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ABSTRACT

Training large-scale foundation models relies on effective parallelism strategies,
especially batch size scheduling. However, despite its widespread practical use,
the influence of batch size scheduling on training dynamics remains poorly un-
derstood. In this work, we first investigate this through a simple two-stage batch
size schedule. Specifically, we train the language models with a constant learn-
ing rate using three batch size schedules: i) small constant batch size, ii) large
constant batch size, and iii) a schedule that switches from small (i) to large (ii)
at some switching point. We observe two notable behaviors: (1) sudden drop, a
sharp drop in loss occurs at the switching point, compared to the loss trajectory
of the small batch size; (2) final merge, a gradual convergence in loss to the tra-
jectory of the large batch size. To understand the underlying mechanism behind
these phenomena, we then provide a theoretical analysis from the perspective of
power-law kernel regression setup. We leverage the Functional Scaling Law
(FSL) introduced in the recent work by Li et al. (2025), which provides a theo-
retical framework for analyzing LLM pre-training dynamics. Our analysis shows
that increasing batch size provably leads to a sudden loss drop by reducing SGD
noise and guarantees convergence to the large batch trajectory at the same step
level. Under the data-limited regime, our analysis further reveals a trade-off be-
tween intrinsic optimization time and SGD noise in the choice of switching point,
predicting that the optimal switching point scales as a power law with total data
size. Finally, we empirically validate these theoretical findings through language
model pre-training experiments up to 1.1B parameters and 1T tokens, confirming
the consistency of our theoretical insights.

1 INTRODUCTION

Large language model (LLM) pre-training demands immense computational resources, making
training efficiency a central challenge for scaling. Parallelism plays an essential role in training
efficiency, and increasing batch size is a critical mechanism for achieving effective parallelization.
The critical batch size (CBS) (McCandlish et al., 2018) theory suggests increasing batch size as the
noise scale grows during training: small batches are initially efficient due to low noise, but as the
noise scale increases, larger batches are beneficial to improve step efficiency. Complementary to this
perspective, Smith et al. (2018) proposed increasing the batch size as an alternative to learning rate
decay. In practice, real-world large-scale LLMs, including GPT-3 (Brown et al., 2020), LLaMA-
3 (Touvron et al., 2023), DeepSeek-V3 (DeepSeek-Al et al., 2024), and MiniMax-01 (MiniMax
et al., 2025), all adopt staged batch size increases during LLM pre-training.

Despite its widespread application in large-scale model training, the effect of batch size scheduling
on training dynamics remains poorly understood. While existing work has primarily focused on
developing more efficient critical batch size estimators (Gray et al., 2023; 2024) and its power-law
relationship to training parameters (Kaplan et al., 2020; Zhang et al., 2025), little is known about
how explicit batch size schedules impacts training dynamics.

In this paper, we study a simple yet representative setting: a two-stage batch size schedule that
switches from a small to a large batch under a constant learning rate regime in language model
pre-training. Through this setting, we uncover two robust behaviors that consistently emerge under
batch size switching:
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Figure 1: Validation loss versus training token under different batch-size switching times. Left.
500M paraemter LLaMA model trained on the C4 dataset with 10B token. The base batch size
is 512. ’2x/4x/8x batch size wholetime’ use constant batch size 1024, 2048, and 4096 throught
training process. *2x/4x/8x batch size from 25k’ switch from beginning batch size 512 to batch
size 1024, 2048, 4096 at 25,000 steps. Right. 1001M parameter MoE model trained on around
0.4T token.. ‘base’ trains with baseline batch size 640 for all steps. ‘2x batch size whole time’ uses
1280 throughout training process. ‘2x batch size from 50B/200B/300B’ switches from 640 to 1280
at 50B, 200B and 300B token, respectively. ‘4x batch size from 50B/200B’ is similar. ‘multiple’
employs a staged size schedule: first 640, then 1280, then 1920, and finally 2560.

* Sudden drop. At the batch size switching point, the loss curve exhibits a sudden drop loss
trajectory, deviating sharply from the small-batch trajectory.

* Final merge. Following the sudden drop, the loss curve gradually converges with the trajectory
of training with the large batch size throughout, indicates a final merge when measured in
training steps.

As illustrated in Figure 1, these two behaviors are consistently observed across different model
architectures and training settings. Moreover, when we evaluate a staged schedule that progressively
increases the batch size—from 640 to 1280, then 1920, and finally 2560—the resulting trajectory
sequentially aligns with the corresponding 1280 and 2560 curves. This observation further confirms
that the identified behaviors remain robust even under multi-stage batch size scheduling.

To delve deeper into these phenomena, we consider a teacher—student multi-power kernel regression
task, which introduces Functional Scaling Law (FSL) (Li et al., 2025). Building upon the FSL
framework, we provide the theoretical underpinnings of the observed phenomena. Under fix step,
our analysis explains the sudden drop and merge behaviors. Under fix data budget, our theory
further reveals: a qualitatively later switch rule, and a quantitatively power law between the optimal
switching point and the total data size, as well as derives conditions for minimax-optimal batch size
schedules. These results together extend prior FSL results beyond the constant-batch regime.

Furthermore, we conduct comprehensive LLM pre-training experiment to verify our theoretical anal-
ysis. Our experiments are three-fold. First, we demonstrate that a simple two-stage batch size
schedule performs better than a constant batch size schedule. Second, we empirically verify our
qualitative later switch rule under extensive large-scale LLM pre-training experiment. Third, we
provide strong evidence for the predicted power-law between the optimal switching point scales
and the total data size. Together, these results ground theoretical analysis with empirical evidence,
showing the potential of FSL for understanding and designing efficient batch size schedules in LLM
pre-training.

