-identifying an agents’ gaming parameter is impossible without
strong assumptions (Section 4), 3) show that, by recasting gaming detection as causal effect estimation,
one can recover a ranking of agents based on their gaming deterrence parameters (Section 4), 4)
demonstrate empirically that our framework identifies the worst offenders with fewer audits than
baselines (Section 5), and 5) show in a real-data case study that our approach yields rankings
correlated with suspected drivers of gaming (Section 5). Code to replicate our experiments will be
made publicly available at https://github.com/MLD3/gaming_detection.

2 Related works

Machine learning-based anomaly detection. Fraud detection is often framed as an unsupervised
anomaly/outlier detection problem [17, 18, 19, 20, 21, 22, 23]. Such approaches assume gamed
model inputs are outliers in some distribution. However, this assumption may be incorrect if gaming
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is common in the data, or if gaming results in only small changes to observed agent attributes. In
borrowing from strategic adaptation, we frame gaming as utility maximization, rather than making
distributional assumptions about gamed agent attributes.

Strategic classification & gaming in machine learning. A large body of work in strategic classi-
fication aims to design incentives to mitigate gaming/strategic behavior by agents. However, such
works assume that feature manipulations costs are known/can be estimated across agents, or are
identical [1, 24, 25, 26, 27, 28, 29, 30, 31]. In contrast, in our setting, feature manipulation costs are
unknown and may differ across agents, but exhibit some shared structure that facilitates comparisons
across agents. Shao et al. [32] assumes that agent gaming capacities may differ by placing bounds on
manipulation, which may be unrealistic. Closest to our work is that of Dong et al. [33], which also
assumes unknown and differing agent costs, but does not leverage similarities in gaming across agents.
Our work supplements the strategic classification literature by studying a related yet fundamentally
distinct problem: rather than designing incentives to mitigate strategic behavior, which is infeasible
under unknown manipulation costs, we leverage differences in costs across agents to identify agents
more likely to game.

3 Background & Problem Setup

We review strategic adaptation and extend it to model differences in gaming across agents.

What is strategic adaptation? Our work builds upon strategic classification [1]. Consider a pre-
existing model f : D 7→ R that maps agent attributes d ∈ D to a payout. An agent may leverage its
knowledge of f to change their attribute(s) d according to some function ∆:

∆(d) ≜ argmax
d̃∈D

R(d̃; f)− g(d̃, d) (1)

where R : D → R is the payout of changing d to d̃, and g : D×D → R+ is the cost of manipulating
d. When D ⊆ R, g is often assumed to be “separable;” i.e., for some function c, g(d̃, d) = c(d̃− d).
∆(·) describes how an agent manipulates d to obtain a higher payout from f . This behavior is
called strategic adaptation or gaming. For simplicity, we assume R = f ; i.e., the model f directly
determines the payout.

Modeling agent variation in gaming. To extend strategic adaptation to multiple agents, we add a
non-negative gaming deterrence parameter λp ∈ R+ to Eq. 1. Consider an observational dataset
Dp ≜ {(xi, di)}

Mp

i=1 of an agent p’s decisions di ∈ {0, 1} given some information xi ∈ X . For
simplicity, we assume di is binary, though the proposed framework generalizes to non-binary decisions
and arbitrary numbers of independent decisions. For example, a health insurance plan p chooses
whether to report that an enrollee has a diagnosis di given enrollee characteristics xi. Agent
assignment is mutually exclusive (e.g., individuals are enrolled in one health insurance plan).

If the agent knows that di will be used as input to a payout model, they may have an incentive to
increase di (without loss of generality) to obtain a higher payout. Let d̄ = 1

Mp

∑Mp

i=1 di, and suppose
each agent p chooses d̄ according to the following utility-maximization problem:

P (di = 1 | p) ≡ ∆p(d
∗
p) ≜ argmax

d̄∈[0,1]

R(d̄)− λpc(d̄− d∗p) (2)

where R : [0, 1]→ R, c : R→ R+, and d∗p is the ground truth value of d̄ given the xi seen by agent
p. Thus, ∆p(d

∗
p) is the gamed/observed decision rate of agent p in a population where the ground

truth decision rate is d∗p. Although d̄ ∈ [0, 1] since it is a proportion, our framework applies to d̄ on
arbitrary intervals. This formulation assumes that each xi is equally likely to be gamed, that xi are
truthfully observed, and that any difference between ∆p(d

∗
p) and d∗p is due to gaming.

We focus on the gaming deterrence parameter λp, which scales the cost of manipulation c(·). λp is
non-negative and represents an agent’s “aversion” to gaming. Lower values of λp mean that agent
p is more willing to game. Thus, identifying agents most willing to game means finding agents
with the lowest λp. We summarize multi-agent strategic adaptation in Figure 1. Next, we introduce
assumptions on the reward function R, cost function c, and ground truth d∗p.
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Assumption 1 (Shared rewards & costs). Reward (R) and cost (c) functions are shared across agents.
Sharing R encodes the assumption that all agents are reacting to the same payout model, while sharing
c across agents encodes the belief agents must take similarly-costly actions to manipulate features
(e.g., if insurance plans must follow/fraudulently report specific procedures to justify a diagnosis).
Many works in strategic classification implicitly make a similar assumption (e.g., [1, 34]).
Assumption 2 (Increasing rewards). The reward function R is strictly increasing in d̄.
Increasing rewards formalizes the agent’s incentive to perturb its decisions (i.e., inputs to the payout
model) from di = 0 to 1 in Eq. 2.
Assumption 3 (Cost convexity). The cost function c is strictly convex and minimized at 0 such that
c(0) = 0 and c′(0) = 0, and increases for all agents p for any d̄ ≥ d∗p.
One possible c is c(x) = x2. Strict convexity ensures a unique cost-minimizing action, and c(0) = 0
ensures that d∗p is ground truth, such that increasing d̄ incurs greater cost (e.g., Fig. 1, left).
Assumption 4 (Diminishing or linear returns). The reward function R is concave in di.
For example, R may be a log or affine function. Assumption 3 (strictly convex c) and 4 ensure that R
cannot grow fast enough to offset manipulation costs. Furthermore, due to Assumptions 2- 4:
Remark 1 (Gaming is utility-maximizing). Given any agent p and d∗p, we have that ∆p(d

∗
p) ≥ d∗p.

Equivalently, optimal gaming entails increasing di from the ground truth. Note that Assumptions 2- 4
are more general versions of assumptions placed on rewards/costs in the strategic classification
literature (e.g., [1, 33, 25]).
Assumption 5 (Non-strategic behavior is feasible). d∗p ∈ [0, 1] is a constant depending solely on xi.
Due to Assumption 5, ground truth d∗p may vary by agent due to differences in xi (e.g., health
insurance plans serve populations with varying levels of health).

4 Theoretical analysis: finding agents most likely to game

We aim to identify agents most likely to game a decision-making model, i.e., agents with the lowest
gaming parameters λp. Here, we prove that λp cannot be point-identified without further assumptions
(Section 4.1), but ranking λp is possible via causal effect estimation (Section 4.2). Detailed proofs
are in Appendix B.

4.1 Partial identification of the gaming parameter

Here, we show that given our assumptions, λp is only partially identifiable (cannot be uniquely
determined):
Proposition 1. Define R′(·) as dR

dd∗
p

and c′(·) as dc
dd∗

p
. For any agent p, given Assumptions 1- 4 and

an observed ∆p(d
∗
p),

λp ∈
[
R′(∆p(d

∗
p))

c′(∆p(d∗p))
,∞
)
, (3)

and the bound is sharp.

Intuitively, different values of the unknown d∗p yield different estimates of λp consistent with the
observed ∆p(d

∗
p). Thus, uncertainty in d∗p results in uncertainty in λp. Equivalently, point-identifying

λp requires perfect knowledge of d∗p. Thus, without further assumptions, λp is only partially
identifiable. The lower bound is attained for d∗p = 0 (all di = 1 are manipulated), while λp → ∞
as ∆p(d

∗
p) → d∗p (no manipulation). Intuitively, increases in λp further disincentivize increases to

∆p(d
∗
p), such that ∆p(d

∗
p) gets closer to d∗p.

A naïve approach to gaming detection would be to rank individuals using the above bound. To see
why this is problematic, consider an Agent 1 (λ1 = 10) and Agent 2 (λ2 = 30), and let R(x) = x
and c(x) = x2. Suppose Agent 1 is a health insurance plan serving a relatively healthy population
(d∗1 = 0.05), while Agent 2 serves a population with a higher burden of illness (d∗2 = 0.12). Via
Eq. 2, we have ∆1(d

∗
1) = 0.10, while ∆2(d

∗
2) ≈ 0.14. Substitution into Eq. 3 yields λ1 ≥ 5 and

λ2 ≥ 3.66, flipping the true ranking of λp. Thus, acting on this bound may incorrectly penalize
agents when a high ∆p(d

∗
p) is appropriate; e.g., insurance plans serving sicker populations.
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Figure 2: Left: Toy dataset with observed factual outcomes di(p) and di(p
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counterfactual outcomes. Right: Causal graph for gaming detection with confounders x, agent
indicator p, ground truth diagnosis d∗, and agent decision d.
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Figure 3: Causally-motivated gaming detection. Left: First, we impute counterfactual decisions for
each agent. Middle: The imputed counterfactuals yield average treatment effects (ATEs) across pairs
of agents. Right: Using ATE estimates to rank agents yields a ranking of the gaming parameter λp.
We show one direction of comparison across agents for simplicity. In practice, we impute decisions
for both directions of comparison and average (given blue agent’s observations, impute purple agent’s
decisions).

