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ABSTRACT

Autoencoders, or nonlinear factor models parameterized by neural networks, have
become an indispensable tool for generative modeling and representation learn-
ing in high dimensions. Imposing structural constraints such as conditional in-
dependence on the latent variables (representation, or factors) in order to capture
invariance or fairness with autoencoders has been attempted through adding ad
hoc penalties to the loss function mostly in the variational autoencoder (VAE)
context, often based on heuristic arguments. In this paper, we demonstrate that
Wasserstein autoencoders (WAEs) are highly flexible in embracing structural con-
straints. Well-known extensions of VAEs for this purpose are gracefully handled
within the framework of the seminal result by Tolstikhin et al. (2018). In particu-
lar, given a conditional independence structure of the generative model (decoder),
corresponding encoder structure and penalties are induced from the functional
constraints that define the WAE. This property of WAEs opens up a principled
way of penalizing autoencoders to impose structural constraints. Utilizing this
generative model structure, we present results on fair representation and condi-
tional generation tasks, and compare them with other preceding methods.

1 INTRODUCTION

The ability to learn informative representation of data with minimal supervision is a key challenge
in machine learning (Tschannen et al., 2018), toward obtaining which autoencoders have become
an indispensable toolkit. An autoencoder consists of the encoder, which maps the input to a low-
dimensional representation, and the decoder, that maps a representation back to a reconstruction of
the input. Thus an autoencoder can be considered a nonlinear factor analysis model as the latent
variable provided by the encoder carries the meaning of “representation” and the decoder can be
used for generative modeling of the input data distribution. Most autoencoders can be formulated as
minimizing some “distance” between the distribution PX of input random variable X and the distri-
bution g♯PZ of the reconstruction G = g(Z), where Z is the latent variable or representation having
distribution PZ and g is either deterministic or probabilistic decoder (in the latter case g is read as
the conditional distribution of G given Z), which is variationally described in terms of an encoder
QZ|X . For instance, the variational autoencoder (VAE, Kingma & Welling, 2014) minimizes

DVAE(PX , g♯PZ) = inf
QZ|X∈Q

EPX
[DKL(QZ|X∥PZ)− EQZ|X log g(Z)] (1)

over the set of probabilistic decoders or conditional densities g of G given Z, where DKL is the
Kullback-Leibler (KL) divergence, and the Wasserstein autoencoder (WAE, Tolstikhin et al., 2018)
minimizes

DWAE(PX , g♯PZ) = inf
QZ|X∈Q

EPX
EQZ|X dp(X, g(Z)) (2)

over the set of deterministic decoders g, where d is the metric in the space of input X and p ≥ 1.
Set Q restricts the search space for the encoder. In VAEs, a popular choice is a class of normal
distributions

Q = {QZ|X regular conditional distribution : Z|{X = x} ∼ N(µ(x),Σ(x)), (µ,Σ) ∈ NN}
where NN is a class of functions parametrized by neural networks. In WAEs, the choice

Q = {QZ|X regular conditional distribution : QZ ≜ EPX
QZ|X = PZ} (3)

makes the left-hand side of Eq. (2) equal to the (p-th power of) the p-Wasserstein distance between
PX and g♯PZ (Tolstikhin et al., 2018, Theorem 1); QZ is called an aggregate posterior of Z. If Q is
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a set of Dirac measures, i.e., Q = {QZ|X : QZ|X=x = δf(x), f ∈ NN} , then minimizing Eq. (2)
reduces to the learning problem of a deterministic unregularized autoencoder.

Of course, the notion of “informativeness” depends on the downstream task. The variation in the
observations that are not relevant to the particular task is often called “nuisance” and is desirable
to be suppressed from the representation. For example, in finding “fair representations,” (Zemel,
2013) sensitive information such as gender or socioeconomic status should be removed from latent
representations; in obtaining representations of facial images, those that are invariant to lighting
conditions, poses, or wearing of eyeglasses are often sought. A popular approach to this goal is
to explicitly separate informative and nuisance variables in the generative model by factorization.
This approach imposes a structure on the decoder. Additionally the encoder is further factorized
and a penalty promoting independence between the encoded representation and nuisance variable
can be added. A well-known example is the variational fair autoencoder (VFAE, Louizos et al.,
2016), in which a variant of the “M1+M2” graphical model (Kingma et al., 2014) is used to fac-
torize the decoder and a resembling factorization of the encoder (variational posterior) is assumed.
Independence of the representation from nuisance variable is encouraged by adding a maximum
mean discrepancy (MMD, Gretton et al., 2007) between conditional variational posteriors; in Lopez
et al. (2018), MMD is replaced by the Hilbert-Schmidt Independence Criterion (HSIC, Gretton
et al., 2007). Other authors employ penalties derived from the mutual information (MI) (Moyer
et al., 2018; Song et al., 2019; Creager et al., 2019). Another example is the Fader Networks (Lam-
ple et al., 2018), in which the deterministic decoder takes an additional input of the attribute (such
as whether or not eyeglasses are present in a portrait) and an adversarial penalty that hinders the
accurate prediction of the attribute by the deterministic, unfactorized encoder.