Specifically, our contributions can be summarized as follows:

* Sudden drop and final merge. Through LLM pre-training experiments, we identify two phe-
nomena in batch size switching in the step level: (i) a sudden drop in validation loss at the
switching point, and (ii) a final merge of the loss trajectory toward that of the larger batch.
These findings motivate a deeper theoretical investigation of batch size scheduling dynamics.
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* Theoretical analysis via the Functional Scaling Law (FSL). We extend the FSL framework
beyond the constant-batch regime, providing a principled explanation for the sudden drop (The-
orem 4.1) and final merge behaviors (Theorem 4.2). Our theory further reveals a qualitative
later-switch rule, a quantitative power-law relation between the optimal switching point and
total data size (Theorem 4.3), and conditions for minimax-optimal batch size schedules (Theo-
rem 4.4).

* Empirical validation. We validate our theoretical predictions through extensive LLM pre-
training experiments across diverse architectures and scales. Our results confirm the robustness
of sudden drop and final merge, the later switch rule, and the predicted power-law scaling,
thereby establishing a strong connection between FSL theory and practical batch size schedul-
ing in LLM training.

2 RELATED WORK

Batch size in deep learning. Batch size impacts both optimization dynamics and computational effi-
ciency. Smith et al. (2018) proposed increasing the batch size as an alternative to learning rate decay.
McCandlish et al. (2018) introduced critical batch size (CBS) as an empirical model of large batch
training to balance between training step and data efficiency, and used gradient noise scale (GNS)
as a proxy to estimate CBS. Several works extend this line: Kaplan et al. (2020); Zhang et al. (2025)
reported empirical power-law relationships linking CBS to loss, model size and data scale; Gray
et al. (2023; 2024) developed more efficient GNS estimators; Merrill et al. (2025) proposed an em-
pirical method to directly measure CBS via branched training. A complementary direction employs
adaptive sampling strategies to dynamically adjust batch sizes (De et al., 2017; Lau et al., 2024b;
Ostroukhov et al., 2024) , with distributed variants (Lau et al., 2024a; 2025). In practice, LLM pre-
training adopts stage-wise batch schedules: GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), LLaMA-3 (Touvron et al., 2023), and Nemotron-4 (Parmar et al., 2024; Nvidia et al., 2024),
use three stages; MiniMax-01 (MiniMax et al., 2025) uses four; DeepSeek-V3 (DeepSeek-Al et al.,
2024) does not report detailed stage.

Hyperparameter scheduling. Hyperparameter scheduling plays a central role in large-scale pre-
training, with learning rate schedules receiving the most attention. Cosine decay (Loshchilov &
Hutter, 2017) remains the prevailing choice and is widely used in large models (Brown et al., 2020;
Grattafiori et al., 2024). Alternatives include linear decay (Defazio et al., 2023; Bergsma et al.,
2025), Warmup-Stable-Decay (WSD) schedules (Hu et al., 2024; Hégele et al., 2024), the latter sup-
ported by theoretical understanding developed by river valley landscape (Wen et al., 2025). In par-
allel, schedule-free approaches aim to replace explicit learning rate schedules with adaptive mech-
anisms (Defazio & Mishchenko, 2023; Defazio et al., 2024). More recently, theoretical works have
begun to incorporate schedules explicitly into predictive scaling-law models of training loss (Tissue
et al., 2024; Luo et al., 2025; Li et al., 2025). In contrast, batch size schedules, though ubiquitous in
practice, have received little theoretical treatment. Our work provides a theoretical perspective by
analyzing batch size scheduling through the lens of power-law kernel regression.

3 PRELIMINARIES

In order to analyze the role of batch size scheduling, we consider a power-law kernel (PLK) regres-
sion setup, which serves as a tractable theoretical framework that has been widely adopted in the
literature on the theory of LLM pre-training (Maloney et al., 2022; Bordelon et al., 2024a; Paquette
et al., 2024; Lin et al., 2024; Bordelon et al., 2024b; Zhang et al., 2025; Bahri et al., 2024; Li et al.,
2025). Our analysis is primarily motivated by the recent work of Li et al. (2025), which utilized SDE
modeling of SGD training dynamics under the PLK setup and introduced a novel functional scaling
law (FSL) to analyze the loss dynamics during the training process for general learning rate sched-
ules. In contrast, we apply this FSL framework to investigate the impact of batch size schedules
on loss dynamics, thereby complementing the analysis of Li et al. (2025) by considering another
critical training hyperparameter.
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3.1 POWER-LAW KERNEL REGRESSION

Let x € R? denote the data input that follows a distribution D, and suppose the data label is ob-
served as y := f*(x) + ¢, where f* : R? — R represents the target function and € ~ N(0,02)
denotes Gaussian noise. The target function f* is defined as f*(z) := (¢(x),0*), where
o) = (d1(-),P2(-), - ,dn ()" € RY is a feature mapping and 8* € RY denotes the target
parameter vector. For simplicity, we also assume that ¢(x) ~ N (0, H) and the covariance matrix is
given by H := Epp[op(x)op(x) ] = diag{\1, A2, - -+ , Ay} with eigenvalues A\; > Ag--- > Ap.

