
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS REVEALING THE EFFECT OF BATCH SIZE
SCHEDULING ON LANGUAGE MODEL PRE-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large-scale foundation models relies on effective parallelism strategies,
especially batch size scheduling. However, despite its widespread practical use,
the influence of batch size scheduling on training dynamics remains poorly un-
derstood. In this work, we first investigate this through a simple two-stage batch
size schedule. Specifically, we train the language models with a constant learn-
ing rate using three batch size schedules: i) small constant batch size, ii) large
constant batch size, and iii) a schedule that switches from small (i) to large (ii)
at some switching point. We observe two notable behaviors: (1) sudden drop, a
sharp drop in loss occurs at the switching point, compared to the loss trajectory
of the small batch size; (2) final merge, a gradual convergence in loss to the tra-
jectory of the large batch size. To understand the underlying mechanism behind
these phenomena, we then provide a theoretical analysis from the perspective of
power-law kernel regression setup. We leverage the Functional Scaling Law
(FSL) introduced in the recent work by Li et al. (2025), which provides a theo-
retical framework for analyzing LLM pre-training dynamics. Our analysis shows
that increasing batch size provably leads to a sudden loss drop by reducing SGD
noise and guarantees convergence to the large batch trajectory at the same step
level. Under the data-limited regime, our analysis further reveals a trade-off be-
tween intrinsic optimization time and SGD noise in the choice of switching point,
predicting that the optimal switching point scales as a power law with total data
size. Finally, we empirically validate these theoretical findings through language
model pre-training experiments up to 1.1B parameters and 1T tokens, confirming
the consistency of our theoretical insights.

1 INTRODUCTION

Large language model (LLM) pre-training demands immense computational resources, making
training efficiency a central challenge for scaling. Parallelism plays an essential role in training
efficiency, and increasing batch size is a critical mechanism for achieving effective parallelization.
The critical batch size (CBS) (McCandlish et al., 2018) theory suggests increasing batch size as the
noise scale grows during training: small batches are initially efficient due to low noise, but as the
noise scale increases, larger batches are beneficial to improve step efficiency. Complementary to this
perspective, Smith et al. (2018) proposed increasing the batch size as an alternative to learning rate
decay. In practice, real-world large-scale LLMs, including GPT-3 (Brown et al., 2020), LLaMA-
3 (Touvron et al., 2023), DeepSeek-V3 (DeepSeek-AI et al., 2024), and MiniMax-01 (MiniMax
et al., 2025), all adopt staged batch size increases during LLM pre-training.

Despite its widespread application in large-scale model training, the effect of batch size scheduling
on training dynamics remains poorly understood. While existing work has primarily focused on
developing more efficient critical batch size estimators (Gray et al., 2023; 2024) and its power-law
relationship to training parameters (Kaplan et al., 2020; Zhang et al., 2025), little is known about
how explicit batch size schedules impacts training dynamics.

In this paper, we study a simple yet representative setting: a two-stage batch size schedule that
switches from a small to a large batch under a constant learning rate regime in language model
pre-training. Through this setting, we uncover two robust behaviors that consistently emerge under
batch size switching:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100

num of steps (Thousands)

2.6

2.7

2.8

2.9

3.0

3.1

3.2

va
lid

at
io

n
lo

ss

val loss vs step

2x batch size wholetime

4x batch size wholetime

8x batch size wholetime

2x batch size from 25k

4x batch size from 25k

8x batch size from 25k

0 10 20 30 40 50 60

num of steps (Thousands)

4.2

4.4

4.6

4.8

va
lid

at
io

n
lo

ss

val loss vs step

base

2x batch size whole time

2x batch size from 50B

2x batch size from 200B

2x batch size from 300B

4x batch size from 50B

4x batch size from 200B

mutliple

Figure 1: Validation loss versus training token under different batch-size switching times. Left.
500M paraemter LLaMA model trained on the C4 dataset with 10B token. The base batch size
is 512. ’2×/4×/8× batch size wholetime’ use constant batch size 1024, 2048, and 4096 throught
training process. ’2×/4×/8× batch size from 25k’ switch from beginning batch size 512 to batch
size 1024, 2048, 4096 at 25,000 steps. Right. 1001M parameter MoE model trained on around
0.4T token.. ‘base’ trains with baseline batch size 640 for all steps. ‘2× batch size whole time’ uses
1280 throughout training process. ‘2× batch size from 50B/200B/300B’ switches from 640 to 1280
at 50B, 200B and 300B token, respectively. ‘4× batch size from 50B/200B’ is similar. ‘multiple’
employs a staged size schedule: first 640, then 1280, then 1920, and finally 2560.

• Sudden drop. At the batch size switching point, the loss curve exhibits a sudden drop loss
trajectory, deviating sharply from the small-batch trajectory.

• Final merge. Following the sudden drop, the loss curve gradually converges with the trajectory
of training with the large batch size throughout, indicates a final merge when measured in
training steps.

As illustrated in Figure 1, these two behaviors are consistently observed across different model
architectures and training settings. Moreover, when we evaluate a staged schedule that progressively
increases the batch size—from 640 to 1280, then 1920, and finally 2560—the resulting trajectory
sequentially aligns with the corresponding 1280 and 2560 curves. This observation further confirms
that the identified behaviors remain robust even under multi-stage batch size scheduling.

To delve deeper into these phenomena, we consider a teacher–student multi-power kernel regression
task, which introduces Functional Scaling Law (FSL) (Li et al., 2025). Building upon the FSL
framework, we provide the theoretical underpinnings of the observed phenomena. Under fix step,
our analysis explains the sudden drop and merge behaviors. Under fix data budget, our theory
further reveals: a qualitatively later switch rule, and a quantitatively power law between the optimal
switching point and the total data size, as well as derives conditions for minimax-optimal batch size
schedules. These results together extend prior FSL results beyond the constant-batch regime.

Furthermore, we conduct comprehensive LLM pre-training experiment to verify our theoretical anal-
ysis. Our experiments are three-fold. First, we demonstrate that a simple two-stage batch size
schedule performs better than a constant batch size schedule. Second, we empirically verify our
qualitative later switch rule under extensive large-scale LLM pre-training experiment. Third, we
provide strong evidence for the predicted power-law between the optimal switching point scales
and the total data size. Together, these results ground theoretical analysis with empirical evidence,
showing the potential of FSL for understanding and designing efficient batch size schedules in LLM
pre-training.

Specifically, our contributions can be summarized as follows:

• Sudden drop and final merge. Through LLM pre-training experiments, we identify two phe-
nomena in batch size switching in the step level: (i) a sudden drop in validation loss at the
switching point, and (ii) a final merge of the loss trajectory toward that of the larger batch.
These findings motivate a deeper theoretical investigation of batch size scheduling dynamics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Theoretical analysis via the Functional Scaling Law (FSL). We extend the FSL framework
beyond the constant-batch regime, providing a principled explanation for the sudden drop (The-
orem 4.1) and final merge behaviors (Theorem 4.2). Our theory further reveals a qualitative
later-switch rule, a quantitative power-law relation between the optimal switching point and
total data size (Theorem 4.3), and conditions for minimax-optimal batch size schedules (Theo-
rem 4.4).

• Empirical validation. We validate our theoretical predictions through extensive LLM pre-
training experiments across diverse architectures and scales. Our results confirm the robustness
of sudden drop and final merge, the later switch rule, and the predicted power-law scaling,
thereby establishing a strong connection between FSL theory and practical batch size schedul-
ing in LLM training.