4.2 Identifying a ranking of the gaming parameter

Since we showed that point-identifying λp is impossible without further assumptions, we relax
gaming detection to a ranking problem. Intuitively, differences in agent behavior under similar
conditions may indicate different gaming capacities, from which the proposed approach follows.

Ranking λp by estimating counterfactuals. Recall that we aim to find agents with the lowest λp.
Thus, it suffices to rank agents by λp, which can be done as follows:
Theorem 1. Under Assumptions 1- 5, and ∆p′(d∗p) defined as

∆p′(d∗p) ≜ argmax
d̄∈[0,1]

R(d̄)− λp′c(d̄− d∗p), (4)

we have that ∆p(d
∗
p) < ∆p′(d∗p) if and only if λp > λp′ .

Theorem 1 tells us that estimation of ∆p(d
∗
p) and ∆p′(d∗p) can be used to rank λp vs. λp′ . Eq. 4

differs from Eq. 2: while R, c, and d∗p are the same, λp changes to λp′ . While subtle, the distinction
is key to gaming detection: ∆p′(d∗p) denotes what agent p′ would have done in a population with
ground truth d∗p, as opposed to what agent p′ actually did in their population (ground truth d∗p′).

To build a ranking strategy, first consider ranking two agents p and p′. Define Dp,p′ ≜ {(xi, di, pi) |
i = 1, . . . , n and pi ∈ {p, p′}}, where pi is an indicator for the agent that observed example i.
Following the Neyman-Rubin potential outcomes framework [35], let di(p) be the value of di if
pi was set to p (i.e. had agent p been compelled to make a decision). Such variables are called
counterfactuals. Figure 2 (left) shows a toy dataset with counterfactuals di(p), di(p′), where “?” are
unobserved decisions di. Dropping unobserved data, the average di(p) is ∆p(d

∗
p) by definition. Thus,

if di(p) and di(p
′) are fully observed, one could estimate ∆p(d

∗
p) and ∆p′(d∗p) as follows:

∆̂p(d
∗
p) =

1

np

∑
(xi,di,pi)∈Dp,p′

pi=p

di(p) ∆̂p′(d∗p) =
1

np

∑
(xi,di,pi)∈Dp,p′

pi=p

di(p
′) (5)
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a) Causally-motivated gaming detection.
Input: D = {(xi, di, pi)}Ni=1 and a list of P
agents p
Output: sorted list of P agents
τ̂ ← fitted causal effect estimator using D
T← empty P -by-P matrix
for all pi, pj where i < j do

T[i, j]← τ̂(pi, pj)
end for
Λ← sort p, using T to make comparisons
return Λ

b) Python-style pseudocode.
train_data, test_data = split(dataset)
model = fit_causal_estimator(train_data)
comparisons = {}
for p_i, p_j in agents where p_i != p_j:

# counterfactual est., plugging in agent IDs
agent_i_cf = model.predict(test_data, p_i)
agent_j_cf = model.predict(test_data, p_j)
comparisons[(p_i, p_j)] = agent_i_cf -

agent_j_cf

ranking = sort(agents, comparisons) # use the
comparisons dictionary as a lookup table

return ranking

Figure 4: Pseudocode for causally-motivated gaming detection. Causal effect estimators take pairs
of agents (p, p′) and their observations x(·) as inputs, and output the mean difference in predicted
decision rate.
where np is the number of observations by agent p, and use these estimates to rank λp as per Theo-
rem 1. However, only one of di(p) or di(p′) is ever observed. The need to estimate a counterfactual
(namely, ∆p′(d∗p)) suggests a causal inference approach, which proceeds assuming the following [36]:

Assumption 6 (Conditional exchangeability). For all i, di(pi) ⊥⊥ pi | xi, where di(pi) is the
potential outcome of di under agent pi.
Assumption 7 (Consistency). For all i, di(pi) = di.
Assumption 8 (Positivity/overlap). For any agent p and x ∈ X , 0 < P[p | x] < 1.
Via Assumptions 6- 8, we have that E[di(p) | xi] = E[di | xi, p] and E[di(p′) | xi] = E[di |
xi, p

′] [37]. Hence, the causal effect is identifiable. This estimand corresponds to a three-variable
causal graph, where xi are confounders, the agent indicator pi is a “treatment,” and the agent’s
decision di is the outcome (Fig. 2, right).1 We proceed by estimating the effect of “swapping” agents:

Corollary 1. Define τ(p, p′) ≜ Exi
[E[di(p) | xi]]−Exi

[E[di(p′) | xi]]. Then, given Assumptions 1-
8, τ(p, p′) > 0 if and only if λp < λp′ .

Since E[di(p) | xi] = E[di | xi, p], it is an unbiased estimator of ∆p(d
∗
p) by definition, and

substitution into Theorem 1 yields the result. Thus, one can rank λp by estimating the effect of
switching from agent p to p′ on the observed decision rate for all pairs of agents p, p′. Each effect
estimate is a pairwise comparison of agents, from which a ranking of λ(·) follows. We summarize
causally-motivated gaming detection in Fig. 3, with pseudocode in Fig. 4.

Obtaining a well-ordered ranking. Since we aim to rank λp, our chosen estimator should yield a
well-ordered ranking. Via Corollary 1, the oracle treatment effect τ suffices, but τ must generally be
estimated. We show that a “sufficiently” accurate estimate τ̂ also yields the desired result:
Proposition 2. Let τ(·) be the oracle treatment effect function as defined in Corollary 1, and τ̂ be its
sample estimate. Given Assumptions 1- 8, for any ε > 0, if sup |τ̂(p, p′)− τ(p, p′)| ≤ ε, then, for
all p, p′ such that min

p,p′
|τ(p, p′)| > ε, τ̂(p, p′) > 0 if and only if λp < λp′ .

The result is immediate: sufficiently low estimation error in τ̂ (i.e., ≤ ε) cannot “flip” any pairwise
rankings where τ > ε. Thus, any consistent estimate of τ yields (asymptotically) a well-ordering of
λp. We defer to past asymptotic analyses of causal effect estimation for further discussion [38, 39].

5 Empirical results & discussion

We aim to demonstrate that causal inference can be used for gaming detection. First, we discuss our
setup (Section 5.1). Then, we show in synthetic data (Section 5.2) that causal methods require fewer
audits than existing non-causal methods to catch the worst offenders. Finally, in real-world case study
(Section 5.3), we find that causal methods yield rankings correlated with suspected drivers of gaming.

1Note that, under the causal graph of Figure 2 (right), the non-identifiability of λp is immediate from the
d-separation properties of the graph; see Appendix B for further comment.
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5.1 Setup

We describe the datasets, evaluation method, and gaming detection methods under consideration.

Datasets. In real datasets, ground truth gaming rankings are often unavailable. Thus, we validate our
framework in a synthetic dataset. We hand-select 20 λp values (one per agent; see Appendix C.1 for
raw λp values) and simulate confounding by generating covariates from agent-specific Gaussians
with means µp ∈ R2. To control confounding strength, we set µp = g(log(λp)), where g is an
affine transformation such that the range of µp across agents equals a chosen range parameter
Rµ ∈ {0, 0.1, . . . , 1.0}. Smaller Rµ implies less confounding, since µ(·) varies less across agents.
We generate 500 observations x(i) ∈ R2 and ground-truth d∗(i) per agent via

x(i) ∼ N (µp(i) , σ2I2×2) d∗(i) ∼ Ber(α∗(i)); α∗(i) = σ(w⊤x(i) + b),

where w ∼ U(0, 1)2, such that increasing x increases α∗(i) (and thus P (d(i) = 1)), b is chosen such
that α∗(i) for the mean x is ≈ 5%, and σ2 = 1.2 We simulate gamed agent decisions d(i) as follows:

d(i) ∼ Ber(α(i)
p ); α(i)

p = argmax
d̃p∈[0,1]

log(d̃p)− λp(d̃p − d∗(i))2.

Recall that the decisions d(i) are also agent inputs to a payout model. We generate 10 datasets (each
N = 10, 000; 20 agents × 500 observations) for all 11 levels of confounding (as measured by the
range of means Rµ). Causal inference assumptions hold in the synthetic data: all confounders x(i)

are observed (Assump. 6), consistency holds by construction (Assump. 7), and overlap holds since all
x(i) | p are supported on R2 (Assump. 8). Full synthetic data generation details are in Appendix C.1.

To benchmark causal effect estimation in a more realistic setting, we apply causal methods to gaming
detection in U.S. Medicare claims. Medicare is the public health insurance system in the U.S. for
residents aged 65 and over. Since private insurance claims data is not widely available, we conduct
a gaming case study in healthcare providers. In Medicare, the U.S. government pays healthcare
providers on a per-service basis [40]. Thus, providers may be incentivized to label enrollees with as
many diagnoses as possible to secure extra payment from the government. We select a 0.2% sample
of all Medicare enrollees with a claim in 2018; i.e., those who utilized a service covered directly by
Medicare (N = 37, 893). We use demographic information and diagnoses in 2018 as covariates and
select the rate of uncomplicated diabetes diagnosis in 2019 as the outcome. Given differences in
healthcare policy and access across U.S. states, we pool data at the U.S. state level and treat each
state as an “agent.” Additional cohort details are in Appendix C.2.

Evaluating rankings. Given an observational dataset of the form {(xi, di, pi)}Ni=1, with covariates
xi, observed decisions di, and agent indicators pi, gaming detection algorithms output an ordinal
agent ranking in terms of the gaming parameter λp. We aim to measure the efficiency of a predicted
ranking given some level of resources committed by a decision-maker (i.e., # of agents audited).