Our goal is to learn the target function using a student model f(x;60) := (¢(x),0), where 0
denotes the learnable parameter vector. We optimize the following population risk: R(0) :=
1Eop|(f(2;0) — y)?], where we denote £(0) := R(6) — 302 as the excess risk. Then, We
use an online mini-batch SGD procedure. At each iteration 1 < ¢t < 7T, we take a mini-batch

Se ={z1; = (@4, yt,i)}f:tl drawn i.i.d. from D and update

By
— n 1 . )2
0= 01 — - ; Vo 5 (f(@eii01) = yei) (1
where 1 > 0 is a constant learning rate, and b := (B, Ba, - - -, BT)T € Zgo denotes the batch size

schedule (BSS).
Assumption 3.1 (Capacity condition). \; = j —B for some 3 € (1, 00).

We refer to 3 as the capacity parameter, which measures the decay of the kernel’s eigenvalues. The
assumption § > 1 ensures a finite kernel trace, i.e., Tr(H) = Z;Vil Aj < oo.

Assumption 3.2 (Source condition). 6% ~ j_1/2)\§-571)/2 for all j € [N] for some s € (0, 00).

We refer to s as the source parameter, which characterizes the relative task difficulty level (Paquette
et al., 2024; Lin et al., 2024; Bordelon et al., 2024b; Li et al., 2025). A smaller s indicates a more
challenging task. Here, we focus on the hard-task regime where s < 1 — 1/6.

3.2 SDE MODELING OF SGD

The key technique is build upon the SDE modeling of SGD, which is widely used in analyzing the
dynamical behavior of SGD (Li et al., 2017; 2019; Cheng et al., 2020; Li et al., 2020; 2021). For a
discretization step size h, the iteration (1) can be expressed as 6; = 6; 1 — I VR(6;_1)h — &:h,
where &, := B% > zes, VU(2,0: 1) — VR(6;-1) denotes the gradient noise that follows E[§;] =
0,E[¢:&]] = B%Z(Bt,l), where 3(0) represents the noise covariance at 6 with the batch size
1. When h is small, this recursion is approximated by the Ito-type time-inhomogeneous SDE, as
discussed in Li et al. (2019); Orvieto & Lucchi (2019); Ankirchner & Perko (2024):

5 _Nopg n | h
de, = hvn(ef)d¢+h b(T)E(OT)dBT, )

where B.. € RY denotes the N-dimensional Brownian motion, and b € C (R>) is the continuous
batch size schedule function with b(th) = B, for all ¢ € N. One can explain 7 as the continuous

steps or physical time. A key insight that makes the above SDE (2) analytically tractable is the
anisotropic noise structure, which can be formalized as follows:

Lemma 3.3 (Anisotropic noise). For any @ € RY, it holds that
(2£(0) +0*)H < (0) < (4£(0) + 0% H.

Lemma 3.3 demonstrates that the noise covariance 3(6) approximately admits a closed-form ex-
pression: X(0) < R(0)H, as observed in (Mori et al., 2021; Wu et al., 2022; Wu & Su, 2023). This
closed-form expression enables a precise characterization of the noise dynamics, thus providing a
framework for tracking the SGD training dynamics.

3.3 FUNCTIONAL SCALING LAW

Using the perspective of SDE modeling, Li et al. (2025) introduced a functional scaling law (FSL)
that can predict the population risk at any continuous training step, as shown by:
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Theorem 3.4 (Functional Scaling Law (FSL), Corollary of Theorem 4.1 in Li et al. (2025)). Under
Assumptions 3.1 and 3.2, the following FSL holds for sufficiently large continuous training step t:

t
+1702/ L(t —7) dr 3)
0

E[R(6,)] — 102 =

2 t)s b(r
2. (nt) (r)
irreducible  fy)]_patch GD noise term

with KC(t) := fol u' T Fem2ut du,

Theorem 3.4 establishes a scaling law for the population risk in SGD training. This law is expressed
as a functional of the batch size schedule b(-) and also depends on the label-noise level o, the
capacity-source constants J and s, the learning rate 7, and the training step ¢. Specifically, the
population risk can be decomposed into three components:

« Irreducible Risk. Due to the label noise, there exists an irreducible risk (< o2).

¢ Intrinsic-Time Scaling. The full-batch GD term captures the risk reduction resulting from full-
batch gradient descent, following a power law with respect to the intrinsic time nt. Notably,
this term is independent of the batch size schedule.

* SGD Noise Effects. The noise term takes a straightforward convolutional form, capturing the
risk associated with fitting the noise introduced by SGD during training. Specifically, no?/b(r)
quantifies the magnitude of gradient noise, modulated by the learning rate, label noise level,
and batch size schedules at time step r. The forgetting kernel (¢ — r) characterizes the extent
to which the fitting noise at time r is forgotten by time .

Next, we utilize the Functional Scaling Law (FSL) to investigate the impact of batch size schedules
on the training dynamics. While the FSL framework proposed by Li et al. (2025) can, in principle,
be applied to study the effects of batch size, their analysis assumes a constant batch size schedule and
primarily focuses on the role of the learning rate schedule. In contrast, our approach extends their
work by incorporating variable batch size schedules, providing a more comprehensive understanding
of how batch size scheduling influences the loss dynamics, particularly in relation to the noise effects
and the evolution of the risk during training.

4 THEORETICAL ANALYSIS

4.1 SUDDEN DROP AND FINAL MERGE

We simulate the Functional Scaling Law (FSL) to pre-
dict the loss under a two-stage batch-size schedule. As
shown in Figure 2, the switched trajectory displays a — smallbatch

sharp sudden drop at the switching step and then finally T raebaer large betch &t 3000

merges onto the large-batch trajectory when measured —— small batch — large batch at 7000

in training steps. The simulation clearly matches the A

empirical ph b d in Fi 1 9w

p phenomenon observed in Figure 1.

