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Abstract

From the perspective of sequential decision making, we propose a novel approach
for early classification of time series under the Neyman–Pearson paradigm that
incorporates a sensitivity constraint. We explicitly formulate the optimal solution,
which can be practically obtained utilizing plug-in estimators such as recurrent
neural networks. Cast as a constrained multi-objective optimization problem, we
establish the Pareto optimality balancing earliness and classification accuracy. Our
approach visualizes the inherent trade-off between earliness and specificity, ensur-
ing informed decision making without compromising sensitivity. Experimental
validation confirms the feasibility of our approach, demonstrating its potential in
various real-world applications.

1 Introduction

Early classification of time series (ECTS) is critical for real-time decision-making in domains such as
healthcare, finance, and industrial monitoring, where timely interventions can significantly mitigate
risks and costs. Unlike traditional time series classification that relies on complete data, ECTS aims
to classify based on partial data, allowing for prompt actions.

A wide array of methods has been proposed (see, e.g., Gupta et al., 2020, for a review), focusing
on the balance of classification accuracy and earliness. For instance, Mori et al. (2018, 2019) tackle
ECTS from the perspective of multi-object optimization to balance earliness and accuracy. However,
the consequence of false classification conditioning on actual outcome could be drastically different.
For example, in certain medical settings, higher sensitivity is desired even at the cost of lower
specificity so as not to miss lethal disease. The classic Neyman–Pearson paradigm (Neyman et al.,
1933) has been successful balancing the trade-off between sensitivity and specificity, yet rarely
explored in the setting of ECTS.

In sequential analysis where confidence accumulates along increased number of i.i.d. observations,
Wald’s sequential probability ratio test (SPRT) provides the earliest decision among all tests of the
same power (Wald and Wolfowitz, 1948) by thresholding on the cumulative product of probability
ratios. However, its optimality weakens given dependent samples (e.g., Schmitz, 1985). The
requirement of unlimited observability also makes it less ideal for classifying time series with finite
horizon, where decision must be made before certain terminal time.

In this study, we take the perspective of sequential decision making under finite horizon. For each time
t before the terminal time T , the classifier either conclude positively/negatively based on the series
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till t or wait for further information from next time step. We evaluate the classifier by three criteria:
sensitivity (true positive rate, TPR), specificity (equivalently 1 - false positive rate, FPR), and earliness
(or equivalently cost) of decision. We propose a novel ECTS approach under the Neyman-Pearson
paradigm motivated by multi-objective optimization. The proposed method incorporates a sensitivity
constraint while seeks to simultaneously maximize the specificity and earliness.

By framing ECTS as a constrained multi-objective optimization problem, we demonstrate the inherent
trade-offs among earliness and classification power. Such trade-off is quantified by the Pareto front,
where neither earliness or specificity can be improved without sacrificing the other criteria. By
decomposing accuracy into two separate metrics (sensitivity and specificity), we offer a more nuanced
characterization of the trade-off that is otherwise unavailable in existing ECTS approaches. Based
on a straight forward Lagrange dual problem, we explicitly formulate the optimal solution, which is
tractable via plugging-in neural networks as showcased by numeric experiments.

2 Explicit Form of the Pareto Optimal Classifier

Denote the covariate process (i.e., time series to classify) asX = X1:T withXt ∈ R for t = 1, . . . , T 1

and the associated binary outcome (i.e., class label) as Y ∈ {0, 1}.2 A sequential decision rule is

ϕ (X1, . . . , XT ) = 1(f1 > 0) + 1(f1 = 0, f2 > 0) + · · ·+ 1(f1:T−1 = 0, fT > 0), (2.1)

where 1(·) ∈ {0, 1} takes 1 if the condition is true, and 0 otherwise. We write ft = ft (X1:t) ∈ R as
the score at time t based on the history X1:t = (X1, . . . , Xt); write f1:t as the scores till time t with
the convention that f1:T−1 = 0 means f1, . . . , fT−1 are all zero. Denote the natural filtration spanned
by X1:T as F . The score f1:T is a stochastic process that is F-adapted, i.e., ft is Ft-measurable
(equivalently, is measurable function of X1:t) for all t = 1, . . . , T .