These examples illustrate that, while the generative model (decoder structure) can be chosen suit-
ably for the downstream task, there is no principled way of imposing the corresponding encoder
structure. In this paper, we show that the WAE framework allows us to automatically determine the
encoder structure corresponding to imposed decoder structure. Specifically, when the deterministic
decoder g in Eq. (2) is modified to handle the conditional independence structure of the imposed
generative model, then the constraint set (amounting to the Q in Eq. (3)) that makes the LHS of
Eq. (2) a proper (power of) Wasserstein distance determines the factorization of the (deterministic)
encoder. In practice, the hard constraints in Q is relaxed and Eq. (2) is solved in a penalized form.
Following the approach of Tolstikhin et al. (2018), the cited constraint set can be systemically trans-
lated to penalties. Therefore, in addition to the theoretical advantage that the penalized form equals a
genuine distributional distance for sufficiently large penalty parameter while that of Eq. (1) remains
a lower bound of the negative log-likelihood of the model, the ad hoc manner of designing penalties
prevalent in the VAE literature can be avoided in the WAE framework. Further, the allowance of
deterministic encoder/decoder promotes better generation performance in many downstream tasks.

We explain how the WAE framework leads to structured encoders given a generative model through
examples reflecting downstream tasks in Sect. 3 after providing necessary background in Sect. 2.
We would call these structured uses of WAEs the Wasserstein Fair Autoencoders (WFAEs). Af-
ter reviewing relevant ideas in Sect. 4, WFAEs are experimented in Sect. 5 for datasets including
VGGFace2 (Cao et al., 2018). We conclude the paper in Sect. 6.

2 PRELIMINARIES

In fitting a given probability distribution PX of a random variable X on a measurable space
(X ,B(X )), where X ⊂ RD equipped with metric d, by a generative model PG of sample G on
the same measurable space, one may consider minimizing the (pth power of) p-Wasserstein distance
between the two distributions, i.e.,

min
PG∈M

{
W p

p (PX , PG) := inf
π∈P(PX ,PG)

Eπ d
p(X,G)

}
.

Here, M is the model space of probability distributions, P(PX , PG) is the coupling or the set of all
joint distributions on (X × X ,B(X × X )) having marginals PX and PG. Often the sample G is
generated by transforming a variable in a latent space. When G = g(Z) a.s. for a latent variable Z
in a probability space (Z,B(Z), PZ), Z ⊂ Rl, and measurable function g, then PG is denoted by
g♯PZ , where ♯ is the push forward operator. In this setting, as discussed in Sect. 1, Tolstikhin et al.
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Figure 1: Examples of generative models for WFAEs

(2018) show that W p
p (PX , g♯PZ) = DWAE(PX , g♯PZ) (Eq. (2)), with the constraint set Q on the

probabilistic encoders QZ|X given in Eq. (3). It is further claimed by Patrini et al. (2020) that the
set of conditional distributions QZ|X can be reduced to be deterministic, i.e., Z = f(X) a.s. for f
measurable. However, this claim is not in general true unless g is injective:

Theorem 1 Let d(x, y) = ∥x− y∥2 for x, y ∈ X . If PX has a density with respect to the Lebesgue
measure, and the measurable function g : Z → X is injective, then

W 2
2 (PX , g♯PZ) = inf

f∈Q
EPX

d2(X, g(f(X))), (4)

where Q is the set of all measurable functions from X to Z such that f♯PX = PZ .

The proof of this result is provided in Appendix A of the Supplement.

Remark 1 In Patrini et al. (2020, Theorem A.2), it is incorrectly claimed that for the right in-
verse g̃ of g when the codomain of the latter is restricted to its range, (g̃ ◦ g)♯PZ(F ) is equal to
PZ(g̃

−1(g−1(F )), instead of the correct PZ(g
−1(g̃−1(F ))). This confusion invalidates the rest of

the argument of the cited theorem.

In practice the set Q can be relaxed to F , a class of all measurable functions parameterized by deep
neural networks, which contains a minimizer of the right-hand side (RHS) of Eq. (4); the constraint
f♯PX = PZ can be met by adding a penalty λD(f♯PX∥PZ) for sufficiently large multiplier λ > 0
and a divergence D between two distribution. Thus if we define the distortion criterion

δ(f, g) = EPX
d2(X, g(f(X))) + λD(f♯PX∥PZ),

then the generative modeling problem based on 2-Wasserstein distance can be formulated as

inf
g∈G

inf
f∈F

δ(f, g), (5)

for G a set of injective measurable functions from Z to X , typically parameterized by deep neural
networks. The function f : X → Z has an interpretation of an encoder and g : Z → X has an
interpretation of a decoder. Typically l ≪ D.

3 LEARNING INVARIANT REPRESENTATIONS WITH WFAES

Often generative modeling is more complicated than just involving a latent variable Z in Z and its
reconstruction G in X . For example, data may come with labels, which can be employed in the
generation process to learn invariant representations.