Notation. We compare three schedules: (i) a two-stage

switch bgyien that starts with batch B; and switches

to By at step Ty; (ii) a constant large-batch schedule . . . . i i .

blarge = B2; and (iii) a constant small-batch schedule 0 2000 40“0#"’0;’“ 800010000 12000

bman = Bi, with By < By, step

Formally, Figure 2: Functional Scaling Law prediction

of loss versus step curve.

B1,0<t < T, .

bswitch(t) = ’ > 3 blarge<t) = B27 t> 07 bsmall(t) = Blat >0 with Bl < B2'
B27 > Tsv

Here, B; and B5 denote the small and large batch sizes,
respectively, and 7’ is the switching time. We use Eswitch (), Elarge(t), and Ejarge(t) to denote the
expected loss under switched, small, and large batch size.

We first quantify the sudden drop produced by increasing the batch size at T, demonstrating that
switched loss curve will drop at much higher speed comparing to original loss curve.
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Theorem 4.1 (Sudden drop). As T, — oo, for time t = Or_(1) > 0,
(I) for original loss curve
gxmall(Ts) - gxmall(Ts + t) ~ ST5;7871t - 0(1)
(1) for switched loss curve 1 1 t
5switch(Ts) - gswitch(Ts + t) ~ h02(7 - 7) / IC(’I“) dr = Q(l)
By By )y
Theorem 4.1 establishes a precise characterization of the sudden drop phenomenon when switching
from a smaller to a larger batch size. Part (I) shows that along the original loss curve, the reduction
in loss after T continues to decay at a rate of order O(T; *~1), reflecting the slow, diminishing
improvement typical of small-batch training. In contrast, Part (I) demonstrates that the switched
loss curve immediately benefits from a constant-rate reduction, scaling proportionally to the variance
level o2, the batch size gap (B% - B%) Taken together, these results imply that switching induces an

abrupt acceleration: while the original curve improves only marginally at O(T,*~1), the switched
curve realizes an O(1) improvement within constant time, thereby producing a sharp and observable
sudden drop in the training loss trajectory. Sudden drop characterizes the rapid deviation of the
switched loss curve from the small-batch trajectory, followed by final merge, which quantifies the
rate at which it converges toward the large-batch trajectory.
Theorem 4.2 (Final merge). The gap between the loss of bsyiten, and by follows as t — oo
1 1
gswitch(Ts + t) - glarge(Ts + t) ~ Cﬁho—z(i - 7)Tst_(2_%)

By B

where Cg is a constant that only relates to .

Theorem 4.2 characterizes the final merge between the trajectories of a switched batch size schedule

and the large batch schedule. As t — oo, the gap between the loss of switch schedule and large
1-2
schedule admits an explicit asymptotic form, decaying at rate O(t ™ ? . ). This result establishes that

the discrepancy induced by switching is not permanent: The switched trajectory converges to the
large batch trajectory when measured in training steps.

4.2 LATER SWITCH AND POWER-LAW

We now study switching on the data axis, which is the
relevant regime when the training budget is the total

number of seen samples D. The question is: what is — smallbaich
. . . . . . —==- large batch
the data-optimal switching point? A natural implica- small batch —» large batch at 3000
tion follows after final merge: While loss curves corre- —— small batch — large batch at 7000
sponding to different switching times eventually merge @
to the large batch trajectory when measured against 2 107
training steps, later switch will proceed more steps on
the trajectory. Consequently, a qualitative message it:
Later switch tends to yield a lower final loss. However,
excessively late switching prevents full convergence to 0 2000 4000 6000 8000 10000 12000
the larger-batch trajectory, leaving the merging incom- # data
plete. We illustrate this phenomenon in Figure 3 and
provide empirical validation in Section 5.2. Figure 3: Functional Scaling Law prediction

An intuitive interpretation is that a later switch allows of loss versus data curve.

the gradient descent (GD) term to contribute more to loss reduction, but simultaneously amplifies
the influence of the noise term. Since s < | — 1, O(¢t~*) GD term decays more slowly than the
O(t~*1) noise term requiring a longer time horizon for its effect to diminish. We formalize this
intuition with power-law theorem.

Notation. Let D denote the total number of training samples, and let D € [0, D] denote the number
of samples at which the batch size switch occurs. Then, the switching step T p,, the total number

of training steps ¢ _, and the batch size schedule b2z , (t) are given by

Dy D, D-D; D
Bl ’ Dy B1 + BQ ’ swltch( )

:Zﬂs,DS =

Bl, 0<t§TS_’DS,
Bs, TS,DS <t<tp,.
(t) on time point ¢ to be EL= (1)

switch

D,

We denote the expectation loss of batch size schedule b3, .,
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Theorem 4.3 (Power-law between the optimal data switch point and total data size). As D — oo,
the optimal data switch point D*(D) = argminy, £2% (tp,) obeys
sB+8
D — D*(D) = D¥1.
By the assumption of hard regime s < 1 —1/5, we have % — 1, D—D%(D) — o0, as D —
00.