The decision process could stop early before the terminal time T once receiving a non-zero score.
Denote τ = inf {1 ≤ t ≤ T : ft 6= 0} as the associated stopping time at which rule (2.1) makes a
decision, so that ϕ is the same as an early-stopped rule denoted as ϕτ :=1(fτ > 0). To characterize
the earliness of decision, we associate time steps with operational cost, either time or monetary.
Denote the accumulated cost of running the decision process till time t as Ct for some increasing
0 < C1 < · · · < CT . The actual cost of the early-stopped decision rule is hence Cτ . The introduction
of cost allows more flexible modeling: settingCt = t/T for regularly sampled time series corresponds
to the conventional earliness notion; one can also encourage earlier or later decision by adjusting cost
accordingly.

We say a sequential rule is efficient under Neyman–Pearson paradigm if it is the optimum of the
multi-objective optimization (MOO) problem:

minimize (E[ϕτ | Y = 0],E[Cτ ]) , subject to E[ϕτ | Y = 1] ≥ β (2.2)

for some β ∈ (0, 1), where ϕτ :=1(fτ > 0), with expectations taken overX1:T . Here,E[ϕτ | Y = 1]
and E[ϕτ | Y = 0] are the true and false positive rate, while E[Cτ ] is the expected cost.

Usually multiple optima of a multi-objective problem exists, where none of the objectives could
be further improved without sacrificing some other objectives, the collection of which is called the
Pareto front (e.g., Pardalos et al., 2017). One common way to approximate MOO is the ε-constraints
approach that translates all but one objectives into constraints, formulated as

minimize E[ϕτ | Y = 0], subject to E[Cτ ] ≤ γ and E[ϕτ | Y = 1] ≥ β (2.3)

for some 0 < γ < 1. Tackling problem (2.3) utilizing Lagrangian multipliers provides explicit form
of the optimal score functions. In fact, under mild conditions, the optimum of (2.3) is also Pareto
optimal for problem (2.2), which is outlined in the following and detailed in Appendix A.

Proposition 2.1. Denote the dual function of the Lagrangian function L (f ; a, b) of (2.3) as
G(a, b):= inff L (f ; a, b) with the infimum is taken over all F-adapted process f1:T . Then

G(a, b) = bβ − aγ − E[S1]. (2.4)

1Note that we assume univariate Xt only for convenience yet not required so. The proposed framework does
not prohibit multivariate covariates or even different dimensionality of covariates at different t.

2We refer to 0 as negative and 1 as positive.
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Here, S1 is defined recursively. Writing p1 = P(Y = 1) = 1− p0, we define µt:=E[Y | X1:t] and
ηt:=

(
bp−1

1 + p−1
0

)
µt − p−1

0 . Then ST :=η+
T − aCT and

St:= max
(
η+
t − aCt, νt

)
, νt:=E[St+1 | X1:t] (2.5)

for t = 1, . . . , T . Here η+
t := max(ηt, 0). Moreover, the infimum over f is achieved at f̃1:T (a, b)

with f̃T (X1:T ; a, b) = ηT , and

f̃t(X1:t; a, b) =


1, if ηt − aCt > max (−aCt, νt) ,
0, if νt ≥ ζt,
−1, if − aCt > max (ηt − aCt, νt)

(2.6)

where ζt:=η+
t − aCt for t = 1, . . . , T − 1.

Therefore, the dual problem of (2.3) is

maximize G(a, b) for a, b ≥ 0. (2.7)

To connect the primal and dual, one key assumption is that µt are continuous functions of X1:t for
all t, similar to that in a non-randomized likelihood ratio test which ensures any desired sensitivity
is achievable. With few other mild assumptions, there always exists some dual optimal a∗, b∗ with
no duality gap, i.e., strong duality condition holds. By plugging-in f∗(X) = f̃(X; a∗, b∗) and
subsequently ϕ∗, the primal-dual pair (f∗, a∗, b∗) optimizes problem (2.3) and (2.7) satisfying the
constraints by equalities, as shown in Proposition A.1. Further, such optima of problem (2.3) is in
fact also Pareto optimal for the MOO, so that we transform the MOO (2.2) into a convex optimization
of (2.4). The Pareto front is obtained by solving multiple primal-dual problems looping over γ.
Theorem 2.1. Suppose for t = 1, . . . , T , the Xt are continuous r.v. admits density, and X1:t 7→ µ1:t

are continuous functions bounded away from zero, then for any β, γ ∈ (0, 1) there exists some ϕ∗

whose scores take the form of (2.6) such that i) ϕ∗ minimizes problem (2.3) satisfying the constraints
by equality; ii) ϕ∗ is a Pareto optimum for problem (2.2) as well as the MOO problem that seeks to
simultaneously minimize (E[ϕτ | Y = 0], E[Cτ ]) and maximize E[ϕτ | Y = 1].