2 RELATED WORK

Batch size in deep learning. Batch size impacts both optimization dynamics and computational effi-
ciency. Smith et al. (2018) proposed increasing the batch size as an alternative to learning rate decay.
McCandlish et al. (2018) introduced critical batch size (CBS) as an empirical model of large batch
training to balance between training step and data efficiency, and used gradient noise scale (GNS)
as a proxy to estimate CBS. Several works extend this line: Kaplan et al. (2020); Zhang et al. (2025)
reported empirical power-law relationships linking CBS to loss, model size and data scale; Gray
et al. (2023; 2024) developed more efficient GNS estimators; Merrill et al. (2025) proposed an em-
pirical method to directly measure CBS via branched training. A complementary direction employs
adaptive sampling strategies to dynamically adjust batch sizes (De et al., 2017; Lau et al., 2024b;
Ostroukhov et al., 2024) , with distributed variants (Lau et al., 2024a; 2025). In practice, LLM pre-
training adopts stage-wise batch schedules: GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), LLaMA-3 (Touvron et al., 2023), and Nemotron-4 (Parmar et al., 2024; Nvidia et al., 2024),
use three stages; MiniMax-01 (MiniMax et al., 2025) uses four; DeepSeek-V3 (DeepSeek-AI et al.,
2024) does not report detailed stage.

Hyperparameter scheduling. Hyperparameter scheduling plays a central role in large-scale pre-
training, with learning rate schedules receiving the most attention. Cosine decay (Loshchilov &
Hutter, 2017) remains the prevailing choice and is widely used in large models (Brown et al., 2020;
Grattafiori et al., 2024). Alternatives include linear decay (Defazio et al., 2023; Bergsma et al.,
2025), Warmup-Stable-Decay (WSD) schedules (Hu et al., 2024; Hägele et al., 2024), the latter sup-
ported by theoretical understanding developed by river valley landscape (Wen et al., 2025). In par-
allel, schedule-free approaches aim to replace explicit learning rate schedules with adaptive mech-
anisms (Defazio & Mishchenko, 2023; Defazio et al., 2024). More recently, theoretical works have
begun to incorporate schedules explicitly into predictive scaling-law models of training loss (Tissue
et al., 2024; Luo et al., 2025; Li et al., 2025). In contrast, batch size schedules, though ubiquitous in
practice, have received little theoretical treatment. Our work provides a theoretical perspective by
analyzing batch size scheduling through the lens of power-law kernel regression.

3 PRELIMINARIES

In order to analyze the role of batch size scheduling, we consider a power-law kernel (PLK) regres-
sion setup, which serves as a tractable theoretical framework that has been widely adopted in the
literature on the theory of LLM pre-training (Maloney et al., 2022; Bordelon et al., 2024a; Paquette
et al., 2024; Lin et al., 2024; Bordelon et al., 2024b; Zhang et al., 2025; Bahri et al., 2024; Li et al.,
2025). Our analysis is primarily motivated by the recent work of Li et al. (2025), which utilized SDE
modeling of SGD training dynamics under the PLK setup and introduced a novel functional scaling
law (FSL) to analyze the loss dynamics during the training process for general learning rate sched-
ules. In contrast, we apply this FSL framework to investigate the impact of batch size schedules
on loss dynamics, thereby complementing the analysis of Li et al. (2025) by considering another
critical training hyperparameter.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 POWER-LAW KERNEL REGRESSION

Let x ∈ Rd denote the data input that follows a distribution D, and suppose the data label is ob-
served as y := f∗(x) + ϵ, where f∗ : Rd → R represents the target function and ϵ ∼ N (0, σ2)
denotes Gaussian noise. The target function f∗ is defined as f∗(x) := ⟨ϕ(x),θ∗⟩, where
ϕ(·) = (ϕ1(·),ϕ2(·), · · · ,ϕN (·))⊤ ∈ RN is a feature mapping and θ∗ ∈ RN denotes the target
parameter vector. For simplicity, we also assume that ϕ(x) ∼ N (0,H) and the covariance matrix is
given by H := Ex∼D[ϕ(x)ϕ(x)

⊤] = diag{λ1, λ2, · · · , λN} with eigenvalues λ1 ≥ λ2 · · · ≥ λN .

Our goal is to learn the target function using a student model f(x;θ) := ⟨ϕ(x),θ⟩, where θ
denotes the learnable parameter vector. We optimize the following population risk: R(θ) :=
1
2Ex∼D[(f(x;θ) − y)2], where we denote E(θ) := R(θ) − 1

2σ
2 as the excess risk. Then, We

use an online mini-batch SGD procedure. At each iteration 1 ≤ t ≤ T , we take a mini-batch
St = {zt,i = (xt,i, yt,i)}Bt

i=1 drawn i.i.d. from D and update

θt := θt−1 −
η

Bt

Bt∑
i=1

∇θ
1
2

(
f(xt,i;θt−1)− yt,i

)2
, (1)

where η > 0 is a constant learning rate, and b := (B1, B2, · · · , BT)
⊤ ∈ ZT

>0 denotes the batch size
schedule (BSS).
Assumption 3.1 (Capacity condition). λj ≂ j−β for some β ∈ (1,∞).

We refer to β as the capacity parameter, which measures the decay of the kernel’s eigenvalues. The
assumption β > 1 ensures a finite kernel trace, i.e., Tr(H) =

∑M
j=1 λj < ∞.

Assumption 3.2 (Source condition). θ∗j ≂ j−1/2λ
(s−1)/2
j for all j ∈ [N] for some s ∈ (0,∞).

We refer to s as the source parameter, which characterizes the relative task difficulty level (Paquette
et al., 2024; Lin et al., 2024; Bordelon et al., 2024b; Li et al., 2025). A smaller s indicates a more
challenging task. Here, we focus on the hard-task regime where s < 1− 1/β.

3.2 SDE MODELING OF SGD

The key technique is build upon the SDE modeling of SGD, which is widely used in analyzing the
dynamical behavior of SGD (Li et al., 2017; 2019; Cheng et al., 2020; Li et al., 2020; 2021). For a
discretization step size h, the iteration (1) can be expressed as θt = θt−1 − η

h∇R(θt−1)h− η
hξth,

where ξt :=
1
Bt

∑
z∈St

∇ℓ(z,θt−1) − ∇R(θt−1) denotes the gradient noise that follows E[ξt] =
0,E[ξtξ⊤t] = 1

Bt
Σ(θt−1), where Σ(θ) represents the noise covariance at θ with the batch size

1. When h is small, this recursion is approximated by the Itô-type time-inhomogeneous SDE, as
discussed in Li et al. (2019); Orvieto & Lucchi (2019); Ankirchner & Perko (2024):

dθ̄τ = −η

h
∇R(θ̄τ) dτ +

η

h

√
h

b(τ)
Σ(θ̄τ) dBτ , (2)

where Bτ ∈ RN denotes the N -dimensional Brownian motion, and b ∈ C(R≥0) is the continuous
batch size schedule function with b(th) = Bt for all t ∈ N. One can explain τ as the continuous
steps or physical time. A key insight that makes the above SDE (2) analytically tractable is the
anisotropic noise structure, which can be formalized as follows:
Lemma 3.3 (Anisotropic noise). For any θ ∈ RN , it holds that

(2E(θ) + σ2)H ⪯ Σ(θ) ⪯ (4E(θ) + σ2)H.

