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ABSTRACT

It has been shown recently that learning only discriminative features sufficient to
separate the classes has a major shortcoming for continual learning (CL). This is
because many features that are not learned may be necessary for distinguishing
classes of some future tasks. When such a future task arrives, these features have
to be learned by updating the network, which causes catastrophic forgetting (CF).
A recent online CL work showed that if the learning method can learn as many
features as possible from each class, called holistic representations, CF can be
significantly reduced to achieve a large performance gain. This paper argues that
learning only holistic representations is still insufficient. The learned representa-
tions should also be invariant and those features that are present in the data but are
irrelevant to the class (e.g., background information) should be ignored for better
generalization across tasks. This new condition further boosts the performance
significantly. This paper proposes several strategies and a loss to learn holistic
and invariant representations and evaluates their effectiveness in online CL. 1

1 INTRODUCTION

A major challenge of continual learning (CL) is catastrophic forgetting (CF) (McCloskey & Cohen,
1989), which is caused by updating network parameters learned from previous tasks in learning a
new task. Although many empirical approaches have been proposed to deal with CF, limited the-
oretical work has been done to study the necessary conditions for CL to overcome CF. Recently,
Guo et al. (2022) argued that it is necessary to learn holistic representations of the data. This work
proposes another condition, invariance, and argues that the learning of each task itself needs to be
improved so that future tasks would not need to make major changes to old parameters.

It is well-known that supervised learning losses (e.g., cross-entropy) learn only discriminative fea-
tures that are sufficient to separate the classes in a task. This is problematic for CL due to two main
reasons. (1) many features that are not learned may be necessary to distinguish classes of some
future tasks. When such a future task comes, these features have to be learned, which may make
significant changes to the existing parameters and cause CF. (2) even if the previous parameters are
completely protected, the classes in the new task still make the classification challenging because
each task only learns discriminative features for its own classes, which causes confusion in clas-
sification when we need to classify all classes learned so far. We call this biased representation
learning. For example, task-1 learns to classify black pig and dove. The learner may only learn
the color features (e.g., black and white) as they are sufficient to classify the two classes. However,
task-2 learns rabbit and cow, which can be black or white. The color features learned from task-1
are no longer sufficient. Shape-based features need to be learned, which can make major changes
to the existing parameters and cause CF. If the shape-based features had been learned from task-1,
learning of task 2 will not need to update the parameters linked to the representation of pigs and
doves as much, which gives less CF (mitigating (1) above). Since there are now 4 classes to clas-
sify, it can be confusing. Some cows or rabbits may be classified as pigs or doves due to the same
color. Some pigs may be classified as cows or rabbits due to shape-based features learned in task-2.
However, if all features have been learned in task-1 and task-2, such wrong classifications will be
reduced (dealing with (2)). Recently, Guo et al. (2022) proposed to learn holistic representations
from the input data to cover as many characteristics of the input as possible. Their system OCM

1The code has been submitted in the supplemental material.
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learns holistic representations in online CL by maximizing the mutual information (MI) between the
input data and the learned feature representations to ensure that as much information in the input is
reflected in the learned features. This results in a major performance gain in online CL.

This paper argues that learning holistic representations is still sub-optimal. It is also necessary for
CL to learn features that are invariant for each class. Those features that are present in the input but
are irrelevant to the class should be ignored for better generalization to future tasks. For example, to
classify images of apple and fish, some green background and red color of apple may be learned, but
these features are not invariant to apple. When new classes cows and ladybird need to be learned, the
feature green (or red) is shared (see Figure 1(a)) and may cause high logit outputs to apple and cow
(or ladybird). Then the learner has to modify the representations of apple to reduce its logit values,
which causes CF. That is, variant features are unsuitable for establishing decision boundaries. If the
learner has learned shape and other invariant features for apple, the input of cow (or ladybird) will
not activate the parameters linked to the apple representation. Then, in learning cow and ladybird,
changes to the parameters that are important for apple will be limited, resulting in less CF. This
paper aims to learn invariant and holistic representations for each class. This additional invariance
condition gives another boost to online CL performance. Note that invariance is not critical for
traditional supervised learning due to the i.i.d assumption,2 but for CL, it is very important because
each new task introduces new distributions and we want each class to be distinguishable against any
past and future classes, which may have similar variant features that can confuse the model.

This paper works in the online class-incremental learning (CIL) setting.3 It proposes a replay-based
method called IFO (Invariant Feature learning for Online CL), which adds the invariance condition
to holistic representation learning to also learn invariant features. We propose two new methods
and one new optimization objective to achieve invariance. The first method is to construct a diverse
set of environments and force the model to learn invariant features across the environments. The
second method is a novel use of the replay data to learn invariant features and to deal with a local
sampling bias issue. Finally, we combine the methods and propose a new optimization goal to learn
invariant features. Theoretical justifications are also given. We verify the effectiveness of IFO in
three online CL scenarios: traditional disjoint task scenario, blurry task boundary scenario and data
shift scenario. The results show the proposed IFO outperforms strong baselines by a large margin.

2 RELATED WORK

Although many CL approaches have been proposed, little work has been done to study the necessary
conditions for CL. The replay approach saves a small amount of past data and uses it to protect/adjust
the previous knowledge in learning a new task (Rebuffi et al., 2017; Wu et al., 2019; Hou et al., 2019;
Chaudhry et al., 2020; Zhao et al., 2021; Korycki & Krawczyk, 2021; Sokar et al., 2021; Yan et al.,
2021; Wang et al., 2022a). Pseudo-replay generates replay samples (Shin et al., 2017; Hu et al.,
2019; Sokar et al., 2021). Using regularizations to penalize changes to important parameters of
previous tasks is another approach (Kirkpatrick et al., 2017; Ritter et al., 2018; Ahn et al., 2019; Yu
et al., 2020; Zhang et al., 2020). Parameter-isolation approaches protect models of old tasks using
masks and/or network expansion (Ostapenko et al., 2019; von Oswald et al., 2020; Li et al., 2019;
Hung et al., 2019; Rajasegaran et al., 2020; Abati et al., 2020; Wortsman et al., 2020; Saha et al.,
2021). Zhu et al. (2021) found that using data augmentations can learn more transferable features.

Online CL methods are mainly based on replay. ER randomly samples the replay data (Chaudhry
et al., 2020), MIR chooses replay samples whose losses increase most (Aljundi et al., 2019a),
ASER uses the Shapley value theory (Shim et al., 2021), and GDumb produces class balanced
replay data (Prabhu et al., 2020). GSS diversifies the gradients of the replay data (Aljundi et al.,
2019b). DER++ uses knowledge distillation (Buzzega et al., 2020), SCR uses contrastive loss (Mai
et al., 2021), and NCCL calibrates the network (Yin et al., 2021). Applications of online CL are also
reported (Yan et al., 2021; Wang et al., 2021). Bang et al. (2021) and Bang et al. (2022) proposed
two blurry online CL settings. IFO is also a replay method but focuses on learning invariant features.

