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ABSTRACT

A consistent trend throughout the research of oriented object detection (OOD) has
been the pursuit of maintaining comparable performance with fewer and weaker
annotations. This is particularly crucial in the remote sensing domain, where
the dense object distribution and a wide variety of categories contribute to pro-
hibitively high costs. Based on the supervision level, existing OOD algorithms
can be broadly grouped into fully supervised, semi-supervised, and weakly su-
pervised methods. Within the scope of this work, we further categorize them to
include sparsely supervised and partially weakly-supervised methods. To address
the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-
Supervised Oriented Object Detection (SPWOOD) framework, designed to effi-
ciently leverage only a few sparse weakly-labeled data and plenty of unlabeled
data. Our framework incorporates three key innovations: (1) We design a Sparse-
annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate
unlabeled objects from the background in a sparsely-labeled setting, and learn ori-
entation and scale information from orientation-agnostic or scale-agnostic weak
annotations. (2) We construct a novel Multi-level Pseudo-label Filtering (MPF)
strategy that leverages the distribution of model predictions, which is informed by
the model’s multi-layer predictions. (3) We propose a unique sparse partitioning
approach, ensuring equal treatment for each category. Extensive experiments on
the DOTA-v1.0/v1.5 and DIOR datasets show that SPWOOD framework achieves
a significant performance gain over traditional OOD methods mentioned above,
offering a highly cost-effective solution. Our code will be public soon.

1 INTRODUCTION

In the field of oriented object detection (OOD) task, early research is often supervised by rotated
bounding box (RBox) (Ding et al., 2019; Xie et al., 2021; Yang et al., 2019b; 2021), as shown in
Figure 1(a). However, the dense distribution and diverse nature of objects in the remote sensing
domain make it extremely difficult to obtain large-scale datasets with such detailed annotations.

To mitigate the reliance on fully annotated data, significant developments have been proposed, such
as semi-supervised oriented object detection (SOOD) (Hua et al., 2023; Liu et al., 2021; 2022; Wang
et al., 2025) and weakly supervised oriented object detection (WOOD) (Yang et al., 2023; Yu et al.,
2025a; Luo et al., 2024) shown in Figure 1(b-c). Semi-supervised methods utilize pseudo-labeling
strategies (Li et al., 2022a; Wang et al., 2023b) to learn angle and scale information from plenty of
unlabeled data. Weakly supervised methods use training data with less detailed labels, such as hori-
zontal bounding box (HBox) (Yu et al., 2023) or point (Yu et al., 2024; Ren et al., 2024; Zhang et al.,
2025). More recently, two notable subfields have emerged that integrate these approaches to further
the reduce annotation burdens: Partial weakly-supervised oriented object detection (PWOOD) (Liu
et al., 2025a) integrate the unlabeled and weakly annotated datasets. Sparsely supervised oriented
object detection (SAOD) (Suri et al., 2023; Rambhatla et al., 2022; Lu et al., 2024) leverage the
labeled datasets containing annotations for only a fraction of the objects in an image. As illustrated
in Figure 1(d-e), these methods alleviate the annotation dilemma further.

To further reduce annotation costs, we first propose a novel framework called Sparse Partial Weakly-
supervised Oriented Object Detection (SPWOOD). This framework effectively leverages sparsely
and weakly annotated data, along with unlabeled data. Inspired by the teacher-student paradigm

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026
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RBox Labeled Data
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(b) Weakly Supervised Methods

H2RBox,  

H2RBox-v2

HBox Labeled Data 
(Price: $63/1k)

PointOBB-v1/v2/v3, 

Point2RBox-v1/v2

Point Labeled Data 
(Price: $42/1k)

(c) Semi-Supervised Methods

20% RBox Labeled Data 80% Unlabeled Data
(Price: $86/1k × 0.2) (Price: $0)

Mean Teacher, Dense Teacher,  SOOD,  

PseCo, MCL, ARSL···

(Extreme cost & Minimal speed) (High cost & Low speed) (Medium cost & Medium speed)(Medium cost & Medium speed)

(d) Sparsely Supervised Methods

50% RBox Labeled Data

(Price: $86/1k × 0.5)

30% RBox Labeled Data

(Price: $86/1k × 0.3)

PECL,S2Teacher, RSST

(e) Partial Weakly-Supervised Method

(Price: $0)

80%

Unlabeled Data

20% 

HBox Labeled Data

(Price: $63/1k  × 0.2)

(Low cost & High speed)

Partial Weakly-Supervised Oriented Object Detection (PWOOD)

20% 

Point Labeled Data

(Price: $42/1k × 0.2)

80%

Unlabeled Data
(Price: $0)

(f) Sparse Partial Weakly-Supervised Method

(Price: $0)

80%

Unlabeled Data
Sample 20% in

20% HBox Labeled Data

(Price: $63/1k  × 0.2 × 0.2)

(Minimal cost & Extreme speed)

The first  Sparse Partial Weakly-Supervised Oriented Object Detection (SPWOOD)

Sample 20% in

20% Point Labeled Data

(Price: $42/1k × 0.2 × 0.2)

80%

Unlabeled Data

(Price: $0)

Figure 1: Current oriented object detection methods are predominantly classified into five categories.
Compared to the aforementioned approaches, our proposed Sparse Partial Weakly-supervised Ori-
ented Object Detection (SPWOOD) distinguished with minimal annotation requirements.