Lemma 3.3 demonstrates that the noise covariance Σ(θ) approximately admits a closed-form ex-
pression: Σ(θ) ∝ R(θ)H, as observed in (Mori et al., 2021; Wu et al., 2022; Wu & Su, 2023). This
closed-form expression enables a precise characterization of the noise dynamics, thus providing a
framework for tracking the SGD training dynamics.

3.3 FUNCTIONAL SCALING LAW

Using the perspective of SDE modeling, Li et al. (2025) introduced a functional scaling law (FSL)
that can predict the population risk at any continuous training step, as shown by:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.4 (Functional Scaling Law (FSL), Corollary of Theorem 4.1 in Li et al. (2025)). Under
Assumptions 3.1 and 3.2, the following FSL holds for sufficiently large continuous training step t:

E[R(θt)]−
1

2
σ2︸︷︷︸

irreducible

≍ 1

(ηt)s︸ ︷︷ ︸
full−batchGD

+ ησ2

∫ t

0

K(t− r)

b(r)
dr︸ ︷︷ ︸

noise term

(3)

with K(t) :=
∫ 1

0
u1− 1

β e−2ut du.

Theorem 3.4 establishes a scaling law for the population risk in SGD training. This law is expressed
as a functional of the batch size schedule b(·) and also depends on the label-noise level σ, the
capacity-source constants β and s, the learning rate η, and the training step t. Specifically, the
population risk can be decomposed into three components:

• Irreducible Risk. Due to the label noise, there exists an irreducible risk (≍ σ2).
• Intrinsic-Time Scaling. The full-batch GD term captures the risk reduction resulting from full-

batch gradient descent, following a power law with respect to the intrinsic time ηt. Notably,
this term is independent of the batch size schedule.

• SGD Noise Effects. The noise term takes a straightforward convolutional form, capturing the
risk associated with fitting the noise introduced by SGD during training. Specifically, ησ2/b(r)
quantifies the magnitude of gradient noise, modulated by the learning rate, label noise level,
and batch size schedules at time step r. The forgetting kernel K(t− r) characterizes the extent
to which the fitting noise at time r is forgotten by time t.

Next, we utilize the Functional Scaling Law (FSL) to investigate the impact of batch size schedules
on the training dynamics. While the FSL framework proposed by Li et al. (2025) can, in principle,
be applied to study the effects of batch size, their analysis assumes a constant batch size schedule and
primarily focuses on the role of the learning rate schedule. In contrast, our approach extends their
work by incorporating variable batch size schedules, providing a more comprehensive understanding
of how batch size scheduling influences the loss dynamics, particularly in relation to the noise effects
and the evolution of the risk during training.

4 THEORETICAL ANALYSIS

4.1 SUDDEN DROP AND FINAL MERGE

0 2000 4000 6000 8000 10000 12000

step

100lo
ss

small batch
large batch
small batch→ large batch at 3000
small batch→ large batch at 7000

Figure 2: Functional Scaling Law prediction
of loss versus step curve.

We simulate the Functional Scaling Law (FSL) to pre-
dict the loss under a two-stage batch-size schedule. As
shown in Figure 2, the switched trajectory displays a
sharp sudden drop at the switching step and then finally
merges onto the large-batch trajectory when measured
in training steps. The simulation clearly matches the
empirical phenomenon observed in Figure 1.

Notation. We compare three schedules: (i) a two-stage
switch bswitch that starts with batch B1 and switches
to B2 at step Ts; (ii) a constant large-batch schedule
blarge ≡ B2; and (iii) a constant small-batch schedule
bsmall ≡ B1, with B1 < B2.

Formally,

bswitch(t) =

{
B1, 0 < t ≤ Ts,

B2, t > Ts,
; blarge(t) = B2, t > 0; bsmall(t) = B1, t > 0 with B1 < B2.

Here, B1 and B2 denote the small and large batch sizes,
respectively, and Ts is the switching time. We use Eswitch(t), Elarge(t), and Elarge(t) to denote the
expected loss under switched, small, and large batch size.

We first quantify the sudden drop produced by increasing the batch size at Ts, demonstrating that
switched loss curve will drop at much higher speed comparing to original loss curve.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4.1 (Sudden drop). As Ts → ∞, for time t = OTs
(1) > 0,

(I) for original loss curve
Esmall(Ts)− Esmall(Ts + t) ∼ sT−s−1

s t = o(1).

(II) for switched loss curve
Eswitch(Ts)− Eswitch(Ts + t) ∼ hσ2(

1

B1
− 1

B2
)

∫ t

0

K(r) dr = Ω(1).

Theorem 4.1 establishes a precise characterization of the sudden drop phenomenon when switching
from a smaller to a larger batch size. Part (I) shows that along the original loss curve, the reduction
in loss after Ts continues to decay at a rate of order O(T−s−1

s), reflecting the slow, diminishing
improvement typical of small-batch training. In contrast, Part (II) demonstrates that the switched
loss curve immediately benefits from a constant-rate reduction, scaling proportionally to the variance
level σ2, the batch size gap (1

B1
− 1

B2
). Taken together, these results imply that switching induces an

abrupt acceleration: while the original curve improves only marginally at O(T−s−1
s), the switched

curve realizes an O(1) improvement within constant time, thereby producing a sharp and observable
sudden drop in the training loss trajectory. Sudden drop characterizes the rapid deviation of the
switched loss curve from the small-batch trajectory, followed by final merge, which quantifies the
rate at which it converges toward the large-batch trajectory.
Theorem 4.2 (Final merge). The gap between the loss of bswitch and blarge follows as t → ∞

Eswitch(Ts + t)− Elarge(Ts + t) ∼ Cβhσ
2(

1

B1
− 1

B2
)Tst

−(2− 1
β)

where Cβ is a constant that only relates to β.

Theorem 4.2 characterizes the final merge between the trajectories of a switched batch size schedule
and the large batch schedule. As t → ∞, the gap between the loss of switch schedule and large
schedule admits an explicit asymptotic form, decaying at rate O(t

1−2β
β). This result establishes that

the discrepancy induced by switching is not permanent: The switched trajectory converges to the
large batch trajectory when measured in training steps.

4.2 LATER SWITCH AND POWER-LAW

0 2000 4000 6000 8000 10000 12000

data

100lo
ss

small batch
large batch
small batch→ large batch at 3000
small batch→ large batch at 7000

Figure 3: Functional Scaling Law prediction
of loss versus data curve.

We now study switching on the data axis, which is the
relevant regime when the training budget is the total
number of seen samples D. The question is: what is
the data-optimal switching point? A natural implica-
tion follows after final merge: While loss curves corre-
sponding to different switching times eventually merge
to the large batch trajectory when measured against
training steps, later switch will proceed more steps on
the trajectory. Consequently, a qualitative message it:
Later switch tends to yield a lower final loss. However,
excessively late switching prevents full convergence to
the larger-batch trajectory, leaving the merging incom-
plete. We illustrate this phenomenon in Figure 3 and
provide empirical validation in Section 5.2.

An intuitive interpretation is that a later switch allows
the gradient descent (GD) term to contribute more to loss reduction, but simultaneously amplifies
the influence of the noise term. Since s < l − 1, O(t−s) GD term decays more slowly than the
O(t−l+1) noise term requiring a longer time horizon for its effect to diminish. We formalize this
intuition with power-law theorem.

Notation. Let D denote the total number of training samples, and let Ds ∈ [0, D] denote the number
of samples at which the batch size switch occurs. Then, the switching step Ts,Ds

, the total number
of training steps tDs

, and the batch size schedule bDs

switch(t) are given by

Ts,Ds =
Ds

B1
; tDs

=
Ds

B1
+

D −Ds

B2
; bDs

switch(t) =

{
B1, 0 < t ≤ Ts,Ds

,

B2, Ts,Ds < t < tDs .