The preceding optimality guarantee partly generalizes the Neyman–Pearson lemma to sequential
setting by providing an optimal form for the classifier that maximizes specificity, earliness, and
sensitivity.

3 Plug-in Estimation via Recurrent Neural Network

It suffices to recursively estimate the F-adapted processes µ1:T and ν1:T−1 then plug into (2.6).
Recurrent neural networks (RNN) are suitable candidates as they handle sequence-to-sequence
tasks by recurrent evaluation without the need of stacking a list of models. Most importantly, their
only utilize X1:t at time t, making the output sequence inherently F-adapted. For added flexibility
(especially for ν), we follow the RNNs by a time-specific layer, essentially one fully connected linear
layer for each t = 1, . . . , T that do not share parameters across time.

Denote µ̊ (X1:t, θµ) and ν̊ (X1:t, θν) as neural network models for µt and νt respectively, and
subsequently η̊, ζ̊, S̊, τ̊ , and ϕ̊ by plugging-in µ̊ and ν̊ into corresponding definitions. To track
conditional expectation, suppose S is known, it suffices to minimize mean squared errors

Qµ (θµ) =

T∑
t=1

E[(µ̊t − Y )
2
], Qν (θν |θµ, a, b, S1:T ) =

T−1∑
t=1

E[(̊νt − St+1)
2
], (3.1)

and maximize the dual function G̊ (a, b|θµ, θν , S) = bβ − aγ − E[S1]. Invoking stochastic gradient
descent iteratively admits estimated parameters denoted as θ̂µ, θ̂ν , â, and b̂; and subsequently the
optimal rule ϕ̂. While Qν and G̊ both rely on β and γ, we suppress those arguments for simpler
notation. Note that Qµ essentially tracks a many-to-one classification but utilizing the entire output
sequence. It is simple to obtain θ̂µ ∈ arg minQµ, hence decoupled from the iterative update of
Qν and G̊. Similarly Qν tracks a many-to-many regression if S is available, it suffices to update θν

3



Algorithm 1 Update of θν , a and b given β and γ for K iterations

Obtain θ̂µ ← arg minQµ, then initialize θ(0)
ν , a(0), and b(0), set k = 0.

while k ≤ K do
Compute Ŝ1:T by plugging-in µ̊, ν̊ under parameters θ̂µ, θ

(k)
ν , a(k), and b(k) to (2.5).

Compute θ(k+1)
ν from θ

(k)
ν base on ∂Qν(θν |θ̂µ, a(k), b(k), Ŝ1:T );

Compute
(
a(k+1), b(k+1)

)
from

(
a(k), b(k)

)
base on ∂G̊(a, b|θ̂µ, θ(k+1)

ν , Ŝ1:T ).
k ← k + 1.

end while

iteratively, leading to Algorithm 1. In practice, it suffices to replace the expectations by sample/batch
averages. See Appendix B for additional implementation details.

The proposed algorithm effectively parameterize ϕ̂ by (β, γ), i.e., the desired sensitivity and expected
cost, making it possible to dynamically adjust (β, γ) according to the sensitivity and average cost on
validation data. This seamlessly incorporates into Algorithm 1 by slightly increasing or decreasing
the β or γ used for computation every few epochs.

4 Experiments

We now validate the proposed methods as a feasible approach for early classification. Since the
proposed method is not directly comparable to existing ECTS approaches that focus on the accuracy
combining sensitivity and specificity into one objective, we resort to Wald’s SPRT (see Appendix C)
for a baseline comparison.

We considered two simulated examples based on stationary autoregressive AR(1) time series, a
sensory example (Ford-A, Dau et al., 2018), and a bivariate example from online handwritten
recognition (Pendigits, E. Alpaydin, 1996). For simplicity, across all our experiments we set cost
Ct = t/T and only targeted sensitivity level of 0.9. All experiments were repeated 100 times, where
for each repeat data were randomly split to create training, validation, and testing sets (70%:10%:20%
unless otherwise specified). The classifiers were trained on the training set with the (β, γ) tuned by
their performance on the validation set. The final performance were assessed on the testing set and
reported. Figure 4.1 pictures the estimated Pareto front, while Figure 4.2 validates the constraints in
problem (2.3). We refer to Appendix D for details of the experiments setup.

