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Abstract

A common setting in astronomy is the availability of a small number of high-quality
observations, and larger amounts of either lower-quality observations or synthetic
data from simplified models. Time-domain astrophysics is a canonical example of
this imbalance, with the number of supernovae observed photometrically outpacing
the number observed spectroscopically by multiple orders of magnitude. At the
same time, no data-driven models exist to understand these photometric and spec-
troscopic observables in a common context. Contrastive learning objectives, which
have grown in popularity for aligning distinct data modalities in a shared embedding
space, provide a potential solution to extract information from these modalities.
We present Maven, the first foundation model for supernova science. To construct
Maven, we first pre-train our model to align photometry and spectroscopy from
0.5M synthetic supernovae using a contrastive objective. We then fine-tune the
model on 4,702 observed supernovae from the Zwicky Transient Facility. Maven
reaches state-of-the-art performance on both classification and redshift estimation,
despite the embeddings not being explicitly optimized for these tasks. Through
ablation studies, we show that pre-training with synthetic data improves overall
performance. In the upcoming era of the Vera C. Rubin Observatory, Maven serves
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as a Rosetta Stone for leveraging large, unlabeled and multimodal time-domain
datasets.

1 Introduction

The discovery rate of supernovae (SNe) has grown exponentially over the past four decades, thanks in
large part to wide-field, untargeted optical surveys (e.g., All Sky Automated Survey for SuperNovae
(ASAS-SN; [1]), ATLAS ([2]), the Zwicky Transient Facility (ZTF; [3]) and the Young Supernova
Experiment (YSE; [4]). Today, well over ten-thousand SNe are discovered annually. The upcoming
Legacy Survey of Space and Time (LSST; [5]), conducted by the Vera C. Rubin Observatory, will
enable the photometric discovery of over one million SNe annually, in addition to millions of other
non-SN variable phenomena. While photometry is easily obtained, spectroscopy is significantly more
time-consuming to acquire (long integration times are needed to build up sufficient signal across a
spectrograph). This challenge has catalyzed research into techniques to infer the underlying physics
of an explosion directly from photometric observations, including the classification of SN types
[e.g., 6–12] and inference of SN redshifts [13, 14]. In this context, supervised machine learning has
dominated the training of models for the classification of SN types and the estimation of SN redshift.
The labels used in the supervised training scenario must be first extracted from spectra, demanding
large spectroscopic datasets for sufficient model performance. To overcome this issue, researchers
have begun to explore self-supervised learning to leverage the structure of unlabeled photometric
datasets, by training a feature extraction network and generating a low-dimensional latent space
[15, 16]. The learned latent space can then be used to classify events using supervised methods.

Self-supervised representation learning for time-domain astrophysics is appealing for multiple reasons.
Pre-trained models have been shown to produce latent data representations that are more robust
against distribution shifts than their supervised counterparts [17, 18]. Distribution shift is a common
obstacle when applying models trained on bright, spectroscopically-confirmed low-redshift transients
to fainter, more distant phenomena that are underrepresented in the training data. Self-supervised
learning may also be less sensitive to the class imbalances observed in transient science [19]: labeled
SN samples are dominated by type Ia SNe due to their high luminosities relative to other classes. The
generalizability of learned representations [20, 21] also offers the potential for using a pre-trained
model for multiple inference tasks and across diverse time-domain surveys, with only minimal
fine-tuning.

Contrastive learning has emerged as an effective pre-training objective for combining multiple data
modalities. Radford et al. [22] present an embedding scheme called Contrastive Language–Image
Pre-training (CLIP) for aligning natural language and associated images in a shared latent space.
Inspired by CLIP, we present Maven, the first multimodal foundation model for SNe. In contrast
to previous models for SN classification and redshift inference, our model is constructed using
spectroscopic and photometric information simultaneously. Motivated by previous work in synthetic
pre-training, we first train Maven by aligning simulated light curve-spectrum pairs via contrastive
learning, and fine-tune it on a small sample of observed data using the same approach. Our final
model achieves state-of-the-art performance on multiple downstream tasks. We also train a model
with only observed data, called Maven-lite, to quantify the impact of synthetic pre-training. Though
we limit our analysis to classification and redshift (two popular inference tasks in SN science), the
model is a milestone toward general-purpose training for a range of downstream tasks.

2 Datasets and Simulations

In this study, we utilize two datasets: a simulated dataset for pre-training and a dataset of observations
for subsequent fine-tuning and validation3. We give an overview of the datasets and provide more
details in Appendix A.1.

For pre-training, we simulate observations of the Zwicky Transient Facility [3] using the SNANA
simulation code [23] and the framework described in [24], which approximately matches the redshift
distribution of the SNe in our observed sample (described in A.1.2). We simulate 500,000 total
events evenly split between five different SN classes, using SED models from the Photometric LSST

3All data are available at https://huggingface.co/datasets/anonymous/anonymous
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Figure 1: Overview of our training workflows. We first pre-train on a large simulated data set
using contrastive methods (using light curves and spectra). We follow up by training on the ZTF
observations and then use a simple model to translate these embedding to downstream tasks. Different
colors indicate different first training steps and their arrows indicate subsequent training steps.

Astronomical Time-Series Classification Challenge [25]: SNe Ia, SNe Ib/c, SLSNe-I, and SNe II
(which includes both SNe IIP/IIL), and SNe IIn.

For our observation dataset, we obtain metadata for 4,702 spectroscopically-classified SNe from
the ZTF Bright Transient Survey [26].We consolidate our resulting sample to only include events
spectroscopically classified as “normal”: SN Ia, SN Ib/c, SN II, SLSN-I, and SN IIn. In each
training iteration, we augment our training data by applying Gaussian noise to the photometric and
spectroscopic observations with mean zero and standard deviation equal to the magnitude of the
reported observational errors.

3 Methodology

Here, our goal is to use contrastive learning to build a shared representation space using photomet-
ric and spectroscopic data from the same event, and to explore the predictive properties of these
representations for downstream tasks.