We denote the expectation loss of batch size schedule bDs

switch(t) on time point t to be EDs

switch(t)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4.3 (Power-law between the optimal data switch point and total data size). As D → ∞,
the optimal data switch point D⋆

s(D) = argminDs
EDs

switch(tDs) obeys

D −D⋆
s(D) ≍ D

sβ+β
2β−1 .

By the assumption of hard regime s < 1− 1/β, we have D⋆
s (D)
D → 1, D−D⋆

s(D) → ∞, as D →
∞.

Theorem 4.3 characterizes the asymptotic location of the optimal switching point in the data domain.
Specifically, it shows that as the total data budget D → ∞, the optimal switching point D⋆

s(D) lies
increasingly close to the end of training, with the residual gap to D scaling as D

sβ+β
2β−1 , this implies

that the relative ratio converge to zero, while the absolute difference to D diverges. Intuitively, this
result reveals that in the large-data limit, the optimal strategy is to maintain small-batch training
for nearly the entire dataset, and perform later switch to the larger batch size at a point very close
to completion. However, the switch is not exactly at the end: the diverging yet vanishingly small
fraction D − c⋆(D) ensures that the benefit of the sudden-drop phenomenon is still exploited.

4.3 OPTIMAL BATCH SIZE SCHEDULE

Theorem 4.4 (optimal batch size schedule). For any fixed data size D, the optimal batch size sched-
ule is given by B⋆(t)T⋆

t=0 with optimal time T ∗, where

T ⋆ ≍ D
β

1+sβ , Bt ≍
(T − t)1/2β−1

T 1/2β
D.

reaches optimal loss E⋆ ≍ D− sβ
1+sβ .

Theorem 4.5 (Minimax lower bound, Corollary of Theorem 2 in Caponnetto & De Vito (2007)).
Suppose Assumptions 3.1, 3.2 hold. Let Tn = {(xi, yi)}ni=1 be a dataset of n samples drawn
i.i.d. from ρ. The minimax risk satisfies

inf
θ̂D

sup
θ∗,ρ

ETD

[
E(θ̂D)

]
≳ D− sβ

1+sβ ,

where the infimum is taken over all estimators θ̂D (i.e., measurable functions of TD) and the supre-
mum is taken over all targets w∗ and data distributions ρ satisfying the stated assumptions.

In large-scale LLM pre-training, practitioners often adopt the heuristic of ramping up the batch size
over the course of training (Brown et al., 2020; DeepSeek-AI et al., 2024). Within our theoretical
framework, we investigate a fundamental question: under a data-limited regime, what is the optimal
batch size schedule (in the asymptotic sense)? Theorem 4.4 shows that an optimal schedule exists in
our setup, showing that a progressively increasing batch size and achieving the optimal convergence
rate. Furthermore, we demonstrate that this optimal batch size schedule is sufficient to attain the
minimax lower bound proven by Theorem 4.5.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We evaluate batch size scheduling for the task of LLM pre-training across different model architec-
tures, parameter scales, datasets. The main experimental configurations are summarized below, with
further implementation details provided in Appendix B.

We conducted experiments in two distinct settings to ensure consistency of observed phenomena
across different scales:

• Small-scale. We adopt the widely used NanoGPT codebase (Karpathy, 2022) in small-scale
experiments. Specifically, we evaluate the standard dense LLaMA architectures (Touvron
et al., 2023). We evaluate on the Colossal Clean Crawled Corpus (C4) dataset (Raffel et al.,
2020). The total number of training tokens is set to be approximately 20 times the number
of model parameters, in accordance with the Chinchilla scaling law (Hoffmann et al., 2022),
which is widely used in small-scale experiments. We experiment with model size 50M, 200M
and 492M parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Large-scale. We conducted large-scale experiment using the widely adopted Megatron-LM
codebase (Shoeybi et al., 2019). We employ a novel sparse MoE design, Mixture-of-Experts
(MoE) architecture, the shortcut-connected MoE (ScMoE) (Cai et al., 2025), which has demon-
strated notable gains in inference efficiency and throughput compared to models of a compa-
rable scale (LongCat et al., 2025). To align our experiment with real world large-scale LLM
pre-training, the models are trained on a token-to-parameter ratio that significantly exceeds the
20:1 guideline, corresponding to the beyond-Chinchilla-optimal regime (Sardana et al., 2024).
We experiment with two model sizes: (i) 1001M total parameters with 209M activated for
each token, training on around 0.4T tokens; (ii) 1119M total parameters with 291M activated
for each token, training on around 1T tokens.

0.2 0.4 0.6 0.8 1.0
Ds
D

3.64

3.66

3.68

3.70

3.72

3.74

va
ll

os
s

Figure 4: Validation loss un-
der different batch size switch-
ing points. The x-axis denotes
the fraction of data processed
before switching.

Theorem 4.4 motivates a gradually increasing batch size sched-
ule. However, batch size scheduling faces hardware constraints
that limit its flexibility. First, batch size is inherently discrete
and hardware-bound: it must be a positive integer and divisi-
ble by the number of data-parallel workers. Second, compu-
tational efficiency is also a critical factor, too small batch size
lead to poor GPU utilization. In LLM pre-training, adjusting
batch size incurs non-trivial overhead, requiring reconfiguration
of data pipelines, memory allocation, and distributed communi-
cation patterns. Consequently, batch size schedules are typically
implemented as stage-wise changes among a limited set of dis-
crete values. Due to these hardware constraints, our experiments
focus on a two-stage schedule under a fixed data budget.

In Figure 4, we present results from pre-training a 200M-
parameter LLaMA model on 4B tokens using a two-stage batch size schedule, switching from 256 to
512 at different points in training. The results highlight the advantage of two-stage scheduling over
a constant batch size, yielding consistently lower validation loss. Moreover, the trend corroborates
our theoretical analysis in Section 4.2: later switching generally achieves a smaller final loss, while
excessively late switching prevents the noise term from converging, leading to high terminal loss.

5.2 LATER SWITCH

We present validation loss versus training tokens across different batch size switching times to ex-
amine the later switch rule under multiple architectures, data scales, and schedules. As shown in
Figure 5, for a fixed data budget, later batch size switching consistently yields performance gains
than early switching when evaluated under the same data budget, regardless of the specific switch-
ing ratio.We also plot validation loss versus training steps, validating the sudden drop and final
merge phenomenon, as shown in Figure 1 and Figure 7. Finally, We further explore later switch rule
in multi-stage batch size schedule in Appendix B.4, with later switches still outperforming earlier
switches. Together, these results demonstrate that the observed phenomena are robust across both
model and data scales.

5.3 POWER LAW

In this section, we verify Theorem 4.3, which establishes a qualitative power law relation between
total data size D and optimal data switch point D∗. Specifically, we have

D −D⋆
s(D) ∼ CDe where e =

sβ + β

2β − 1
∈ (0, 1) (4)

Here C and e are two constants independent of D. Here, the notation ∼ is understood in the asymp-
totic sense. Take the logarithm of both sides of Equation 4 yields the near-linear relation

log(D −D⋆
s(D)) = logC + e logD + o(1), as D → ∞ (5)

which provides a convenient form for empirical verification in log–log coordinates.