Apparently the FPR decreases with increased cost, yet interestingly we observe that the reduction
of FPR diminished when the average cost exceeded 75% of total sequence length for simulated
examples and 50% for the two real data. Recalling that the sensitivity (TPR) were always retained
at 0.9, this suggests an oracle possibility for the proposed classifier to achieve performance similar
to a full-length classifier (e.g., the horizontal dashed lines in the upper panels of Figure 4.1) but on
average utilizing shorter sequences.

It is clear that for the simulated AR(1) examples, the proposed method outperformed the Wald’s
SPRT by achieving a smaller FPR at the same cost (green curves and the crosses are lower than
the white pixels, upper panels of Figure 4.1), yet admittedly not quite for the Ford-A and Pendigits
examples. However the key distinction is that the SPRT tended to decide prematurely. Under our
setup where sensitivity restricted around 0.9, no SPRT reached an average cost of more than 0.8 in
all four examples (even no more than 0.63 for the AR(1)-logistic examples), so that it rushed the
decisions and failed to demonstrate the diminishing benefits in FPR of larger cost. Such limitation
appears more apparent for harder tasks (e.g., the AR(1) examples) where FPR is higher and/or longer
sequences are necessary to achieve an oracle performance.

5 Discussion

Several limitations necessitate future research, such as the reliance on the assumptions, the lack of
tailored neural network architectures, and the accumulated errors during recursive estimation that
potentially caused suboptimality in the presented real data examples. Additionally, generalization
across diverse datasets mandates comprehensive validation efforts. Though, instead of extensive
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data: ar1_logistic data: ar1_unimodal
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Figure 4.1: Under a desired TPR of 0.9, the estimated Pareto front (green lines and black crosses)
in comparison to Wald’s SPRT (red-white-blue pixels) on simulated and real data over 100 repeats.
The panels from top left to bottom right show: univariate AR(1) of length 10 and autoregressive
correlation 0.75 with logistic or unimodal responses probability; the Ford-A data; and the Pendigits
data. The black crosses show 90% interval for the achieved FPR (vertical) and cost (horizontal),
while the green lines are the average estimated Pareto fronts pooling repeats. The horizontal dashed
lines in the upper panels show, under the same 0.9 TPR restriction, the FPR of full-length classifiers
when the true class probability (i.e., µT ) is available.
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Figure 4.2: The boxplot of the deviance in the achieved v.s. desired cost (varying from 0.1 to 0.9) and
TPR (0.9) over the 100 repeated experiments under the setup of Figure 4.1, grouped by the desired
cost (x-axis).

benchmarking on diverse data and/or against state-of-the-art methods, our contribution primarily
focuses on the feasibility of early decision making under Neyman–Pearson paradigm, which, we
hope, could shed new light on early time series classification and its practical applications.
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A Proofs

Proof of Proposition 2.1. The Lagrangian function of (2.3) is, with the convention that f0 ≡ 0,

L (f1:T ,a) = bβ − aγ + E[1(f0:T−1 = 0) (aCT − ηT1(fT > 0))]

+

T−1∑
t=1

E[1(f0:t−1 = 0) (aCt1(ft 6= 0)− ηt1(ft > 0))] (A.1)

for non-negative a = (a, b), where η is a F-adapted process defined in Section 2.

The infimum over f in G can be taken recursively as inff1 inff2 . . . inffT L(f,a). Thus by (A.1),
with the convention that f̃0 ≡ 0 and MT+1 ≡ 0, denote

Lt(f1:t,a) = E[1(f1:t−1 = 0) (ηt1(ft > 0)− aCt1(ft 6= 0))],

Mt(f1:t−1,a) = max
ft:T

(Lt + · · ·+ LT ) = max
ft

(Lt +Mt+1(f1:t,a)) .

Clearly MT (f1:T−1,a) = E[1(f1:T−1 = 0)ST ] at f̃T = ηT . Then by induction we claim
Mt(f1:t−1,a) = E[1(f1:t−1 = 0)St] at f̃t:T of (2.6). Indeed,

Lt(f1:t,a) +Mt+1(f1:t,a)

= E[1(f1:t−1 = 0) (ηt1(ft > 0)− aCt1(ft 6= 0) + E[St+1 | X1:t]1(ft = 0))]

for t = T − 1, T − 2, . . . , 1. In the end, note that G(a) = bβ − aγ −M1.