3.1 Modality Encoders

The encoders f : I → Rdemb and g : T → Rdemb are designed to efficiently extract information from
high-dimensional data for the two considered modalities. Both light curve and spectrum encoders are
based on the transformer architecture [27].

The light curve encoder processes magnitude-time pairs X = ((m1, t1), ..., (mn, tn)), where ti is
defined as the number of days from the first observation. The normalized magnitudes are initially
linearly projected to the dmodel-dimensional embedding space of the transformer. Each transformer
layer applies multi-head self-attention (with nheads heads acting separately) followed by a 2-layer
feedforward network: FFN(x) = max(0, xW1 + b1)W2 + b2. Layer normalization and residual
connections are applied after attention as well as the feedforward layer. To account for the temporal
nature of light curves, we use sinusoidal time encodings to project the times ti to a higher-dimensional
space,

TE(ti, j) =

{
sin(ti/n

2j/dmodel

t ) if i is even
cos(ti/n

2j/dmodel

t ) if i is odd
, (1)

where j is the time embedding index, ti are the input times, and nt is a hyperparameter governing
the periodicity of the time encodings. This encoding allows the model to capture both absolute and
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relative timing of observations across a wide range of timescales. In addition, to incorporate light
curve measurements from multiple photometric filters, we concatenate all measurements for each SN
and add an additional band encoding. Different bands are one-hot encoded with integers and then
added to light curve magnitude embeddings before being passed into the transformer encoder.

The spectrum encoder utilizes a similar transformer-based architecture to that of the light curve
encoder, but interprets the input sequence as ((f1, λ1), ..., (fn, λn)), where fi represents the flux at
observer-frame wavelength λi. The positional encoding for wavelengths follows the same sinusoidal
pattern as the light curve encoder, but with λ in place of t.

For both the light curve and spectrum encoders, in addition to deterministic aggregate e.g., mean
or max pooling, we consider attention-based learnable aggregation to convert the per-sequence
representation to a 1-D representation vector. This enables the model to learn a data-dependent
aggregation scheme, potentially better capturing correlations in the data. We initialize a learn-
able query vector Qlearned ∈ Rdemb , where demb is the embedding dimension. A projection
of the encoded sequence after the final transformer layer gives the keys and values for the at-
tention mechanism. We use a multi-head attention architecture with two heads to then get
xagg = Attention(Qlearned,Kfinal, Vfinal) ∈ Rdemb . We treat the aggregation method as a hyper-
parameter: in the hyperparameter tuning process, we consider both mean and attention-based aggre-
gation.

3.2 Training

After pre-training some of our models on simulations, we fine-tune on the small set of ZTF BTS
observations. We explore two different transfer learning approaches. First, we begin with the pre-
trained model and continue training all of its weights using the observed data. In the second approach,
we again begin with the pre-trained model, but instead allow only the weights in the first transformer
block to be learnable and freeze all other weights during fine-tuning. We find that the first approach
leads to better performance on downstream tasks compared to the second approach. Therefore,
we only show results from the first approach hereafter. We define our hyperparameter-optimized
pre-trained model as ‘Maven’, and our CLIP model without pre-training as ‘Maven-lite’ (see Fig. 1).

For both pre-training and fine-tuning, we use the standard softmax-based bidirectional variant of the
InfoNCE [28] contrastive loss function. Given a minibatch B of |B| associated pairs {(Xi, Yi)}|B|

i=1
(light curves and spectra in this work), our goal is to align the learned representations of corresponding
(positive) pairs (Xi, Yi) (here, the spectrum and light curve of a single SN) while repelling the
representations of unaligned (negative) pairs (Xi, Yj ̸=i):

L(B) = − 1

2|B|

|B|∑
i=1

(
log

exi·yi/τ∑|B|
j=1 e

xi·yj/τ
+ log

exi·yi/τ∑|B|
j=1 e

xj ·yi/τ

)
(2)

where xi = f (Xi)/∥f (Xi)∥ and yi = g (Yi)/∥g (Yi)∥ are the normalized representations of the
i-th data pairs associated with each other, and τ is a learnable hyperparameter.

We perform a stratified 5-fold cross-validation on the ZTF observations to quantify model uncer-
tainties. We show results for the mean and standard deviation from these runs. To avoid added
computational overhead, we do not perform it on the simulation-based pre-training.

To determine hyperparameter values for model architecture and training, we perform a hyperparameter
search for our models using Weights & Biases [29]. A list of parameter values in our search are
provided in configuration files in our public code repository.4

3.3 Downstream Tasks

We evaluate the performance of Maven and Maven-lite on two primary downstream tasks: classifica-
tion and regression.

Classification of SNe from photometry alone has been an area of active study due to the long
integration times required to build up sufficient signal-to-noise with spectroscopy and the subsequent
rise of wide-field photometric surveys. SN classes are highly imbalanced in observed samples, due to

4https://github.com/anonymous/anonymous
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a combination of different intrinsic volumetric rates and a steep selection function toward brighter
classes (SNe Ia). We present results for a three-way classification task (SN Ia, SN II, SN Ib/c).

In addition, we attempt to predict the redshift of each SN (which we call our “regression task”). Red-
shift estimation using spectroscopic and photometric SNe Ia is a fundamental tool for cosmological
analyses. Although non-Ia classes are significantly more observationally diverse [e.g., 30], estimating
SN redshift remains critical for estimating the intrinsic properties of an explosion.

To transform our contrastive-trained light curve embeddings into classification predictions, we explore
both support vector classification (SVC) and k-Nearest Neighbors classification (kNN). For redshift
regression, we explore both linear regression and kNN regression. In the following sections, we only
quote results from kNN as it produces the best performance on downstream tasks.

Lastly, we train supervised baseline models directly on the observational ZTF dataset. For the
classification baseline model, we optimize for the multi-class cross-entropy loss and take the class
with highest pseudo-probability score as the prediction for each event. The regression baseline model
outputs a single value and is optimized using the mean squared error (MSE) loss.