We conduct experiments using a 50M-parameter model trained on the C4 dataset with token budgets
ranging from 1.3B to 5B. For each total token budget D, we perform an extensive grid search to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400

num of tokens (Billion)

4.2

4.4

4.6

4.8

va
lid

at
io

n
lo

ss

val loss vs token

base

2x batch size whole time

2x batch size from 50B

2x batch size from 200B

2x batch size from 300B

0 50 100 150 200 250 300 350 400

num of tokens (Billion)

4.2

4.4

4.6

4.8

va
lid

at
io

n
lo

ss

val loss vs token

base

4x batch size from 50B

4x batch size from 200B

0 200 400 600 800 1000

num of tokens (Billion)

4.3

4.4

4.5

4.6

4.7

va
lid

at
io

n
lo

ss

val loss vs token

2x batch size from 300B token

2x batch size from 600B token

0 2 4 6 8

num of tokens (Billion)

2.7

2.8

2.9

3.0

3.1

3.2

3.3

va
lid

at
io

n
lo

ss

val loss vs token

2x batch size wholetime

2x batch size from 25k

0 2 4 6 8

num of tokens (Billion)

2.7

2.8

2.9

3.0

3.1

3.2

3.3

va
lid

at
io

n
lo

ss

val loss vs token

4x batch size wholetime

4x batch size from 25k

0 2 4 6 8

num of tokens (Billion)

2.7

2.8

2.9

3.0

3.1

3.2

3.3

va
lid

at
io

n
lo

ss

val loss vs token

8x batch size wholetime

8x batch size from 25k

Figure 5: Upper Left and Middle: Validation loss versus training token under different batch-
size switching times using 1001M parameter MoE model trained on around 0.4T token, switching
batch size from 640 to 1280, and 2560. Upper Right: Validation loss versus training token under
different batch-size switching times using 1119M parameter MoE model trained on around 1T token,
switching batch size from 1024 to 2048. Lower Left, Middle and Right: Validation loss versus
training token under different batch-size switching times using 500M parameter LLaMA model
trained on around 10B token, switching batch size from 512 to 1024, 2048 and 4096.

2× 100 3× 100 4× 100

D (Billion)

100

6× 10−1

D
−
D
?

(B
illi

on
)

D −D? = 0.448D0.813

Figure 6: Power law relationship between D and D −D⋆. The R2 of the fits is 0.990. We see that
the power law provides a good fit to the empirical data.

identify the optimal batch-size switching point D⋆. We then fit the empirical results using least-
squares regression against Equation 5. As shown in Figure 6, the fitted curves align closely with the
theoretical prediction, achieving an R2 value of 0.990, a fair high value. This indicates that, despite
Equation 5 being derived in an asymptotic regime, it provides a decent approximation. Moreover,
the estimated exponent e lies in the interval (0, 1), in agreement with the theoretical analysis.

6 CONCLUSION

In this work, we study a simple two-stage batch size schedule in language model pre-training,
switching from small to large batches under a constant learning rate. Using a power-law kernel
regression framework, We explains two consistent behaviors: a sudden loss drop at the switch and a
final merge to the large-batch trajectory, these behaviors arise from reduced gradient noise. Further-
more, we predicted that the optimal switching point scales as a power law with data size. Experi-
ments across models and scales validate these predictions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Stefan Ankirchner and Stefan Perko. A comparison of continuous-time approximations to stochastic
gradient descent. Journal of Machine Learning Research, 25(13):1–55, 2024.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for llms. arXiv
preprint arXiv:2502.15938, 2025.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. arXiv preprint arXiv:2402.01092, 2024a.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve
neural scaling laws. arXiv preprint arXiv:2409.17858, 2024b.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, and Jiayi Huang. Shortcut-connected
expert parallelism for accelerating mixture-of-experts. In International Conference on Machine
Learning, 2025.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7:331–368, 2007.

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pp. 1810–1819. PMLR, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1–113, 2023.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated inference with adaptive
batches. In Artificial Intelligence and Statistics, pp. 1504–1513. PMLR, 2017.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni,
Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, T. Wang, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974–10007, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Gavia Gray, Anshul Samar, and Joel Hestness. Efficient and approximate per-example gradient
norms for gradient noise scale. In Workshop on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023), 2023.

Gavia Gray, Shane Bergsma, Joel Hestness, et al. Normalization layer per-example gradients are suf-
ficient to predict gradient noise scale in transformers. Advances in Neural Information Processing
Systems, 37:93510–93539, 2024.

Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232–76264, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang,
Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang
Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small
language models with scalable training strategies. In Conference on Language Modeling, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Tim Tsz-Kit Lau, Weijian Li, Chenwei Xu, Han Liu, and Mladen Kolar. Communication-
efficient adaptive batch size strategies for distributed local gradient methods. arXiv preprint
arXiv:2406.13936, 2024a.

Tim Tsz-Kit Lau, Han Liu, and Mladen Kolar. Adadagrad: Adaptive batch size schemes for adaptive
gradient methods. arXiv preprint arXiv:2402.11215, 2024b.

11

https://github.com/karpathy/nanoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tim Tsz-Kit Lau, Weijian Li, Chenwei Xu, Han Liu, and Mladen Kolar. Adaptive batch size sched-
ules for distributed training of language models with data and model parallelism. In Proceedings
of Conference on Parsimony and Learning, 2025.

Binghui Li, Fengling Chen, Zixun Huang, Lean Wang, and Lei Wu. Unveiling the role of learning
rate schedules via functional scaling laws. arXiv preprint arXiv:2509.19189, 2025.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pp. 2101–2110. PMLR,
2017.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and dynamics of stochastic
gradient algorithms I: Mathematical foundations. Journal of Machine Learning Research, 20(40):
1–47, 2019.

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. Advances in Neural Information Processing
Systems, 33:14544–14555, 2020.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD with stochastic
differential equations (SDEs). Advances in Neural Information Processing Systems, 34:12712–
12725, 2021.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. arXiv preprint arXiv:2406.08466, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Meituan LongCat, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang,
Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong
Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu,
Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong,
Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan,
Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian
Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jian-
chao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, and Jiayu Qin. Longcat-flash
technical report. arXiv preprint arXiv:2509.01322, 2025.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Zhiyuan Liu, Maosong Sun, Kaifeng Lyu,
and Wenguang Chen. A multi-power law for loss curve prediction across learning rate schedules.
In International Conference on Learning Representations, 2025.

Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
arXiv preprint arXiv:2210.16859, 2022.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
visited: A simple empirical approach to large-batch language model training. arXiv preprint
arXiv:2505.23971, 2025.

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lian-
fei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi
Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu,
Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention. arXiv preprint
arXiv:2501.08313, 2025.

Takashi Mori, Liu Ziyin, Kangqiao Liu, and Masahito Ueda. Power-law escape rate of SGD. arXiv
preprint arXiv:2105.09557, 2021.

Nvidia, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika
Brundyn, Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, Sirshak Das, Ayush
Dattagupta, Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Alek-
sander Ficek, Denys Fridman, Shaona Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grze-
gorzek, Robert Hero, Jining Huang, Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala, John
Kamalu, Sadaf Khan, Oleksii Kuchaiev, Patrick LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen
Long, Ameya Sunil Mahabaleshwarkar, Somshubra Majumdar, James Maki, Miguel Martinez,
Maer Rodrigues de Melo, Ivan Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus Navarro,
Phong Nguyen, Osvald Nitski, Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupin-
der Parmar, Mostofa Patwary, Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy,
Trisha Saar, Vasanth Rao Naik Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Se-
wall, Pavel Shamis, Gerald Shen, Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe
Soares, Makesh Narsimhan Sreedhar, Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham
Toshniwal, Hao Wang, Zhilin Wang, Jiaxuan You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivi-
enne Zhang, Yian Zhang, and Chen Zhu. Nemotron-4 340b technical report. arXiv preprint
arXiv:2406.11704, 2024.