Proposition A.1 (Feasibility). Suppose for t = 1, . . . , T , the Xt are continuous r.v. admits density,
and X1:t 7→ µ1:t are continuous functions bounded away from zero, there always exists some a∗

that maximize problem (2.7). Define f∗(X) = f̃(X;a∗) and ϕ∗ by plugging-in f∗ to (2.1), then ϕ∗

optimizes problem (2.3) satisfying the constraints by equality, and that G(a∗) = E[ϕ∗ | Y = 0].

proof of Proposition A.1. First show the concave function G has stationary point(s), then by definition
of f∗ there is no duality gap. It is not difficult to conclude that almost surely,

∂St
∂a

= E[Ct1
(
f̃t 6= 0

)
+ Ct+11

(
f̃t = 0, f̃t+1 6= 0

)
+ · · ·+ CT1

(
f̃t:T−1 = 0

)
| X1:t],

∂St
∂b

= p−1
1 E[µt1

(
f̃t = 1

)
+ µt+11

(
f̃t = 0, f̃t+1 = 1

)
+ · · ·+ µT1

(
f̃t:T−1 = 0, f̃T = 1

)
| X1:t],

(A.2)

so that ∂G/∂a = E[Cτ ] − γ and ∂G/∂b = β − E[ϕ̃ | Y = 1], where ϕ̃ is the rule (2.1) with
f̃ = f̃(X,a) of (2.6) plugged-in.

Next it suffices to show there exists some a∗ and b∗ such that zeros the previous two equa-
tions utilizing the connectedness of the solution sets Ψβ(a∗):= {b : E[ϕ̃|a∗ | Y = 1] = β} and
Ψγ(b∗):= {a : E[Cτ |b∗ ] = γ}. Here ϕ̃|a∗ means a plug-in classifier fixing a = a∗, similarly Cτ |b∗
fixes b = b∗.

For any fixed b ≥ 0, we can let f̃t ≡ 0 for all t by setting a ≤ 0, so that E[Cτ ] = CT . On the other
hand, by E[η+

T | X1:T−1] ≥ (E[ηT | X1:T−1]) = η+
T−1, there is always some aT−1 > 0 so that

ST−1 = ζT−1 for all a ≥ aT−1. Inductively, there exists at > 0 such that St = ζt for all a ≥ at,
i.e., f̃t 6= 0, so that E[Cτ ] ≤ Ct. In other words, one can increase a from zero, and the expected
cost would reduce from CT to C1. Hence, for any b ≥ 0, there always exists some ab such that
E[Cτ ] = γ, i.e., Ψγ(b) 6= ∅. Further, by continuity of X1:t 7→ µ1:t, the mapping a 7→ E[Cτ ] is a
continuous non-increasing function, implying Ψγ(b) is a closed interval.

Similarly given a ≥ 0, note that ϕ̃ ≡ 0 for b < p1/p0 (1/ supx µt − 1) and that ϕ̃ ≡ 1 for
b > p1/p0 (1/ infx µt − 1). Thus for any given a the mapping b 7→ E[ϕ̃ | Y = 1] is a continuous
non-decreasing function, hence Ψβ(a) is also closed interval.

Further, the continuity of (a, b) 7→ E[Cτ ] implies that Aβ := {(a, b) : b ∈ Ψβ(a)} is a non-empty
connected set, similarly Aγ := {(a, b) : a ∈ Ψγ(b)} is also non-empty and connected. In combine a∗
and b∗ that zero out (A.2) exist since Aβ and Aγ must intersect.
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In sum, f∗ = f̃(a∗) is a feasible solution to problem (2.3) that satisfies the constraints by equality. It
then suffices to show strong duality by showing that (f∗,a∗) is a saddle point of L, i.e., L(f∗,a) ≤
L(f∗,a∗) ≤ L(f,a∗) for any a, b ≥ 0, and F-adapted f . The second inequality is obvious by
definition of f∗ = f̃(a∗). For the first inequality, by definition of Lagrangian function, L(f,a) ≤
E[ϕ | Y = 0] for all a, b, and any feasible f (and corr. ϕ). Moreover, L (f∗,a∗) = E[ϕ∗ | Y = 0]
since f∗ satisfies the constraints of problem (2.3) by equality. In combine we have L(f∗,a) ≤
E[ϕ∗ | Y = 0] = L(f∗,a∗) ≤ L(f,a∗), implying that (f∗,a∗) is a saddle point for L.