Ground truth rankings are available in synthetic data. Thus, we measure the top-5 sensitivity at k (Sk),
the % of top-5 worst offenders in the predicted top-k, and the discounted cumulative gain (DCG) at
k, a weighted sum of ground-truth “relevance scores” for the top-k predicted agents, across audit
intensities k ∈ {1, . . . , 20}. For a K-agent dataset, we define the relevance score as K +1 minus the
ground-truth rank (e.g., true rank 1 = relevance K, true rank 2 = relevance K − 1, etc.). Concretely,
for ri defined as the ith ranked agent in a predicted ranking, and rank(·) as the function returning the
ground-truth ordinal rank with respect to λp, our ranking evaluation metrics are computed as follows:

Sk ≜
1

5

k∑
i=1

1[rank(ri) ≤ 5] DCGk ≜
k∑

i=1

K − rank(ri)
log2(i+ 1)

. (6)

Note that sensitivity is an all-or-nothing measure of audit quality given a fixed audit intensity k.
However, DCG rewards higher predicted rankings for top-k worst offenders, regardless of the absolute
ranking position. Furthermore, DCG weights decrease with predicted rank (Eq. 6), which prioritizes

2For ease of implementation, x(i) is generated conditioned on p(i). This remains consistent with the
causal DAG (Fig. 2, right), since the DAG factorizes as P (D | P,X)P (P | X)P (X), or equivalently,
P (D | P,X)P (X | P )P (P ), as in our data-generation process.
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Figure 5: Mean top-5 sensitivity (left) and DCG (center) across # of agents audited, and top-5
sensitivity with 7 audits (right) at mean range 0.9, with ±σ error. Causal methods improve over
non-causal baselines. ▽: naïve baselines. ◦: anomaly detectors. ×: causal effect estimators.

correctly ranking the worst offenders over correctly ranking agents unlikely to game. To summarize
audit efficiency across k, we also report area under the top-5 sensitivity curve (AUSC) across k.3

In contrast, ground truth gaming rankings are unavailable in the Medicare cohort. As an exploratory
analysis, we compare an estimated gaming ranking to 104 state-level healthcare statistics from
the 2003-2017 National Neighborhood Data Archive [41] and 2018 Medicare Provider of Service
files [42] relating to healthcare access and hospital information (e.g., ownership and size). We report
the top five statistics most positively and negatively correlated with our predicted rankings in terms of
Spearman rank-correlation. State-level summary statistics used are enumerated in Appendix C.2.

Models. To demonstrate the utility of causal effect estimation for gaming detection, we compare non-
causal baselines to causal effect estimators. Non-causal approaches include a payout-only ranking
(based on P (di = 1) per agent) and random ranking. We also compare to existing approaches
in anomaly detection, which do not make causal assumptions, but assume that gamed decisions
are outlier-like. We test k-nearest neighbor outlier detection (KNN) [17], empirical-cumulative-
distribution-based outlier detection (ECOD) [22], and deep isolation forests (DIF) [23]. These
methods use (xi, di) as inputs to an “anomaly score” model. We use average within-agent anomaly
scores as a ranking. We discuss other works in algorithmic anomaly/fraud detection in Appendix A.

We implement the following causal effect estimators. PSM fits a propensity score model to match
points in one agent’s population to its nearest neighbor in the other agent’s population with respect to
propensity score estimates [43]. The S-learner trains one outcome prediction model for all agents,
while the T-learner trains one model per agent [44]. DragonNet jointly models the outcome (one
prediction “head” per agent) and propensity score to control for confounding [45]. S+IPW fits
the S-learner with estimated sample weights that reweight the observed distribution to resemble an
unconfounded distribution (randomized treatment assignment) [43]. The R-learner fits an outcome
and propensity model, then regresses the residuals on one another to obtain a final unconfounded
estimator [39]. Hyperparameters for all baselines and causal effect estimators are in Appendix E.

Implementation details. We use neural networks for all modeling (causal effect estimators + DIF).
We use one-hot encoding for treatments (agent indicators). Matching across pairs of agents occurred
without replacement (one-to-one), dropping unmatched individuals. We use generalizations of
IPW and R-learners to multiple treatments, namely permutation weighting [46] and the structured
intervention network [47], respectively. We perform a 7:3 dataset train-test split, training all models
on the larger split. All rankings are computed on the test split. Early stopping is performed on a 20%
validation split randomly sampled from the training set. Full modeling and training details, including
the architecture and hyperparameters used, are in Appendix E.

5.2 Gaming detection in synthetic data

Causal effect estimators identify gaming more efficiently than non-causal baselines. Figure 5
shows the top-5 sensitivity and DCG of rankings produced by causal vs. non-causal gaming detection
approaches at high confounding (mean range: 0.9). Since the S-, T-learner, and DragonNet perform

3AUSC is similar to the area under the ROC curve (AUROC) with the top-k worst offenders defined as the
“positive class,” except that the x-axis is the # of audits rather than false positive rate. Unlike AUROC, random
performance is less than 0.5, but tends to 0.5 as the number of agents K → ∞ (Appendix B.6).
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Figure 6: Area under the sensitivity curve (AUSC) for causal vs. non-causal methods across levels of
confounding, with ±σ error. As confounding increases, a payout-only ranking degrades. Anomaly
detection performance does not vary across confounding strength, maintaining slightly better than
random rankings. Causal methods generally maintain higher mean AUSC than baselines across
confounding levels. ▽: naïve baselines. ◦: anomaly detectors. ×: causal effect estimators.

similarly (Appendix D.2), we show only DragonNet here. Since PSM underperforms due to challenges
with multi-treatment confounding control, we also defer results for PSM to Appendix D.2. Across
audit intensities, causal approaches outperform non-causal methods in terms of sensitivity (e.g., at 7
audits, Fig. 5, right; S+IPW: 0.860±0.135 vs. KNN: 0.520±0.215) and DCG (S+IPW: 56.1±5.11 vs.
KNN: 42.3±10.8).4 Trends are similar at other levels of confounding (Appendix D.1), though the
gain in ranking performance of causal approaches over non-causal methods diminish at lower levels
of confounding (Figure 7; S+IPW AUSC: 0.614±0.096 vs. KNN: 0.648±0.129, mean range 0.0).

0.0 0.2 0.4 0.6 0.8 1.0
Confounding strength (mean range)

0.6

0.8
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SC

S+IPW vs. KNN, AUSC ( )

S+IPW KNN

Figure 7: AUSC of S+IPW (causal) vs.
KNN (non-causal) across confounding
strength with ±σ error. The advantage
of S+IPW over KNN decreases as con-
founding diminishes.

A payout-only approach yields worse than random ranking
with sufficient confounding between covariates and agent
decisions (payout-only AUSC: 0.299±0.067 vs. random:
0.473±0.101, Figure 6, mean range 1.0; e.g., if healthier
patients are enrolled in more gaming-prone plans). Anomaly
detection methods (KNN, ECOD, DIF) are ill-suited for de-
tecting gaming in dense regions of covariate space by design,
while causal approaches would excel due to improved over-
lap. If outliers are more likely to be manipulated (e.g., if
populations with lower ground-truth d∗p are more likely to be
gamed), an anomaly detection method would identify gam-
ing in such points. Indeed, anomaly detectors empirically
outperform random ranking but lag causal methods. We
further discuss why anomaly detection methods underperform causal approaches in Appendix D.1.

Trends in ranking performance vary across causal effect estimators. DragonNet and the R-learner
degrade slightly as confounding increases (DragonNet AUSC: 0.755±0.096 → 0.696±0.083; R-
learner: 0.728±0.114→ 0.635±0.111; mean range 0.0→ 1.0), likely due to slightly worse overlap.
However, S+IPW improves as confounding increases (AUSC: 0.614±0.096→ 0.837±0.067; mean
range 0.0→ 1.0). This is likely since the oracle IPW weights deviate from a uniform weighting
as confounding increases. In such settings, estimation error in IPW weights may be less likely to
incorrectly up-weight points that an oracle propensity score would down-weight, and vice versa.
While such error would bias the pointwise treatment effect estimate, for the purposes of ranking,
causal effect estimators only need to correctly estimate the sign of the treatment effect. Thus, we
hypothesize that our ranking may be less affected by such errors in the propensity score estimate. We
leave formal analyses of the properties of IPW with respect to the sign of causal effect estimates to
future work. A sensitivity analysis of all causal approaches is in Appendix D.2.

Takeaways. In a synthetic dataset, causal effect estimation approaches identified gaming more
efficiently than non-causal baselines across levels of confounding. The empirical results provide
proof-of-concept for causal effect estimation as a gaming detection method.

5.3 Case study: Detecting upcoding in U.S. Medicare

As an exploratory analysis, we use the best-performing approach in the synthetic data (S+IPW)
analyze upcoding by U.S. state in U.S. Medicare. Table 1 shows the five state-level healthcare
statistics most positively and negatively correlated with gaming rankings predicted by S+IPW.

4We report ±σ error bars as in the figures.
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Table 1: Top 5 features most positively and negatively correlated with state gaming rankings predicted
by S+IPW, as measured by Spearman correlation. We report p-values given a null hypothesis of zero
correlation between predicted rankings and the statistic of interest. OP PT/SP: Outpatient physical
therapy and speech pathology. SNF: skilled nursing facility.

State-level healthcare system statistic Spearman corr. p-value

% of OP PT/SP providers that are for-profit 0.294 0.036
ratio of for-profit to non-profit hospitals 0.272 0.053
% of hospice providers that are for-profit 0.232 0.101

% providers that are ambulatory surgery centers 0.222 0.118
% of hospitals that are for-profit 0.222 0.118

Upcoding is correlated with for-profit provider prevalence. Four of the top five features most
positively associated with our predicted ranking reflect a greater state-level prevalence of for-profit
healthcare providers. This matches the intuition that for-profit providers may game more aggressively
due to stronger profit motives. Notably, the feature 2nd-most positively correlated with our rankings
(ratio of for-profit to non-profit hospitals) is a suspected driver of upcoding in Medicare [4, 16],
with the idea that competition from for-profit providers drives non-profit providers towards gaming.
Note that many of the correlations are not statistically significant, and unmeasured factors such as
healthcare quality could explain differences in diagnosis coding, rather than gaming. Despite the
limitations, causal effect estimation shows promise as a practical approach to gaming detection.