4 Results

4.1 t-SNE Visualization of Latent Spaces

To explore the impact of CLIP-style pre-training on the latent space of our Maven models, we first
visualize a sample of embedded light curves. We compute Maven and Maven-lite embeddings of
our five dominant classes for both the synthetic and observed samples: SNe Ia, SNe II, SNe Ib/c,
SLSNe I, and SNe IIn. We further reduce the dimensionality of our latent space using principal
component analysis from the encoder output of 128 features to 50 features for computational
efficiency, confirming that the subsequent 50 features retain >99.999% of the variance in the original
embeddings. Finally, we produce two-dimensional representations of these embeddings using the
t-distributed stochastic neighbor embedding tool (t-SNE; [31]). Our results are presented in Fig. 2 for
Maven-lite (left column) and Maven (right column), where the embeddings are colored by class in
the top row and shaded by redshift in the bottom row.

Significant differences are visible between the two latent spaces. Considering the Maven-lite embed-
dings, only the synthetic SLSN-I light curves (blue) are well-separated from the other classes; the
core-collapse (SN Ib/c, II, IIn) and thermonuclear (Ia) events show significant overlap. Observed
Ia and II light curves (outlined in black) show similar embeddings independent of class, and little
consistency with the synthetic embeddings: the majority of observed SN Ia and SN II lie at the
boundary between synthetic SLSN-I and SN II/SN IIn embeddings.

In our Maven embeddings, we observe both clear separation of classes and consistent redshift
gradients across our embedded light curves. The simulated SNe Ia appear best-organized by redshift,
consistent with their photometric homogeneity. The redshift gradient across observed SNe Ia is also
well-aligned with that of the synthetic sample, whereas a similar distribution is not observed in the
Maven-lite embeddings. Synthetic SNe Ib/c appear strongly mixed with both SNe Ia and SNe II,
indicative of the photometric degeneracies between these classes.

Interestingly, although observed SN Ia and SN II embeddings lie closest to the synthetic events
of the same class, the overlap between synthetic and observed data remains low. We attribute this
to a distributional shift between synthetic and observed data. Observed events are prioritized for
spectroscopic confirmation if they are brighter than (or expected to brighten above) m < 18.5th
magnitude, and additional quality and purity cuts are imposed (see Section A.1 for details). While a
detailed comparison between synthetic and observed events is beyond the scope of this work, this
separation may also reflect the simplistic nature of our simulations relative to reality, and emphasizes
the need for significantly larger observed SN samples for effective pre-training.

4.2 Classification Performance

Our results are visualized using a set of confusion matrices for our three-way classification task in
Fig. 3. We show the confusion matrices for precision (normalized by predicted class) and recall
(normalized by true class) for our models. We note higher recall by Maven on the two dominant
classes in our sample: 0.79 for SNe II and 0.99 for SNe Ia, compared to 0.74 for SNe II and 0.91 for
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Figure 2: Visualization of synthetic and observed light curves embedded by Maven-lite (left
column) and Maven (right column). Points in top row are colored by SN class, and points in bottom
row are shaded by spectroscopic redshift. Observed data are outlined in black.

SNe Ia with the baseline model. We observe poorer recall with the minority SN Ib/c class, which
comprises ∼5% of the observed sample: 0.18 with simulated pre-training compared to 0.61 for the
baseline. We predict that the baseline model is better able to outline the decision boundaries for this
class.

We observe the opposite results on the minority class when considering class precision. Our two-
stage pre-training model achieves comparable precision to the baseline for SNe II and SNe Ia but
substantially higher precision for SNe Ib/c, 0.58 compared to 0.28. We note that, with substantially
higher discovery rates of rare classes anticipated with the Vera C. Rubin Observatory, classification
precision is essential for obtaining spectroscopic follow-up observations of relevant events. We have
explored the misassociation rate as a function of event peak brightness, but identify no obvious
correlations.

A common metric in classification tasks is the F1 score, which for a class C is defined as the harmonic
mean between the class’s recall r and precision p: F1,C := 2pCrC(pC + rC). We calculate for each
model both the micro-averaged F1 score, which averages performance across all events irrespective
of class; and the macro-averaged F1 score, which averages the F1 score computed independently for
each class. The macro-averaged F1 score is a valuable indicator for our use case given the significant
class imbalance, as the micro-F1 can approach unity when all events are labeled as the dominant
class. We present these results, along with the macro-averaged precision and recall (‘mac-p’ and
‘mac-r’) in Table 1. We further show the macro-F1 score of each model as a bar plot in Fig. 4.

We observe macro-F1 scores within 1-σ of the baseline model for the majority of our pre-trained kNN
classifiers, from a score of 0.6874± 0.0342 for Maven compared to a baseline of 0.7011± 0.0303.
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Figure 3: Normalized precision and recall confusion matrices for supernova classification across
different models and modalities. The models compared are: (a) CLIP with simulation pre-training
(Maven), (b) baseline using a supervised model approach, and (c) CLIP without simulation pre-
training (Maven-lite). The classes included are SN II, SN Ia, and SN Ib/c.

Table 1: Overview of classification model performance. We present three classification models:
the baseline only trained on the ZTF dataset, Maven-lite without synthetic pre-training, and Maven
with synthetic pretraining and observed fine-tuning. A more comprehensive overview over the runs
performed in this paper can be found in Table 3.

Name Pre-trained mac-F1 mic-F1 mac-p mac-r
baseline no 0.701 ± 0.030 0.873 ± 0.021 0.693 ± 0.036 0.753 ± 0.025
Maven CLIP 0.687 ± 0.034 0.925 ± 0.007 0.804 ± 0.083 0.652 ± 0.022

Maven-lite no 0.627 ± 0.023 0.894 ± 0.011 0.667 ± 0.053 0.612 ± 0.012

The scores for these models are systematically higher than both Maven-lite and the majority of CLIP
kNN classifiers without pre-training: the average F1 score is 0.68 for all pre-trained kNN classifiers
compared with an average of 0.63 for the kNN classifiers trained with only observed data.

