Under review as a conference paper at ICLR 2021

LEARNING TO LEARN WITH SMOOTH REGULARIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent decades have witnessed great prosperity of deep learning in tackling vari-
ous problems such as classification and decision making. The rapid development
stimulates a novel framework, Learning-to-Learn (L2L), in which an automatic
optimization algorithm (optimizer) modeled by neural networks is expected to
learn rules for updating the target objective function (optimizee). Despite its ad-
vantages for specific problems, L2L still cannot replace classic methods due to its
instability. Unlike hand-engineered algorithms, neural optimizers may suffer from
the instability issue—when provided with similar states (a combination of some
metrics to describe the optimizee), the same neural optimizer can produce quite
different updates. Motivated by the stability property that should be satisfied by
an ideal optimizer, we propose a regularization term that can enforce the smooth-
ness and stability of the learned neural optimizers. Comprehensive experiments
on the neural network training tasks demonstrate that the proposed regularization
consistently improve the learned neural optimizers even when transferring to tasks
with different architectures and data. Furthermore, we show that our regularizer
can improve the performance of neural optimizers on few-shot learning tasks.

1 INTRODUCTION

Optimization is always regarded as one of the most important foundations for deep learning, and its
development has pushed forward tremendous breakthroughs in various domains including computer
vision and natural language processing (Chen et al.l 2020; [Lv et al., [2017). Effective algorithms
such as SGD (Robbins & Monro, [1951)), Adam (Kingma & Bal 2014)) and AdaBound (Luo et al.,
2019) have been proposed to work well on a variety of tasks. In parallel to this line of hand-designed
methods, Learning-to-Learn (L2L) (Andrychowicz et al.,|2016; Wichrowska et al., 2017; |Metz et al.,
2018 |Lv et al., 2017; (Chen et al.l 2020), a novel framework aimed at an automatic optimization
algorithm (optimizer), provides a new direction to performance improvement in updating a target
function (optimizee). Typically, the optimizer, modeled as a neural network, takes as input a certain
state representation of the optimizee and outputs corresponding updates for parameters. Then such
a neural optimizer can be trained like any other network based on specific objective functions.

Empirical results have demonstrated that these learned optimizers can perform better optimization in
terms of the final loss and convergence rate than general hand-engineered ones (Andrychowicz et al.,
2016;|Wichrowska et al.,[2017; Metz et al.,[2018;Lv et al., 2017 |Chen et al.,|2020). In addition, such
advantages in faster training make the learned optimizer a great fit for few-shot learning (FSL) (Rav1
& Larochelle, 2017} [Hu et al., [2020), where only a limited number of labelled examples per class
are available for generalizing a classifier to a new task.

However, instability concealed behind the algorithm impedes its development significantly. There
are some unsolved issues challenging the promotion of neural optimizers such as gradient explosion
in unrolled optimization (Metz et al., |2018)) and short-horizon bias (Wu et al., 2018). One of the
most essential problems is that contrary to traditional optimizers, the learned ones modeled as neural
networks cannot guarantee smoothness with respect to input data. Specifically, an ideal optimizer is
expected to conduct similar updates given similar states of the target optimizee. For instance, SGD
updates a parameter by a magnitude proportional to its original gradient. However, current meta
learners neglect this property and suffer from the issue that they would produce a quite different
output while merely adding a small perturbation to the input state.
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Such a phenomenon has been widely observed in other machine learning problems like image clas-
sification (Goodfellow et al., |2014), where the perturbed image can fool the classifier to make a
wrong prediction. Inspired by the progress in adversarial training (Madry et al., 2017} Zhang et al.,
2019) where the worst-case loss is minimized, we propose an algorithm that takes the smoothness
of the learned optimizer into account. Through penalizing the non-smoothness by a regularization
term, the neural optimizer is trained to capture a smooth update rule with better performance.