Antonio Orvieto and Aurelien Lucchi. Continuous-time models for stochastic optimization algo-
rithms. Advances in Neural Information Processing Systems, 32, 2019.

Petr Ostroukhov, Aigerim Zhumabayeva, Chulu Xiang, Alexander Gasnikov, Martin Takáč, and
Dmitry Kamzolov. Adabatchgrad: Combining adaptive batch size and adaptive step size. arXiv
preprint arXiv:2402.05264, 2024.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-
optimal neural scaling laws. arXiv preprint arXiv:2405.15074, 2024.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian,
Dan Su, Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, Vibhu Jawa,
Jiwei Liu, Ameya Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, James Maki, Miguel
Martinez, Jiaxuan You, John Kamalu, Patrick LeGresley, Denys Fridman, Jared Casper, Ash-
wath Aithal, Oleksii Kuchaiev, Mohammad Shoeybi, Jonathan Cohen, and Bryan Catanzaro.
Nemotron-4 15b technical report. arXiv preprint arXiv:2402.16819, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Ac-
counting for inference in language model scaling laws. In International Conference on Machine
Learning, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2018.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. International
Conference on Learning Representations, 2025.

Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
descent. In International Conference on Machine Learning, pp. 37656–37684. PMLR, 2023.

Lei Wu, Mingze Wang, and Weijie Su. The alignment property of SGD noise and how it helps
select flat minima: A stability analysis. Advances in Neural Information Processing Systems, 35:
4680–4693, 2022.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham Kakade. How does critical batch size scale in pre-training? International Conference
on Learning Representations, 2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. International Con-
ference on Machine Learning, 2024.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
Conference on Machine Learning and Systems, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

A Proof in Section 4 15

A.1 Proof for Theorem 4.1 . 16

A.2 Proof for Theorem 4.2 . 17

A.3 Supplementary theorem for ratio of final merge 17

A.4 Proof for Theorem 4.3 . 18

A.5 Proof for Theorem 4.4 . 19

B Experimental Details 20

B.1 Experimental details for Section 5.1 . 20

B.2 Experimental details for Section 5.2 . 21

B.3 Experimental details for Section 5.3 . 21

B.4 Schedule comparison . 21

C Statement 22

C.1 Ethics statement . 22

C.2 Reproducibility statement . 22

C.3 LLM usage statement . 22

A PROOF IN SECTION 4

Lemma A.1 (Asymptotic behavior for K(t)).

(I) As t → 0+

K(t) =
β

2β − 1
− 2β

3β − 1
t+O

(
t2
)
.

(II) As t → ∞

K(t) ∼
Γ(2β−1

β)

(2t)
2β−1

β

, K′(t) ∼ −
2Γ(3β−1

β)

(2t)
3β−1

β

.

(III)

∫ ∞

0

K(t) dt =
β

2(β − 1)
.

(IV)

As T → ∞, ∫ T

0

K(t) dt =
β

2(β − 1)
−

Γ(2β−1
β)β

2
2β−1

β (β − 1)
T

1−β
β + o(T

1−β
β).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. (I)

K(t) =

∫ 1

0

u1− 1
β

n∑
i=0

(2ut)i

i!
du =

t∑
i=0

(−2t)i

i!(i+ 1− 1
β)

=
β

2β − 1
− 2β

3β − 1
t+O

(
t2
)
.

(II)

(2t)2−
1
β K(t) = (2t)s

∫ 1

0

u1− 1
β e−2ut du =

∫ 2t

0

u1− 1
β e−t du →

∫ ∞

0

u1− 1
β e−t du = Γ(

2β − 1

β
).

Hence

K′(t) = −2

∫ 1

0

u2− 1
β e−2utdu ∼ −2

Γ(3− 1
β)

(2t)3−
1
β

= −
2Γ(3β−1

β)

(2t)
3β−1

β

.

(III) ∫ ∞

0

K(t) dt =

∫ ∞

0

∫ 1

0

u1− 1
β e−2ut du dt =

∫ 1

0

1

2
u− 1

β du =
β

2(β − 1)
.

(IV)

By (II), we have∫ ∞

T

K(t) dt =

∫ ∞

T

Γ(2β−1
β)

(2t)
2β−1

β

+ o(t−l) dt =
Γ(2β−1

β)β

2
2β−1

β (β − 1)
T

1−β
β + o(T

1−β
β).

Hence∫ T

0

K(t) dt =

∫ ∞

0

K(t) dt−
∫ ∞

T

K(t) dt =
β

2(β − 1)
−

Γ(2β−1
β)β

2
2β−1

β (β − 1)
T

1−β
β + o(T

1−β
β).

A.1 PROOF FOR THEOREM 4.1

Proof. (I) Following Theorem 3.4, for original loss curve

Esmall(Ts)− Esmall(Ts + t) = (
1

T s
s

− 1

(Ts + t)s
) + hσ2B−1

1 (

∫ Ts+t

Ts

K(r) dr).

With the help of Lemma A.1, we have

Esmall(Ts)− Esmall(Ts + t) = sT−s−1
s t+O(T−s−2

s) +O(T 2−1/β
s)

∼ sT−s−1
s t ≍ T−s−1

s .

(II) Following Theorem 3.4, for switched loss curve

Eswitch(Ts)− Eswitch(Ts + t) = (Esmall(Ts)− Esmall(Ts + t)) + hσ2(
1

B1
− 1

B2
)

∫ t

0

K(r) dr.

With the help of Lemma A.1, we have

Eswitch(Ts)− Eswitch(Ts + t) = O(T−s−1
s) + hσ2(

1

B1
− 1

B2
)

∫ t

0

K(r) dr

∼ hσ2(
1

B1
− 1

B2
)

∫ t

0

K(r) dr ≍ 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 PROOF FOR THEOREM 4.2

Proof. Following Theorem 3.4,

Eswitch(Ts + t)− Elarge(Ts + t) = hσ2(
1

B1
− 1

B2
)

∫ Ts

0

K(Ts + t− r) dr.

By variable substitution, we have

Eswitch(Ts + t)− Elarge(Ts + t) = hσ2(
1

B1
− 1

B2
)

∫ t+Ts

t

K(r) dr.

Notice that as t → ∞, by Lemma A.1,

r → ∞ ⇒ K(r)
Γ(2β−1

β)

(2r)
2β−1

β

∼
Γ(2β−1

β)

(2t)
2β−1

β

.

Hence
Eswitch(Ts + t)− Elarge(Ts + t) ∼ Cβhσ

2(
1

B1
− 1

B2
)Tst

1−2β
β

A.3 SUPPLEMENTARY THEOREM FOR RATIO OF FINAL MERGE

Theorem A.2 (Final merge ratio). The gap ratio between the loss difference of bswitch and blarge with
the loss difference of bsmall and blarge is defined as

f(t) :=
Eswitch(t)− Elarge(t)

Esmall(t)− Elarge(t)

We define T a
t = inf{t > 0|f(Ts + t) ≤ a} to be the time to reduce the relative gap to a.

(I) f(t) is strictly increasing.

(II) As Ts → ∞, there exists T a such that T a
t = Ta −O(T

1−β
β

s) → T−
a .