(Tarvainen & Valpola, 2017), we leverage a small amount of sparsely and weakly annotated data for
pre-training. Through this process, the student module learns the scale and angle information from
weak annotations and acquires the ability to distinguish unlabeled object from background in the
sparse annotation setting. As training progresses, the teacher module’s capabilities are continuously
enhanced through Exponential Moving Average (EMA) mechanism. Upon entering the unsuper-
vised learning stage, the teacher module generates pseudo-labels for unlabeled data. These pseudo-
labels serve as a strong supervisory signal to train the student module, allowing it to learn from
both the limited sparsely and weakly annotated data and the abundant unlabeled data. Consequently,
pseudo-labels’quality and the strategy used to filter them are crucial for model’s performance.

Traditional semi-supervised methods for pseudo-label selection typically depend on static thresholds
(Liu et al., 2021; Wang et al., 2025), which often leads to performance that is sensitive across differ-
ent training processes (Chen et al., 2022a; Wang et al., 2023b; 2022; Zhong et al., 2020). In contrast,
PWOOD (Liu et al., 2025a) introduced a more robust approach by leveraging Gaussian Mixture
Model (GMM) to cluster the teacher model’s predictions. While sparse-annotation methods, such as
S2Teacher (Lin et al., 2025) and RSST (Liao et al., 2025), employed sophisticated techniques like
top-k high-confidence proposal selection or a class-aware label assignment mechanism that lever-
ages the distribution of class features. To better utilize the teacher module’s predictions in sparsely
annotated setting, we designe a Multi-level Pseudo-labels Filtering (MPF) mechanism. Considering
the inconsistencies between different layers, we dynamically adjust the filtering threshold for each
layer’s selection. This allows the model to adaptively generate more stable pseudo-labels that are
better aligned with the teacher’s performance. Our approach improves the model’s ability to handle
diverse and sparse scenarios, ultimately leading to more robust detection performance.

When creating sparse datasets, prior methods (Lu et al., 2024; Lin et al., 2025) follows what we
term the Single Sparse Method, where annotations are processed on an image-by-image basis. A
critical limitation of this technique is its inherent bias: when an image contains an annotation from a
rare category, at least on annotation will be preserved simply. This disproportionately retains sparse
categories and leads to a significant mismatch between the distribution of the processed data and
the original dataset. To overcome this issue, we propose a novel approach called the Overall Sparse
Method, treating all labeled annotations across the entire dataset as a single, unified group. This
allows us to apply a consistent sampling ratio to each category, ensuring that every class is treated
equally. As a result, our method effectively maintains the overall distribution of the original dataset.
The contributions of this work are as follows:

• To our best knowledge, we introduce the first Sparse Partial Weakly-supervised Oriented Object
Detection (SPWOOD) framework. This unified training pipeline is designed to robustly support
various multi-format annotations (RBox, HBox, Point) or their combination as input under sparse
partial annotation setting, thereby alleviating the significant burden of large-scale annotation.
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• We construct a student model designed to acquire the crucial ability to perceive sparse annotation
environments and learn object orientation and scale information within the sparse partial weakly-
annotated scenarios. We term this model the SOS-Student model.

• The Multi-level Pseudo-labels Filtering (MPF) mechanism is designed to resolve the inconsistency
between traditional selection criteria and the model’s prediction confidence. By doing so, MPF
significantly enhances the robustness of the pseudo-label selection process for unlabeled data.

• We propose a fundamentally distinct sparse annotation approach for creating sparse-partial
datasets. Our SPWOOD framework has been rigorously trained and validated on the DOTA-
v1.0/v1.5 and DIOR sparse-partial settings. SPWOOD achieves performance highly comparable
to state-of-the-art Oriented Object Detection (OOD) algorithms.

2 RELATED WORK

2.1 SEMI-SUPERVISED ORIENTED OBJECT DETECTION

To effectively leverage abundant unlabeled data, the teacher-student framework has been widely
adopted in semi-supervised object detection (Li et al., 2022b; Liu et al., 2023; Nie et al., 2023; Sun
et al., 2021a). This method begins by training a student module on a limited set of fully labeled
data. A teacher module then acquires the ability to generate pseudo-labels for unlabeled data by
using an exponential moving average (EMA) of the student’s weights. These pseudo-labels subse-
quently guide the student’s training, creating a learning loop. For instance, MCL (Wang et al., 2025)
introduced a novel approach by introducing Gaussian Center Assignment for labeled data and Scale-
aware Label Assignment for unlabeled data. Besides, SOOD++ (Liang et al., 2024) treated remote
sensing images as global layouts, explicitly establishing a many-to-many relationship between sets
of pseudo-labels and predictions to enhance detection. However, despite their innovations, these
methods still rely on a substantial number of fully annotated RBox for their initial training.