Theorem 4.3 characterizes the asymptotic location of the optimal switching point in the data domain.
Specifically, it shows that as the total data budget D — oo, the optimal switching point D% (D) lies

increasingly close to the end of training, with the residual gap to D scaling as Dgg%lf, this implies
that the relative ratio converge to zero, while the absolute difference to D diverges. Intuitively, this
result reveals that in the large-data limit, the optimal strategy is to maintain small-batch training
for nearly the entire dataset, and perform later switch to the larger batch size at a point very close
to completion. However, the switch is not exactly at the end: the diverging yet vanishingly small
fraction D — ¢* (D) ensures that the benefit of the sudden-drop phenomenon is still exploited.

4.3 OPTIMAL BATCH SIZE SCHEDULE

Theorem 4.4 (optimal batch size schedule). For any fixed data size D, the optimal batch size sched-
ule is given by B*(t)tT;O with optimal time T, where
(T _ t) 1/28-1

B
* o )TTs8 -
T < D8, By < Ti/28

reaches optimal loss £* =< DT,
Theorem 4.5 (Minimax lower bound, Corollary of Theorem 2 in Caponnetto & De Vito (2007)).
Suppose Assumptions 3.1, 3.2 hold. Let T, = {(x;,y:)}"_, be a dataset of n samples drawn
ii.d. from p. The minimax risk satisfies

sB

infsupEr, [£(0p)| 2 D777,
Op 0*,p

where the infimum is taken over all estimators 0p (i.e., measurable functions of Tp) and the supre-
mum is taken over all targets w* and data distributions p satisfying the stated assumptions.

In large-scale LLM pre-training, practitioners often adopt the heuristic of ramping up the batch size
over the course of training (Brown et al., 2020; DeepSeek-Al et al., 2024). Within our theoretical
framework, we investigate a fundamental question: under a data-limited regime, what is the optimal
batch size schedule (in the asymptotic sense)? Theorem 4.4 shows that an optimal schedule exists in
our setup, showing that a progressively increasing batch size and achieving the optimal convergence
rate. Furthermore, we demonstrate that this optimal batch size schedule is sufficient to attain the
minimax lower bound proven by Theorem 4.5.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We evaluate batch size scheduling for the task of LLM pre-training across different model architec-
tures, parameter scales, datasets. The main experimental configurations are summarized below, with
further implementation details provided in Appendix B.

We conducted experiments in two distinct settings to ensure consistency of observed phenomena
across different scales:

e Small-scale. We adopt the widely used NanoGPT codebase (Karpathy, 2022) in small-scale
experiments. Specifically, we evaluate the standard dense LLaMA architectures (Touvron
et al., 2023). We evaluate on the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al.,
2020). The total number of training tokens is set to be approximately 20 times the number
of model parameters, in accordance with the Chinchilla scaling law (Hoffmann et al., 2022),
which is widely used in small-scale experiments. We experiment with model size S0M, 200M
and 492M parameters.
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» Large-scale. We conducted large-scale experiment using the widely adopted Megatron-LM
codebase (Shoeybi et al., 2019). We employ a novel sparse MoE design, Mixture-of-Experts
(MoE) architecture, the shortcut-connected MoE (ScMoE) (Cai et al., 2025), which has demon-
strated notable gains in inference efficiency and throughput compared to models of a compa-
rable scale (LongCat et al., 2025). To align our experiment with real world large-scale LLM
pre-training, the models are trained on a token-to-parameter ratio that significantly exceeds the
20:1 guideline, corresponding to the beyond-Chinchilla-optimal regime (Sardana et al., 2024).
We experiment with two model sizes: (i) 1001M total parameters with 209M activated for
each token, training on around 0.4T tokens; (ii) 1119M total parameters with 291M activated
for each token, training on around 1T tokens.

Theorem 4.4 motivates a gradually increasing batch size sched-
ule. However, batch size scheduling faces hardware constraints
that limit its flexibility. First, batch size is inherently discrete
and hardware-bound: it must be a positive integer and divisi-
ble by the number of data-parallel workers. Second, compu-  =..
tational efficiency is also a critical factor, too small batch size
lead to poor GPU utilization. In LLM pre-training, adjusting
batch size incurs non-trivial overhead, requiring reconfiguration
of data pipelines, memory allocation, and distributed communi-
cation patterns. Consequently, batch size schedules are typically
implemented as stage-wise changes among a limited set of dis-
crete values. Due to these hardware constraints, our experiments
focus on a two-stage schedule under a fixed data budget.

Figure 4: Validation loss un-
der different batch size switch-
ing points. The x-axis denotes
the fraction of data processed

In Figure 4, we present results from pre-training a 200M- before switching.

parameter LLaMA model on 4B tokens using a two-stage batch size schedule, switching from 256 to
512 at different points in training. The results highlight the advantage of two-stage scheduling over
a constant batch size, yielding consistently lower validation loss. Moreover, the trend corroborates
our theoretical analysis in Section 4.2: later switching generally achieves a smaller final loss, while
excessively late switching prevents the noise term from converging, leading to high terminal loss.

5.2 LATER SWITCH

We present validation loss versus training tokens across different batch size switching times to ex-
amine the later switch rule under multiple architectures, data scales, and schedules. As shown in
Figure 5, for a fixed data budget, later batch size switching consistently yields performance gains
than early switching when evaluated under the same data budget, regardless of the specific switch-
ing ratio.We also plot validation loss versus training steps, validating the sudden drop and final
merge phenomenon, as shown in Figure 1 and Figure 7. Finally, We further explore later switch rule
in multi-stage batch size schedule in Appendix B.4, with later switches still outperforming earlier
switches. Together, these results demonstrate that the observed phenomena are robust across both
model and data scales.