We have also calculated the performance of our models for the five-way classification task, which
additionally considers the rarer classes SN IIn and SLSN I. Here, we observe a marginally higher
average F1 score for Maven than the baseline, though the results are consistent to within one standard
deviation (0.50± 0.03 for the best model compared to 0.49± 0.04).

4.3 Comparison to Transformer-Based SN Classifiers

Next, we compare our multimodal model to photometric classifiers in the literature with transformer-
based architectures. Cabrera-Vives et al. [32] apply a custom transformer model (ATAT) to synthetic
photometry and metadata from the Extended LSST Astronomical Time-Series Classification Chal-
lenge (ELAsTiCC5). The ATAT model consists of separate transformers, one which encodes light

5https://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/
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Table 2: Overview of regression model performance. A more comprehensive overview over the
runs performed in this paper can be found in Table 4.

Name R2 L1 L2 OLF
Maven 0.6496 ± 0.0398 0.0095 ± 0.0004 0.0152 ± 0.0014 0.0002 ± 0.0005

baseline 0.6129 ± 0.0245 0.0104 ± 0.0004 0.0160 ± 0.0010 0.0002 ± 0.0005
Maven-lite 0.6078 ± 0.0408 0.0103 ± 0.0006 0.0161 ± 0.0014 0.0002 ± 0.0005

curves with a temporal encoding based on Fourier series and a quantile tokenizer for extracted
photometric features (including the number and phases of non-detections and the flux characteristics
of detections). While the model was trained and validated on synthetic photometry for 20 transient
and variable astronomical classes, we can generally compare the performance by averaging the
reported precision, recall, and F1 scores of SNe Ia, II, and Ib/c from their Table. Their final model
achieves an average macro-F1 score of 0.67 across the three classes, compared with 0.70 for our
end-to-end baseline and 0.69 for our best-performing light curve and spectra-aligned models. They
report an average recall of 0.71 for these classes, compared to 0.75 for our end-to-end baseline and
0.65 for Maven; and an average precision of 0.63, compared to 0.69 for our baseline and 0.80 for
Maven. We caution that these datasets are distinct, limiting further comparison.

The results of [33] are more directly comparable to this work. Pimentel et al. [33] present a transformer
model for ZTF photometry in which the time of each observation is encoded as the phase from first
detection using a Fourier decomposition-based temporal modulation, with noise added to the values
in training to prevent overfitting. In a two-stage pre-training scheme with both synthetic and observed
events, the optimization problem is defined with reconstruction and cross-entropy regularization terms
to preserve class-specific information in the encoded light curves. The resulting ‘S-TimeModAttn’
model is trained and validated on g and r-band light curves from the Zwicky Transient Facility, with
presumably substantial overlap with the observational dataset considered in this work. Pimentel
et al. [33] report a macro-F1 of 0.614± 0.036 in the task of four-way classification (Ia, II, Ib/c, and
SLSN), compared to our 0.6874 ± 0.0342 for three-way classification; and a macro-precision of
0.598 ± 0.030 compared to our 0.804 ± 0.083. A macro-recall (also referred to as completeness)
score of 0.72 for three-way classification can be inferred from their confusion matrices, compared to
our lower 0.6516± 0.0216 from Fig. 3. Class-specific F1 scores and precisions (also referred to as
purity) are not reported.

4.4 Regression Performance

We next consider the task of redshift estimation. We quantify the performance of our models
with the coefficient of determination R2, the L1 and L2 error, and the outlier fraction ‘OLF’,
defined as |zpred − ztrue|/(1 + ztrue) > 0.15. We report these values for contrastive pre-trained
models in Table 2. We also present a bar plot of the R2 values in Fig. 4. We calculate an R2

value of R2 = 0.6496 ± 0.0398 for Maven compared to the end-to-end baseline performance of
R2 = 0.6129 ± 0.0245. The L1 and L2 errors are also lower on average for Maven than for our
regression baseline, while the outlier fraction is comparable. We conclude that, on average, Maven
outperforms the baseline regression model. Maven-lite, our model without pre-training, achieves an
R2 value of 0.6078± 0.0408, lower than both Maven and the baseline model.

Though a comparable photometric redshift model for low-redshift ZTF SNe does not exist in literature,
an outlier fraction of 0.004 is reported for 289 photometric SNe Ia in the Supernova Legacy Survey
(SNLS), nearly an order of magnitude higher than our best model but with a substantially higher
maximum redshift z < 1.0 [34]. Another analytic photometric redshift estimator proposed by [35]
for SNe Ia discovered by LSST finds an outlier fraction of 0.0023 over z < 1.0, compared to our
0.0002.

5 Discussion

We have explored the value of constrastive pre-training in constructing a foundational model for SN
science. By first training with synthetic events and fine-tuning with observed events, we have con-
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structed a model, Maven, whose performance on the downstream tasks of photometric classification
and redshift is competitive with models optimized end-to-end for these tasks. Maven outperforms our
classification baseline model, with a micro-averaged-F1 score of 0.92. Similarly, Maven outperforms
our baseline for redshift regression, with an L2-loss of 0.015 and minimal outlier fraction. While
we have limited our study to ZTF data, adapting Maven to incorporate additional photometric filters
and classes of astronomical transients would allow us to repurpose it for diverse time-domain studies
with the Vera C. Rubin Observatory using fewer computational resources than building multiple
specialized models.