2.2 WEAKLY SUPERVISED ORIENTED OBJECT DETECTION

Weakly supervised object detection algorithms (Bilen et al., 2015; Iqbal et al., 2021; Yang et al.,
2019a; Zhang et al., 2021; Zhu et al., 2023), as a significant breakthrough, offer a more efficient
alternative to fully supervised methods by leveraging weak annotation, such as HBox or point an-
notations. For HBox-supervised methods (Li et al., 2022c; Sun et al., 2021b; Tian et al., 2021;
Wang et al., 2024; Zhu et al., 2023), H2RBox (Yang et al., 2023) introduced a weakly supervised
branch and a self-supervised branch to learn both scale and orientation information. Building on
this, H2RBox-v2’s primary innovation lay in its symmetry-based self-supervised learning (Yu et al.,
2023), which directly derived crucial directional information from an object’s inherent symmetry.
For point-supervised methods, the main challenge is how to accurately learn object’s scale and angle
information. Recent studies have made significant progress in this area (Chen et al., 2021; 2022b;
He et al., 2023; Ying et al., 2023). P2RBox (Cao et al., 2023) and PointSAM (Liu et al., 2025b)
demonstrated remarkable performance by leveraging the zero-shot capabilities of the Segment Any-
thing Model (Kirillov et al., 2023). Additionally, PointOBB (Luo et al., 2024) and its subsequent
versions (Ren et al., 2024; Zhang et al., 2025) pushed the boundaries of point-supervised detection
by using instance learning to solve the scale problem and class probability map to acquire angle
information. More recently, Point2RBox (Yu et al., 2024) adopted a knowledge combination strat-
egy by introducing synthetically generated targets, offering prior scale imformation. Furthermore,
Point2RBoxv2 (Yu et al., 2025a) incorporated novel losses based on spatial layout constraints, which
ensure that predictions align more accurately with real-world object. Besides, Wholly-WOOD (Yu
et al., 2025b), a unified weakly supervised detector, accommodated multiple annotation formats in-
cluding Point/HBox/RBox or their combination as inputs. More specifically, PWOOD (Liu et al.,
2025a) merged the advantages of semi-supervised method and weakly supervised mthod to achieve
enhanced performance, all while substantially lowering annotation requirements.

2.3 SPARSELY SUPERVISED ORIENTED OBJECT DETECTION

In SAOD research filed, only a fraction of objects in an image are labeled, while the rest remains un-
labeled. Lack of complete annotations presents a major challenge, as the detector confuse unlabeled
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Figure 2: The illustration of the Sparse Partial Weakly-supervised Oriented Object Detection
(SPWOOD). The Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) identifies
hard negatives and learn the scale and angle information from sparse weak annotation data. The
Multi-level Pseudo-labels Filtering (MPF) mechanism acquires ability from student through EMA
algorithm and selects high-quality pseudo-labels for student module’s training.

objects with the background, since both share the same ”background” label. In the domain of 3D
object detection, CoIn (Xia et al., 2023) introduced a contrastive learning module to enhance feature
discrimination and a feature-level pseudo-label mining framework to guide the training. HINTED
(Xia et al., 2024) proposed a self-boosting teacher, leveraging instance-level information and up-
dates pseudo-labels for labeled scenes to enhance learning effectiveness. When addressing similar
challenges within the remote sensing domain, Co-mining (Wang et al., 2021) utilized a Siamese
network to enhance multi-view learning, with two branches predicting pseudo-labels for each other
via a co-generation module. Region-based approaches (Rambhatla et al., 2022) treated SAOD as a
semi-supervised problem at the region level, focusing on identifying unlabeled regions that likely
contain foreground objects. Calibrated Teacher (Wang et al., 2023a) introduced an online calibra-
tion mechanism to fit the true precision during training, improving pseudo-labels quality. PECL
(Lu et al., 2024) offered a reinforcement learning-based selection strategy specifically tailored for
pesudo-labels filtering. More recently, S2Teacher (Lin et al., 2025) proposed a clusterbased pseudo-
label generation module to avoid erroneous guidance. RSST (Liao et al., 2025) designed a class-
aware pseudo-labeling mechanism for both labeled and unlabeled data by integrating priors from
large language model. In contrast to these methods, our approach innovatively integrates various
supervised methods under minimal supervision cost.

3 METHOD

3.1 OVERVIEW

Given the setting consisting of abundant unlabeled data and a small amount of sparsely-weakly anno-
tated data, we adopt a classic pseudo-labeling semi-supervised object detection (SSOD) framework.
As shown in Figure 2, SPWOOD framework operates with two core branches: one for supervised
learning and another for unsupervised learning. The supervised branch integrates sparse-annotation
learning, scale learning, and orientation learning, which together form the SOS-Student module.
The unsupervised branch leverages a Multi-level Pseudo-labels Filtering (MPF) algorithm to gener-
ate reliable supervisory signals used for student module’s subsequent training.

The training process unfolds in two distinct stages: (1) Burn-in Stage: The student module begins
by training on the a few sparse weak annotations from both original and augmented views. Concur-
rently, the learned weights of the SOS-Student module are mirrored onto the teacher module. (2)
Self-training Stage: In this stage, a large volume of strongly-weakly-augmented unlabeled data is
fed into the teacher module to generate pseudo-labels. The student module is then further optimized
using these pseudo-labels. The teacher module is updated from the student’s module using an Expo-
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nential Moving Average (EMA) (Tarvainen & Valpola, 2017) approach, which ensures the teacher’s
parameters are more stable and reliable, leading to higher-quality pseudo-labels.