Domain generalization (DG) is also related. DG learns a model with inputs from multiple given
source domains with the same class labels and test with inputs from unseen target domains. Ex-

2When out-of-distribution data or data shift is involved, invariance is also important (Arjovsky et al., 2019).
3In the CIL setting, no task related information (e.g., task-id) is provided in testing. The other popular CL

setting is task-incremental learning (TIL), which needs the task-id to be provided for each test instance.
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isting DG methods typically leverage data augmentations to expand the diversity of the source do-
mains (Wang et al., 2020; Wu et al., 2020; Arjovsky et al., 2019; Rame et al., 2022). There are also
works on a single domain. Yang et al. (2021) used a pre-trained domain augmenter to create novel
stylized images. Yue et al. (2019) used auxiliary datasets to help create images. Our training data
have no identified domains and we use no additional datasets. DG does not do CL.

3 PROBLEM FORMULATION

This paper uses three online CL settings. (1) traditional disjoint tasks setting, where the system
learns a set of tasks incrementally one after another. Each task consists of several classes. The data
for each task comes in a stream and the learner sees the data only once. In a replay method, when
a small batch of data of the current task t arrives from the data stream Dnew

t = (Xnew
t , Y new

t ) (where
Xnew

t is a set of new samples and Y new
t is its set of corresponding labels), a small batch of replay data

Dbuf
t = (Xbuf

t , Y buf
t ) is sampled from the memory buffer M and used to jointly train in one iteration.

(2) blurry task setting (Koh et al., 2021), where the classes from a previous task may appear again
later (more details in Sec. 5.2). (3) data environment shift setting (see details in Sec. 5.3).

Our model F consists of two parts: the feature extractor fθ and the classifier σϕ. fθ extracts features
from the input x to form a high-level representation and σϕ and the softmax operation map the
representation to a prediction probability for each class.

Learning holistic representations. As discussed in Sec. 1, fθ should learn holistic feature represen-
tations (Guo et al., 2022) but cross-entropy loss Lce alone is unable to do that. Geirhos et al. (2020)
also found that Lce encourages models to stop learning once simple features suffice to minimize the
loss. This means fθ may learn simple discriminative features for the current distribution and ignore
other semantic features present in the input data. OCM (Guo et al., 2022) tackles this problem by
learning as many features as possible from the input X via maximizing the mutual information be-
tween the input X and the hidden representation fθ(X) (I(X; fθ(X))) and the mutual information
(I(.)) between the representation fθ(X) and the label Y (I(Y ; fθ(X))) to learn as many character-
istics of the input as possible. OCM uses the InfoNCE loss (Poole et al., 2019) (LInfoNCE) to optimize
I(X; fθ(X)) (i.e., I(Xnew

t ; fθ(X
new
t )) + I(Xbuf

t ; fθ(X
buf
t )) for the replay-based method. Note that

it maximizes I(Y ; fθ(X)) by using only Xbuf
t to calculate the cross-entropy loss as I(Y ; fθ(X))

is maximized when Y follows the uniform distribution. Xbuf
t is sampled from the class uniformly

distributed data of all seen classes stored in the memory buffer. The loss for OCM is

LOCM(D
buf
t , Dnew

t ) = LInfoNCE(X
new
t , fθ(X

new
t )) + LInfoNCE(X

buf
t , fθ(X

buf
t )) + LInfoNCE(fθ(X

buf
t ), f prev

θ (Xbuf
t ))

(1)
where the last term tries to prevent F from forgetting features of previous classes by maximizing the
mutual information between the hidden representations of Xbuf

t given by the current feature extractor
fθ and the feature extractor f prev

θ before the current task, i.e., I(fθ(X
buf
t ); f prev

θ (Xbuf
t )).

Invariant features. As discussed in Sec. 1, in addition to learning holistic feature representations
of the input data, this paper argues that the learned feature should also be invariant to each class. We
give a more rigorous definition of the invariant class-related feature here.

Definition 1 A feature s is invariant for a class label y ∈ Y if the following holds,

Ex∼Xz
[I(s ∈ x) · |Corr(x, y)|] > ρ ∀z ∈ Z (2)

where Xz is the input variable under the environment z, Z is the set of all possible environments
and not limited to the dataset D, Corr is a function computing the correlation between the input
x and its label y, | · | is the absolute value function and ρ is a constant. I(s ∈ x) is the indicator
function that identifies if feature s exists in input x. Note that by environment z we not only mean
the background of an object (e.g., forest as the background) but also the object in the input (e.g., a
building showing different colors in rainy days and sunny days).

Our goal. Combining the two concepts, we aims to learn holistic invariant representations for each
class, i.e., learning invariant features as many as possible, which help reduce CF and improve the
generalization power. Below, we focus on proposing techniques to learn invariant features. We rely
on the method in OCM to learn as many invariant features as possible to achieve holisticness.
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4 OPTIMIZATION OBJECTIVE AND PROPOSED METHOD

The proposed optimization objective for holistic invariant representation learning is Lall = Lholistic+
Linvariant, where Lholistic aims to learn holistic features and Linvariant emphasizes invariance and sup-
presses non-invariant features. We focus only on designing Linvariant and directly use the holistic
representation loss of OCM, LOCM(D

buf
t , Dnew

t ), as Lholistic. To learn invariant features based on
Definition 1, we learn features that have a positive correlation with each class regardless of the envi-
ronments to form the class representation. To formalize our objective, we borrow an idea from causal
inference (Jung et al., 2020), which replaces the observational distribution P (Y new

t |Xnew
t ) with the

interventional distribution P (Y new
t |do(Xnew

t )) in Empirical Risk Minimization, where do(X) re-
moves the environmental effects from the prediction of Y . Then the Interventional Empirical Risk
is written as (Wang et al., 2022b):

R̂(Dnew
t ) = Ex∼P (Xnew

t ),y∼P (Y new
t |do(Xnew

t ))Lce(σϕ(fθ(x), y))

=
∑
y

∑
x

∑
z

Lce(σϕ(fθ(x), y))P (y|x, z)P (z)P (x) (3)

where z is a sample from the ideal environment variable Z that includes all possible environments.
For a replay-based method, the interventional empirical risk is R̂(Dnew

t )+ R̂(Dbuf
t ). Optimizing this

loss is equivalent to making the model ignore variant features and learn invariant features defined
by Definition 1 because features that only have a positive correlation with the label in a few envi-
ronments are filtered out by the operation do(X) and the model only uses features that have positive
correlation with the label across all environments (not influenced by specific environments) to form
the representation. However, directly optimizing the interventional empirical risk is hard as z is hard
to observe or to annotate. In the following, we use Eq. 3 to guide the design of our method.

4.1 CREATING MORE ENVIRONMENTS z FOR LEARNING INVARIANT FEATURES

We propose a method here to make the model learn invariant features by aligning the inputs with
the same semantic meaning (class label) from different environments. The method has two parts.
The first part creates augmented inputs with different environments from the original input. The
augmented inputs have the same class label as the original input but diverse variant features or
environments. The second part is a new optimization objective for the model to better learn invariant
features across the augmented inputs and filter out variant ones based on the definition in Eq. 2.
Unlike most existing augmentations that are designed for learning rich features or other purposes,
our augmentations are specifically designed for learning invariant features.