Takeaways. In an exploratory case study of gaming in U.S. Medicare, causal effect estimation yields
a ranking of U.S. states that positively correlates with the prevalence of for-profit healthcare providers,
matching domain expertise on suspected drivers of gaming.

6 Conclusion

We propose a causally-motivated framework for ranking agents by gaming propensity in the context
of strategic adaptation. We show that the gaming parameter is only partially identifiable, but a ranking
of a set of agents based on the gaming deterrence parameter is identifiable via causal inference. We
demonstrate the utility of causal effect estimation for gaming detection on synthetic data and a case
study of upcoding in Medicare.

Limitations & broader impact. We assume agents always increase di with respect to ground truth,
and that gaming explains all differences in agent behaviors, ignoring factors such as agent “quality”
(e.g., quality of care). Utility-maximizing behavior and conditional exchangeability are strong
assumptions, but are statistically unverifiable. Many works in game theory and causal inference share
these limitations. We caution that policies informed by our framework could reinforce imbalanced
power dynamics (i.e., are individual citizens [26] or more powerful entities gaming a model) via
extraneous or weaponized accusations of gaming, since not all entities have equal capacity to respond
to such claims. In particular, gaming by individuals may potentially reflect structural inequities
rather than inherently pathological behavior. To mitigate such risks, we suggest “shadowing” studies
(decisions visible, but not acted upon) alongside existing audit mechanisms before adoption.
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A Additional related works

Algorithmic anomaly/fraud detection. Our framework can be understood as an algorithmic audit-
ing method for fraud/anomaly detection. Many approaches assume that ground-truth fraud/gaming
labels are available, reducing gaming detection to supervised learning [48, 49, 50]). We do not
assume access to such labels. Unsupervised approaches for anomaly/fraud detection [18, 19, 20, 21]
generally assume that anomalies are outliers with respect to some distribution. Mixture-modeling
approaches similarly assume that fraudulent/non-fraudulent decisions correspond to distributions
learnable under restrictive parametric assumptions [51]. Instead of distributional assumptions, we
make behavioral assumptions about agents following strategic classification. Existing models of
agent behavior in the context of fraud detection make domain-specific assumptions about features
predictive of fraud [52], agent utility (e.g., constant penalties [53]), or access to audit labels [52]. We
generalize past work by making looser assumptions on agent utility and does not assume access to
auxiliary information (e.g., audit labels), and circumvents the need for ground-truth labels by making
assumptions about gaming.

B Omitted Proofs

Here, we provide detailed proofs for all theoretical results.
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B.1 Proposition 1

Proposition. Let R′ ≜ d
dd∗

p
and c′ ≜ d

dd∗
p

. For any agent p, given Assumptions 1- 4 and a fixed
observation of ∆p(d

∗
p),

λp ∈
[
R′(∆p(d

∗
p))

c′(∆p(d∗p))
,∞
)
. (7)

Proof. Fix some R, c satisfying assumptions Assumptions 1- 4 and an arbitrary ∆p(d
∗
p). Note that,

for all ∆p(d
∗
p) ̸= d∗p, we can write

λp =
R′(∆p(d

∗
p))

c′(∆p(d∗p)− d∗p)
. (8)

Note that this quantity is monotonic in d∗, since the strict convexity of c implies that c′ is strictly
increasing. Hence, we can substitute an upper and lower bound on d∗ to obtain our desired result.
First, since d∗ ∈ [0,∆p(d

∗
p))], we can substitute d∗ = 0 to reach

λp ≥
R′(∆p(d

∗
p))

c′(∆p(d∗p))
. (9)

Before considering the case where d∗ = ∆p(d
∗
p)), we note that a direct substitution yields

c′(∆p(d
∗
p) − ∆p(d

∗
p)) = c′(0) = 0, since c is strictly convex and minimized at 0 via Assump-

tion 3. However, we can use a limiting argument since c is differentiable and therefore continuous:

lim
d∗→∆p(d∗

p)
−
λp = lim

d∗→∆p(d∗
p)

−

R′(∆p(d
∗
p))

c′(∆p(d∗p)− d∗)
. (10)

To evaluate the limit, we treat R′ as a positive constant (via Assumption 2) and note that the limit

lim
d∗→∆p(d∗

p)
−
c′(∆p(d

∗
p)− d∗) = 0, (11)

from which we conclude lim
d∗→∆p(d∗

p)
−

= ∞. Combining with the lower bound on λp yields the

desired bounds.

A causal DAG-based perspective on non-identifiability of λp. In the context of the causal graph
of strategic adaptation (Figure 2, right), the non-identifiability of λp is immediate. Since it is a
proxy for the treatment effect of plan (p) on reported diagnosis rate (d), without accounting for
x and d∗, conditional exchangeability (Assumption 6) does not hold. The utility-maximization
formulation of gaming borrowed from strategic classification provides additional information not
encoded in the causal graph. Namely, we have that R′(∆p(d

∗
p))/c

′(∆p(d
∗
p)− d∗p) is monotonic in d∗p

and d∗p ∈ [0,∆p(d
∗
p)], provided that R and c satisfy Assumptions 1- 4. These observations allow us

to further bound the range of λp.

B.2 Theorem 1

Theorem. Define ∆p′(d∗p) as

∆p′(d∗p) ≜ argmax
d̄∈[0,1]

R(d̄)− λp′c(d̄− d∗p) (12)

Then, given Assumptions 1- 4, ∆p(d
∗
p) < ∆p′(d∗p) if and only if λp > λp′ .

Proof. For all portions of the proof, let R′ ≜ d
dd∗

p
and c ≜ d

dd∗
p

.
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( =⇒ ) We have the simultaneous first-order conditions

R′(∆p(d
∗
p))− λpc

′(∆p(d
∗
p)− d∗) = R′(∆p′(d∗p))− λp′c′(∆p′(d∗p)− d∗) (13)

⇐⇒ R′(∆p(d
∗
p))−R′(∆p′(d∗p))︸ ︷︷ ︸
:=C0≥0

−λpc
′(∆p(d

∗
p)− d∗) = −λp′c′(∆p′(d∗p)− d∗) (14)

⇐⇒ λpc
′(∆p(d

∗
p)− d∗)− C = λp′c′(∆p′(d∗p)− d∗) (15)

⇐⇒ λp = λp′ ·
c′(∆p′(d∗p)− d∗) + C

c′(∆p(d∗p)− d∗)︸ ︷︷ ︸
C1>1

> λp′ , (16)

and hence λp > λp′ as desired. Note that C0 ≥ 0 as per Assumption 2, and C1 > 1 as per our
assumption that ∆p(d

∗
p) < ∆p′(d∗p), from which we can conclude c′(∆p′(d∗p)− d∗) > c′(∆p(d

∗
p)−

d∗), because the strict convexity of c implies that c′ strictly increases (Assumption 3).

(⇐= ) Pick any λp′ < λp and fix some d∗. By contradiction; suppose ∆p(d
∗
p) ≥ ∆p′(d∗p) as well.

Then:

R′(∆p(d
∗
p))− λpc

′(∆p(d
∗
p)− d∗) = R′(∆p′(d∗p))− λp′c′(∆p′(d∗p)− d∗) (17)

⇐⇒ R′(∆p(d
∗
p))−R′(∆p′(d∗p)) = λpc

′(∆p(d
∗
p)− d∗)− λp′c′(∆p′(d∗p)− d∗). (18)

Now, note that R′(∆p(d
∗
p))−R′(∆p′(d∗p)) ≤ 0, since ∆p(d

∗
p) ≥ ∆p′(d∗p) by assumption and R′ is

non-increasing in its argument. Furthermore, we can write

λpc
′(∆p(d

∗
p)− d∗)−λp′c′(∆p′(d∗p)− d∗) > λp′(c′(∆p(d

∗
p)− d∗)− c′(∆p′(d∗p)− d∗)) > 0, (19)

where the first inequality is due to λp′ < λp and factoring, and the second inequality is since
c′(∆p(d

∗
p)− d∗)− c′(∆p′(d∗p)− d∗) > 0 (via Assumption 3) and λ(·) > 0 (by definition). Returning

to Eq. 18, we can write

0 ≥ R′(∆p(d
∗
p))−R′(∆p′(d∗p)) = λp′c′(∆p′(d∗p)− d∗) > 0 (20)

which is a contradiction (0 ̸> 0). Thus, λp′ < λp implies ∆p(d
∗
p) < ∆p′(d∗p) as desired.

Potential extensions to upcoding detection. With stronger assumptions, a weaker form of upcoding
detection, which is stronger than ranking, is possible:
Assumption 9 (Known cost and reward derivatives). R′ and c′ can be evaluated at arbitrary points.

Assumption 10 (Uncertainty in d∗p is bounded). Lower and upper bounds on d∗p are possible to
obtain.

Then, define the following:
Definition 1 (ε-gaming). For ε > 0, an agent p is ε-gaming if ∆p(d

∗
p)− d∗p > ε.

In other words, we can define a threshold based on some ε tolerance in deviations from d∗p for
detecting gaming. Now, recall that

λp =
R′(∆p(d

∗
p))

c′(∆p(d∗p)− d∗p)
, (21)

which is non-increasing in ∆p(d
∗
p) due to the concavity of R and strict convexity of c. Thus,

substituting, we could define an agent-specific threshold

λ∗(p) =
R′(ε+ d∗p)

c′(ε)
, (22)

and if some procedure for estimating λp yields an estimate λ̂p < λ∗(p), we conclude that the agent is
ε-gaming, while λ̂p > λ∗(p) rules out gaming.