CLIP-style pre-training has been proposed as a simple and effective mechanism for extracting
information from multiple modalities in a single model. The following conditions need to be met
for multimodal constrastive learning to be effective: that significant information content is shared
across these modalities; that the mutual information is relevant for the downstream tasks; and that
the shared information is the maximal information in each modality relevant for the downstream
tasks. Recently, [36] formalized this picture by defining ‘multi-view redundancy’ as a necessary
condition for effective pre-training using traditional constrastive learning. In our case, we know
spectra to be highly informative for both classification (the taxonomy is defined by spectra obtained
early after a SN’s explosion, with the temporal evolution of the explosion rarely considered) and
redshift inference, which is achieved primarily through the identification of spectral lines. Supernova
photometry, although containing some spectral information, is significantly more lossy: the collection
of photons through a broadband photometric filter destroys valuable information about a supernova’s
underlying spectral energy distribution that might otherwise be valuable for these tasks. For these
reasons, we can characterize supernova light curves as an ‘information-poor’ modality and spectra
as an ‘information-rich’ modality for our tasks. CLIP-style pre-training, in this case, is unable to
bring significant performance gains beyond end-to-end optimized models. This behavior persists
despite aligning these modalities directly with the relevant downstream information (metadata of an
event’s spectroscopic classification and redshift, as discussed in Appendix A.2): the least-informative
modality sets an upper limit on the mutual information that can be extracted. We therefore advise
caution in the use of multimodal constrastive pre-training, which should be specialized for the input
modalities and the anticipated downstream tasks. In our case, additional improvements may be
possible with a pre-training scheme designed to preserve both mutual and unique information content
relevant for multiple diownstream tasks (as is proposed in [36]).

baseline Maven Maven-lite

0.60
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0.70

m
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ro
-f1

Classification
CLIP Models Baseline Models Pre-trained

Maven baseline Maven-lite

0.55
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R
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Figure 4: Final performance metrics for Maven, Maven-lite, and baseline models for on downstream
classification and regression tasks.

6 Conclusion

We have presented Maven, the first model trained with supernova data for multi-task inference. We
summarize our key findings below:

1. We train Maven through self-supervised contrastive learning on SN spectra and light curves.
Maven is able to achieve state-of-the-art performance on both redshift estimation and SN
classification.
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2. We find that pre-training on a large simulated dataset significantly improves Maven’s
performance on downstream tasks over a contrastively-trained model on solely the observed
data.

3. Maven does not dramatically outperform supervised models optimized directly for each
downstream task. We hypothesize that this is due to the light curve being an information-
poor modality, which limits the amount of information our unsupervised objective is able to
extract.

Traditional multimodal models have considered complementary representations of the same astro-
nomical source (in this case, photometry and spectroscopy of a SN). When neither spectroscopic
or photometric coverage of a transient event is available, however, broad physical properties can be
inferred using data from the event’s host galaxy [37–40]. Early efforts have emphasized the value of
host-galaxy photometry for classification of SNe [41, 42, 10, 43]. LSST data will contain photometry
for tens of billions of galaxies, millions of which will be spectroscopically-confirmed through the
Dark Energy Spectroscopic Instrument [DESI; 44] or 4MOST [45]. Additional work should be
dedicated to exploring the linking of modalities spanning distinct lengthscales, which would allow
for both SN and host-galaxy information to be consolidated in a single pre-training scheme.
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Kallivayalil, Bryce Kalmbach, Jeffrey P. Kantor, Pierre Karst, Mansi M. Kasliwal, Heather
Kelly, Richard Kessler, Veronica Kinnison, David Kirkby, Lloyd Knox, Ivan V. Kotov, Victor L.
Krabbendam, K. Simon Krughoff, Petr Kubánek, John Kuczewski, Shri Kulkarni, John Ku,
Nadine R. Kurita, Craig S. Lage, Ron Lambert, Travis Lange, J. Brian Langton, Laurent Le
Guillou, Deborah Levine, Ming Liang, Kian-Tat Lim, Chris J. Lintott, Kevin E. Long, Margaux
Lopez, Paul J. Lotz, Robert H. Lupton, Nate B. Lust, Lauren A. MacArthur, Ashish Mahabal,
Rachel Mandelbaum, Thomas W. Markiewicz, Darren S. Marsh, Philip J. Marshall, Stuart Mar-
shall, Morgan May, Robert McKercher, Michelle McQueen, Joshua Meyers, Myriam Migliore,
Michelle Miller, David J. Mills, Connor Miraval, Joachim Moeyens, Fred E. Moolekamp,
David G. Monet, Marc Moniez, Serge Monkewitz, Christopher Montgomery, Christopher B.
Morrison, Fritz Mueller, Gary P. Muller, Freddy Muñoz Arancibia, Douglas R. Neill, Scott P.
Newbry, Jean-Yves Nief, Andrei Nomerotski, Martin Nordby, Paul O’Connor, John Oliver,
Scot S. Olivier, Knut Olsen, William O’Mullane, Sandra Ortiz, Shawn Osier, Russell E. Owen,
Reynald Pain, Paul E. Palecek, John K. Parejko, James B. Parsons, Nathan M. Pease, J. Matt
Peterson, John R. Peterson, Donald L. Petravick, M. E. Libby Petrick, Cathy E. Petry, Francesco
Pierfederici, Stephen Pietrowicz, Rob Pike, Philip A. Pinto, Raymond Plante, Stephen Plate,
Joel P. Plutchak, Paul A. Price, Michael Prouza, Veljko Radeka, Jayadev Rajagopal, Andrew P.
Rasmussen, Nicolas Regnault, Kevin A. Reil, David J. Reiss, Michael A. Reuter, Stephen T.
Ridgway, Vincent J. Riot, Steve Ritz, Sean Robinson, William Roby, Aaron Roodman, Wayne
Rosing, Cecille Roucelle, Matthew R. Rumore, Stefano Russo, Abhijit Saha, Benoit Sassolas,
Terry L. Schalk, Pim Schellart, Rafe H. Schindler, Samuel Schmidt, Donald P. Schneider,
Michael D. Schneider, William Schoening, German Schumacher, Megan E. Schwamb, Jacques
Sebag, Brian Selvy, Glenn H. Sembroski, Lynn G. Seppala, Andrew Serio, Eduardo Serrano,
Richard A. Shaw, Ian Shipsey, Jonathan Sick, Nicole Silvestri, Colin T. Slater, J. Allyn Smith,
R. Chris Smith, Shahram Sobhani, Christine Soldahl, Lisa Storrie-Lombardi, Edward Stover,
Michael A. Strauss, Rachel A. Street, Christopher W. Stubbs, Ian S. Sullivan, Donald Sweeney,
John D. Swinbank, Alexander Szalay, Peter Takacs, Stephen A. Tether, Jon J. Thaler, John Gregg
Thayer, Sandrine Thomas, Adam J. Thornton, Vaikunth Thukral, Jeffrey Tice, David E. Trilling,
Max Turri, Richard Van Berg, Daniel Vanden Berk, Kurt Vetter, Francoise Virieux, Tomislav
Vucina, William Wahl, Lucianne Walkowicz, Brian Walsh, Christopher W. Walter, Daniel L.
Wang, Shin-Yawn Wang, Michael Warner, Oliver Wiecha, Beth Willman, Scott E. Winters,
David Wittman, Sidney C. Wolff, W. Michael Wood-Vasey, Xiuqin Wu, Bo Xin, Peter Yoachim,
and Hu Zhan. LSST: From Science Drivers to Reference Design and Anticipated Data Products.
ApJ, 873(2):111, March 2019. doi: 10.3847/1538-4357/ab042c.