Choice of Data Augmentation. Different from domain generalization, CL does not provide a fixed
number visually distinct domains/environments or any prior knowledge about the domains (e.g., the
domains/environments where the objects to be classified reside in). To achieve a similar effect of
different domains or environments, we propose two data augmentations for the input image x to
create augmented images with different z’s.

(1). Color change. For an input image x, we first randomly reorder the RGB channels of the image
to create an image x′ and then sample a λ from Beta distribution to create an augmented image,

x̂ = λ · x+ (1− λ) · x′ (4)

We use this augmentation to create augmented images with different color environments (Fig. 1(b)).
The augmented image x′ has the same label as x. We denote this augmentation as Augcolor(x, s),
where s means that we repeat the two steps s times to create s different augmented images.

(2). Adding more environments. For input x of size d, we first resize x to r1 · d where r1 is the
resize rate. We name this resized image as resize(x, r1 · d). Then we randomly sample anther image
x2 from the batch Xbuf

t

⋃
Xnew

t and replace the center part of x2 with resize(x, r1 ·d). We denote the
augmented image as Augplus(x), whose original object is not changed dramatically with a reasonable
choice of r1. But the background change introduces features from image x2 (see Fig. 1(c)).

New Optimization Objective. To make the model focus on invariant features, we force the repre-
sentations of the augmented images to be near to each other, which penalizes the model if it uses
simple color features (Augcolor) or features related to fixed backgrounds (Augplus) to form the class
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Figure 1: (a) is the illustration for the example in the Introduction and (b) is the illustration for the
data augmentation Augcolor and (c) is the illustration for the data augmentation Augplus.

representation (Definition 1). As we consider classification tasks, we use the two types of aug-
mentations separately to create augmented images of x as Aug(x) = Augplus(x)

⋃
Augcolor(x, s),

and calculate the cross-entropy loss of the union of the augmented images (s + 1 images) and the
original image x (1 image), The overall risk is turned into:

R(x, y) =

∑
xi∈Aug(x)

⋃
{x}

Lce(xi, y)

s+ 2
+

∑
xi,xj∈Aug(x)

⋃
{x}

dist(fθ(xi), fθ(xj))
(s+2)·(s+3)

2

(5)

where xi, xj are images in Aug(x)
⋃
{x} (xi ̸= xj) and dist(·, ·) computes the cosine distance

between the two representations. With the regularization of the second term, F learns invariant fea-
tures across different environments and ignore those that only have strong positive correlations with
the class under one/few environments (Eq.2). We further compare the proposed data augmentations
with other related augmentations and analyze the new optimization objective in Sec. 5.4.

Theoretical justification: We construct an environment set Z and want the model to learn invariant
features across different environments. However, as the number of constructed environments is
limited, the model may memorize each environment and use environment-related features to reduce
the loss. By optimizing the second term in Eq. 5, we force the representations of different augmented
images of the original image to be very similar. Then the learner will learn little information about
Z from the augmented images, which means P (Z|x) ≈ P (Z), where x ∈ Aug(x). Then we have

R̂(x, y) =
∑
y

∑
x

∑
z

Lce(σϕ(fθ(x)), y)P (y|x, z)P (z)P (x)

≈
∑
y

∑
x

Lce(σϕ(fθ(x)), y)P (x, y) =

∑
xi∈Aug(x)

⋃
{x}

Lce(xi, y)

s+ 2

(6)

So minimizing the risk in Eq. 5 is approximated by minimizing the ideal interventional empirical
risk under the environments variable Z. Note, the constructed Z is a subset of the ideal environment
set Z. Increasing the diversity of samples in Z makes it closer to the ideal set Z.

4.2 STORING MORE DATA AND DEALING WITH LOCAL SAMPLING BIAS

Data augmentation can reduce the influence of environments only partially. For example, Samoyed
dog and Golden Retriever are dogs in different environments and it’s hard to use the data augmen-
tation to generate images of Samoyed dog when we only have the images of Golden Retriever. But
training F with more diverse images of objects of a class can make the model learn more invariant
features. So our method also focuses on better utilizing the original data to learn invariant features
across different environments. First of all, OCM (Guo et al., 2022) discards the new data batch Dnew

t

and uses only the buffer batch Dbuf
t (which also contains some saved new task data) to calculate Lce

loss, which makes the model use less data to learn. We add Dnew
t into our empirical risk loss,

R(Dnew
t

⋃
Dbuf

t ) =
∑

x∈X
buf
t

R(x, y)

N buf +
∑

x∈Xnew
t

R(x, y)

N new (7)

where N new and N buf are the batch sizes of Dnew
t and Dbuf

t respectively. Following (Ahn et al., 2021),
to avoid the interference from the new data to the replayed data, for the second term in Eq. 7, we
clip the logits of classes that do not appear in Y new

t when calculating the cross-entropy loss.
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Resizing and storing more data: Due to the limited buffer size, only a small number of samples are
stored. However, storing more samples helps learn more invariant features because more images also
mean more diversity of the environments. Without increasing the memory size, we propose to store
a fixed rate (storage rate) of resized images.4 Specifically, we use a quarter of the original memory
space to store resized images. The size of a resized image is set as r2 · d where r2 is the resized
rate and d is the size of the original image. When we sample data from the buffer, we resize the
sampled resized images to their original size and mix them with other sampled images to construct
Xbuf

t =
⋃N buf

i=1 resize(xi, d), where xi is an image sampled from the memory buffer. Note that Wang
et al. (2022a) used data compression in offline CL to store more data by solving an optimization
objective for r2. But it needs the whole training set of the task and the converged model parameters
after the training of the task. Those are not available in online CL. In Appendix 1, we justify the use
of more samples to enable F to learn better invariant feature representations and to make the risk in
Eq. 7 better approximate the ideal objective in Eq. 3. Now, our Linvariant loss is

Linvariant(D
new
t , Dbuf

t ) =
∑

x∈
⋃Nbuf

i=1 resize(xi,dori)

R(x, y)

N buf +
∑

x∈Xnew
t

R(x, y)

N new (8)

The optimization Lall loss for learning task t then is

Lall(D
new
t , Dbuf

t ) = LOCM(D
new
t , Dbuf

t ) + Linvariant(D
new
t , Dbuf

t ) (9)

where the first term learns holistic feature representations and the second term learns invariant class
representations to establish the class decision boundaries. We call this method IFO.

Local sampling bias (LSB). In online CL, the model only gets a new data batch of a task each time.
It is easy to learn variant features if similar environments appear in a few recent data batches. We
call this local sampling bias (LSB). To mitigate this problem, we propose to use the buffer data that
has the same label as the new data to augment the new data. Specifically, for each sample x in Dnew

t ,
we first calculate the cosine distance between fθ(x) and the hidden representations of all stored data
of the same label y. Then we choose the stored data sample that has the maximum representation
distance with x and denote it as ẋ. We don’t randomly choose a stored data sample as we want ẋ to
be very different from x. We use ẋ as x2 in the process of creating Augplus(x). Then the augmented
image Augplus(x) has the same object of x but a new environment that is totally different from x.
Optimizing Eq. 8 helps the model to get rid of the false high correlation between variant features
that appear in recent new data batches and the class label.