(III) As a → 0+, Ta = O(a−
β

β−1)

Theorem A.2 provides a precise characterization of the gap ratio dynamics that govern the transition
between small-batch, switched, and large-batch training curves. Once the switch occurs, the trajec-
tory of bswitch monotonically approaches that of blarge, ensuring that the loss gap steadily closes. In
particular, part (III) shows that in order to reduce the relative gap to a tolerance of a, one requires a
time on the order of −β/(β − 1), which makes precise how the convergence slows as we demand
tighter closeness. This scaling reveals that approaching near-perfect alignment of the switched and
large-batch curves incurs rapidly growing time.

Proof. (I) Notice that by Theorem 3.4,

Esmall(t)− Eswitch(t) = hσ2

∫ t−Ts

0

K(r) dr, Esmall(t)− Elarge(t) = hσ2

∫ t

0

K(r) dr.

Hence, We define

fTs
(t) := 1− Esmall(T + t)− Eswitch(T + t)

Esmall(T + t)− Elarge(T + t)
=

∫ t

0
K(r) dr∫ t+Ts

0
K(r) dr

.

Then

d

dt
fTs(t) = − K(t)K(t+ Ts)

(
∫ t+Ts

0
K(r) dr)2

(

∫ t+Ts

0
K(r) dr

K(t+ Ts)
−

∫ t

0
K(r) dr

K(t)
).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Let p(t) :=
∫ t
0
K(r) dr

K(t) . Then

p′(t) =
K(t)2 −

∫ t

0
K(r) drK′(t)

K(t)2
= 1−

∫ t

0
K(r) drK′(t)

K(t)2
> 1.

Hence p is strictly increasing, so p(t + Ts) > p(t), therefore fTs
(t) is strictly decreasing. By

fTs
(0) = 1 and fTs

(∞) = 0, the existence of T a
s is ensured.

(II)

We define

f∞(t) := lim
Ts→∞

fTs(t) = 1−
∫ t

0
K(r) dr∫∞

0
K(r) dr

.

f∞ is continuous, strictly increasing, f∞(0) = 1, f∞(∞) = 0. Hence for each a ∈ (0, 1), there
exists a unique Ta such that f∞(Ta) = a.

We have

a

∫ ∞

0

K(r) dr ≥
∫ Ta

s

0

K(r) dr ≥ a

∫ Ts

0

K(r) dr.

Let T̄ a
s and Ta be ∫ Ta

0

K(r) = a

∫ ∞

0

K(r) dr,

∫ T̄a
s

0

K(r) = a

∫ Ts

0

K(r) dr.

Obviously by the monotonicity, we have Ta ≥ T a
s ≥ T̄ a

s . We can use squeeze theorem to estimate
T a
s . Note that as Ts → ∞,∫ Ts

0

K(r) dr =

∫ ∞

0

K(r) dr −
Γ(2β−1

β)β

2
2β−1

β (β − 1)
T

1−β
β

s + o(T
1−β
β

s).

So

T̄ a
s = Ta −K−1(Ta)

Γ(2β−1
β)β

2(β − 1)
T

1−β
β

s + o(T
1−β
β

s).

Hence
T a
s = Ta −O(T 1/β−1

s) = Ta −O(T 1/β−1
s).

(III)

As a → 0+, we have Ta → ∞. By Lemma A.1, we have

a = f∞(Ta) ∼
Γ(2β−1

β)

2
β−1
β

T
1−β
β

a ⇒ Ta ∼ a−
β

β−1 .

A.4 PROOF FOR THEOREM 4.3

Following Theorem 3.4,

d

dDs
Eswitch(tDs) = (

1

B1
− 1

B2
)

[
−st−s−1

c + hσ2(
K(tDs

)

B1
+

K((d−Ds)/B2)

B2
)

]
.

We have tc ≍ D, hence

−sts−1
Ds

≍ −D−s−1, hσ2K(tDs
)

B1
≍ D−l.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Since D−l = o(D−s−1), to make
d

dDs
Eswitch(tDs) = 0.

We must have

K((D −Ds)/B2) ≍ −D−s−1 ⇒ K((D −Ds)/B2) → ∞.

By monotonicity of K, we get D −Ds → ∞, combining with Lemma A.1, we have

(D −Ds)
2−1/β ≍ D−s−1, (D −Ds) ≍ D

s+1
l = D

s+1
2−1/β .

A.5 PROOF FOR THEOREM 4.4

By Theorem 3.4, The optimal batch size schedule can be formalized as below problem

argmin
T,B(t)Tt=0

s.t.
∫ T
0

B(t) dt=D

E(B(t)) :=
1

T s
+

∫ T

t=0

K(T − t)

Bt
dt.

It can be converted to

argmin
T,B(t)Tt=0∫ T

0
B(t) dt=D

1

T s
+

∫ T

t=0

K(T − t)

Bt
dt = argmin

T
argmin
B(t)Tt=0∫ T

0
B(t) dt=D

1

T s
+

∫ T

t=0

K(T − t)

Bt
dt.

For the last argmin with fixed k, by Cauchy Inequality, we have

(

∫ T

t=0

K(T − t)

Bt
dt)(

∫ T

t=0

B(t) dt) ≥ (

∫ T

t=0

K1/2(T − t) dt)2.

Hence by the equal condition, in order to minimize E(B(t)), we must have B(t) ≍ (T − t)−l/2. By∫ T

t=0
Bt dt = D, we have B(t) ≍ D (k−t)−l/2

k−l/2+1 , thus

∫ T

t=0

K(T − t)

Bt
=

(
∫ T

t=0
K1/2(T − t))2 dt∫ T

t=0
Bt dt

≍ T 1/β

D
.

Thus we get

g(T) := argmin
T,B(t)Tt=0

s.t.
∫ T
0

B(t) dt=D

1

T s
+

∫ T

t=0

K(T − t)

Bt
dt ≍ 1

T s
+

T 1/β

D
.

To minimize g(T), the optimal T⋆ satisfies

d

dk
(T−s

⋆ +
T

1/β
⋆

D
) = 0 ⇒ −sT−s−1

⋆ +
T

1
β−1
⋆

βD
= 0 ⇒ T⋆ ≍ D

1
1/β+s .

Hence the minimum E satisfy

E⋆ = T−s
⋆ +

T
1/β
⋆

D
≍ D− s

1/β+s = D− s
1/β+s = D− sβ

1+sβ .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The optimal batch size schedule satisfy

Bt ≍
(T − t)1/2β−1

T 1/2β
D.

B EXPERIMENTAL DETAILS

Table 1: Model configurations

Type LLaMA LLaMA LLaMA MoE MoE
Size 50M 200M 492M 1001M 1119M

Activated Size — — — 209M 291M
dmodel 512 1024 1280 512 576
dFF 2048 4096 5120 1408 1152

dFF_MoE — — — 1408 192
q_head 8 16 20 8 6
k_head 8 16 20 4 2
depth 4 8 15 12 24

n_expert — — — 64 224
activated_expert — — — 3 16

We performed experiments under two distinct settings to verify the consistency of the observed
phenomena across scales.

Small-scale.

• Model. LLaMA (Touvron et al., 2023) is a dense, decoder-only Transformer architecture
that integrates several modern design components, including Rotary Positional Encoding
(RoPE) (Su et al., 2024), Swish-Gated Linear Units (SwiGLU), and Root Mean Square Layer
Normalization (RMSNorm). We pre-train LLaMA models with parameter counts ranging from
50M to 492M. A full list of model configurations is provided in Table 1.