3.2 SOS-STUDENT

3.2.1 SPARSE ANNOTATION LEARNING

In the context of sparsely annotated data, a major challenge is effectively distinguishing unlabeled
objects from background. Both are treated as negatives during training, leading to potential misguid-
ance where unannotated objects are incorrectly penalized as background. Inspired by Focal Loss,
designed to tackle the class imbalance problem by down-weighting the loss of easy-to-classify ex-
amples, we introduce a mechanism to differentiate between different types of negative samples by
modulating their loss contribution (Liao et al., 2025). This strategy aims to balance the influence of
false supervision and retain beneficial background cues. The loss function is formulated as follows:

Ls
cls =


−αt(1− pt)

γ log(pt) for positive objects

−(1− αt)p
γ
t log(1− pt) for negative objects with confidence pt ≤ thr

−(1− αt)p
γ
t log(1− pt)ω for negative objects with confidence pt > thr,

(1)

Our student classification loss, Ls
cls, aims to partition the prediction space into three distinct groups

for effective learning under sparse supervision:Labeled Objects: Predictions with high confidence
(pt > thr) matching the ground truth (GT) labeled category.Background: Predictions with low con-
fidence (pt ≤ thr) matching the GT background.Unlabeled Objects (Hard Negatives): Predictions
with high confidence (pt > thr) that are erroneously matched to the GT background.The base loss
formulation incorporates standard components: pt represents the confidence score from the student
module; αt serves as a balancing factor between positive and negative samples; and γ is the focusing
parameter, designed to reduce the contribution of well-classified examples (inheriting the robustness
of Focal Loss).For the critical third group (Unlabeled Objects), we introduce the adaptive factor
ω. This factor strategically down-weights these potentially misleading false negatives.This novel
strategy effectively inherits the robustness of Focal Loss while simultaneously providing a targeted
solution for sparse annotation scenarios. By mitigating the detrimental effects of misleading false
negatives, it leads to more accurate and robust model learning.

3.2.2 ORIENTATION LEARNING

To address the lack of orientation information in weakly-annotated data, like HBox annotations,
we introduce a symmetry-aware learning approach (Yu et al., 2023) that comprehensively explores
the properties of object symmetry. As depicted in Figure 2, each input image undergoes a random
augmentation (either flipping or rotating) to create an augmented view. This view is then fed into
the student module, which generates a pair of predicted angles. Since the input views have a clear
relationship, the output angles are expected to follow the same relationship.

To ensure the SOS-Student effectively learns orientation information from the weakly annotated
horizontal bounding boxes, we formulate an angle loss, Ls

Ang

Ls
Ang =

{
Ls
Ang(θflp + θ, 0) if augmentation is a flip

Ls
Ang(θrot − θ, R) if augmentation is a rotation by R.

(2)

The angle loss calculation depends on the specific image augmentation method model used, which
can be either a vertical flip or a random rotation by an angle R. The loss function Ls

Ang is a Smooth-
L1 loss. Here, θflp, θrot, and θ represent the predicted angles of the flip-augmented image, the
rotated-augmented image, and the original image, respectively.

3.2.3 SCALE LEARNING

Given that weaker annotations, such as point annotations, they lack crucial scale and orientation
information about the objects. To address this, we adopt spatial layout learning (Yu et al., 2025a) to
learn the objects’ scale information by determining both the upper and lower bounds.

5
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Table 1: Comparison with state-of-the-art methods for the OOD task at different sparse-partial ratios.
△10% and ■10% denote the partial-ratio and sparse-ratio. RSST∗ represents our SAOD baseline
and R:H:P means the annotations count ratio between RBox, HBox and Point.

DOTA-v1.0 Dataset-Sparse-Partial

Algorithm Types Methods Annotations 10%△ 20% 30%

10%■ 20% 10% 20% 10% 20%

Weakly Supervised H2RBox-v2 HBox 30.6 30.8 38.5 42.7 43.9 49.2
Point2RBox-v2 Point 9.4 9.8 14.2 23.1 15.1 27.0

Semi-Supervised MCL RBox 31.7 39.0 37.6 44.5 43.5 47.8
PWOOD RBox 38.0 46.2 46.2 51.9 48.7 55.2

Partial
Weakly-Supervised

PWOOD HBox 33.9 43.8 42.4 47.6 44.8 50.7
PWOOD Point 17.0 24.7 22.4 28.6 23.1 33.8

Sparsely Supervised
S2Teacher RBox 36.8 44.0 45.3 50.2 52.3 55.5
RSST RBox 43.4 47.2 42.5 52.3 53.0 56.6
RSST∗ RBox 42.4 45.5 41.7 51.0 53.2 56.5

Sparse Partial
Weakly-Supervised SPWOOD (ours)

RBox 48.5 54.0 54.9 57.8 54.9 60.3
HBox 45.5 51.9 52.2 54.0 53.1 56.5
Point 27.3 36.8 33.3 38.7 35.8 41.8

R:H:P=1:1:1 42.4 48.2 46.1 53.0 50.8 54.8

For the upper bound of the object’s scale, we minimize the distance between different predicted
oriented bounding boxes. We first model these boxes as two-dimensional Gaussian distributions and
then use the Bhattacharyya distance (Yang et al., 2022) to calculate the distance between them. This
allows us to derive the Gaussian overlap loss, Ls

O, as follows:

Ls
O =

1

N

∑
i̸=j B(Ni,Nj), (3)

where N donates the number of predicted rotated bounding boxes, Ni and Nj represent different
Gaussian distribution, and B is the Bhattacharyya distance between them.