Additionally, we calculate the cosine distance between fθ(x) and the hidden representations of all
buffer data that do not belong to class y (of x). Then we choose the buffer sample that has the mini-
mum representation distance with x and denote it as ẍ. ẍ has similar features/environment to x but
a totally different class. We collect ẍ for each x in batch Dnew

t to construct a batch Dnew,buf
t that has

the same size as Dnew
t . Adding the loss

∑
x∈X

new, buf
t

R(x,y)
Nnew into the original invariant loss (Eq 8) makes

the model learn to distinguish new data and data from other classes under similar environments and
also to avoid the LSB problem. We denote the new invariant loss as Linvariant(D

new
t , Dbuf

t , Dnew,buf
t ).

Considering the LSB problem, we obtain a new model called IFO++, which optimizes

Lall(D
new
t , Dbuf

t ) = LOCM(D
new
t , Dbuf

t ) + Linvariant(D
new
t , Dbuf

t , Dnew,buf
t ) (10)

5 EXPERIMENT RESULTS

We evaluate the proposed IFO in three online CL scenarios: standard disjoint task scenario, blurry
task boundary scenario, and data environment shift scenario.

5.1 DISJOINT ONLINE CONTINUAL LEARNING SCENARIO

Datasets. In this scenario, we use five datasets. For MNIST (LeCun et al., 1998), we split its 10
classes into 5 different tasks, 2 classes per task. For CIFAR10 (Krizhevsky & Hinton, 2009), we
also split the 10 classes into 5 different tasks with two classes per task. For CIFAR100 (Krizhevsky

4Note that this is not image compression (Wang et al., 2022a), which should also work but more complex.

6



Under review as a conference paper at ICLR 2023

& Hinton, 2009), we split the 100 classes into 10 different tasks with 10 classes per task. For
TinyImagenet (Le & Yang, 2015), we split the 200 classes into 100 different tasks with 2 classes
per task for stress testing. For ImageNet (Deng et al., 2009), we split the 1000 classes int into 10
different tasks with 100 classes per task. Each task runs with only one epoch for online CL.

Baselines. See the 12 baselines in column 1 of Table 1. We run their official codes (Appendix 2).

Backbone, Optimizer, Buffer and Data Augmentation. We follow (Guo et al., 2022) and use
ResNet-18 (not pre-trained) as the backbone for our method and baselines in the CIFAR10, CI-
FAR100, TinyImageNet, and ImageNet settings. A fully-connected network with two hidden layers
(400 ReLU units) is used as the backbone for MNIST. We use the Adam optimizer and set the learn-
ing rate as 1e-3 for all methods and set N new and N buf as 10 and 64 respectively for all methods and
use the reservoir sampling for our method. For the buffer size B, we use B

4 to store resized images
and 3B

4 to store the original-sized images. As the numbers of resized images and stored original-
sized images are similar, if the training iteration is an even number, we store resized images and
otherwise we store original-sized images. For other baselines, only the original-sized images are
stored. The whole memory size is the same for all methods. Following (Guo et al., 2022), the data
augmentation methods horizontal-flip, random-resized-crop and random-gray-scale are applied to
all methods to improve the performance (no drops). Note that these augmentations have also been
used in other papers, e.g., Fini et al. (2020). We set s in Eq. 5 as 5 and r1 in Augplus as 0.75 and r2
as 0.5. More details are in Appendix 2.

Table 1: Accuracy on the MNIST (5 tasks), CIFAR10 (5 tasks), CIFAR100 (10 tasks) and TinyIm-
ageNet (100 tasks) datasets with different memory buffer sizes B. All values are the averages of 15
runs. See the results on ImageNet in Figure 2(a).

Method MNIST CIFAR10 CIFAR100 TinyImageNet
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k B=2k B=4k B=10k

AGEM Chaudhry et al. (2018) 56.9±5.2 57.7±8.8 61.6±3.2 22.7±1.8 22.7±1.9 22.6±0.7 5.8±0.2 5.8±0.3 6.5±0.2 0.9±0.1 2.1±0.1 3.9±0.2

GSS Aljundi et al. (2019b) 70.4±1.5 80.7±5.8 87.5±5.9 26.9±1.2 30.7±1.3 40.1±1.4 11.1±0.2 13.3±0.5 17.4±0.1 3.3±0.5 10.0±0.2 10.5±0.2

ER Chaudhry et al. (2020) 78.7±0.4 88.0±0.2 90.3±0.1 29.7±1.0 35.2±0.3 44.3±0.4 11.7±0.3 15.0±0.9 14.4±0.9 5.6±0.5 10.1±0.7 11.7±0.2

MIR Aljundi et al. (2019a) 79.0±0.5 88.3±0.1 91.3±1.9 37.3±0.3 40.0±0.6 41.0±0.6 15.7±0.2 19.1±0.1 24.1±0.2 6.1±0.5 11.7±0.2 13.5±0.2

ASER Shim et al. (2021) 61.6±2.1 71.0±0.6 82.1±5.9 27.8±1.0 36.2±1.2 44.7±1.2 16.4±0.3 12.2±1.9 27.1±0.3 5.3±0.3 8.2±0.2 10.3±0.4

GDumb Prabhu et al. (2020) 81.2±0.5 91.0±0.2 94.5±0.1 35.9±1.1 50.7±0.7 63.5±0.5 14.1±0.3 20.1±0.2 36.0±0.5 12.6±0.1 12.7±0.3 15.7±0.2

SCR Mai et al. (2021) 86.2±0.5 92.8±0.3 94.6±0.1 47.2±1.7 58.2±0.5 64.1±1.2 26.5±0.2 31.6±0.5 36.5±0.2 10.6±1.1 17.2±0.1 20.4±1.1

DER++ Buzzega et al. (2020) 74.4±1.1 91.5±0.2 92.1±0.2 44.2±1.1 47.9±1.5 54.7±2.2 15.3±0.2 19.7±1.5 27.0±0.7 4.5±0.3 10.1±0.3 17.6±0.5

IL2A Zhu et al. (2021) 90.2±0.1 92.7±0.1 93.9±0.1 54.7±0.5 56.0±0.4 58.2±1.2 18.2±1.2 19.7±0.5 22.4±0.2 5.5±0.7 8.1±1.2 11.6±0.4

Co2L Cha et al. (2021) 83.1±0.1 91.5±0.1 94.7±0.1 42.1±1.2 51.0±0.7 58.8±0.4 17.1±0.4 24.2±0.2 32.2±0.5 10.1±0.2 15.8±0.4 22.5±1.2

SSIL Ahn et al. (2021) 88.2±0.1 93.0±0.2 95.1±0.1 49.5±0.2 59.2±0.4 64.0±0.5 26.0±0.1 33.1±0.5 39.5±0.4 9.6±0.7 15.2±1.5 21.1±0.1