In summary, we are the first to consider the smoothness of neural optimizers, and the main contri-
butions of this paper include:

e A smoothness-inducing regularizer is proposed to improve the existing training of learned
optimizers. This term, representing the maximal distance of updates from the current state
to the other in the neighborhood, is minimized to narrow the output gap for similar states.

e We evaluate our proposed regularization term on various classification problems using neu-
ral networks and the learned optimizer outperforms hand-engineered methods even if trans-
ferring to tasks with different architectures and data.

e In addition to generic neural network training, we also conduct experiments on few-shot
learning based on a Meta-LSTM optimizer (Ravi & Larochelle, 2017) and SIB (Hu et al.,
2020). Results show that our smoothness-inducing regularizer consistently improves the
accuracy on two FSL benchmark datasets.

2 RELATED WORK

Gradient-based optimization has drawn extensive attention due to its significance to deep learning.
There are various algorithms that have been proposed to improve training of deep neural networks,
including SGD (Robbins & Monro, |1951), Adam (Kingma & Bal 2014), and the like. On the other
hand, a profound thought of updating the optimizee automatically rather than using hand-engineered
algorithms has broken the routine and shown great potentials in improving performance for specific
problems. Early attempts can be dated back to 1990s when |Cotter & Conwell (1990) leveraged
recurrent neural networks to model adaptive optimization algorithms. The idea was further devel-
oped in |Younger et al.|[(2001) where neural optimizers were trained to tackle fundamental convex
optimization problems. Recently in the era of deep learning, a seminal work of |Andrychowicz et al.
(2016) designed a learning-to-learn framework with an LSTM optimizer, which obtained better per-
formance than some traditional optimizers for training neural networks. Follow-up work in|Lv et al.
(2017) and Wichrowska et al.|(2017) have improved the generalization and scalability of learned op-
timizers. In parallel to this work, automatic optimization can be considered from a Reinforcement
Learning (RL) perspective. RL primarily aims at finding an optimal policy to schedule the learning
rate, more like hyperparameter optimization (Li & Malik| [2016; Bello et al.,|2017). Compared with
RL-based methods, the L2L framework is easier to train and can adaptively determine the step size
and update direction in the meanwhile. L2L has also been extended to various applications such
as few-shot learning (Ravi & Larochelle, 2017)), zeroth-order optimization (Ruan et al.| |2019) and
adversarial training (Xiong & Hsieh, [2020).

This paper is the first to investigate the smoothness of neural optimizers in the L2L framework. It is
related to the notion of adversarial robustness in classification models. As observed in|Goodfellow
et al|(2014), neural network based models are vulnerable to malicious perturbations. In particular,
for image classification the classifier would be fooled by adversarial examples to make a wrong
prediction (Goodfellow et al.l [2014), while for reinforcement learning the agent is likely to act
differently under perturbed states (Shen et al., 2020). Our learned optimizers might be affected by
this issue as well. In other domains some algorithms have been proposed to mitigate the non-smooth
property of neural networks such as adversarial training (Madry et al.| 2017), TRADES (Zhang
et al.,2019), and SR’L (Shen et al.,[2020). In this paper, our method utilizes the idea of minimizing
the worst-case loss to regularize training of neural optimizers towards smoothness. In contrast to
previous algorithms targeted at classification, we design a specific regularizer to neural optimizers.

3 BACKGROUND ON THE L2L FRAMEWORK

In this section, we present the framework of learning to learn for tackling problems of general
optimization for classification and few-shot learning.
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Figure 1: The framework of learning-to-learn. The dashed line shows the computation graph of the
objective function Lo for training the optimizer to learn a general update rule while the horizontal
full line is the one for few-shot learning. Note that m is the neural optimizer parameterized by ¢,
and s is the state of the optimizee taking the form of s; = (6;,..., Vgl)7.

3.1 OPTIMIZATION

As shown in Figure[T] like any traditional optimization methods, we can apply the learned optimizer
in following steps:

(a) Ateach time step t, feed a batch of training examples {(x, y)} from the distribution D into
the target classifier f parameterized by 6, and the state of the optimizee s; can be described
by several values such as the current parameter value, its gradient, or the exponentially
weighted moving averages of gradient.