λ∗(p) =
R′(ε+ d∗p)

c′(ε)
, (23)
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However, d∗p is still unknown. Suppose that, we can bound d∗p ∈ [dp, dp] with probability 1− δ: (e.g.,
via a parametric binomial proportion confidence interval about some estimate of d∗p):

λ∗(p) ∈

[
R′(ε+ d∗p)

c′(ε)
,
R′(ε+ d∗p)

c′(ε)

]
, (24)

and abbreviate these bounds to λ∗(p) ∈ [λ∗(p; ε), λ
∗
(p; ε)]. We can use the same bounds on d∗p to

produce a range of estimates for λp:

λ̂p ∈

[
R′(∆p(d

∗
p))

c′(∆p(d∗p)− d
∗
p)
,

R′(∆p(d
∗
p))

c′(∆p(d∗p)− d∗p)

]
, (25)

and abbreviate these bounds to λ̂p ∈ [λ̂p, λ̂p]. Then, we can compare the intervals for λ∗(p; ε) and
λ̂p as follows:

• If λ̂p < λ∗(p; ε), then agent p is ε-gaming with probability 1− δ.

• If λ̂p > λ
∗
(p; ε), then we can rule out that agent p is ε-gaming with probability 1− δ.

• Otherwise, λ̂p ∈ [λ̂p, λ̂p]∩ [λ∗(p; ε), λ
∗
(p; ε)] is non-empty, and we cannot definitively rule

out or prove the existence of ε-gaming.

However, this algorithm may be of purely technical interest: it is doubtful that the requisite assump-
tions are satisfied in our motivating setting (upcoding detection), especially Assumption 9, and it
is similarly unclear whether such assumptions apply in other settings. In addition, if agents game
similarly (i.e., have similar values of λp), it may be difficult to rule out/prove ε-gaming for the vast
majority of agents.

B.3 Corollary 1

Corollary. Define τ(p, p′) as above. Then, given Assumptions 1- 8, τ(p, p′) > 0 if and only if
λp < λp′ .

Proof. It is sufficient to show that τ(p, p′) > 0 if and only if ∆p(d
∗
p) < ∆p′(d∗p), from which

Theorem 1 yields the desired result. We can do so by showing (without loss of generality) that
E[E[di | p, xi]] is an unbiased estimate of ∆p(d

∗
p) (and the case for ∆p′(d∗p) proceeds symmetrically).

Since ∆p(d
∗
p) is equivalent to P[di = 1 | p] (Eq. 2), the result is immediate:

E[E[di | p, xi]] = E[di | p] = P[di = 1 | p] = ∆p(d
∗
p). (26)

B.4 Proposition 2

Proposition. Let τ(·) be the oracle treatment effect function, and τ̂ be some sample estimate of τ .
Given Assumptions 1- 8, for any ε > 0, if sup |τ̂(p, p′)− τ(p, p′)| ≤ ε, then, for all p, p′ such that
inf
p,p′
|τ(p, p′)| > ε, τ̂(p, p) > 0 if and only if λp < λp′ .

Proof. Choose τ, τ̂ , and some arbitrary ε as specified in the theorem statement. It suffices to show
that for all p, p′ such that inf

p,p′
|τ(p, p′)| > ε, it holds that τ̂(p, p′) > 0 if and only if τ(p, p′) > 0.

( =⇒ ) By contradiction; suppose that τ̂(p, p′) > 0 but τ(p, p′) < 0. Then, by assumption,
τ(p, p′) < −ε. But sup |τ̂(p, p′) − τ(p, p′)| ≤ ε, so τ̂(p, p′) < 0, yielding a contradiction. Thus,
τ̂(p, p′) > 0 =⇒ τ(p, p′) > 0. The reverse direction ( ⇐= ) proceeds identically. Thus, the
proposition is true.
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Connections to robustness to non-rational actors. We assume throughout that agents behave
rationally; i.e., always perfectly maximize the utility function given by Eq. 2. However, the rational
actor assumption may not always hold; e.g., if agents do not have the resources to carry out the
resource maximizing action, or incorrectly estimate their costs. The former is particularly salient
for our motivating problem of Medicare upcoding, in which representatives of certain plans may
shedule a home visit with a healthcare professional to generate diagnosis codes [54]—a potentially
resource-intensive process. Our ranking formulation can afford some robustness to violations of the
rational actor assumption:
Remark 2 (Robustness to bounded rationality violations). Let ∆p(d

∗
p) be the utility-maximizing

action, and let ∆̃p(d
∗
p) be an agent’s observed action, such that |∆p(d

∗
p)− ∆̃p(d

∗
p)| < ε1/2 for some

ε1 > 0. Let τ̃(p, p) be some sample estimate of τ , fitted via ∆̃(·). Then:

|τ̂(p, p′)− τ̃(p, p′)| = |(∆p(d
∗
p)− ∆̃p(d

∗
p))− (∆p′(d∗p)− ∆̃p′(d∗p))| ≤ ε1. (27)

Then, if sup |τ̂(p, p′)− τ(p, p′)| ≤ ε2 such that ε ≜ ε1 + ε2, we can apply Proposition 2 directly to
conclude that τ̂(p, p′) > 0 if and only if λp < λp′ .

Intuitively, violations of the rational actor assumption are another source of noise in the estimation of
τ . If the noise due to rationality violations plus noise due to standard estimation error are low, then
no rankings are flipped, as desired.

B.5 Identifiability result

For completeness, we show the derivation of the standard causal effect identifiability result for our
problem setting (i.e., as in [37]). We note that this is a direct application of a known result in the
literature.
Proposition. Given Assumptions 6- 8, E[di(p) | xi] = E[di | xi, p] and E[di(p′) | xi] = E[di |
xi, p

′].

Proof. We show that E[di(p) | xi] = E[di | xi, p]; the case for E[di(p′) | xi] proceeds identically.
We can write

E[di(p) | xi] = E[di(p) | xi, p] = E[di | xi, p] (28)

where the first equality is an application of conditional exchangeability (Assumption 6), and the
second is an application of consistency (Assumption 7). Positivity (Assumption 8) ensures that the
conditional expectations are well-defined.

B.6 What is the expected AUSC?

For completeness, we also analyze the AUSC metric and provide a closed-form expression for its
expected value under a random ranking. First, consider a population of K ∈ N agents, where we are
interested in top-k sensitivity for some k ∈ {1, . . . ,K}. Suppose that we conduct m random audits,
for some m ∈ {1, . . . ,K}.
The number of ground truth top-k agents that are in the set of m audited agents can be modeled as a
hypergeometric random variable nm ∼ Hyp(k,K,m), which is a variable describing the number of
“successes” observed by a random draw from a population of K objects with k “success states” in m
draws without replacement. By standard properties of the hypergeometric distribution, we know that
E[nk] = km/K. Thus, by linearity of expectation, the average (across audit intensities m) number
of agents identified by random auditing is given by

1

K

K∑
m=1

E[nm] =
k

K2
· K(K − 1)

2
=

k(K − 1)

2K
. (29)

We divide the result by k to obtain a proportion of the top-k identified (as used in the definition of
top-k sensitivity), which yields

1

2
· K − 1

K
. (30)

For a finite number of agents, this is bounded above by 0.5, but approaches 0.5 as K → ∞ (a
population of infinite agents).
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C Data Processing

C.1 Fully synthetic data

Overview. Our general fully synthetic data-generation pipeline is as follows. First, for each agent,
we draw some value of µp ∈ R2. We draw individual observations x(i) ∈ R2 for each agent from a
Gaussian with mean µp and some fixed variance σ2. Given the x(i), we simulate a “ground-truth”
decision d∗(i). Note that d∗(i) represents the ground truth decision rate. Then, for each agent p, we
simulate a “gamed” (i.e., strategically perturbed) version of d(i) via a version of the agent utility
function in Eq. 2. We now formally describe the data-generation process.

Generating a “population” for each agent. To generate a “population” upon which each agent
makes decisions, we randomly draw a mean vector specifying a Gaussian distribution for each agent.
Given P agents, the mean depends on λp as follows:

µp = Rµ ·

(
λ̃p −minp′ λ̃p

maxp′ λ̃p −minp′ λ̃p

)
+ b; λ̃p = log(λp), λ̄ =

1

P

P∑
i=1

λ̃p, (31)

where a > 0 is a parameter controlling the range of agent-specific means, and b ∈ R is some constnat
offset. In other words, we log-transform the λp values, then apply min-max scaling and a constant
shift. This design allows us to control the level of confounding in the synthetic data by changing Rµ.
We use µp to generate populations for each agent as described below.

Concretely, we consider λ(·) ∈ [0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3] (20 agents), and set b = −1. In practice,
this means that µp ∈ [−1, Rµ − 1]. We manually chose λ(·) values to set the difficulty of ranking
agents by such that a payout-only approach would succeed under low confounding, but fail under
high levels of confounding.

Generating ground-truth and gamed decisions. The covariates x(i) and ground-truth decisions
d∗(i) are drawn as per

x(i) ∼ N (µp(i) , σ2I2×2)

d∗(i) ∼ Ber(α∗(i)); α∗(i) = σ(w⊤x(i) + bd),

where µ(·) is generated for each agent p(i) as described previously, w is a randomly generated positive
vector, and bd ∈ R is some offset.

The p(i)s are assigned deterministically; i.e., we sequentially draw a fixed number of x(i) from
each agent-specific distribution and concatenate the results. For realism, inspired by the health
insurance setting, and the fact that diagnosis rates for most conditions are relatively low, we set bd to
logit(0.05)− Ê[w⊤x] such that α∗(i) is relatively low, where Ê[·] denotes the sample mean.