OCMGuo et al. (2022) 90.7±0.1 95.7±0.3 96.7±0.1 59.4±0.2 70.0±1.3 77.2±0.5 28.1±0.3 35.0±0.4 42.4±0.5 15.7±0.2 21.2±0.4 27.0±0.3

IFO 92.5±0.4 96.1±0.2 97.0±0.2 65.0±0.3 73.5±0.2 78.0±0.3 38.5±0.5 45.5±0.3 49.4±0.2 20.5±0.5 27.2±0.5 34.6±0.4

IFO++ 93.0±0.2 96.4±0.2 97.0±0.2 69.5±0.2 76.4±0.5 78.5±0.4 40.5±0.4 47.9±0.7 51.3±0.4 21.7±0.3 28.9±0.1 35.8±0.2

Accuracy results. We report the average accuracy of all tasks after learning of the final task in
Table 1. We observe that our IFO outperforms all baselines by a large margin. Our main baseline is
OCM as we added the condition of invariance to its holistic representation learning. IFO boosts the
performance of OCM significantly. IFO’s performance is especially strong when the buffer size is
small (e.g., 10 samples per class). The reason is that the baselines tend to overfit the buffer data and
learn variant features when the buffer size is small, which IFO is able to avoid by learning invariant
features. Further, the improvement of IFO does not decrease when the dataset gets more complex
(e.g., TinyImageNet). IFO++ further boosts the performance by considering local sampling bias.

For the hardest ImageNet dataset, due to the poor overall performance, we compare IFO with top-3
baselines (OCM, SSIL, and SCR). Figure 2(a) shows the average accuracy of all tasks seen so far
after learning each task. IFO outperforms the three baselines in the whole learning process. Also, the
average accuracy first arises and then drops. This is because the random-initialized model doesn’t
have enough features to solve the first task until the second task arrives. The later drop is due to CF.

Forgetting rate. We report the average forgetting rate (Chaudhry et al., 2020) in Table A.3 in
Appendix 3. We see that IFO gives less forgetting than OCM, especially on CIFAR10 and TinyIma-
geNet. Also, IFO forgets the least except for GDumb and SCR on TinyImageNet. But the accuracy
of the two baselines are much lower than IFO. For ImageNet, IFO also fares well (see Appendix 3).

Learning invariant representations. We use two types of experiments for this evaluation: (1)
model robustness on unseen environments and (2) eigenvalue distribution of the learned representa-
tions. Due to space limits, we give the details in Appendix 4. All experiments verify the effectiveness
of our method in learning invariant features.

7



Under review as a conference paper at ICLR 2023

Figure 2: (a) results in the disjoint setting using ImageNet. The buffer size is 10k. For (b) and (c),
’samples’ of the x-axis means the number of new data samples that the model has seen and the unit
is 1k. (b) results of the online i-Blurry setting using CIFAR100. The buffer size is 2k. (c) results of
the online i-Blurry setting using TinyImageNet. The buffer size is 4k.

5.2 BLURRY ONLINE CONTINUAL LEARNING SCENARIO

In this scenario (Koh et al., 2021), the classes of the training data for a dataset is split into two parts,
N% of the classes as the disjoint part and the rest of 100 − N% of the classes as the blurry part.
Each task consists of some disjoint classes (with all their data) and some blurry class samples. The
disjoint classes of a task do not appear in any other task. The blurry classes data are sampled from
the blurry part. Specifically, for a task, 100−M% of the samples are from some randomly selected
dominant blurry classes (these classes will not be dominant classes in other tasks) and M% of the
samples are from the other minor classes. This strategy of forming tasks is called i-Blurry.

Following (Koh et al., 2021), we use the i-Blurry setup with N = 50 and M = 10 (i-Blurry-50-10)
in our experiments on the CIFAR100 (5 tasks) and TinyImageNet (5 tasks) datasets. We use ResNet-
34 and Adam optimizer with an initial learning rate of 0.0003 for all systems. We compare their
original system CLIB with our CLIB+INV (replacing CLIB’s cross-entropy loss with our Linvariant
loss in Eq. 8) and three best-performing baselines (OCM, SSIL and SCR). Here we do not use LOCM
as our main contribution is the Linvariant loss. More details is in Appendix 5.

Accuracy results Following (Koh et al., 2021), we measure any time inference and plot the
accuracy-to-samples curve in Figure 2(b)&(c). The setting is as follows. After the model sees
every 100 new samples, we test the model using the original test set of all classes in the CIFAR100
or TinyImageNet dataset and record the accuracy. The figures show that CLIB+INV clearly out-
performs CLIB, especially after the model has seen some tasks, which indicates that effectively
learning invariant class representations improves the overall generalization ability in incremental
learning. We also observe that the three best baselines’ performances are weaker than that of CLIB
because the three baselines are not designed for this setting.

5.3 DATA ENVIRONMENT SHIFT IN ONLINE CONTINUAL LEARNING

In this scenario, the model needs to learn the same classes from different environments sequentially,
and is then tested in an unseen environment. We use the PACS dataset (Li et al., 2017) to simulate
this scenario. This dataset has four different environments: art painting, cartoon, photo, and sketch.
Each environment has data points of the same seven classes. We choose each set of three environ-
ments as the training environments and the remaining environment as the test environment. Thus
four experiments are conducted with different training and test environments. We report the average
test performance over the four experiments as the empirical estimation of the ability of our method
in learning invariant features. The core of this setting is to learn invariant features under the shift of
environments. So we focus on the representation-learning loss and do not consider/use the replay
strategy to overcome forgetting. The hyperparameters are given in Appendix 6.

Table 5 in Appendix 6 shows that the performance of our Linvariant loss (Eq. 8) is beyond that of the
traditional cross-entropy loss Lce over the four environments. This means our Linvariant loss learns in-
variant features better. Another observation is that optimizing the classification loss (Linvariant or Lce)
with the Lholistic loss improves the performance further because learning more features of one class
enables the model to learn more knowledge to deal with test samples from unseen environments.
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Table 2: Ablation accuracy - average of 5 runs. B is the memory buffer size.
Dataset no Augcolor no Augplus no align OCM+Mixup OCM+CutMix OCM+MemoryAug OCM+ClassAug OCM+Xnew no new data no resized image

CIFAR100 (B=2k) 41.8±0.4 44.0±0.6 44.6±0.2 33.2±0.5 36.3±0.3 35.7±0.1 39.5±0.4 37.4±0.5 42.0±0.2 44.0±0.6

TinyImageNet (B=2k) 18.0±0.3 19.5±0.1 20.0±0.3 14.4±0.2 16.0±0.5 17.5±0.3 17.7±0.5 23.0±0.5 18.5±0.6 19.9±0.4

5.4 ABLATION STUDY AND ANALYSIS

Ablation study of the components in IFO. Table 6 shows the results without using Augcolor (no
Augcolor), Augplus (no Augplus) or the second term of Eq. 5 (no align). The performances of these
experiments drop, which show the contribution of the proposed augmentations and loss. As IFO
is basically OCM plus invariant feature learning, we also tried some other data augmentations and
losses designed for feature learning, Mixup (Zhang et al., 2017) (OCM+Mixup)), Cutmix (Yun et al.,
2019) (OCM+CutMix), MemoryAug (Fini et al., 2020) (OCM+MemoryAug) and ClassAug (Zhu
et al., 2021) (OCM+ClassAug). CutMix, MemoryAug and ClassAug improve the performance
of OCM but Mixup does not. However, the results of these augmentations and their losses are
poorer than that of IFO. For ”OCM+Xnew”, we add Lce loss of the new data batch into OCM. The
performance improves slightly as the model learns more invariant features from more data. For ”no
new data”, only Dbuf

t in Eq. 8 is used. For ”no resized image”, we do not store resized images.
The performances of both experiments drop, which means that considering more samples to learn
invariant features is useful. Ablation experiments on IFO++ are discussed in Appendix 7.