(b) Given the current state s; and the hidden state h;, the neural optimizer m parameterized
by ¢ can accordingly outputs the increment of the parameter and the next hidden state by
ug, hyyr = m(st, ht)'

(c) Then the optimizer just updates the parameter by 0; 1 = 6; + u,.

Note that all operations are coordinate-wise, which means the parameters of the optimizee are up-
dated by a shared neural optimizer independently and maintain their individual hidden states.

The exploitation of the learned optimizer is straightforward but how can we train it? Follow-
ing |Andrychowicz et al.| (2016)), since parameters of the optimizee depend implicitly on the opti-
mizer, which can be written as 6;(¢), the quality of the optimizer can be reflected by performance of
the optimizee for some horizon 7', leading to the objective function below to evaluate the optimizer:

T
Lop(0) =Egyyop | > wil(f(0:(¢);2),9) ] - (1)
t=1
Here /(-, -) represents cross-entropy and wy is the weight assigned for each time step.

3.2 FEW-SHOT LEARNING

Apart from optimization, the superiority of learned optimizers is a natural fit for few-shot learning.
Generally, FSL is a type of machine learning problems with only a limited number of labeled ex-
amples for a specific task (Wang et al.| [2019). In this paper, we mainly focus on FSL targeted at
image classification, specifically /N-way-K -shot classification. We deal with meta-sets Dy, in this
task. Each D = {Dyain, Diest} € Dmetas Where Dygin is composed of K images for each of the N
classes (thus K - IV images in total) and Dy contains a number of examples for evaluation. The goal
is to find an optimization strategy that trains a classifier leveraging Dy, with only a few labeled
examples to achieve good learning performance on Dieg.

The N-way-K-shot classification problem can be simply incorporated into the L2L framework,
where the optimization strategy is modeled by the learned optimizer. As we aim at training a classi-
fier with high average performance on the testing set, instead of harnessing the whole optimization
trajectory, the objective can be modified to attach attention only to the final testing loss:

EFSL = EDNDmmE(z,y)ND[est [E (f(aT(é)a Z')7 y)} ) (2)
where 61 is updated based on a procedure described in Section under examples from Dyyip-
Like normal classification problems, in few-shot learning, all meta-sets are further divided into three
separate sets: meta-training set for learning the optimizer, meta-validation set for hyperparameter
optimization and model selection, and meta-testing set for performance evaluation.
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4 METHOD

4.1 MOTIVATION

Despite great potentials of neural optimizers in improving traditional optimization and few-shot
learning, there exists a significant problem impeding the development of L2L. In contrast to classi-
cal hand-engineered optimization methods, those learned ones cannot guarantee a smooth update of
parameters, i.e., producing similar outputs for similar states, where by state we mean the gradient or
parameters of the optimizee. In Figure [2| we demonstrate the non-smoothness of the learned opti-
mizer explicitly. This is a typical phenomenon in various neural-network-based algorithms such as
image classification and reinforcement learning. Hampel| (1974) and[Shen et al.| (2020) have pointed
out advantages of smoothness of a function to mitigate overfitting, improve sample efficiency and
stabilize the overall training procedure. Thus, enforcing the smoothness of the learned optimier can
be crucial to improve its performance and stability.

i . Regularization R = max d(u(s),u(s"))
--==T7 Usmooth (5" ) s'€B(s,€)

= max [lu(s) — u(s)|
B(Syf)_'_,n" u(s’) . s'€B(s,€)

State Space

Update Space
Figure 2: An illustration of the non-smoothness in the neural optimizer.