11



[6] Daniel Muthukrishna, Gautham Narayan, Kaisey S. Mandel, Rahul Biswas, and Renée Hložek.
RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP, 131(1005):
118002, November 2019. doi: 10.1088/1538-3873/ab1609.

[7] VA Villar, E Berger, G Miller, R Chornock, A Rest, DO Jones, MR Drout, RJ Foley, R Kirshner,
Ragnhild Lunnan, et al. Supernova photometric classification pipelines trained on spectro-
scopically classified supernovae from the pan-starrs1 medium-deep survey. The Astrophysical
Journal, 884(1):83, 2019.

[8] A. Möller and T. de Boissière. SuperNNova: an open-source framework for Bayesian, neural
network-based supernova classification. MNRAS, 491(3):4277–4293, January 2020. doi:
10.1093/mnras/stz3312.

[9] Kyle Boone. ParSNIP: Generative Models of Transient Light Curves with Physics-enabled
Deep Learning. AJ, 162(6):275, December 2021. doi: 10.3847/1538-3881/ac2a2d.

[10] Alexander Gagliano, Gabriella Contardo, Daniel Foreman-Mackey, Alex I. Malz, and Patrick D.
Aleo. First Impressions: Early-time Classification of Supernovae Using Host-galaxy Information
and Shallow Learning. ApJ, 954(1):6, September 2023. doi: 10.3847/1538-4357/ace326.

[11] Nabeel Rehemtulla, Adam A. Miller, Theophile Jegou Du Laz, Michael W. Coughlin, Christoffer
Fremling, Daniel A. Perley, Yu-Jing Qin, Jesper Sollerman, Ashish A. Mahabal, Russ R. Laher,
Reed Riddle, Ben Rusholme, and Shrinivas R. Kulkarni. The Zwicky Transient Facility Bright
Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients
with Deep Learning. arXiv e-prints, art. arXiv:2401.15167, January 2024. doi: 10.48550/arXiv.
2401.15167.

[12] Kaylee M. de Soto, Ashley Villar, Edo Berger, Sebastian Gomez, Griffin Hosseinzadeh,
Doug Branton, Sandro Campos, Melissa DeLucchi, Jeremy Kubica, Olivia Lynn, Kon-
stantin Malanchev, and Alex I. Malz. Superphot+: Realtime Fitting and Classification
of Supernova Light Curves. arXiv e-prints, art. arXiv:2403.07975, March 2024. doi:
10.48550/arXiv.2403.07975.

[13] Ayan Mitra, Richard Kessler, Surhud More, Renee Hlozek, and LSST Dark Energy Science
Collaboration. Using Host Galaxy Photometric Redshifts to Improve Cosmological Constraints
with Type Ia Supernovae in the LSST Era. ApJ, 944(2):212, February 2023. doi: 10.3847/
1538-4357/acb057.

[14] Helen Qu and Masao Sako. Photo-zSNthesis: Converting Type Ia Supernova Lightcurves
to Redshift Estimates via Deep Learning. ApJ, 954(2):201, September 2023. doi: 10.3847/
1538-4357/aceafa.

[15] Joseph W. Richards, Darren Homrighausen, Peter E. Freeman, Chad M. Schafer, and Dovi
Poznanski. Semi-supervised learning for photometric supernova classification. MNRAS, 419(2):
1121–1135, January 2012. doi: 10.1111/j.1365-2966.2011.19768.x.

[16] V. Ashley Villar, Griffin Hosseinzadeh, Edo Berger, Michelle Ntampaka, David O. Jones,
Peter Challis, Ryan Chornock, Maria R. Drout, Ryan J. Foley, Robert P. Kirshner, Ragnhild
Lunnan, Raffaella Margutti, Dan Milisavljevic, Nathan Sanders, Yen-Chen Pan, Armin Rest,
Daniel M. Scolnic, Eugene Magnier, Nigel Metcalfe, Richard Wainscoat, and Christopher
Waters. SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline
Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. ApJ, 905(2):94, December 2020.
doi: 10.3847/1538-4357/abc6fd.

[17] Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, and Amartya Sanyal. How robust are
pre-trained models to distribution shift? In ICML 2022: Workshop on Spurious Correlations,
Invariance and Stability, 2022.

[18] Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Ishan Misra, Levent Sagun, Armand
Joulin, and Piotr Bojanowski. Vision Models Are More Robust And Fair When Pretrained On
Uncurated Images Without Supervision. arXiv e-prints, art. arXiv:2202.08360, February 2022.
doi: 10.48550/arXiv.2202.08360.

12



[19] Yuzhe Yang and Zhi Xu. Rethinking the Value of Labels for Improving Class-Imbalanced
Learning. arXiv e-prints, art. arXiv:2006.07529, June 2020. doi: 10.48550/arXiv.2006.07529.

[20] Daehee Kim, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. SelfReg: Self-supervised Con-
trastive Regularization for Domain Generalization. arXiv e-prints, art. arXiv:2104.09841, April
2021. doi: 10.48550/arXiv.2104.09841.