Influence of hyperparameters in IFO. For s in Eq. 5, from Figure 4(a) in Appendix 8, we observe
that the performance has a positive correlation with the number s as the model gradually focuses
on invariant features rather than strongly depending on simple colors. We set s to 5 as it achieves
the best performance with less compute. For the storage rate for resized images, we need to find a
balance between storing more samples and avoiding huge information loss caused by the resizing
operation. From Figure 4(b), we found that using a quarter of the memory space to store resized
images achieves a good balance. For rate r1 in the augmentation Augplus, we need to avoid intro-
ducing trivial features (r1 is too high) and causing a huge information loss in the original image (r1
is too low). For rate r2 in Sec. 4.2, we have the same balancing issue with the storage rate (more
saved samples vs information loss). Based on Figure 4(c), we set r1 as 0.75 and r2 as 0.5.

Influence of learning invariant features for continual learning (CL). To further investigate how learn-
ing invariant features helps the performance of CL methods, we measure three abilities of OCM and
IFO: (1) the ability to establish decision boundaries between the classes within the new task by
recording the accuracy performance of the new task. From Figure 6(a) in Appendix 9, we see that
IFO’s accuracy of the new task outperforms that of OCM as learning invariant features makes the
model improve its generalization power. (2) the ability to maintain the learned decision boundaries
within a task by calculating the average task incremental accuracy of the previous tasks. Our method
IFO again outperforms OCM (Figure 6(b)) as IFO mitigates the overfitting problem of the limited
buffer data. (3) the ability to establish class boundaries across tasks. We measure this by considering
only the logit of the true label of each test instance in a task and the logits of the classes from the
other tasks when the model predicts the label of the test instance. IFO’s performance is still better
than that of OCM (Figure 6(c)) as IFO reduces the variant features, which enables the model to
project those class representations to different locations in the space, making the decision bound-
aries easier to establish. Also from Figure 6, we can clearly see that improving the last ability is the
biggest challenge for online CL. More details are given in Appendix 9.

6 CONCLUSION

Despite the fact that numerous empirical techniques have been proposed to solve the class-
incremental learning (CIL) problem, limited work has been done to study the necessary conditions
for good CIL performance. Recent work in (Guo et al., 2022) proposes that it is neccesary to learn
holistic feature representations, which improved the online CIL performance significantly. This pa-
per further argued that it is also necessary to learn invariant features for each class, and proposed
several methods to help learn invariant features in addition to learning holistic representations. Ex-
perimental results showed that the new condition gave another boost to the online CIL performance.
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A APPENDIX

A.1 Theoretical justification FOR SECTION 4.2

In the ideal case (data is sufficient and highly diverse), X can be observed in any environment z.
That leads to P (Z|X) ≈ P (Z) (the independence of Z and X) and we have

R̂(Dnew
t ) =

∑
y∈Y new

t

∑
x∈Xnew

t

∑
z

Lce(σϕ(fθ(x), y))P (y|x, z)P (z)P (x)

≈
∑

y∈Y new
t

∑
x∈Xnew

t

Lce(σϕ(fθ(x), y))P (y, x)
(11)

where
∑

y

∑
x Lce(σϕ(fθ(x), y))P (y, x) is the traditional cross-entropy loss. We also have

R̂(Xbuf
t , Y buf

t ) =
∑

y∈Y buf
t

∑
x∈Xbuf

t
Lce(σϕ(fθ(x), y))P (y, x). So adding Xnew and resizing and

storing more buffer data to construct Xbuf makes the model have more samples from different en-
vironments to train. And that makes the risk in Eq. 7 better approximated to the ideal objective in
Eq. 3.

A.2 THE DETAILS OF DISJOINT ONLINE CONTINUAL LEARNING SCENARIO

Due to the limitation of computational resources, we download the downsampled version of Ima-
geNet (3× 32× 32) from the official website and conduct experiments on this dataset. We don’t use
the Augcolor in the MNIST setting. We set the alpha and the beta of the beta distribution in Augcolor
as 1.

For AGEM, following the original paper, we use the SGD optimizer and set the learning rate as 0.1.
We use the random method to update the buffer and to sample data.

For GSS, based on the original paper, we use the same optimizer and learning rate as above. The
number of buffer batches randomly sampled from the memory to estimate the maximal gradients co-
sine similarity score is set to 10 and the randomly sampled buffer batch (Xbuffer) size for calculating
the score is 64.

For ASER, we use the mean value of Adversarial SV and Cooperative SV, and set the maximum
number of samples per class for random sampling as 1.5. We allow 3 nearest neighbors for KNN-SV
computation. We use the same SV-based methods for both Memory-Update and Memory-Retrieval
as given in the original paper.

For MIR/ER, we use the Adam optimizer and we set the learning rate as 0.001 and fix the weight
decay as 0.0001. We set the sub-sample size as 128.

For DER++, we use the Adam optimizer, set the learning rate as 0.001, fix the weight decay as
0.0001 and the value of alpha (α) as 0.1, and fix the beta (β) as 0.5.

For GDumb, we use the Adam optimizer, set the learning rate as 0.001 and fix the weight decay as
0.0001. We use the CutMix as the regularization to overcome over-fitting. we follow the official
code and set the number of epochs for training the whole buffer data as 256 for MINIST, CIFAR10,
and CIFAR100 datasets, and 32 for the TinyImagenet dataset. We set the gradient clip as 10.

For SCR, we use the Adam optimizer, set the learning rate as 0.001 and fix the weight decay as
0.0001. We set the temperature for contrastive loss as 0.07. We employ a linear layer with the
size [dimh,128] as the contrastive head. We follow the official code and use the horizontal-flip,
random-resized crop, random-gray-scale,color-jitter as its data augmentations.

The official code of these systems can be found from the following locations.

The code of ER and MIR: https://github.com/optimass/Maximally_Interfered_
Retrieval.
The code of ASER and SCR: https://github.com/RaptorMai/
online-continual-learning.
The code of GDumb: https://github.com/drimpossible/GDumb.
The code of DER++: https://github.com/aimagelab/mammoth.
The code for AGEM: https://github.com/facebookresearch/agem.
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The code for GSS: https://github.com/rahafaljundi/
Gradient-based-Sample-Selection.
The code for Co2L: https://github.com/chaht01/Co2L.
The code for IL2A: https://github.com/Impression2805/IL2A.
The code for SSIL: https://github.com/hongjoon0805/SS-IL-Official.
The code for OCM: https://github.com/gydpku/OCM.