4.2 SMOOTHNESS REGULARIZATION

We propose to robustify the learned optimizer through a smoothness-inducing training procedure
where a regularization term is introduced to narrow the gap between outputs of two similar input
states. To describe our method clearly, we first denote two states before updating the optimizee at the
time step ¢ + 1 by s, and s,. Note that s, and s, are similar states, i.e., s; € B(sy, €), where B(sq, €)
represents the neighborhood of s within the e-radius ball in a certain norm and e is also called as
perturbation strength. In this paper, we just use ¢, norm without loss of generality. Fix the hidden
state hy, then u; and wu}, which are the corresponding parameter increments of s; and s}, can be
written as functions of the state u(s;) and u(s}) explicitly. An ideal optimizer is expected to produce
similar updates and thus to attain such an optimizer, our goal is to minimize the discrepancy d(-, -)
between u(s;) and u(s}). Like adversarial training, it is intuitive to find the gap under the worst-case
as the targeted difference, which takes the form of max d(u(s;), u(s})). However, the optimizer that
takes the state of optimizee as input and the update as output, is different from the classifier whose
input is an image and output is a vector of softmax logits. There is no classification for the optimizer
so distance metrics such as cross-entropy in Madry’s adversarial training (Madry et al., 2017) and
KL-divergence in TRADES (Zhang et al.,|2019) are not applicable to our problem. Since the output
is a scalar value, we measure the distance with the squared difference and the desired gap at the time
step t + 1 becomes

Rep1(¢) =  max d(u(se),u(sy)) = max lu(s) —u(sy)|. 3)

5, EB(st,€) s, €B(s¢,¢€)

After the regularization term is determined, we can then add it to the original objective function of
L2L as a regularizer. For each time step, the objective becomes

6(9) = U(f(0:(0); ), y) + ARi(9), 4)

where ) is the regularization coefficient and the parameters ¢ of the optimizer is updated by

T
m(;n »Copt((b) = E(z,y)ND [Z wtgt(¢)‘| . (5

t=1
For few-shot learning, we store regularization terms during the training procedure with Dy, and
simply add the accumulation of them to Eq. [2] leading to the training of the learned optimizer as

T

min Lrst (¢) = Ep~p,., lE(x,y)wm.g (f(Or(0);2),Y) + E(ay)eDpun A D Ri(9)

t=1

(6)
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4.3 TRAINING THE OPTIMIZER

The key component for training the optimizer is the calculation of the regularization term in Eq.
As stated in|Zhang et al.|(2019) and|Shen et al.|(2020), in practice we can effectively approximate the
solution of the inner maximization by a fixed number of Projected Gradient Descent (PGD) steps:

s" = Ilp(s ) (nsign(Ved(u(s),u(s"))) + s'), 7
where II is the projection operator to control the state located within the given radius of the neigh-
borhood. Note that we use truncated Backpropagation Through Time (BPTT) to update our RNN
optimizer in case of a too long horizon. For the predefined weight in Eq. [5] to make best use of the
optimization trajectory and concentrate more on the loss of last step at the same time (Chen et al.,
2020), we adopt a linearly-increasing schedule that w; = ¢ mod T" where T is the number of step in
each truncation. We present the whole training procedure in Algorithm I}

Specifically, since our aim is to find a perturbed state in the neighborhood of the original state, we
can obtain it as follows: a) Starting from the original state s, we add an imperceptible noise to
initialize s’; b) Compute the current value of d(u(s),u(s’)), backprobagate the gradient back to s’
to calculate V/,d(u(s), u(s")), and then adjust the desired state by a small step 7 in the direction, i.e.,
sign(Vg d(u(s),u(s"))), that maximizes the difference; (c) Run K steps in Eq. [7|to approximate
the regularization term in Eq. [3| Time cost by computing this regularization term has little impact
on efficiency of the algorithm and more discussions are included in Appendix

Algorithm 1 Learning-to-Learn with Smooth-inducing regularization

1: Input: training data {(z,y)}, step sizes 1, and 72, number of inner iterations K, total steps
Thoal, truncated steps 7', classifier parameterized by 6, optimizer parameterized by ¢

2: repeat

3 Initialize 6 randomly, reset RNN hidden state

4 L<+0

5: fort =0,...,Tiota — 1 do

6: Sample a batch of data (x, y), feed it to the classifier, obtain state s;