Lastly, we simulate gamed agent decisions d(i) by solving a per-agent utility maximization problem:

d(i) ∼ Ber(α(i)
p ); α(i)

p = argmax
d̃p∈[0,1]

log(d̃p)− λp(d̃p − d∗(i))2.

Implementation details. All randomness is seeded once at the start of the entire data-generation
process.

C.2 Medicare cohort

We select a 0.2% pseudo-random sample of all U.S. Medicare beneficiaries using the last characters
of encrypted beneficiary IDs for inclusion in the cohort. As covariates, we choose age, racial category,
biological sex, and diagnosis code categories (defined using the 2018 version of the “Hierarchical
Condition Category” [HCC] schema released by the Center for Medicare Services). This yields a
total of 97 features.

We exclude enrollees who did not generate any claims (no healthcare utilization; i.e., zero cost as
recorded by Medicare), those not located in the 50 U.S. states and the District of Columbia, as well
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Figure 8: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.0,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.

as dual-eligible beneficiaries. Dual-eligibility refers to individuals simultaneously eligible for U.S.
Medicare and U.S. Medicaid. While eligibility for Medicare is primarily based on age, eligibility
for Medicaid is primarily based on disability status. Dual-eligible beneficiaries are excluded since
the U.S. government uses a different payout model for dual-eligible vs. non-dual-eligible enrollees,
potentially violating Assumption 1 (shared rewards), since agents may not be reacting to the same
payout model for all enrollees.

Licensing. Our cohort is drawn from a 20% sample of all U.S. Medicare beneficiaries provided to
the authors under a data usage agreement with the Center for Medicare & Medicaid Services.

State-level healthcare statistics. We use a mix of raw and engineered features from the CMS
(Center for Medicare & Medicaid Services) Provider of Service file (license: Public Use File) [42]5

and the National Neighborhood Data Archive (NANDA; CC-BY 4.0) [41]. In NANDA, data is already
aggregated at the state level (including the District of Columbia). We keep statistics pertaining to
per-capita or per-sq. mi. healthcare provider density (50 features), filtering to providers with non-zero
sales. From the CMS Provider of Service file, data is reported at the provider level. First, we filter
out providers ineligible for Medicare participation, and providers that are no longer active. We
then manually code ownership information following the provided data dictionaries (for-profit vs.
non-profit vs. publicly owned). Next, we compute at the state level the prevalence of for-profit,
non-profit, and publicly-owned providers of each type (as defined by CMS) by state, as well as the
ratio of for-profit to non-profit providers. Additionally, we extract the average per-hospital bed count,
physician count, medical school affiliation rate, and compliance rate as certified by CMS, for a total of
54 features. All aggregations for the Provider of Service file are unweighted (i.e., all hospitals/other
healthcare facilities contribute equally). This yields a total of 104 state-level health indicators.

We report the statistics derived from the provider of service file (Table 2) and NANDA (Table 3), with
summary statistics across states. Summary statistics are computed excluding infinite and NaN values
(i.e., ratios of 0/0 or 1/0). When computing correlations, we exclude states with NaN values for that
feature (i.e., ratio of 0/0). Proportions of publicly-owned, non-profit, and for-profit providers do not
sum to 1, because providers reporting “unknown” or “other” ownership are excluded. For further
information on the feature definitions, consult the data dictionaries for the provider of service6 and
NANDA7 files.

D Supplementary results

D.1 Causal vs. non-causal approaches, all audit thresholds & all levels of confounding

We show plots with the top-5 sensitivity and DCG at all levels of confounding evaluated, as
measured by the mean range Rµ (i.e., Rµ ≜ max µp − min µp across agents). We choose
Rµ ∈ {0, 0.1, . . . , 1.0}. For convenience, we provide an index of results:

5Full information on Public Use File licensing as defined by CMS is here: https://www.cms.gov/
research-statistics-data-and-systems/files-for-order/nonidentifiabledatafiles

6https://www.nber.org/research/data/provider-services-files
7https://www.openicpsr.org/openicpsr/project/120907/version/V3/view
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Feature name Mean±s.d.
bed count 95.125±27.826

% affiliated with a medical school 3.385± 0.350
# of personnel 87.182±47.477

% non-compliant 0.115±0.074
% of providers that are non-profit hospitals 0.055±0.030
% of providers that are for-profit hospitals 0.024± 0.015

% of providers that are publicly-owned hospitals 0.028±0.027
% of providers that are non-profit skilled nursing facilities 0.069±0.046
% of providers that are for-profit skilled nursing facilities 0.171±0.068

% of providers that are publicly-owned skilled nursing facilities 0.020±0.021
% of providers that are non-profit home health agencies 0.033±0.018
% of providers that are for-profit home health agencies 0.104±0.075

% of providers that are publicly-owned home health agencies 0.008±0.010
% of providers that are non-profit OP PT/SP providers 0.005±0.010
% of providers that are for-profit OP PT/SP providers 0.025±0.018

% of providers that are publicly-owned OP PT/SP providers 0.001±0.001
% of providers that are non-profit end-stage renal disease facilities 0.014±0.012
% of providers that are for-profit end-stage renal disease facilities 0.096±0.042

% of providers that are publicly-owned end-stage renal disease facilities 0.001±0.002
% of providers that are non-profit ICF/IDs 0.041±0.052
% of providers that are for-profit ICF/IDs 0.025±0.050

% of providers that are publicly-owned ICF/IDs 0.005±0.007
% of providers that are non-profit rural health clinics 0.044±0.044
% of providers that are for-profit rural health clinics 0.024±0.028

% of providers that are publicly-owned rural health clinics 0.014±0.020
% of providers that are non-profit ambulatory surgery centers 0.004±0.005
% of providers that are for-profit ambulatory surgery centers 0.084±0.061

% of providers that are publicly-owned ambulatory surgery centers 0.002±0.004
% of providers that are non-profit hospice care facilities 0.020±0.012
% of providers that are for-profit hospice care facilities 0.039±0.033

% of providers that are publicly-owned hospice care facilities 0.002±0.004
% of providers that are non-profit 0.285±0.139
% of providers that are for-profit 0.592±0.154

% of providers that are publicly-owned 0.081±0.066
% of urbanized population 0.679±0.228

% of providers that are ambulatory surgery centers 0.091±0.064
% of providers that are end-stage renal disease facilities 0.111±0.040

% of providers that are home health agencies 0.145±0.069
% of providers that are hospitals 0.118±0.038

% of providers that are hospice care facilities 0.070±0.035
% of providers that are ICF/IDs 0.073±0.088

% of providers that are OP PT/SP providers 0.007±0.009
% of providers that are rural health clinics 0.082±0.067

% of providers that are skilled nursing facilities 0.261±0.073
ratio of for-profit to non-profit providers 2.838±2.024
ratio of for-profit to non-profit hospitals 0.730±0.955

ratio of for-profit to non-profit skilled nursing facilities 3.633±2.387
ratio of for-profit to non-profit home health agencies 5.135±6.020
ratio of for-profit to non-profit OP PT/SP providers 10.149∗±10.108

ratio of for-profit to non-profit end-stage renal disease facilities 15.905∗±18.546
ratio of for-profit to non-profit ICF/IDs 1.074∗±1.969

ratio of for-profit to non-profit rural health clinics 0.936±1.380
ratio of for-profit to non-profit ambulatory surgery centers 32.826∗±30.949

ratio of for-profit to non-profit hospice care facilities 3.989±6.797
Table 2: Features chosen for analysis derived from the provider of service file, with mean and standard
deviation across states. S.d.: standard deviation. OP PT/SP: outpatient physical therapy and speech
pathology. ICF/ID: intermediate care facility for individuals with intellectual disability. ∗: invalid
(1/0 or 0/0) ratios dropped.
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Feature name Mean±s.d.
ambulatory health care specialists per 1000 people 4.429±2.745

ambulatory health care specialists per sq. mi. 15.480±16.928
physicians per 1000 people 1.753±1.196

physicians per sq. mi. 6.477±7.593
physicians (excluding mental health) per 1000 people 1.656±1.090

physicians (excluding mental health) per sq. mi. 6.137±7.195
mental health physicians per 1000 0.096±0.112

mental health physicians per sq. mi. 0.340±0.412
dentists per 1000 people 0.639±0.242

dentists per sq. mi. 2.553±2.945
all other health practitioners (besides the above) per 1000 people 1.483±1.039

all other health practitioners (besides the above) per sq. mi. 4.949±5.264
chiropractors per 1000 people 0.282±0.257

chiropractors per sq. mi. 0.840±0.999
optometrists per 1000 people 0.100±0.026

optometrists per sq. mi. 0.307±0.240
non-physician mental health practitioners per 1000 0.176±0.390

non-physician mental health practitioners per square 0.687±0.929
P/O/ST and audiologists per 1000 people 0.133±0.054