A.3 THE FORGETTING RATE TABLE

Table 3: Average forgetting rate. All numbers are the averages of 15 runs. See the forgetting rates
for the ImageNet dataset in the text below.

Method MNIST CIFAR10 CIFAR100 TinyImageNet
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k B=2k B=4k B=10k

AGEM Chaudhry et al. (2018) 32.5±5.9 30.1±4.2 32.0±2.9 36.1±3.8 43.2±4.3 48.1±3.4 43.3±0.2 45.7±0.3 43.9±0.2 73.9±0.2 78.9±0.2 74.1±0.3

GSS Aljundi et al. (2019b) 26.1±2.2 17.8±5.22 10.5±6.7 75.5±1.5 65.9±1.6 54.9±2.0 30.8±0.2 30.7±0.5 26.4±0.3 72.8±1.2 72.6±0.4 71.5±0.2

ER Chaudhry et al. (2020) 22.7±0.5 9.7±0.4 6.7±0.5 42.0±0.3 26.7±0.7 20.7±0.7 34.2±0.2 31.7±0.9 35.3±0.9 68.2±2.8 66.2±0.8 67.2±0.2

MIR Aljundi et al. (2019a) 22.3±0.5 9.0±0.5 5.7±0.9 40.0±1.6 25.9±0.7 24.5±0.5 24.5±0.3 21.4±0.3 21.0±0.1 61.1±3.2 60.9±0.3 59.5±0.3

ASER Shim et al. (2021) 33.8±1.1 24.8±0.5 13.8±0.4 71.1±1.8 59.1±1.5 50.4±1.5 25.0±0.2 12.2±1.9 13.2±0.1 65.7±0.7 64.2±0.2 62.2±0.1

GDumb Prabhu et al. (2020) 10.3±0.1 6.2±0.1 4.8±0.2 26.5±0.5 24.5±0.2 18.9±0.4 16.7±0.5 17.6±0.2 16.8±0.4 15.9±0.5 14.6±0.3 11.7±0.2

SCR Mai et al. (2021) 10.7±0.1 4.7±0.1 4.0±0.2 41.3±0.1 31.5±0.2 24.7±0.4 17.5±0.2 11.6±0.5 5.6±0.4 19.4±0.3 15.4±0.3 14.9±0.7

DER++ Buzzega et al. (2020) 25.0±0.3 7.3±0.3 6.6±1.2 30.1±0.8 31.8±2.5 18.7±3.4 43.4±0.2 44.0±1.9 25.8±3.5 67.2±1.7 63.6±0.3 55.2±0.7

IL2A Zhu et al. (2021) 8.7±0.1 7.2±0.1 4.1±0.1 36.0±0.2 32.1±0.4 29.1±0.4 24.6±0.6 12.5±0.7 20.0±0.5 65.5±0.7 60.1±0.5 57.6±1.1

Co2L Cha et al. (2021) 14.7±0.2 7.1±0.1 3.1±0.1 32.0±0.1 21.0±0.3 16.9±0.2 16.9±0.4 16.6±0.6 9.9±0.7 60.5±0.5 52.5±0.9 42.5±0.8

SSILAhn et al. (2021) 11.3±0.1 2.7±0.1 2.8±0.1 36.0±0.7 29.6±0.4 13.5±0.4 40.1±0.5 33.9±1.2 21.7±0.8 44.4±0.7 36.6±0.7 29.0±0.7

OCMGuo et al. (2022) 4.7±0.1 1.8±0.1 1.3±0.1 23.0±0.2 14.0±0.7 12.0±1.1 12.2±0.3 8.5±0.3 4.5±0.3 23.5±1.9 21.0±0.3 18.6±0.5

IFO 4.2±0.1 1.0±0.2 1.1±0.1 16.3±0.3 8.1±0.1 2.0±0.7 11.9±0.5 8.3±0.4 4.3±0.2 22.5±0.3 18.6±0.5 13.5±0.8

IFO++ 3.0±0.1 0.8±0.2 0.9±0.1 12.7±0.5 6.1±0.2 2.0±0.3 9.8±0.5 7.3±0.4 3.3±0.5 21.5±0.3 15.9±0.2 12.9±0.2

From this forgetting table (Table A.3), we observe an obvious drop in forgetting rate from OCM to
IFO and IFO++ (our methods). That means our methods forget less. In the ImageNet setting, the
forgetting rates for the four top methods are 11.47 (SCR), 12.1 (SSIL), 11.7 (OCM) and 10.9 (IFO).

A.4 LEARNING INVARIANT REPRESENTATIONS.

Although better results of our method in the disjoint (Sec.5.1), blurry (Sec.5.2), and data environ-
ment shift (Sec. 5.3) experiments have already indicated that our proposal is able to learn invariant
features better. Here we use two additional and more specific types of experiments to further eval-
uate the effectiveness of learning invariant features: (1) model robustness on unseen environments
and (2) eigenvalue distribution of the learned representations.

(1) Model robustness on unseen environments. To verify that our method has learned invariant
features to form the class representation, we conduct the following experiment (this is not a con-
tinual learning setting). After training on the full CIFAR100 data, we test the trained model on
the CIFAR100-C dataset (Hendrycks & Dietterich, 2019), which is a model robustness benchmark
consisting of 19 corruption types with five levels of severities applied to the original test set of CI-
FAR100. The corruptions come from four main categories: noise, blur, weather, and digital. Each
corruption has five-level severities and “5” indicates the most corrupted one. Those corruptions are
not used in the training, so the test can be viewed as a test of the trained model in unseen envi-
ronments. A model that has learned invariant features should achieve a higher performance. From
Table 4, we observe that IFO indeed outperforms the OCM method on 19 unseen environments. The
gap between IFO and OCM gets larger with the level of severity increases. We conduct a similar ex-
periment on the Tiny-ImageNet-C dataset (another robustness dataset in (Hendrycks & Dietterich,
2019)), and the conclusion is consistent (Table 4). Those experiments empirically verify that our
method learns more invariant features than OCM.

(2) eigenvalue distribution of the learned representations. Zhu et al. (2021) observed that repre-
sentations fθ(x) with larger eigenvalues transfer better and suffer less forgetting. Guo et al. (2022)
showed the number of eigenvectors with significant variances is a good indicator of holistic degree of
the learned representations. We follow their experiment setting and plot the eigenvalues of the eigen-
vectors of the representations learned with ER, OCM and IFO from the first 50 classes of CIFAR-100
as a single supervised learning task (see Appendix 4). From Figure 3, we see that IFO and OCM
have much more significant directions (eigenvectors) than the basic ER method (Chaudhry et al.,
2020), which shows that both IFO and OCM have learned more diverse/holistic representations.
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Table 4: Test accuracy in the robustness benchmark. All numbers are the averages of 15 runs
Dataset CIFAR100-C Tiny-ImageNet-C
Methods Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

OCM 38.5±0.2 34.9±0.2 32.0±0.4 28.9±0.7 24.1±0.3 13.7±0.2 11.6±0.5 9.0±0.3 6.7±0.3 5.0±0.3

IFO 46.5±0.2 42.5±0.3 39.4±0.5 35.9±0.4 30.1±0.7 14.3±0.3 12.1±0.3 9.6±0.2 7.1±0.2 5.6±0.2

Our IFO method has a similar number of significant directions to that of OCM, but the eigenvalues
of the eigenvectors of IFO and OCM are very different (see Appendix 4), which gives us indirect
evidence that IFO is able to emphasize more or less of some directions compared to OCM. Coupled
with IFO’s better result, we can conclude that IFO finds better features.