To determine the lower bound of the object’s scale, we introduce the Voronoi Watershed Loss. A
Voronoi diagram (Aurenhammer, 1991) separates the entire image into individual regions, ensuring
each region contains only one point annotation. These regions are then fed into a watershed algo-
rithm (Vincent & Soille, 1991) to obtain a pixel-level classification based on pixel similarity. By
rotating the output of the watershed algorithm to align with the direction of predicted rotated bound-
ing boxes based on a single point, we can obtain the regression target of object’s width and height.
The Voronoi watershed loss, LW , is then designed to regress the width and height of the objects:

Ls
W = LGWD

([
w/2 0
0 h/2

]2
,

[
wt/2 0
0 ht/2

]2)
, (4)

where LGWD is Gaussian Wasserstein Distance Loss (Yang et al., 2022).

Finally, we incorporate class loss Ls
cls, centerness loss Ls

cen, and box loss Ls
box. The total supervised

loss, Ls, for the SOS-Student model is given by:

Ls = wclsLs
cls + wcenLs

cen + wboxLs
box + wAngLs

Ang + wOLs
O + wWLs

W , (5)

where Ls
cls, Ls

cen, and Ls
box represent the sparse annotation aware loss (as described in 3.2.1), the

cross entropy loss and the IoU loss respectively. The weights wcls, wcen, wbox are set to 1, while
(wAng ,wO,wW ) are set to (0.2, 10, 5) by default.

3.3 MULTI-LEVEL PSEUDO-LABELS FILTERING

The selection of pseudo-labels directly influences the performance of subsequent training. In SAOD
setting, RSST (Liao et al., 2025) leverages classes’diversity and LLM’assistance to select pseudo-
labels, combining a fixed number of predictions per category and overall predictions. However,
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Table 2: Comparison of mAP performance across different methods for the OOD task on DOTA-
v1.5 test set under different sparse-partial ratios (RBox supervised).

Algorithm Types Methods 10-10 10-20 20-10 20-20 30-10 30-20

Semi-Supervised MCL 25.9 33.9 33.2 40.2 38.2 42.9
PWOOD 33.9 38.1 40.9 45.9 45.1 49.2

Sparsely Supervised
S2Teacher 33.8 37.2 41.1 45.7 45.7 46.2
RSST 37.1 40.8 42.3 46.9 45.3 48.0
RSST∗ 36.2 35.8 42.3 46.0 45.7 49.8

Sparse Partial
Weakly-Supervised SPWOOD (ours) 43.2 47.9 49.0 52.1 51.3 53.1

ignoring the confidence variance throughout the training process of model makes the detector’s per-
formance sensitive. Furthermore, Feature Pyramid Networks (FPN) (Lin et al., 2017) is specialized
for detecting objects at corresponding scales and the same object exhibits different confidence scores
at different levels (i.e. P3, P4, P5, P6, P7), making modeling the entire prediction directly unreliable
as Class-Agnostic PseudoLabel Filtering strategy (CPF) (Liu et al., 2025a).

To better utilize the information from the model’s prediction and discover reliable pseudo-labels,
we focus on the distribution of the teacher’s predictions by introducing Multi-level Pseudo-labels
Filtering. Based on a Gaussian Mixture Model (GMM) (Wang et al., 2023b; Zhao et al., 2019), we
model the prediction confidence of each layer in the teacher module with the following equation:

Pi(ci) = wi
pN i

p(µ
i
p, (σ

i
p)

2) + wi
nN i

n(µ
i
n, (σ

i
n)

2), (6)

where Pi(ci) means the modeling of i−th level, such as P3, P4, P5, P6 and P7. N (µ, σ2) denotes
gaussian distribution, while wp, µp, σp and wn, µn, σn represent the weight, mean and variance
of positive and negative distributions, respectively. The GMM is initialized by setting µp and µn

to the maximum and minimum of the predicted scores, respectively. The variances (σp and σn)
and weights (wp and wn) are all initially set to 1 and 0.5, respectively. We then use Expectation-
Maximization (EM) algorithm to solve for the posterior probability, P , with the following equation:

τ i = argmax
ci

Pi(ci, µi
p, (σ

i
p)

2), (7)

where τ i is then used to select pseudo-labels at the corresponding scale level. The selected pseudo-
labels from each layer are subsequently used to guide the student module’s training.

3.4 OVERALL LOSS

Our proposed SPWOOD framework contains two branches: one for the supervised loss Ls and
another for the unsupervised loss Lu. The combination of these two losses constitutes the overall
loss. The former one is detailed in dection 3.2.3. The latter one is defined as below:

Lu = Lu
cls(T c,Sc) + Lu

cen(T cen,Scen) + Lu
box(T logit,Slogit), (8)

where T and S represent the predictions of the teacher and student modules, respectively. These
prediction include the confidence score (c), centerness (cen) and the margin from the point to the
boundaries of the predicted boxes. The loss function Lu

cls and Lu
cen are binary cross-entropy losses,

while Lu
box is Smooth-L1 loss. The overall loss of SPWOOD framework is defined as:

L = Ls + Lu. (9)

Through these two complementary branches, the student learns from sparsely-weakly annotated
data, enhancing the teacher’s pseudo-labels filtering ability. In turn, the high-quality pseudo-labels
selected by teacher further improve the student’s learning, forming a positive feedback learning loop.
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Table 3: Comparison of mAP performance across different methods for the OOD task on DIOR test
set under different sparse-partial ratios (RBox supervised).