7 Update 6 as demonstrated in Section 3.1

8: sy < s+ 0.05« N(0, 1)

9: fork=1,...,Kdo > Find the perturbed state iteratively

10 st < Mp(s,,e) (1 sign(Ve d(u(se), u(sy))) + st)

11: end for

12: Riv1 < |lu(se) —u(sh)||? > Regularization term
13: L+ L+ w1l > ¢41 is computed by Eq. ]
14: if t mod T' — 1 == 0 then

15: Update ¢ by £ using Adam with the step size 72, £ < 0

16: end if

17: end for
18: until converged

5 EXPERIMENTAL RESULTS

We are implementing comprehensive experiments for evaluation of our proposed regularizer. De-
tailed results are presented in Section [5.1] for neural network training and Section [5.2] for few-shot
learning. All algorithms are implemented in PyTorch-1.2.0 with one NVIDIA 1080Ti GPU.

5.1 L2L FOR NEURAL NETWORK TRAINING

In this part, we evaluate our method through the task of learning the general update rule for training
neural networks. The performance of different optimization algorithms is displayed in learning
curves of both training and testing loss.

5.1.1 EXPERIMENT SETTINGS

Specifically, we consider image classification on two popular datasets, MNIST and CIFAR10. Our
learned optimizer with regularization is compared with hand-designed methods including SGD,
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SGD with momentum (SGDM), and Adam, as well as neural optimizers including DMOpti-
mizer (Andrychowicz et al. 2016) and SimpleOptimizer (Chen et al., |2020). For hand-designed
optimizers, we tune the learning rate with grid search over a logarithmically spaced range [10~%, 1]
and report the performance with the best hyperparameters. As to baseline neural optimizers, we use
recommended hyperparameters, optimizer structures, and state definitions in (Andrychowicz et al.|
2016) and (Chen et al., [2020) respectively. It should be clarified that we have tried different hyper-
parameters for baselines and found that recommended ones are the best in our experiments. Our
smoothed optimizers are almost based on original settings, except for two extra hyperparemeters
for training, the perturbation strength e and the regularization coefficient \. In particular, € and A
in our method are also determined by a logarithmic grid search with the range ¢ € [1072,10] and
A € [1071,10%]. Neural optimizers are learned with Adam of the learning rate 10~% with the num-
ber of total steps Tioa1 = 200 and truncated steps 7' = 20. Note that for all neural optimizers we
only tune the hyperparameters during training and directly apply them to a new optimization prob-
lem, while for hand-engineered algorithms, the learning rate is always tuned for the specific task.
Experiments for each task are conducted fives times with different seeds and the batch size used for
following problems is 128. More implementation details are presented in Appendix [B]

5.1.2 COMPATIBILITY OF THE PROPOSED REGULARIZER

First of all, we conduct an experiment to demonstrate that the proposed regularization term can
be combined with various L2L structures. We demonstrate the performance of learned optimiz-
ers including training loss and testing loss for training a 2-layer MLP on MNIST. As can be seen
in Figure @] and @ two L2L architectures, DMOptimizer (Andrychowicz et al.l |2016) and Sim-
pleOptimizer (Chen et al., [2020), are compared. With the regularizer, the smoothed version of both
optimizers make an improvement in the final training and testing loss, and obtain a faster conver-
gence rate at the same time. In addition, since SimpleOptimizer performs better than DMOptimizer,
which is consistent with the observation in|Chen et al.[(2020), we will apply it as our base optimizer
in the later experiments.

Training Loss Training Loss Training Loss

(b) (©

Testing Loss

10 — Adam

Figure 3: Learning curves of classification on MNIST. Training loss is shown in the first row and
testing loss in the second row. (a) and (d) are results of two neural optimizer structures to show
the compatibility of our proposed regularizer; (b) and (e) demonstrate performance of different
optimizers for training LeNet of 200 steps, while (c) and (f) extend the optimization to 1000 steps.