5.3 POWER LAw

In this section, we verify Theorem 4.3, which establishes a qualitative power law relation between
total data size D and optimal data switch point D*. Specifically, we have

sB+ 5
28— 1

Here C' and e are two constants independent of D. Here, the notation ~ is understood in the asymp-
totic sense. Take the logarithm of both sides of Equation 4 yields the near-linear relation

log(D — D3(D)) =1logC + elog D + o(1), as D — oo ®)

D — D}(D) ~ CD* where e =

€ (0,1) 4)

which provides a convenient form for empirical verification in log—log coordinates.

We conduct experiments using a SOM-parameter model trained on the C4 dataset with token budgets
ranging from 1.3B to 5B. For each total token budget D, we perform an extensive grid search to
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Figure 5: Upper Left and Middle: Validation loss versus training token under different batch-
size switching times using 1001M parameter MoE model trained on around 0.4T token, switching
batch size from 640 to 1280, and 2560. Upper Right: Validation loss versus training token under
different batch-size switching times using 1119M parameter MoE model trained on around 1T token,
switching batch size from 1024 to 2048. Lower Left, Middle and Right: Validation loss versus
training token under different batch-size switching times using 500M parameter LLaMA model
trained on around 10B token, switching batch size from 512 to 1024, 2048 and 4096.
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Figure 6: Power law relationship between D and D — D*. The R? of the fits is 0.990. We see that
the power law provides a good fit to the empirical data.

identify the optimal batch-size switching point D*. We then fit the empirical results using least-
squares regression against Equation 5. As shown in Figure 6, the fitted curves align closely with the
theoretical prediction, achieving an R? value of 0.990, a fair high value. This indicates that, despite
Equation 5 being derived in an asymptotic regime, it provides a decent approximation. Moreover,
the estimated exponent e lies in the interval (0, 1), in agreement with the theoretical analysis.

6 CONCLUSION

In this work, we study a simple two-stage batch size schedule in language model pre-training,
switching from small to large batches under a constant learning rate. Using a power-law kernel
regression framework, We explains two consistent behaviors: a sudden loss drop at the switch and a
final merge to the large-batch trajectory, these behaviors arise from reduced gradient noise. Further-
more, we predicted that the optimal switching point scales as a power law with data size. Experi-
ments across models and scales validate these predictions.
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A PROOF IN SECTION 4

Lemma A.1 (Asymptotic behavior for K(t)).
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Proof. (1)
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A.1 PROOF FOR THEOREM 4.1

Proof. (I) Following Theorem 3.4, for original loss curve

1 1 T+t

Eaman(T2) = Enn (T + ) = (- - m) + hg2Bl—1(/T K(r) dr).

With the help of Lemma A.1, we have
Eamatt(Ts) — Eman(Ts + 1) = sT5 "+ O(T7°72) + O(T?71/P)

~ ST =< Tt
(II) Following Theorem 3.4, for switched loss curve

1
Eswitch (Ts) - gswitch (Ts + t) == (5small (Ts) - 5small (Ts' + t)) + h02(7 - 7) K:(T) d’/’.

With the help of Lemma A.1, we have
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A.2 PROOF FOR THEOREM 4.2

Proof. Following Theorem 3.4,
Eaith(Ts +1) — Euarge(Ts + 1) = ho*(— — =) | K(Ty +t—r)dr.
By variable substitution, we have
1 1 t+Ts
gswitch(Ts + t) - 51arge(Ts + t) = ho—z(i - 7)/ IC(T) dT‘.
t

Notice that as ¢ — oo, by Lemma A.1,

r— oo = K(r) ST ™ ST
(2r)"» (2t)"»
Hence
9, 1 1 1-28
Eswitch(Ts + t) - glarge(Ts + t) ~ Ogh(f (7 - 7)T5t P
By B

A.3 SUPPLEMENTARY THEOREM FOR RATIO OF FINAL MERGE

Theorem A.2 (Final merge ratio). The gap ratio between the loss difference of bsyiren and biarge With
the loss difference of bynay and bjarg. is defined as

gswic t _gure t
f(t): Th() lg()
gsmall(t) - 5'large(t)
We define T = inf{t > 0| f(Ts + t) < a} to be the time to reduce the relative gap to a.

(I) f(¢) is strictly increasing.
1-8
(1I) As Ts — oo, there exists T® such that T8 =T, — O(Ts " ) = T, .

(D) As a — 0, T, = O(a™7-7)

Theorem A.2 provides a precise characterization of the gap ratio dynamics that govern the transition
between small-batch, switched, and large-batch training curves. Once the switch occurs, the trajec-
tory of bswiich monotonically approaches that of bja., ensuring that the loss gap steadily closes. In
particular, part (IIT) shows that in order to reduce the relative gap to a tolerance of a, one requires a
time on the order of —3/(5 — 1), which makes precise how the convergence slows as we demand
tighter closeness. This scaling reveals that approaching near-perfect alignment of the switched and
large-batch curves incurs rapidly growing time.

Proof. (I) Notice that by Theorem 3.4,
t—T t
Eumat(t) — Exvvicen(t) = ho / K(r) dr, Exman() — Engelt) = ho? / K(r) dr.
0 0
Hence, We define

gsmall(T + t) - gswitch(T + t) f()t IC(T) dr

)=l = e T = EueeT+1) (BT () dr
Then

da, © = - KKt + Ty) (foHTS K(rydr _ Jy k() dr)

dt Ts - ( 0t+Ts ]C(T) dT)Q K(t + Ts) ’C(t) ‘
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Let p(t) := %. Then

2 (Pe(r)drK! PKC(r) drK!
o= SO ZRRQUR | LROGE

Hence p is strictly increasing, so p(t + Ts) > p(t), therefore fr_(t) is strictly decreasing. By
fr.(0) =1 and fr,(cc0) = 0, the existence of T2 is ensured.