Algorithm Types Methods 10-20 20-20 30-20

Semi-Supervised MCL 30.8 33.1 35.8
PWOOD 31.0 36.8 39.1

Sparsely Supervised
S2Teacher 36.1 42.6 45.1
RSST 40.7 44.8 46.1
RSST∗ 38.8 43.2 45.7

Sparse Partial
Weakly-Supervised SPWOOD (ours) 44.1 45.7 46.3

Table 4: Detection accuracy
under different combinations
of weak annotations at the
sparse-partial ratio 20-20.

RBox:HBox:Point mAP

1:1:1 53.0
1:1:0 56.3
1:0:1 52.3
0:1:1 47.6
0:1:4 41.2

Table 5: mAP results of
Sparse Annotation Learning
with different weights under
sparse-partia 20-20 ratio.

Weight mAP

0.4 57.8
0.3 57.5
0.2 60.6
0.1 58.0

Table 6: Comparison of mAP
performance across Sparse
Annotation Learning (SAL)
module in our framework
in DOTA1.0 test set under
sparse-partia 20-20 ratio.

Setting mAP

with SAL 47.6
without SAL 42.0

4 EXPERIMENT

4.1 DATASET AND SETUP

To evaluate our proposed SPWOOD models, we conducted experiments on DOTA-v1.0/-v1.5 (Xia
et al., 2018) and DIOR (Li et al., 2020). DOTA-v1.0 comprises 2,806 aerial images, consisting of
1,411 training images, 458 validation images, and 937 test images. The training and validation sets
contain 188,282 instances across 15 categories. DOTA-v1.5 uses the same images as DOTA-v1.0 but
features more annotations, with 403,318 instances across 16 categories, including a higher number
of smaller objects. The DIOR dataset comprises 23,463 images across 20 distinct object categories.
The dataset is partitioned into 11,725 images for training and 11,738 images for testing.

Taking the DOTA-V1.0 dataset as a representative example, to create sparse-partial weak supervision
dataset, we select 10%, 20%, and 30% of the images as initial labeled data from the DOTA-v1.0
train-val set, while the remaining images are treated as unlabeled. From the labeled subset, we
generate datasets using two distinct sparse methods. The first is the Single Sparse Method (Lu et al.,
2024; Lin et al., 2025), which applies a specific sparse ratio (i.e. 10%, 20%, 30%) to each category
within each image, keeping at least one annotation for any category present in the image. In contrast,
our proposed Overall Sparse Method treats all labeled annotations as a unified group and samples
annotations for each category at the desired ratio (i.e. 10%, 20%, 30%). For a fair comparison with
prior studies, we conduct main experiments on the datasets generated by the Single Sparse Method,
unless otherwise noted. Then we create the weakly-annotated data for training by simply omitting
the orientation and scale information from the annotations. In our naming convention, we combine
the partial-ratio and sparse-ratio (i.e. 30-10), where 30% indicates the partial-ratio and 10% indicates
the sparse-ratio. Besides, all reported detection results of models are obtained by testing on test set.

Our proposed SPWOOD model is implemented using the MMRotate (Zhou et al., 2022) frame-
works. We employ an FCOS detector (Tian et al., 2019) with a ResNet50 backbone (He et al., 2016)
and a FPN (Lin et al., 2017) neck. The AdamW optimizer (Loshchilov & Hutter, 2017) is used for
optimization. The entire training schedule consists of 180,000 iterations, which includes an initial
burn-in stage of 12,800 iterations to stabilize model convergence in the early stage.

4.2 MAIN RESULT

DOTA-v1.0: We employ a simplified version of RSST, comprising both supervised and unsupervised
branches, as our SAOD baseline, which we term RSST∗. As summarized in Table 1, we present the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Detection accuracy at sparse-
partial ratio 20-50 (RBox supervised).

Algorithm Types Methods 20-50

Semi-Supervised MCL 53.2
PWOOD 59.8

Sparsely Supervised
S2Teacher 56.5
RSST 56.1
RSST∗ 55.1

Sparse Partial
Weakly-Supervised SPWOOD (ours) 63.0

Table 8: The performance comparisons of our proposed
PWOOD framework based on different Pseudo-labels
Filtering Methods at different parse-partial ratios under
DOTA-v1.0 Dataset-Sparse-Partial setting.

Module Methods 10-10 10-20 20-10 20-20

SPWOOD w/ CPF 44.4 53.0 51.9 57.1
w/ MPF 49.5 54.0 54.9 57.8

Table 9: Performance of the PWOOD Framework with Overall and Single Sparse Methods.