5.1.3 TRAINING ON MNIST

In this experiment, we conduct experiments to train the neural optimizers for a 200-step optimization
of LeNet on MNIST dataset. We observe its performance under the following two scenarios:

(a) Training LeNet with different initializations. As the learned optimizer is originally trained to
update parameters of LeNet, we directly apply it to optimize networks with the same architecture
but distinct initializations. Performances of various optimizers in training and testing loss are pre-
sented in Figure[3bjand 3] We can see that our proposed smoothed optimizer outperforms all other
baselines including hand-designed methods and the original SimpleOptimizer by a large margin.
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(b) Generalization to more optimization steps. Following |Andrychowicz et al.| (2016), we also
make an evaluation on optimization for more steps. Despite the fact that the neural optimizer is
only trained within 200 steps, it is capable of updating the optimizee until 1000 steps with faster
convergence rate and better final loss consistently, as shown in Figure [3cand 31}

5.1.4 TRAINING ON CIFAR-10

It is insufficient to merely test different optimizers on MNIST, whose size is a relatively small.
Therefore, we add to the difficulty of the targeted task and focus on image classification on CIFAR-
10. The classifier of interest is a 3-layer convolutional neural network with 32 units per layer and the
learned optimizer is employed to update the optimizee for 10000 steps. It should be pointed out that
the neural optimizer is still trained within 200 steps and the optimization step for evaluation is 50
times larger than what it has explored during training. Figure fa] and fd| demonstrate its great gen-
eralization ability: the smooth version of the learned optimizer can converge faster and better than
hand-engineered algorithms such as SGD and Adam, even though it only observes the optimization
trajectory in the limited steps at the very beginning. Our smoothed variant also outperforms the orig-
inal learned optimizer. Moreover, we transfer the optimizer to training another network structure,
GoogLeNet. In Figure #b]and fe] Smoothed-Simple without finetuning can still beat a majority of
hand-designed methods except for SGD and SimpleOptimizer, reflecting its powerful transferability.

Training Loss Training Loss Training Loss

(a) (b)

(e)

Figure 4: Learning curves of classification on CIFAR-10. (a) and (d) show performance of training a
3-layer CNN for 10000 steps while (b) and (e) are results of 10000-step optimization of GoogLeNet.
Results of a designed binary classification are reported in (c) and (f).

We have shown that our neural optimizer can generalizing to the same dataset but longer training
horizon and different network architectures. This naturally leads to the following question: can our
neural optimizer learn the intrinsic update rule so that it can generalize to unseen data? To answer
this question, we modify the experimental setting to evaluate our proposed optimizer with respect
to optimization on unseen data. We split the original CIFAR-10 dataset into three different sets: a
training set containing 6 classes, a validation set and a testing set with 2 classes respectively. When
training the optimizer, we sample 2 classes from training set and minimize the objective function
for a binary classification problem. Images in the validation set are exploited to select the optimizer
which achieves best final testing loss in the 200-step optimization. In Figure Ac| and ] we can
see a comparison of learning curves among our smoothed optimizer, SimpleOptimizer, and the rest
hand-designed methods for updating the classifier on two unseen classes. The smoothed optimizer
learns much more quickly than other algorithms.

5.1.5 ADDITIONAL EVALUATION

Besides the metric of loss, we explore another aspect, classification accuracy, to show advantages
of our smoothed neural optimizer. In Figure 5] we present curves of training and testing accuracy,
for MNIST with LeNet and CIFAR10 with the 3-layer CNN. It can be observed that our method
outperforms others with best final training and testing accuracy as well as convergence rate. We also
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investigate the smoothness of optimizers in Appendix[D] and results show that our method can boost
the smoothness of neural optimizers confronted with state disturbance.

Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy
,

e

I ——

10

W PR
Step Step

@ (b) © @
Figure 5: Learning curves of different optimizers in training and testing accuracy. (a)-(b) for MNIST
with LeNet and (c)-(d) for CIFAR-10 with a 3-layer CNN.