P/O/ST and audiologists per sq. mi. 0.474±0.657
other health practitioners (besides the above) per 1000 people 0.792±0.610

other health practitioners (besides the above) per sq. mi. 2.640±2.742
outpatient care centers per 1000 people 0.181±0.133

outpatient care centers per sq. mi. 0.556±0.516
diagnostic labs per 1000 people 0.075±0.114

diagnostic labs per sq. mi. 0.229±0.230
home health services per 1000 people 0.173±0.112

home health services per sq. mi. 0.517±0.441
other ambulatory care services (besides the above) per 1000 people 0.125±0.327

other ambulatory care services (besides the above) per sq. mi. 0.198±0.176
all nursing and residential care facilities per 1000 people 0.334±0.324

all nursing and residential care facilities per sq. mi. 0.836±0.650
nursing care facilities per 1000 people 0.224±0.330

nursing care facilities per sq. mi. 0.473±0.308
residential IDD care facilities per 1000 people 0.026±0.014

residential IDD care facilities per sq. mi. 0.102±0.174
inpatient facilities for care of individuals with IDDs per 1000 people 0.012±0.010

inpatient facilities for care of individuals with IDDs per sq. mi. 0.039±0.068
inpatient facilities providing MHSA care per 1000 people 0.014±0.007

inpatient facilities providing MHSA care per sq. mi. 0.063±0.109
continuing care and assisted living facilities per 1000 people 0.023±0.011

continuing care and assisted living per sq. mi. 0.070±0.062
other residential care facilities (besides the above) per 1000 people 0.061±0.031

other residential care facilities (besides the above) per sq. mi. 0.191±0.179
pharmacies and drug stores per 1000 people 0.314±0.669

pharmacies and drug stores per sq. mi. 0.853±1.336
optical goods stores per 1000 people 0.076±0.025

optical goods stores per sq. mi. 0.282±0.360
misc. other health and personal care stores per 1000 people 0.054±0.014

misc. other health and personal care stores per sq. mi. 0.149±0.090
Table 3: Features chosen for analysis derived from NANDA, with mean and standard deviation
across states. All chosen summary statistics are for providers with > $0 U.S. dollars in sales. S.d.:
standard deviation. Sq. mi.: square mile. P/O/ST: physical, occupational, and speech therapists. IDD:
intellectual and developmental disabilities. MHSA: mental health and substance abuse.

22



2 4 6 8 10 12 14 16 18
# of agents audited

0.0

0.5

1.0

To
p-

5 
se

ns
.

Top-5 sensitivity ( )

2 4 6 8 10 12 14 16 18
# of agents audited

0

25

50

75

D
C

G

Discounted cumulative gain (DCG, )
Ranking performance across auditing thresholds

Random Payout-only ECOD DIF KNN DragonNet R-learner S+IPW

Figure 9: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.1,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 10: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.2,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 11: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.3,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 12: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.4,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.

• Rµ = 0.0: Figure 8
• Rµ = 0.1: Figure 9
• Rµ = 0.2: Figure 10
• Rµ = 0.3: Figure 11
• Rµ = 0.4: Figure 12
• Rµ = 0.5: Figure 13
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Figure 13: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.5,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 14: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.6,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 15: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.7,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 16: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.8,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.

• Rµ = 0.6: Figure 14

• Rµ = 0.7: Figure 15

• Rµ = 0.8: Figure 16

• Rµ = 0.9: Figure 17

• Rµ = 1.0: Figure 18
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Figure 17: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 0.9,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 18: Mean top-5 sensitivity (left) and DCG (right) across # of agents audited at mean range 1.0,
with ±σ error. ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 19: Area under the sensitivity curve (AUSC) for all methods tested across levels of confounding
(mean range Rµ ≤ 0.5). ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.
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Figure 20: Area under the sensitivity curve (AUSC) for all methods tested across levels of confounding
(mean range Rµ > 0.5). ▽: naïve baseline. ◦: anomaly detection method. ×: causal effect estimator.

We summarize the main trends for non-causal approaches and defer discussion of causal methods
to the sensitivity analysis of all causal effect estimators. For convenience, we also plot the AUSC
for all approaches across levels of confounding in Figures 19 (Rµ ≤ 0.5) and 20 (Rµ > 0.5). For
readability, in contrast to our other figures, causal effect estimators are marked with “◦” instead
of “×”.

The payout-only approach can degrade to worse-than-random ranking due to confounding.
The random auditing method performs similarly across all levels of confounding, as expected.
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However, as confounding increases, the payout-only ranking degrades toward random, then worse
than random. The latter can occur if confounding is so strong that the relationship between gaming
and observed diagnosis rates flips; e.g., if (in the health insurance setting) very dishonest plans tend
to serve relatively healthy populations compared to more gaming-averse plans.

In the synthetic dataset, anomaly detection methods use the variance of the observed decision
(V[di]) as a gaming signature. Most anomaly detection methods perform near-random, or slightly
better than random. While this is due to the properties of the synthetic dataset, the results highlight
potentially interesting characteristics of anomaly detection methods for gaming detection. Recall
that the anomaly detection methods take covariates and agent decisions (xi, di) as input. V[xi] is
identical across agents by design, and all agents see the same number of observations. However,
V[di] may vary across agents. Thus, KNN uses V[di] as a signal of gaming, which has utility under
low confounding, but is less useful as confounding increases.

To see this, recall that di is a binary decision, and let pd = P (di = 1) for some agent. V[di] is
proportional to pd · (1− pd), and is concave in pd with maximizer pd = 0.5. Since P (di) is generally
low in simulation (i.e.,≪ 0.5), agents with higher observed P (di) rates will generally have higher
V[di] as well, yielding a higher anomaly score. Under no confounding, these are precisely the agents
that are gaming more. Indeed, KNN performs slightly better than random, but its advantage over
random performance diminishes slightly with confounding as the utility of V[di] as a signature
for gaming. However, even at low confounding, KNN and related anomaly detection methods are
inherently unable to detect gaming in non-outlier points, which occur in denser regions of covariate
space. In these regions, causal methods enjoy an advantage over anomaly detection approaches due
to improved overlap (Assumption 8). Thus, KNN does not exceed the ranking performance of the
best causal methods. Note that this argument assumes that V[xi] is similar across agents, which holds
in the synthetic dataset.

More advanced anomaly detection methods can also achieve slightly better than random performance
(e.g., DIF), but since these approaches transform the covariate space in highly non-linear ways (e.g.,
via random projections as in DIF, or via feature-wise CDFs as in ECOD), they may destroy outlier
information useful for gaming detection. Ultimately, anomaly detection methods have inherently
limited utility for gaming detection, since some gamed decisions may appear distributionally close to
other gamed decisions.

D.2 Sensitivity analysis of causal effect estimators

2 4 6 8 10 12 14 16 18
# of agents audited

0.0

0.5

1.0

To
p-

5 
se

ns
.

Top-5 sensitivity ( )

2 4 6 8 10 12 14 16 18
# of agents audited

20

40

60

80

D
C

G

Discounted cumulative gain (DCG, )
Ranking performance across auditing thresholds

Causal effect estimator
S-learner DragonNet T-learner R-learner S+IPW PSM Random Payout-only

Figure 21: Sensitivity analysis of all causal methods tested, mean range 0.0. ▽: naïve baseline. ◦:
causal effect estimator.

We show plots with the top-5 sensitivity and DCG at all levels of confounding evaluated (as measured
by the mean range Rµ ∈ {0, 0.1, . . . , 1.0}) for causal effect estimators only, plus random and
payout-only methods for comparison. An index of figures follows:

• Figure 21: Rµ = 0.0

• Figure 22: Rµ = 0.1

• Figure 23: Rµ = 0.2

• Figure 24: Rµ = 0.3

• Figure 25: Rµ = 0.4
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Figure 22: Sensitivity analysis of all causal methods tested, mean range 0.1. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 23: Sensitivity analysis of all causal methods tested, mean range 0.2. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 24: Sensitivity analysis of all causal methods tested, mean range 0.3. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 25: Sensitivity analysis of all causal methods tested, mean range 0.4. ▽: naïve baseline. ◦:
causal effect estimator.

• Figure 26: Rµ = 0.5

• Figure 27: Rµ = 0.6

• Figure 28: Rµ = 0.7
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Figure 26: Sensitivity analysis of all causal methods tested, mean range 0.5. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 27: Sensitivity analysis of all causal methods tested, mean range 0.6. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 28: Sensitivity analysis of all causal methods tested, mean range 0.7. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 29: Sensitivity analysis of all causal methods tested, mean range 0.8. ▽: naïve baseline. ◦:
causal effect estimator.

• Figure 29: Rµ = 0.8

• Figure 30: Rµ = 0.9

• Figure 31: Rµ = 1.0
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Figure 30: Sensitivity analysis of all causal methods tested, mean range 0.9. ▽: naïve baseline. ◦:
causal effect estimator.
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Figure 31: Sensitivity analysis of all causal methods tested, mean range 1.0. ▽: naïve baseline. ◦:
causal effect estimator.

Note that, even absent confounding, causal approaches outperform the payout-only model. This is
because causal approaches explicitly incorporate the covariates into modeling, while the payout-only
model directly uses the marginal outcome distribution. Incorporating covariates into regression
models for treatment effect estimation can decrease estimator variance [37] (but is not guaranteed to
do so), consistent with the empirical results.

Propensity score matching (PSM) also performs poorly across all levels of confounding. Since the
matching approaches conduct matching pairwise across observations seen by agent pairs, the causal
effect estimates are computed in a subset of similar observations across one pair of agents, but not
the subset of similar observations across all distributions agent observations. This suggests that
controlling for confounding simultaneously across all levels of treatment is potentially important for
applying causal effect estimators to gaming detection. Ultimately, matching approaches may not
scale to large numbers of treatments, such as those expected in multi-agent strategic adaptation. Non-
optimal matching approaches (e.g., greedy matching without replacement) are a potential workaround,
but we leave the adaptation of matching methods to large numbers of treatments to future work.

We note that, at low levels of confounding, the difference between the S-learner and T-learner may be
dataset-dependent: empirically, S-learners often regularize causal effect estimates towards zero, while
T-learners thrive when causal effects are non-zero and heterogeneous [44, 55], as in our synthetic
dataset. Thus, per-agent modeling, as done by the T-learner and DragonNet, can better capture the
complex treatment effects in our dataset.