I
We define

o B ft/C(r) dr
foo(t) == Tllgloo Jr.(t)=1- W

foo 1 continuous, strictly increasing, fo,(0) = 1, fo(00) = 0. Hence for each a € (0, 1), there
exists a unique Ty, such that [ (T,,) = a.

We have

oo o Ts
a/ K(r)dr 2/ K(r)dr > a/ K(r)dr.
0 0 0
Let 7% and T, be

/OTa K(r) = a/ooo K(r)dr, /OT: K(r) = a/OTS K(r) dr.

Obviously by the monotonicity, we have T, > T2 > T2 . We can use squeeze theorem to estimate
T¢ . Note that as T, — oo,

Ts 00 F(2Bﬁ71)ﬁ 18 s
/ lC(r)dr:/ K(r)dr — ———Ts" +0o(Ts ")
0 0 277 (B-1)
So 251
T(EA)8 s s
T =T, - K~ YT, T " +o(Ts "
Hence
T =T, — O(TYP=Y) =T, — O(TYP~1).
(1)

Asa — 0%, we have T, — co. By Lemma A.1, we have

(2 s
a=foolTy) ~ —55Tu" =To~a 71
278
O
A.4 PROOF FOR THEOREM 4.3
Following Theorem 3.4,
d 1 1 1 2 K(tp,) | K((d— D,)/B>)

T Cswil t = \75 — 5 —st, ® h .

stg tCh( Ds) (Bl BQ) S c + o ( B1 + B2 )
We have t. < D, hence

st b= —D75 thL(tDS) = DL
s B
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Since D~! = o(D~*71), to make
d

ﬁgSWitCh(tD'*) =0.

We must have
K((D = Dys)/Bs) < =D~ = K((D — Ds)/Bz) — o
By monotonicity of I, we get D — Dy — 0o, combining with Lemma A.1, we have

s+1

(D — D,)>" Y8 = D=~ (D — D,) = D** = D71/5.

A.5 PROOF FOR THEOREM 4.4

By Theorem 3.4, The optimal batch size schedule can be formalized as below problem

1 T rr—t
argmin  E(B(1)) == +; +/ KT -1 dt.
T.B(t)L, T =0 DBt
s.t. [T B(t)dt=D
It can be converted to
T T
K(T -t 1 K(T -t
argmin - — g dt = argmin argmin — + g dt.
ronl, 10 Jeo B T Bwr, T° Jeoo B
ST B(t)dt=D ST B(t)dt=D

For the last arg min with fixed k, by Cauchy Inequality, we have

=0 Bt =0 t=0

Hence by the equal condition, in order to minimize £(B(t)), we must have B(t) =< (T —t)~'/2. By
—1
S Budt = D, we have B(t) = DY= " thus

/ TRT 1) _ (LT -npar T

=0 Bt ftq;o Bt dt B D
Thus we get
1 T k(T —t) 1 T8
g(T):= argmin — + / ————dtx — + .
rewi, 10 Ji=oo B D

s.t. [ B(t)dt=D

To minimize g(7"), the optimal 7, satisfies

11
d TP T7? i
G+ ) =0 T S 0= T = D73,
Hence the minimum & satisfy
Tl/ﬁ s s sB
EF =T °+ E) ~ D" — D 1/5Fs — )T TTeB.
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The optimal batch size schedule satisfy

(T _ t)1/25—1

th TI/Q/B

B EXPERIMENTAL DETAILS

Table 1: Model configurations

Type LLaMA LLaMA LLaMA  MoE MoE
Size S50M 200M 492M 100IM  1119M
Activated Size — — — 209M 291M
dmodel 512 1024 1280 512 576
drFF 2048 4096 5120 1408 1152
dFF_MoE — — — 1408 192
q_head 8 16 20 8 6
k_head 8 16 20 4 2
depth 4 8 15 12 24
n_expert — — — 64 224
activated_expert — — — 3 16

We performed experiments under two distinct settings to verify the consistency of the observed
phenomena across scales.

Small-scale.

e Model. LLaMA (Touvron et al., 2023) is a dense, decoder-only Transformer architecture
that integrates several modern design components, including Rotary Positional Encoding
(ROPE) (Su et al., 2024), Swish-Gated Linear Units (SwiGLU), and Root Mean Square Layer
Normalization (RMSNorm). We pre-train LLaMA models with parameter counts ranging from
50M to 492M. A full list of model configurations is provided in Table 1.

» Dataset. Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) is a large-scale, publicly
available language dataset widely adopted for LLM pre-training, including models such as
RoBERTa (Liu et al., 2019) and TS5 (Raffel et al., 2020). For tokenization, we employ the T5
tokenizer with a vocabulary size of 32,100. Following the setup of Zhao et al. (2024); Zhu et al.
(2025), we train with a sequence length of 256. We use 1,000 linear warm-up steps.

Large-scale.

* Model. Shortcut-connected Mixture of Experts (ScMoE) (Cai et al., 2025) is a novel MoE ar-
chitecture that addresses communication overheads in expert parallelism by introducing short-
cut connections and an overlapping parallelization strategy. ScMoE decouples the usual se-
quential dependency between communication (All-to-All operations among expert modules)
and computation, enabling up to 100% overlap of those two processes. A full list of model
configurations is provided in Table 1.