proof of Theorem 2.1. This is a direct implication of Proposition A.1 under Theorem 3.2.2 in part II
of Miettinen (1999). Technically, it suffices to repeat the previous steps with some reparameterization
of the a∗ and b∗ to see that ϕ∗ also optimizes

minimize E[Cτ ], subject to E[ϕτ | Y = 0] ≤ α and E[ϕτ | Y = 1] ≥ β (A.3)

for α = E[ϕ∗ | Y = 0]. I.e., the performance of ϕ∗ in terms of the objectives in problem (2.3) cannot
be further improved in either direction without sacrificing another.

B Remarks on the Neural Networks Plug-in

Note that one shall not use the bidirectional RNNs which also utilize future information, violating the
F-adapted requirement.

It is important to note that θν , a, b, and S are treated as constant in Qν , so are θµ, θν , and S in G̊. In
other words, (a, b) are not updated when computing θν , so is θν not updated when computing (a, b).
Furthermore, gradient shall not flow through St+1 in Qν , and not through µ̊, ν̊, and S in G̊ despite
implicit dependency. For backpropagation we utilize the gradients in (A.2) so ∂G̊/∂a = E[Cτ̊ ]− γ
and ∂G̊/∂b = β − E[ϕ̊ | Y = 1]; i.e., the average cost and true positive rate of the plugged-in rule.

In the typical task of estimating the Pareto front for some pre-specified sensitivity level of β, it
suffices to initialize Algorithm 1 with small but gradually increasing γ (or vice versa), and record the
results. While in theory 0 ≤ β, γ ≤ 1, we found it practically convenience to allow greater upper
bounds for better performance. Similarly a, b are allowed to be negative.

C Wald’s Sequential Probability Ratio Test

Wald’s SPRT was originally proposed based on cutoffs determined by the desired type I and II error
rate upon the cumulative product of probability ratio for i.i.d. observations (Wald, 1947). For binary
time series classification, it suffices to impose cutoff on µt, noting that P (X1:t|Y = 0)/P (X1:t|Y =
1) ∝ (1−µt)/µt. We adopted a truncated SPRT (see Wald, 1947, section 3.8) to account for the finite
horizon situation. In sum, we write ϕSPRT following (2.1) where fT,SPRT = 1 if µT ≥ P(Y = 1) and
−1 otherwise; while for t ≤ T − 1,

ft,SPRT =


1, if µt > µ̄,
−1, if µt < µ,
0 otherwise,

for some cutoffs 0 < µ <≤ µ̄ < 1. To account for the impact of non-iid sequence and truncation,
among a grid of (µ, µ̄)-pairs, those admit validation TPR closest to the desired level (deviation smaller
than 0.01) were selected and evaluated on test sample for cost, TPR, and FPR.

We re-used the existing neural network estimate µ̂ for SPRT.

D Additional Experiment Details

1. For the two AR(1) examples, X1, . . . , X10 is a stationary univariate AR(1) process of length
10 with standard Gaussian innovation and a correlation coefficient of 0.75; whileE(Y |X1:T )
equals sigmoid (c

∑
tXt) (i.e., the logistic example) or exp(−c(

∑
tXt)

2) (the unimodal
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example). We generated 5120, 1280, and 104 series for training, validating, and testing
respectively.

2. The Ford-A dataset includes sensor data with 500 time points and a binary response for 3601
instances. The time series were down-sampled to T = 50 by block: every 10 consecutive
time points are pooled as a 10-dimensional covariate. It provides an example to showcase
the multivariate capability of the proposed framework.

3. The Pendigits data (E. Alpaydin, 1996) consists of 10992 series of 2-dimensional coordinates
of pen strokes when writing digits (downsampled to 8 points) and we relabeled the outcome
to whether the digit written is 1, 2, 3, 5, 7.

We implemented the proposed method with Pytorch. Both µ̊ and ν̊ were modeled by a single layer
GRU with 16 hidden features, followed by a time-specific, single-layered fully connected linear layer
to provide scalar prediction, totaling around 2000 parameters.
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