Furthermore, the R-learner and S+IPW both perform poorly at low levels of confounding, but improve
at high levels of confounding. Since both the R-learner and S+IPW fit a nuisance propensity score
estimator, this suggests that difficulties in propensity score estimation at low levels of confounding
could potentially explain the observed trends.

The underperformance of the R-learner may be surprising given its doubly-robust properties, but the
high-dimensional generalization [47] requires restrictive conditions for convergence. Formally, the
R-learner fits four models m, g, h, e of the form

d ∼ m(x) + g(x)⊤(h(p)− e(x)), (32)
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where m is fit independently, and g, h, e are fitted using alternating optimization. The final treatment
effect estimate of swapping from agent p to p′ is given by g(x)⊤h(p)− g(x)⊤h(p′), but the oracle
representation of h(·) is unknown and must be fitted. Convergence of the nuisance parameter estimate
of e(x) to the oracle value of h(p) is necessary for convergence of the overall treatment effect
estimate.

E Training

E.1 Model architectures

All approaches that fit a model are built based on a fully-connected neural network with two hidden
layers and 300 neurons per layer plus ReLU activations. The output of the neural network either
has size two with a softmax non-linearity (for classification; i.e., predicting agent decisions), or no
activation and a pre-specified output size (i.e., for generating feature maps in the high-dimensional
R-learner).

We describe approach-specific modifications to the architectures as follows:

S+IPW. The estimated weights are used as a sample weight when training the S-learner. At
inference time, weights are also computed for test examples based on the propensity model fitted on
the training set to take an inverse propensity-weighted average of the S-learner estimates.

DragonNet. We changed the propensity prediction head from a binary classification (as in the
original paper [45]) to a multi-class classification head, since there are multiple treatments in our
setting. Furthermore, we introduce a new outcome modeling head per agent. Targeted regularization
is omitted due to the multi-treatment setup.

R-Learner. Feature maps for all nuisance parameters have dimensionality 10. The generalized R-
learner uses alternating optimization to fit some nuisance parameters, where two models representing a
product decomposition of the response function are updated K times for every update of a “propensity
feature” model. We set K = 10; we defer to [47], page 6 for more details about the training procedure
for the generalized R-learner, from which we designed our implementation.

E.2 Anomaly detection hyperparameters

For KNN, we keep the neighborhood size at 5, the default value. DIF uses neural network-based
random projections to compute an anomaly score. Thus, we use the same architecture for DIF as
used for causal approaches, with an ensemble of 50 representations. Each representation is used as
input into an isolation forest of size 6 [19].8 ECOD does not take hyperparameters [22].

E.3 Dataset splits

We use a seeded random development-test split (7:3) for all datasets. The development split is
reserved for all model fitting, while all causal effect estimates are reported on the test split. The
development split is further randomly split into a training and a validation set. All model selection
techniques (e.g., early stopping) are performed with respect to evaluation metrics on the validation
set.

E.4 Training hyperparameters

Fully synthetic data We use the following hyperparameters for training all models:

• Optimizer: SGD with learning rate 10−2 and weight decay 10−3.

8An isolation forest is a separate anomaly detection method, in which the anomaly score is related to the
number of random “splits” with respect to a single randomly-selected covariate (i.e., a threshold of the form
xi ≥ r) needed to isolate a point. This method assumes that outliers are “easier” to isolate, and require fewer
splits. Multiple random-splitting routines (isolation trees) are ensembled to form an isolation forest.
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• Learning rate schedule: We reduce the learning rate by a factor of 0.1 after 5 epochs of
non-improvement with respect to the validation loss.

• Training length: A maximum of 1000 epochs, with early stopping (patience: 10 epochs)
based on validation loss.

Medicare FFS

• Optimizer: SGD with learning rate 10−2 and weight decay 10−3.
• Learning rate schedule: We reduce the learning rate by a factor of 0.1 after 5 epochs of

non-improvement with respect to the validation loss.
• Training length: A maximum of 1000 epochs, with early stopping (patience: 10 epochs)

based on validation loss.

F Software and Hardware

F.1 Software

All code was written in Python 3.10.4 (license: PSF). All non-causal anomaly detection approaches
were implemented using PyOD (license: BSD 2-clause) [56]. All neural networks were implemented
in PyTorch 2.2.0 (license: Custom “BSD-style”9) [57], using Skorch 0.15.0 (license: BSD 3-
clause) [58] as a wrapper. Metrics were computed using both Scikit-Learn 1.3.2 (license: BSD
3-clause) [59] and Scipy 1.11.4 (license: BSD 3-clause) [60]. For the fully synthetic data generation
process, CVXPY 1.4.2 (license: Apache 2.0) [61] was used to solve each agent’s utility maximization
problem, and used in tandem with SCIP 9.0 (pyscipopt 5.0.0; license: Apache 2.0) for the matching
approaches (formulated as mixed-integer programs) [62]. Numpy 1.22.3 (license: BSD-style) [63]10

and Pandas 2.0.3 (license: BSD 3-clause) [64] were used for data manipulation. Matplotlib 3.8.2
(empirical results; license: PSF-style)11 and Adobe Illustrator 2023 (overview figures; license:
commercial, “Named User Licensing”12) were used for figure generation. For the Medicare cohorts,
we generated HCC (Hierarchical Condition Categories; used by the Center for Medicare Services)
codes from raw diagnosis codes reported in claims data via HCCPy 0.1.9 (license: Apache 2.0)13.

Other dependencies include tqdm 4.66.2 for rendering progress bars (license: MPL 2.0 and MIT),
gitpython 3.1.43 for bookkeeping (license: BSD 3-clause), pandarallel 1.6.5 for parallel data
processing (license: BSD 3-clause), and ruamel 0.18.6 (license: MIT) for configuration file manage-
ment. All software excepting Adobe Illustrator is open-source and free for use.

F.2 Hardware

All experiments were run on either one Titan V or V100 GPU using 12.9GB of RAM as managed
via a Slurm job submission system. Computing nodes had two 2.10GHz Intel Broadwell (Xeon
E5-2620V4) processors each (16 cores total). Execution time was limited to six hours per run, but all
training runs (one model type on 10 datasets) lasted under one hour due to the relatively small size of
the architectures and datasets under consideration.

G Code

The fully-synthetic datasets, experimental code, and implementations of all approaches under eval-
uation will be made publicly available at https://github.com/MLD3/gaming_detection. The
authors do not have permission to release any of the Medicare data, but will release the relevant data
processing code.

9See https://github.com/pytorch/pytorch/blob/main/LICENSE.
10See https://github.com/numpy/numpy/blob/main/LICENSE.txt.
11See https://matplotlib.org/stable/project/license.html.
12See https://helpx.adobe.com/enterprise/using/licensing.html.
13https://github.com/yubin-park/hccpy

31

https://github.com/MLD3/gaming_detection
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/numpy/numpy/blob/main/LICENSE.txt
https://matplotlib.org/stable/project/license.html
https://helpx.adobe.com/enterprise/using/licensing.html
https://github.com/yubin-park/hccpy


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction claim a causally-motivated framework for
gaming propensities (Section 3), theoretical results (Section 4) proving the feasibility of
ranking using causal effect estimation (Theorem 1 and Corollary 1), and a study of causal
effect estimators (as enumerated in Section 5.1) in a synthetic data study (Section 5.2) and a
case study in health insurance (Section 5.3), as required.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes; see the “Limitations and Broader Impact” section in the Conclusion.

Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are numbered and formally stated. Each theorem statement
enumerates the necessary set of assumptions. Detailed proofs are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have aimed to provide sufficient details about the method and datasets to
replace our work on the fully synthetic data. Hyperparameter details are included in the
Appendix. Due to restrictions on the usage of the Medicare data, we are unable to share
the underlying dataset, but provide detailed information about cohort selection and data
processing instructions.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: To the extent legally permitted, we provide code and open access to the fully
synthetic data used, and all methdological contributions. Due to restrictions on the usage of
the Medicare data, we are unable to share the underlying dataset and the authors do not have
the power to grant access to the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Data splits and hyperparameter settings (including the optimizer) are included
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report 1-sigma error ranges (as explicitly stated in figure captions) of
performance metrics on the test set across training runs on different instances of fully
synthetic data. We do not make empirical claims about statistical significance, but report
p-values for correlations with respect to state-level healthcare statistics in Section 5.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: We describe the software and hardware used in the Appendix. An upper bound
on computation time was provided (time limit on Slurm job submission system).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and certify that this
work meets the code in their best judgment.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Yes; see the “Limitations and Broader Impact” section of the Conclusion for further discus-
sion. We advise careful consideration regarding the implications of models developed using
our theoretical results on structural inequities. We fully acknowledge that models developed
using our theoretical work can potentially have both positive and negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our contribution is theoretical, minimizing the direct risks of misuse. However,
indirect/downstream risks are discussed in the “Limitations and Broader Impact” section
of the Conclusion for further discussion. We advise careful consideration regarding the
implications of models developed using our theoretical results on structural inequities. Risk
of downstream misuse is contingent on the institution adopting methods designed using
our framework. Risks stemming from data release are minimal, since the authors are not
permitted to release the real-data cohort.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations and/or links to relevant code, and data and software are provided in
the Appendix. License information is provided for datasets where possible.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The only new asset is the code repository used for our experiments. We
provide instructions in the README for regenerating the datasets used for the synthetic
data experiments, data-processing code for the Medicare cohort, and experiments. Figures
were created in a Jupyter notebook included with the code supplement.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The extent of interaction with human subjects in this work is secondary data
analysis of a retrospective cohort. The data was purchased and used following a data usage
agreement by the Center for Medicare Services.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The Medicare datasets were requisitioned from the U.S. Center for Medicare &
Medicaid Services under a data usage agreement authorizing a scope of analyses including
gaming in U.S. Medicare. IRB review was not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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