[21] Linus Ericsson, Henry Gouk, Chen Change Loy, and Timothy M. Hospedales. Self-Supervised
Representation Learning: Introduction, advances, and challenges. IEEE Signal Processing
Magazine, 39(3):42–62, May 2022. doi: 10.1109/MSP.2021.3134634.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[23] Richard Kessler, Joseph P. Bernstein, David Cinabro, Benjamin Dilday, Joshua A. Frieman,
Saurabh Jha, Stephen Kuhlmann, Gajus Miknaitis, Masao Sako, Matt Taylor, and Jake Van-
derplas. SNANA: A Public Software Package for Supernova Analysis. PASP, 121(883):1028,
September 2009. doi: 10.1086/605984.

[24] P. D. Aleo, K. Malanchev, S. Sharief, D. O. Jones, G. Narayan, R. J. Foley, V. A. Villar, C. R.
Angus, V. F. Baldassare, M. J. Bustamante-Rosell, D. Chatterjee, C. Cold, D. A. Coulter, K. W.
Davis, S. Dhawan, M. R. Drout, A. Engel, K. D. French, A. Gagliano, C. Gall, J. Hjorth,
M. E. Huber, W. V. Jacobson-Galán, C. D. Kilpatrick, D. Langeroodi, P. Macias, K. S. Mandel,
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A Appendix / supplemental material

A.1 Data

Here, we provide more details about the SNe simulation datasets used for pre-training and the ZTF
dataset used for fine-tuning and inference.

A.1.1 Simulating Supernovae with the SNANA Simulation Code

We generate synthetic SN samples using the SNANA simulation code. SNANA mimics the observing
process beginning from a rest-frame spectral energy distribution (SED) of an astrophysical transient.
A volumetric rate is chosen and the sky is populated at random with transients. A survey strategy,
detection efficiency, and the survey’s estimated noise properties (zeropoint and sky noise) are
provided to construct synthetic observations. Our 500,000 simulated events are evenly split between
five different SN classes: SNe Ia (using the SALT2 model; [46]); SNe Ib/c (SNIbc-Templates;
[47]); SLSNe-I (using the model SLSNI-MOSFIT; [48]); and SNe II (SNII-Templates; [47]), which
includes both SNe IIP/IIL; and SNe IIn (SNIIn-MOSFIT; [48])

To produce our simuations, we use the same volumetric rates for SNE II, SNe IIn, and SNe Ib/c
as in the PLAsTiCC challenge [49], re-scaled to match the fractional rates presented in [50]. The
volumetric rate for SNe Ia is taken from [51], and that for SLSNe-I traces the star-formation history
parameterized in [52]. Our simulations mimic the ZTF survey strategy, filter transmissions, and
reported sky noise. This results in a similar selection function favoring low-redshift (z < 0.1) SNe as
our observed sample, although we do not explicitly define a brightness threshold for photometry as is
done with the BTS sample [26] and our sole quality cut is removing events with fewer than 4 total
photometric observations. As a result, our simulated events are intrinsically fainter and lower-quality
than our observed events.

In addition to the previously-developed simulations, we define a spectrograph object in SNANA with
wavelength bins corresponding to the wavelength coverage of the ZTF SED machine [53], with which
the vast majority of our observed SNe were classified. To mimic the stochasticity inherent to SN
classification in practice, we allow synthetic spectra to be obtained randomly from explosion to peak
light, and with sufficient exposure time to achieve S/N of 5 within an arbitrary wavelength window.
Galactic extinction is applied to both modalities at the simulated SN location following the extinction
law from [54]. We then pre-process all spectra in the same manner as in [55]. we apply low-pass
median filtering to remove high-frequency noise, re-bin the data to log-wavelength space, and estimate
the flux continuum using a polynomial fit and divide it out. While this continuum-division step
removes color information, it has been shown that it has a negligible impact on redshift estimation
[56]. The spectra are kept in the observer frame (not redshift-corrected).

A.1.2 The Zwicky Transient Facility Bright Transient Survey

Since 2019, the Zwicky Transient Facility (ZTF; [3]) has conducted a wide-field public survey
consisting of photometry obtained with the Palomar 48-inch Schmidt telescope at a cadence of
roughly 2 nights. The telescope observes in three photometric filters: ZTF-g, ZTF-r, and ZTF-i.
Photometry is promptly reduced and streamed to alert brokers including ANTARES [the Arizona-
NOIRLab Temporal Analysis and Response to Events System; 57]. For non-Galactic transients
observed at or expected to peak brighter than an apparent magnitude of ∼18.5, a classification
spectrum is automatically obtained using the Spectral Energy Distribution Machine (SEDM; [58–
60]), a low-resolution spectrograph mounted on the Palomar 60-inch telescope [61]. SEDM spectra
are then uploaded to the Transient Name Server and the Weizmann Interactive Supernova Data
Repository [WISeREP; 62]. 5,377 SNe have been spectroscopically confirmed at the time of writing
as part of this Bright Transient Survey.

We obtain metadata for 4,702 spectroscopically-classified SNe on June 18th, 2024 from the ZTF
Bright Transient Survey [26] after applying all quality and purity cuts available on the ZTF BTS
webpage6 (described in detail in [63]). The subsequent SNe have photometric coverage before and
after peak light, good visibility throughout the photospheric phase, an uncontaminated reference
image, and occurred in low extinction fields.