» Dataset. We train on a private real-world LLM dataset to ensure that our experiments closely
reflect practical deployment scenarios. The tokenizer is configured with a vocabulary size of
131,072, and training is performed with a maximum sequence length of §,192.

Optimizer. For both small-scale and large-scale experiments, we adopt the standard Adam optimizer
with decoupled weight decay as the baseline. The baseline configuration follows protocols from
LLaMA pre-training (Touvron et al., 2023), using hyperparameters 5; = 0.9, 82 = 0.95, weight
decay A = 0.1, and a gradient clipping threshold of 1.0.

B.1 EXPERIMENTAL DETAILS FOR SECTION 5.1

We conduct experiments with a 200M-parameter LLaMA model on 4B tokens with learning rate
1 x 1073 using a two-stage batch size schedule, switching from 256 to 512 at different points in
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training. The total data size corresponding to the full large batch size training step are 30000. We
switch batch size at different ratio {0, 1/16, 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 8/16, 9/16, 10/16,
11/16, 12/16, 13/16, 14/16, 15/16, 16/16}. Each ratio is repeated multiple times to reduce variance
in the results.

B.2 EXPERIMENTAL DETAILS FOR SECTION 5.2

* 492M We conduct experiments with a 492M-parameter LLaMA model on 4B tokens with
learning rate 5 x 10~% using a two-stage batch size schedule, switching from 512 to 1024,
2048, 4096 at 0 and 25,000 step in training.

* 1001M We conduct experiments with a 1001M-parameter MoE model on 0.4T tokens using a
two-stage batch size schedule, switching from 640 to 1280, 2560 at S0B, 200B and 300B token
in training. In addition, we evaluate a staged schedule that progressively increases the batch
size—from 640 to 1280, then 1920, and finally 2560 at 100B, 150B and 200B token in training.

e 1119M We conduct experiments with a 1119M-parameter MoE model on 1T tokens using a
two-stage batch size schedule, switching from 1024 to 2048 at 300B and 600B token.

val loss vs step

= 2x batch size from 300B token
2x batch size from 600B token
46

:
44 \’\.\“'\-w‘\‘

4.3

validation loss

0 10 20 30 40
num of steps (Thousands)

Figure 7: Validation loss versus training token under different batch-size switching times using
1119M parameter MoE model trained on 1T token.

B.3 EXPERIMENTAL DETAILS FOR SECTION 5.3

We conduct experiments with a S0M-parameter LLaMA model trained on the C4 dataset with learn-
ing rate 1 x 10~2 , using a small batch size of 128 and a large batch size of 256. The total data size
corresponding to the full large batch size training step are {20000, 25000, 30000, 35000, 40000,
45000, 50000, 55000, 60000, 65000, 70000, 75000}. For each data size, we perform a grid search
to determine the optimal switching point D*, with a precision of D/32. Each configuration of
D*/D is repeated multiple times to reduce variance in the results.

B.4 SCHEDULE COMPARISON

We compare multi-stage batch size scheduling strategies for 200M LLaMA model and 1119M pa-
rameter MoE model. For 1119M-parameter MoE model, we train on 1T tokens using a four-stage
batch size schedule, switching from 1024 to 2048, then 3072 and finally 4096 at different time steps.
For 200M-parameter LLaMA model, we train on 4B tokens using a four-stage batch size schedule,
switching from 128 to 256, then finally 512 at different time steps.

In Figures 8 and Figure 9, the left panels show how batch size evolves with training tokens, while
the right panels report the corresponding validation loss. Across both model scales, later switching
consistently yields lower validation loss than earlier switching, validating the effective of late switch
phenomenon in multi-stage batch size scheduling regime.
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Figure 8: Validation loss versus training token with four-stage batch size schedule using 1119M
parameter MoE model trained on 1T token. Left: batch size versus training tokens; (right) validation
loss versus training tokens.
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Figure 9: Validation loss versus training token with three-stage batch size schedule using 200M
parameter LLaMA model trained on 4B token. Left: batch size versus training tokens; Right:
validation loss versus training tokens.

C STATEMENT

C.1 ETHICS STATEMENT

We have confirmd that this research was conducted in full compliance with the ICLR Code of Ethics.
All experiments respect the principles of integrity, fairness, and transparency. No part of this work
involves harm to humans, animals, or the environment, and we have taken care to ensure the respon-
sible use of data, models, and computational resources.

C.2 REPRODUCIBILITY STATEMENT

We believe that all experimental results in this work are reproducible. The paper specifies compre-
hensive training and evaluation details—including hyperparameters, optimizer choices, and other
relevant settings—in Section 5 and Appendix B. For small-scale experiments, we provide open-
source code in the supplemental material, and all datasets used are publicly available. For large-scale
experiments, we believe that employing comparable datasets and training pipelines will reproduce
the same phenomena.

C.3 LLM USAGE STATEMENT

We used LLM as a writing assistant during paper preparation. The model found and corrected
grammar mistakes throughout the manuscript. It suggested ways to make our sentences clearer and
smoother. The LLM helped polish the language while keeping our meaning intact. We limited LLM
use to only language editing tasks. All research content and ideas came entirely from human work.

Beyond serving as tools, LLMs were themselves the subject of our study. We trained these models
and analyzed their behavior to uncover and explain novel phenomena. Importantly, this use of LLMs
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as research objects should not be misinterpreted as a substantive contribution from the models to the
work itself.
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