• Dataset. Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) is a large-scale, publicly
available language dataset widely adopted for LLM pre-training, including models such as
RoBERTa (Liu et al., 2019) and T5 (Raffel et al., 2020). For tokenization, we employ the T5
tokenizer with a vocabulary size of 32,100. Following the setup of Zhao et al. (2024); Zhu et al.
(2025), we train with a sequence length of 256. We use 1,000 linear warm-up steps.

Large-scale.

• Model. Shortcut-connected Mixture of Experts (ScMoE) (Cai et al., 2025) is a novel MoE ar-
chitecture that addresses communication overheads in expert parallelism by introducing short-
cut connections and an overlapping parallelization strategy. ScMoE decouples the usual se-
quential dependency between communication (All-to-All operations among expert modules)
and computation, enabling up to 100% overlap of those two processes. A full list of model
configurations is provided in Table 1.

• Dataset. We train on a private real-world LLM dataset to ensure that our experiments closely
reflect practical deployment scenarios. The tokenizer is configured with a vocabulary size of
131,072, and training is performed with a maximum sequence length of 8,192.

Optimizer. For both small-scale and large-scale experiments, we adopt the standard Adam optimizer
with decoupled weight decay as the baseline. The baseline configuration follows protocols from
LLaMA pre-training (Touvron et al., 2023), using hyperparameters β1 = 0.9, β2 = 0.95, weight
decay λ = 0.1, and a gradient clipping threshold of 1.0.

B.1 EXPERIMENTAL DETAILS FOR SECTION 5.1

We conduct experiments with a 200M-parameter LLaMA model on 4B tokens with learning rate
1 × 10−3 using a two-stage batch size schedule, switching from 256 to 512 at different points in

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

training. The total data size corresponding to the full large batch size training step are 30000. We
switch batch size at different ratio {0, 1/16, 2/16, 3/16, 4/16, 5/16, 6/16, 7/16, 8/16, 9/16, 10/16,
11/16, 12/16, 13/16, 14/16, 15/16, 16/16}. Each ratio is repeated multiple times to reduce variance
in the results.

B.2 EXPERIMENTAL DETAILS FOR SECTION 5.2

• 492M We conduct experiments with a 492M-parameter LLaMA model on 4B tokens with
learning rate 5 × 10−4 using a two-stage batch size schedule, switching from 512 to 1024,
2048, 4096 at 0 and 25,000 step in training.

• 1001M We conduct experiments with a 1001M-parameter MoE model on 0.4T tokens using a
two-stage batch size schedule, switching from 640 to 1280, 2560 at 50B, 200B and 300B token
in training. In addition, we evaluate a staged schedule that progressively increases the batch
size—from 640 to 1280, then 1920, and finally 2560 at 100B, 150B and 200B token in training.

• 1119M We conduct experiments with a 1119M-parameter MoE model on 1T tokens using a
two-stage batch size schedule, switching from 1024 to 2048 at 300B and 600B token.

0 10 20 30 40

num of steps (Thousands)

4.3

4.4

4.5

4.6

4.7

va
lid

at
io

n
lo

ss

val loss vs step

2x batch size from 300B token

2x batch size from 600B token

Figure 7: Validation loss versus training token under different batch-size switching times using
1119M parameter MoE model trained on 1T token.

B.3 EXPERIMENTAL DETAILS FOR SECTION 5.3

We conduct experiments with a 50M-parameter LLaMA model trained on the C4 dataset with learn-
ing rate 1× 10−3 , using a small batch size of 128 and a large batch size of 256. The total data size
corresponding to the full large batch size training step are {20000, 25000, 30000, 35000, 40000,
45000, 50000, 55000, 60000, 65000, 70000, 75000}. For each data size, we perform a grid search
to determine the optimal switching point D⋆, with a precision of D/32. Each configuration of
D⋆/D is repeated multiple times to reduce variance in the results.

B.4 SCHEDULE COMPARISON

We compare multi-stage batch size scheduling strategies for 200M LLaMA model and 1119M pa-
rameter MoE model. For 1119M-parameter MoE model, we train on 1T tokens using a four-stage
batch size schedule, switching from 1024 to 2048, then 3072 and finally 4096 at different time steps.
For 200M-parameter LLaMA model, we train on 4B tokens using a four-stage batch size schedule,
switching from 128 to 256, then finally 512 at different time steps.

In Figures 8 and Figure 9, the left panels show how batch size evolves with training tokens, while
the right panels report the corresponding validation loss. Across both model scales, later switching
consistently yields lower validation loss than earlier switching, validating the effective of late switch
phenomenon in multi-stage batch size scheduling regime.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

num of tokens (Billion)

0

1024

2048

3072

4096

ba
tc

h
si

ze

batch size vs token

early

late

0 200 400 600 800 1000

num of tokens (Billion)

4.3

4.4

4.5

4.6

4.7

va
lid

at
io

n
lo

ss

val loss vs token

early

late

Figure 8: Validation loss versus training token with four-stage batch size schedule using 1119M
parameter MoE model trained on 1T token. Left: batch size versus training tokens; (right) validation
loss versus training tokens.

0 1 2 3
num of tokens (Billion)

0

128

256

384

512

ba
tc

h_
siz

e

batch size vs token

early
middle
late

0 1 2 3
num of tokens (Billion)

3.1

3.2

3.3

3.4

3.5

3.6

va
lid

at
io

n
lo

ss

val loss vs token
early
middle
late

Figure 9: Validation loss versus training token with three-stage batch size schedule using 200M
parameter LLaMA model trained on 4B token. Left: batch size versus training tokens; Right:
validation loss versus training tokens.

C STATEMENT

C.1 ETHICS STATEMENT

We have confirmd that this research was conducted in full compliance with the ICLR Code of Ethics.
All experiments respect the principles of integrity, fairness, and transparency. No part of this work
involves harm to humans, animals, or the environment, and we have taken care to ensure the respon-
sible use of data, models, and computational resources.

C.2 REPRODUCIBILITY STATEMENT

We believe that all experimental results in this work are reproducible. The paper specifies compre-
hensive training and evaluation details—including hyperparameters, optimizer choices, and other
relevant settings—in Section 5 and Appendix B. For small-scale experiments, we provide open-
source code in the supplemental material, and all datasets used are publicly available. For large-scale
experiments, we believe that employing comparable datasets and training pipelines will reproduce
the same phenomena.

C.3 LLM USAGE STATEMENT

We used LLM as a writing assistant during paper preparation. The model found and corrected
grammar mistakes throughout the manuscript. It suggested ways to make our sentences clearer and
smoother. The LLM helped polish the language while keeping our meaning intact. We limited LLM
use to only language editing tasks. All research content and ideas came entirely from human work.

Beyond serving as tools, LLMs were themselves the subject of our study. We trained these models
and analyzed their behavior to uncover and explain novel phenomena. Importantly, this use of LLMs

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

as research objects should not be misinterpreted as a substantive contribution from the models to the
work itself.

23

	Introduction
	Related Work
	Preliminaries
	Power-Law Kernel Regression
	SDE Modeling of SGD
	Functional Scaling Law

	Theoretical Analysis
	Sudden drop and final merge
	Later switch and Power-law
	optimal batch size schedule

	Experiment
	Experiment Setup
	Later Switch
	Power Law

	Conclusion
	Proof in Section 4
	Proof for Theorem 4.1
	Proof for Theorem 4.2
	Supplementary theorem for ratio of final merge
	Proof for Theorem 4.3
	Proof for Theorem 4.4

	Experimental Details
	Experimental details for Section 5.1
	Experimental details for Section 5.2
	Experimental details for Section 5.3
	Schedule comparison

	Statement
	Ethics statement
	Reproducibility statement
	LLM usage statement