Algorithm paradigms Methods 10-10 10-20 20-10 20-20 30-10 30-20

SPWOOD Overall Sparse Method 41.7 49.1 47.9 57.2 52.3 57.5
Single Sparse Method 49.5 54.0 54.9 57.8 54.9 60.3

detection results of different methods on DOTA-v1.0 dataset and SPWOOD exhibits a substantial
and consistent improvement over other methods across all sparse-partial ratios. Notably, SPWOOD
achieves superior performance using the less-informative HBox annotations, even outperforming
the RSST∗ model that utilizes corresponding proportions of RBox annotations with gains of 3.1%
(10-10), 6.4% (10-20), 10.5% (20-10) and 3.0% (20-20). It means that SPWOOD delivers excellent
performance at a lower cost. The effectiveness of SPWOOD under weak supervision is further high-
lighted by comparisons with WOOD methods. Compared to H2RBox-v2, SPWOOD achieves large
margins of improvement, yielding gains of 14.9% (10-10), 21.1% (10-20), 13.7% (20-10), 11.3%
(20-20), 9.2% (30-10), and 7.3% (30-20) under the corresponding HBox annotations. Similarly,
under point annotations, SPWOOD improves mAP by 17.9%, 27.0%, 19.1%, 15.6%, 20.7%, and
14.8%, respectively, compared to Point2RBox-v2. These results strongly underscore SPWOOD’s
excellent capability in the sparse-partial, weakly-supervised oriented object detection task.

Concurrently, SPWOOD’s ability to support multiple annotation formats within a unified framework
offers a highly effective paradigm for reducing the data acquisition burden. As detailed in Table 1
(i.e. R:H:P=1:1:1), we conducted experiments to evaluate the framework’s performance under di-
verse labeling scenarios, using a combination of Point, HBox, and RBox annotations as input. The
detection performance significantly surpasses WOOD and SOOD methods. Crucially, SPWOOD
achieves highly competitive performance compared to the current State-of-the-Art SAOD methods
across different sparse-partial ratios. In Table 4, we present comprehensive results from experiments
conducted under different mixed weak annotation settings. This analysis empirically confirms the
robust capability of our framework to accommodate and leverage different types of weak supervi-
sion concurrently. Furthermore, as detailed in Table 7, we present the results at the ratio 20-50,
highlighting SPWOOD’s effectiveness in utilizing limited annotation resources.

More Results: As shown in Table 2, to provide additional validation for our proposed framework’s
efficacy, we performed a thorough comparative analysis under RBox annotations on DOTA-v1.5
dataset. Our proposed SPWOOD outperforms RSST∗ with gains of 7% (10-10), 12.1% (10-20),
6.7% (20-10), 6.1% (20-20), 5.6% (30-10) and 3.3% (30-20), respectively. Compared to the gain on
DOTA-v1.0 (6.1%, 8.5%, 13.2%, 6.8%, 1.7%, and 3.8%, respectively), SPWOOD’s performance
on DOTA-v1.5 highlights its robustness and adaptability in complex scenes with smaller objects. To
validate the capability of our model across different datasets, we conducted additional experiments
on the DIOR dataset. As demonstrated in Table 3, our model consistently outperforms all competing
methods across all the ratios.

4.3 ABLATION STUDIES

The selection of pseudo-labels directly impacts the model’s subsequent training, making the filtering
strategy crucial. As detailed in Table 8, we conducted a rigorous systematic evaluation of our pro-
posed Multi-level Pseudo-label Filtering (MPF) algorithm against the Class-Agnostic Pseudo-label
Filtering (CPF) approach (Liu et al., 2025a). Our MPF method consistently outperforms CPF across
all tested sparse-partial ratios on the DOTA-v1.0 dataset. Specifically, our MPF method achieves
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Table 10: Annotation Statistics and Performance Analysis for Overall and Single Sparse Methods
at sparse-partial ratio 10-10. 20-10 and 30-10. ▲ and ▼ mean annotations numbers under Single and
Overall Sparse Method. ■ presents relative difference among corresponding numbers.

Category PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Annotation at 30-10 762▲ 88 211 242 2083 1342 2344 238 81 376 137 156 514 225 40
785▼ 37 114 39 2163 1319 2316 189 44 389 34 40 567 124 25

Relative Difference -2.9%■ +137.8 +85.1 +520.5 -3.7 +1.7 +1.2 +25.9 +84.1 -3.3 +302.9 +290.0 -9.3 +81.5 +60.0

Annotation at 20-10 551▲ 57 117 151 1256 863 1868 180 59 306 90 99 352 157 40
585▼ 19 68 24 1270 873 1824 121 35 275 22 27 366 111 30

Relative Difference -5.8%■ +200 +72.1 +529.2 -1.1 -1.1 +2.4 +48.8 +68.6 +11.3 +309.1 +266.7 -3.8 +41.4 +33.3

Annotation at 10-10 383▲ 37 77 79 767 479 846 100 25 224 48 46 134 110 32
369▼ 14 29 13 779 491 870 78 20 232 12 11 145 95 24

Relative Difference +3.8%■ +164.3 +165.5 +507.7 -1.5 -2.4 -2.8 +28.2 +25.0 -3.4 +300 +318.2 -7.6 +15.8 +33.3

AP at 10-10 71.6▲ 46.8 17.3 53.6 55.0 52.3 73.2 86.1 50.3 62.5 27.6 48.1 19.8 53.9 23.0
73.4▼ 23.6 17.6 25.6 55.9 56.4 72.6 88.8 37.1 67.5 0.40 24.8 18.5 40.8 18.0

Relative Difference -2.5%■ +98.6 -1.7 +109.4 -1.6 -7.2 +0.8 -3.1 +35.5 -7.5 +583.0 +94.2 +6.9 +32.1 +27.6

notable mAP improvements of 5.1% (10-10), 1.0% (10-20), 3.0% (20-10), and 0.7% (20-20), re-
spectively. The most significant gains are observed at lower annotation sparsity levels (e.g., 10-10),
demonstrating MPF’s superior capability in extremely sparse settings. This superior performance
stems from MPF’s ability to effectively capture intricate relationships within the model’s multi-level
predictions, thereby achieving superior detection accuracy even with limited supervision.