Furthermore, we conduct experiments on a comparatively large-scale dataset, tiny-ImageNet in Ap-
pendix [C| Similar performance on this dataset shows the effectiveness of our proposed method.

5.2 FEW-SHOT LEARNING WITH LSTM

Apart from improving the training procedures, L2L can be applied to few-shot learning as well.
Therefore, in this part we primarily explore the effectiveness of our smoothed neural optimizer in
FSL, in particular, N-way-K-shot learning. We consider 5-way-1-shot and 5-way-5-shot problems
on two benchmark datasets, minilmageNet (Vinyals et al) 2016)) and tieredImageNet (Ren et al.,
2018). The base structure we utilize here is Meta-LSTM, proposed in (Ravi & Larochelle, [2017)
to train an LSTM-based meta learner to learn the optimization rule in the few-shot regime. We
compare it with our smoothed version. We keep all hyperparameters the same as reported in (Ravi
& Larochelle,2017) and only tune € and A in a manner introduced in Section Statistical results
of 5 experiments with different random seeds are reported in Table[I] Our smoothed Meta-LSTM
attains 2% percents improvement over all scenarios against the baseline. It should be emphasized
that the performance boost is purely credited to the regularizer since we apply our regularization
term to the exactly same structure as Meta-LSTM. Since the official code for Meta-LSTM is written
in lua and is out-of-date, we use the latest PyTorch implementation inDong| (2019)). Thus, our results
might lead to inconsistency with the original paper but do not affect the conclusion.

Table 1: Average accuracy of 5-way few shot learning on minilmageNet and tieredlamgeNet.

minilmageNet tieredlmageNet
Model ‘ 1-shot 5-shot ‘ 1-shot 5-shot
Meta-LSTM 38.20 + 0.73% 56.56 + 0.65% 36.43 + 0.65% 53.45+ 0.61%

Smoothed Meta-LSTM | 40.42 +0.68% 58.90 £0.61% | 36.74 £0.76% 55.14 1+ 0.60%

In addition, we integrate our proposed regularizer into one of the most recent methods involving a
neural optimizer, SIB (Hu et al., 2020) on minilmageNet and CIFAR-FS. Results are presented in
Table 2] and with regularization, SIB performs consistently better especially for 5-shot tasks.

Table 2: Average accuracy of 5-way few shot learning problems on minilmageNet and CIFAR-FS.

minilmageNet CIFAR-FS
1-shot 5-shot 1-shot 5-shot

784+0.6%  85.3+0.4%
79.2+0.4% 86.1£0.4%

Model ‘ Backbone ‘

SIB(n = 1e73, K = 3) | WRN-28-10 | 69.6 £0.6%  78.9+0.4%
Smoothed SIB WRN-28-10 | 70.0+0.5% 80.8 £0.3%

6 CONCLUSION

This paper first investigates the smoothness of learned optimizers and takes it into consideration to
achieve performance improvement. Specifically, we propose a regularization term for neural opti-
mizers to enforce similar parameter updates given similar input states. Extensive experiments show
that the regularizer can be combined with different L2L structures and verify its effectiveness of
consistently improving current algorithms for various tasks in classification and few-shot learning.
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A ALGORITHM FOR FEW-SHOT LEARNING

Algorithm 2 Meta-LSTM for few-shot learning with smoothness-inducing regularization

1: Input: the set of meta-sets Dyera, Step sizes 11 and 1z, number of inner iterations K, the number
of total steps Tia1, classifier parameterized by 6, optimizer parameterized by ¢

2: repeat

3 Initialize 6 randomly, reset LSTM hidden state

4: Sample a dataset D = { Dyin, Diest} from Dipera

5: L+ 0

6: fort=0,..., T — 1do

7 Feed a batch of data (z, y) from Dy, to the classifier, obtain state s;

8 Update € as demonstrated in Section 3.1

9: sy < s+ 0.05 x N(0, 1)

10: fork=1,..., K do > Find the perturbed state iteratively
11: s < Hp(s,,e) (1 sign(Ve d(u(se), u(sy))) + st)