6https://sites.astro.caltech.edu/ztf/bts/bts.php
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Table 3: Classification performance for three classes by model configuration : This table presents
the classification performance of various models using light curve data from the ZTF dataset. The
models are categorized based on whether they utilized simulation pre-training (‘pre-trained’), the
type of last layer added to embedding models (‘last-layer’). The modalities taken into account
when training on the real ZTF dataset are indicated in ‘real-pre’ (lc - light curve, sp - spectrum, m
- metadata) as well as whether a SVC or kNN. Performance metrics include macro-F1 (mac-f1),
micro-F1 (mic-f1), macro-precision (mac-p), and macro-recall (mac-r). The results are presented
as mean ± standard deviation, calculated over five folds. Baseline models, trained in an end-to-end
supervised fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre mac-f1 mac-p mac-r
no end-to-end baseline 0.7011 ± 0.0303 0.6934 ± 0.0360 0.7527 ± 0.0247
clip kNN lc-m 0.6920 ± 0.0217 0.7286 ± 0.0377 0.6721 ± 0.0183
clip kNN lc-sp 0.6874 ± 0.0342 0.8041 ± 0.0833 0.6516 ± 0.0216
clip kNN lc-sp-m 0.6849 ± 0.0194 0.7280 ± 0.0334 0.6643 ± 0.0161
clip SVC lc-m 0.6747 ± 0.0297 0.8026 ± 0.0257 0.6435 ± 0.0257
clip SVC lc-sp-m 0.6522 ± 0.0237 0.7892 ± 0.0975 0.6247 ± 0.0215
no kNN lc-sp-m 0.6268 ± 0.0251 0.7204 ± 0.0701 0.6000 ± 0.0199
no kNN lc-sp 0.6265 ± 0.0231 0.6670 ± 0.0532 0.6119 ± 0.0121
no kNN lc-m 0.6249 ± 0.0228 0.7309 ± 0.0661 0.6035 ± 0.0184
clip SVC lc-sp 0.6195 ± 0.0190 0.7753 ± 0.0994 0.6056 ± 0.0172
no SVC lc-m 0.5971 ± 0.0220 0.7871 ± 0.1858 0.5842 ± 0.0163
no SVC lc-sp-m 0.5938 ± 0.0156 0.7892 ± 0.1873 0.5802 ± 0.0077
no SVC lc-sp 0.5749 ± 0.0099 0.5857 ± 0.0126 0.5686 ± 0.0102

Next, we use the Python client of the antares alert broker [57] to consolidate difference photometry
for all SNe in ZTF-g and ZTF-r [ZTF-i observations are mainly private, comprising ∼10% of all
observations; 24], and download their associated SEDM spectra from the Transient Name Server7

and WISEReP8 9. We pre-process the observed spectra following the same procedure as our synthetic
ones.

A.2 Metadata CLIP

In addition to SN spectrum and light curve measurements, we also considered SN metadata as an
additional modality for training a CLIP model. The metadata modality used in our training includes
supernovae redshifts and class labels. We encode each class label with a learnable embedding vector.
The metadata encoder consists of a multilayer perceptron (MLP) that takes in the concatenated vector
of class embedding and redshift and outputs the final embedding. The number of hidden layers and
the hidden layer dimension in the MLP were chosen from a hyperparameter search.

The models which directly align event photometry with relevant metadata (redshift and class) in
pre-training do not significantly outperform the models in which photometry and spectroscopy alone
are aligned. Considering only pre-trained models for the task of classification, we observe comparable
three-way macro-F1 scores when aligning light curves with metadata (0.692± 0.022), light curves
with spectra (0.687± 0.034), and light curves with both spectra and metadata (0.685± 0.019). Each
of our CLIP objectives featured photometry as a modality, and we predict that this more information-
poor modality is driving the observed performance across each of these models, as we discuss in
additional detail in section 6.

7https://www.wis-tns.org/
8https://www.wiserep.org/
9Despite spectroscopic classifications being available on the ZTF website for all listed SNe, SEDM spectra

could not be found for a few objects. When an SEDM spectrum is not available, we instead use the first reported
spectrum. A positional encoding is used for the wavelengths of each spectrum, so in principle our spectrum
encoder has the capacity to generalize to multiple spectrographs.
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Table 4: Regression Performance by Model Configuration: This table presents the regression
performance of various models using light curve data from the ZTF dataset. The models are
categorized based on whether they utilized simulation pre-training (‘pre-trained’), the type of last
layer added to embedding models (‘last-layer’). The modalities taken into account when training on
the real ZTF dataset is indicated in ‘real-pre’ (lc - light curve, sp - spectrum, m - metadata) as well
weather we use a linear or kNN layer to translate our embedding to a redshift prediction (‘last-layer‘).
Performance metrics include the coefficient of determination (R2), L1 loss, and L2 loss. The results
are presented as mean ± standard deviation, calculated over five folds. Baseline models, trained in an
end-to-end supervised fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre R2 L1 L2
clip kNN lc-m 0.6543 ± 0.0280 0.0094 ± 0.0005 0.0152 ± 0.0010
clip Linear lc-sp-m 0.6513 ± 0.0440 0.0096 ± 0.0005 0.0152 ± 0.0016
clip kNN lc-sp 0.6496 ± 0.0398 0.0095 ± 0.0004 0.0152 ± 0.0014
clip kNN lc-sp-m 0.6470 ± 0.0422 0.0094 ± 0.0006 0.0152 ± 0.0012
clip Linear lc-sp 0.6386 ± 0.0447 0.0099 ± 0.0003 0.0155 ± 0.0016
clip Linear lc-m 0.6345 ± 0.0444 0.0100 ± 0.0006 0.0156 ± 0.0014
no kNN lc-m 0.6150 ± 0.0294 0.0103 ± 0.0003 0.0160 ± 0.0012
no end-to-end baseline 0.6129 ± 0.0245 0.0104 ± 0.0004 0.0160 ± 0.0010
no kNN lc-sp-m 0.6090 ± 0.0464 0.0102 ± 0.0005 0.0161 ± 0.0015
no kNN lc-sp 0.6078 ± 0.0408 0.0103 ± 0.0006 0.0161 ± 0.0014
no Linear lc-sp 0.5948 ± 0.0402 0.0107 ± 0.0007 0.0164 ± 0.0015
no Linear lc-sp-m 0.5938 ± 0.0450 0.0108 ± 0.0004 0.0164 ± 0.0016
no Linear lc-m 0.5927 ± 0.0399 0.0107 ± 0.0004 0.0165 ± 0.0015
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