Figure 3: We plot the Eigenvalue distribution of the learned representations by ER, OCM, and IFO
using the CIFAR100 dataset.

From Figure 3, we see that the main difference of the eigenvalue distributions of OCM and IFO is
the different eigenvalues they learned in the first 10 eigenvectors. That means that the representation
quality not only depends on the diversity of eigenvectors (holistic), but also on the different emphases
(different eigenvalues) on the features for class representations to achieve invariance.

A.5 MORE DETAILS OF I-BLURRY ONLINE CONTINUAL LEARNING SCENARIO

Following (Koh et al., 2021), for all method, we use the batch size of 16 and 3 updates per streamed
sample for CIFAR100 and the batch size of 32 and 3 updates per streamed sample for TinyImageNet,
and employ ResNet-34 for CIFAR100 and TinyImageNet. In the CIFAR100 setting, each task has 10
unique disjoint classes and 10 dominant blurry classes exclusively. The selection process of classes
for each task is random. In the TinyImageNet setting, each task has 20 unique disjoint classes and
20 dominant blurry classes exclusively. AutoAugment (Cubuk et al., 2019) and CutMix (Yun et al.,
2019) are also used as data augmentations. For CLIB and CLIB+INV, we use the same adaptive
learning rate schedule (Koh et al., 2021) with γ = 0.95 and m = 10 for the two datasets. We use
their official code https://github.com/naver-ai/i-Blurry to run the experiments.

A.6 DETAILS OF DATA ENVIRONMENT SHIFT ONLINE CONTINUAL LEARNING SCENARIO

We use ResNet-18 (not pre-trained) as the backbone for our method and baselines and use the Adam
optimizer and set the learning rate as 1e-3 for all methods. The batch size for the new data batch is
10 and there is no need to store or sample buffer data [bing: why?]. Data of each environment is run
by one epoch. From Table 5, we observe that the model optimized with our invariance loss achieves
higher test performance than that of the traditional cross-entropy loss in the unseen environment.

A.7 ABLATION STUDY ON IFO++
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Table 5: Test accuracy in the unseen environment. All numbers are the averages of 15 runs. ’Art-painting’
means that the model first learns the other three environments sequentially (order: Cartoon → Photo →
Sketch), then it is tested on the data points of the environment ’Art-painting’. ’Cartoon’ means that the model
first learns the other three environments sequentially (order: Art-Painting → Photo → Sketch), then it is tested
on the data points of the environment ’Cartoon’. ’Photo’ means that the model first learns the other three
environments sequentially (order: Art-Painting → Cartoon → Sketch), then it is tested on the data points of
the environment ’Photo’. ’Sketch’ means that the model first learns the other three environments sequentially
(order: Art-Painting → Cartoon → Photo), then it is tested on the data points of the environment ’Sketch’.

Method Art-painting Cartoon Photo Sketch
Lce 12.7±0.3 15.8±0.5 12.5±0.2 12.1±0.3

Linvariant 13.5±0.2 17.4±0.3 13.3±0.4 13.2±0.6

Lholistic + Lce 14.7±0.5 17.8±0.2 13.2±0.6 13.1±0.4

Lholistic + Linvariant 15.0±0.4 18.9±0.2 14.6±0.1 17.2±0.4

Table 6: Ablation accuracy - average of 5 runs. B is the memory buffer size.
Dataset IFO+random IFO+min IFO+random Dnew,buf

t IFO+max IFO+Dnew,buf
t

CIFAR100 (B=2k) 45.6±0.2 46.0±0.4 44.0±0.3 46.8±0.3 47.0±0.3

TinyImageNet (B=2k) 20.0±0.2 19.7±0.4 20.6±0.5 20.9±0.4 21.0±0.3

IFO++ goes further than IFO to mitigate the local sampling bias (LSB) problem in online CL. We
report its ablation results in Table 6. In experiments ’IFO+random’ and ’IFO+min’, we randomly
sample a buffer data as ẋ and choose the data sample with the minimum distance from x as ẋ,
respectively. Experimental results show that their performances are similar or even poorer than that
of IFO. This is because their ẋ may not provide a new environment for x to create its augmented
image Augplus(x). The performance of randomly choosing ẍ to construct Dnew,buf

t (IFO+random
Dnew,buf

t ) is poorer than that of IFO++ because IFO++ requires the model to distinguish Dnew
t and

Dnew,buf
t sampled from a similar environment to Dnew

t , which penalizes the local sampling bias. In
experiments ’IFO+max’ and ’IFO+Dnew,buf

t ’, we only consider ẋ to augment x and ẍ to construct
Dnew,buf

t and calculate the Linvariant(D
new
t , Dbuf

t , Dnew,buf
t ) loss, respectively. Both of them improve the

performance of IFO further, but their combination (which is IFO++) achieves the best performance.

A.8 ABLATION ANALYSIS OF HYPER-PARAMETERS IN IFO

Based on the results in In the experiments of Figure 4 and Figure 5. we set s to 5 as it achieves the
best performance with less compute. Also, we set the storage rate as 0.25 and r1 as 0.75 and r2 as
0.5.

A.9 ANALYSIS OF THE INFLUENCE OF LEARNING INVARIANT FEATURES

We conduct experiments on the CIFAR100 dataset (10 tasks) and the buffer size of 2k. From Fig-
ure 6, we observe that the performance of the first two abilities of OCM and IFO are non-decreasing
and bigger than 70 at the end. But the performance of the last ability is decreasing and is smaller than

Figure 4: (a) results of CIFAR100 with different s. (b) results of CIFAR100 with different storage
rate. (c) results of CIFAR100 with different resize rates r1 and r2. We set B as 2k for all experiments.
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Figure 5: (a) results of TinyImageNet with different s’. (b) results of TinyImageNet with different
storage rates. (c) results of TinyImageNet with different resize rates r1 and r2. We set B as 2k for
all experiments.

Figure 6: (a) the performance of learning new tasks. (b) the performance of maintaining learned
decision boundaries. (c) the performance of establishing decision boundary between new classes
and previous classes.

50 at the end (OCM (35.8) and IFO (46.36)). Also, we find that the average accuracy of OCM and
IFO are 35.0 and 45.5 respectively in the Table 1. That means the main limitation of the performance
of the current model is in establishing boundaries between classes from different tasks.
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