12: end for

13: Ri1 < |lu(se) —u(sy)|? > Regularization term
14: L+ L+ AR 11

15: end for

16: Sample a batch of data (x, y) from Dieq

17 L L4 (f(0r,(0);2). 1)

18: Update ¢ by £ using Adam with the step size 7
19: until converged

B IMPLEMENTATION DETAILS

Extra time cost caused by our regularization term has little impact on the efficiency of training the
neural optimizer. As the dimension of the state is relatively small, the gradient can be obtained
efficiently considering the computational complexity of backprobagation. Specifically, training time
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per epoch for SimpleOptimizer is 38.21s while for our method is 97.31s. As we only train the
learned optimizer for a few epochs and then apply it to the target task, we care more about time for
deploying the neural optimizer. This time is nearly the same as the hand-designed ones. Moreover,
since PGD has been acknowledged as a practical and effective method in adversarial attacks, it is
feasible to obtain s’ in our case as well.

For DMOptimizer |Andrychowicz et al.| (2016), we adopt a 2-layer LSTM with the hidden size of
10, while for SimpleOptimizer (Chen et al| (2020), we just use a 1-layer RNN with the hidden
size of 10. As to few-shot learning, Meta-LSTM leverages its specific 2-layer LSTM structure
described in Ravi & Larochelle|(2017). For the selection of €, we observed the magnitude of states
during training the classifier, and then determine the range for tuning € as [10~2,10] to allow for a
reasonable neighborhood.

Furthermore, these neural optimizers have their different state descriptions. The input state
is the concatenation of preprocessed gradient and the original parameter value in DMOpti-
mizer |Andrychowicz et al.|(2016). We only have the gradient normalized by the second momentum
as the state in SimpleOptimizer |Chen et al.| (2020). The state of Meta-LSTM |Ravi & Larochelle
(2017) is based on DMOptimizer with an extra feature, the original gradient.

C EXPERIMENTS ON TINY-IMAGENET

We evaluate the optimizers on tiny-ImageNet, which is a relatively larger dataset extracted from
ILSVRC-12 (Russakovsky et al.l 2015). 100 classes are selected from this dataset, among which
the training set, validation set, and testing set consist of 70, 20, and 10 classes respectively. We
implement an experiment targeted at a 10-class classification problem, in which the optimizer is
trained on the training set, selected on the validation set, and evaluated on the testing set. To avoid
overfitting, we adopt a L regularization when training classifiers. As can be observed in Figure
[6] the learned optimizer with a smooth regularizer performs consistently better than hand-designed
methods. Specifically, it learns about 2 times faster than Adam, and converges to a lower loss value in
both training and testing stage. Furthermore, our method improves the non-smooth SimpleOptimizer
noticeably as well.

Training Loss Testing Loss
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— SGD
SGDM

— SimpleOptimizer

292 —— Adam i 2.0
| — SGD
SGDM 1.9

2.0 —— SimpleOptimizer
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Step Step

(a) Training loss (b) Test loss

Figure 6: Learning curves of classification on tiny-ImageNet.

D SMOOTHNESS UNDER PERTURBATION

In this section, we conduct an experiment on MNIST to demonstrate the smoothness of the neural
optimizer trained with our proposed regularization. Specifically, we perturb the state which is the
optimizer input with the noise § ~ N(0, I') for each time step and observe performance changes in
terms of learning curves. We plot differences in loss between the optimizer with normal states and
with perturbed states in Figure[7] Note that the difference is calculated by

diff = loss,s — lossy,s

where ps means perturbed states and ns means normal states. As we can see, performances of
both SimpleOptimizer and SmoothedSimple decline while on the other hand, the drop is relatively
smaller of our smoothed optimizer than that of the original one. This phenomenon shows that our
method can boost the smoothness of neural optimizers confronted with state disturbance.
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Figure 7: Loss difference of SimpleOptimizer and Smoothed-Simple.
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