Sparse Processing Method Analysis: To rigorously evaluate the impact of data generation on model
performance, we conducted ablation study focusing on datasets created by two sparse methods.
As shown in Table 9, the SPWOOD model demonstrates consistently superior performance on the
dataset derived from Single Sparse Method compared to Overall Sparse Method, with gains of 7.8%,
4.9%, 7.0%, 0.6%, 2.6%, and 2.8% across the corresponding ratios. As detailed in Table 10, the Sin-
gle Sparse Method tends to retain more annotations for categories with initially scarce labels, such
as baseball diamond, ground track field, soccer-ball field, and roundabout. We further analyzed
the direct relationship between annotation count and detection accuracy (Table 10). For instance,
considering the baseball-diamond category under ratio 10-10, the Single Sparse Method yielded a
164.3% relative increase in annotation count compared to the Overall Sparse Method. This sub-
stantial data advantage directly translated into a near 100% (98.6%) relative difference on AP per-
formance. These findings decisively reveal that relatively higher annotation count leads to superior
detection accuracy, which is particularly pronounced for categories with few initial annotations.

More results: We conducted an ablation study on the parameter w within our Sparse Annotation
Learning module, as shown in Table 5. In our framework, the primary function of w is to suppress
the influence of hard negatives, ensuring robust training despite sparse annotations.Furthermore, we
performed a ablation study about Sparse Annotation Learning module in the SOS-Student compo-
nent, with results presented in Table 6. The substantial performance degradation observed after
removing this module clearly underscores its critical contribution in the sparse setting. These results
underscore the Sparse Annotation Learning module’s efficacy in semi-sparse setting.

5 CONCLUSION

In this work, we propose a Sparse Partial Weakly-Supervised Oriented Object Detection (SPWOOD)
framework, which leverages the strengths of mainstream oriented object detection methods to sig-
nificantly reduce the need for annotation in remote sensing. Given the sparse weak annotation data,
we introduce three core components—sparse annotation learning, orientation learning, and scale
learning—to form SOS-Student model. To effectively utilize abundant unlabeled data, we employ
a Multi-level Pseudo-labels Filtering mechanism to select reliable supervised signals. Extensive ex-
periments on benchmark datasets demonstrate that SPWOOD outperforms existing OOD methods,
all with a minimal annotation cost. Furthermore, we introduce an novel sparse processing method,
guaranteeing that the sparse dataset maintains the same distribution as the original data. One cur-
rent limitation of our approach is that it exclusively utilizes a single visual modality. Incorporating
additional data modalities (e.g., spectral or textual information) is posited as an interesting future
research direction, particularly for further improving performance within sparse annotation settings.
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Table 11: Comparison of computational costs across different methods for the OOD task on DIOR
test set under different sparse-partial ratios (RBox supervised).

Algorithm Types Methods memory usage running time
Semi-Supervised MCL 5598MB 16hours

Partial Weakly-Supervised PWOOD 9021MB 23hours

Sparsely Supervised RSST 13672MB 34hours

Sparse Partial
Weakly-Supervised SPWOOD (ours) 22785MB 40hours

Figure 3: Qualitative results showing the qualities of the detection performance.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We affirm that this paper is prepared and written entirely by us. We did not use any large language
models (LLMs) to generate the abstract, content, or any part of the text. The ideas, analysis, and
conclusions presented are the sole product of the authors’ original thought and research. We did,
however, utilize standard tools like grammar checkers for minor stylistic improvements.

A.2 COMPUTATIONAL COST COMPARISON

As shown in Table 11, the operational cost (time and computational resource consumption) of our
spwood method is observed to be higher compared to other models. This increase is primarily
attributed to two factors: The necessary overhead associated with processing multiple weak anno-
tations within the model, like combination of HBox and point. The substantial computational load
required for effectively handling the highly sparse annotation settings, where extensive calculations
are performed to compensate for the lack of dense supervision.
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A.3 FAILURE ANALYSIS

As depicted in Figure 3, we use different colors to illustrate the different bounding boxes under
sparse conditions: the blue boxes represent the sparse annotations used for training; the red boxes
indicate objects that were omitted from the labels due to the sparse setting; and the green boxes
represent the final objects detected by our SPWOOD framework. The figure highlights the following
scenarios and challenges:

Column 1 (Effectiveness in Sparse Setting): This column demonstrates our model’s effectiveness in
sparse scenarios, showing its ability to learn class features from partially labeled data and success-
fully detect other unlabeled instances of the same category in image.

Column 2 (Intra-class Variance Challenge): This column highlights cases where the model fails to
detect certain objects. This failure is typically due to significant intra-class variance (differences
within the same category) present in the sparsely annotated data.

Column 3 (Complex Spatial Arrangement Challenge): This section illustrates the performance
degradation observed when dealing with complex spatial arrangements, such such as large objects
containing smaller ones or closely packed, overlapping instances.
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