Example 1 Let us begin with a simple generative model shown in Fig. 1a (Louizos et al., 2016,
Fig. 1); see also (Kingma et al., 2014, M2). Here, variable S ∈ S ⊂ RB represents the observed
nuisance variation, and Z models the remaining information on G (with which we want to mimic the
observable variable X) that is independent of S. Thus the Z encodes the representation invariant to
the unwanted variation in S. Denoting the marginal distribution of the nuisance variable S by PS ,
the distribution of model G is g♯(PZ ⊗ PS), where ⊗ is used to denote a product distribution. The
goal is to make the joint distribution PGS of (G,S) close to PXS of (X,S), the observable.
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If we let g̃(z, s) = (g(z, s), s), then PGS = g̃♯(PZ ⊗ PS). Recall that X is equipped with metric d.
Equip S with another metric d′ and X ×S with d̃ =

√
d2 + (d′)2. Then, by applying Theorem 1 to

PXS , PZ ⊗ PS , and g̃, we obtain

W 2
2 (PXS , g̃♯(PZ ⊗ PS)) = inf

f̃∈F̃
EPXS

d̃2
(
[X,S], g̃(f̃(X,S))

)
= inf

f∈F
EPXS

d̃2 ([X,S], [g(f(X,S), S), S]) = inf
f∈F

EPXS
d2 (X, g(f(X,S), S)) ,

where F̃ = {f̃ : X ×S → Z ×S : f̃♯PXS = PZ ⊗ PS}, F = {f : X ×S → Z : (f,ΠS)♯PXS =
PZ ⊗ PS}, and ΠS : X × S → S : ΠS(x, s) = s is the orthogonal projection from X × S onto
S. The second equality holds by noting that f̃(x, s) = (f(x, s), h(x, s)) and taking h = ΠS . The
latter constraint set F means that

f(X,S)
d
= Z, f(X,S) ⊥⊥ S. (6)

Following formulation equation 5 for the unstructured case, we can incorporate constraint equation 6
into the learning problem in a penalized form

min
g

min
f

EPXS
d2
(
X, g(f(X,S), S)

)
+ λ1D(f♯PXS∥PZ) + λ2H((f,ΠS)♯PXS),

where D is an appropriate divergence between two probability distributions such as MMD or the
generative adversarial network (GAN) loss as suggested by Tolstikhin et al. (2018), and H promotes
independence between two random variables f(X,S) and S, such as the HSIC (Lopez et al., 2018).

Example 2 Consider a more involved generative model shown in Fig. 1b, which is employed by
the VFAE (Louizos et al., 2016, Fig. 2) as an extension of the “M1 + M2” semi-supervised model
(Kingma et al., 2014). This graphical model actually describes the conditional distribution PX|S of
X given S, since S and Y are allowed to be correlated. Instead, it is required

Z1 ⊥⊥ S (7)

in order to impose invariance to the nuisance variable S. Let g : Y × Z2 × S → X × Y × S as
g(y, z2, s) =

(
g1
(
g2(y, z2), s

)
, y, s

)
. Denoting the marginal distribution of the nuisance variable S

by PS and the joint distribution of Y and S by PY S , the distribution of model G is g♯(PY S ⊗ PZ2
).

The goal is to make the joint distribution PGS of (G,S) close to PXS of (X,S) when Y is not
observed, and PGY S of (G, Y, S) to PXY S of (X,Y, S) when the data is fully observed.

First consider the case that Y is missing. Let ΠXS be the orthogonal projection operator from
X × Y × S onto X × S. Then by applying Theorem 1 to PXS , PY S ⊗ PZ2 , and ΠXSg, we obtain

W 2
2 (PXS ,ΠXSg♯(PY S ⊗ PZ2)) = inf

f∈Funobs

EPXS
d̃2 ([X,S],ΠXSg(f(X,S), S))

= inf
f∈Funobs

EPXS
d̃2 ([X,S], [g1(g2(f(X,S)), S), S]) = inf

f∈Funobs

EPXS
d2(X, g1(g2(f(X,S)), S)),

where Funobs = {(funobs
1 , funobs

2 )| funobs
1 : X × S → Y, funobs

2 : X × S →
Z2, (f

unobs
1 ,ΠS , f

unobs
2 )♯PXS = PY S ⊗ PZ2

}. The latter constraint set means

(funobs
1 (X,S), S)

d
= (Y, S), funobs

2 (X,S)
d
= Z2, (funobs

1 (X,S), S) ⊥⊥ funobs
2 (X,S). (8)

Now consider the case Y is observed. Equip Y with a metric d′′ and X × Y × S with d̆ =√
d2 + (d′′)2 + (d′)2. Then by applying Theorem 1 to PXY S , PY S ⊗ PZ2 , and g, we obtain

W 2
2 (PXY S , g♯(PY S ⊗ PZ2)) = inf

fobs
2 ∈Fobs

EPXY S
d̆2

(
[X,Y, S], g(Y, fobs

2 (X,Y, S), S)
)

= inf
fobs
2 ∈Fobs

EPXY S
d̆2

(
[X,Y, S], [g1(g2(Y, f

obs
2 (X,Y, S)), S), Y, S]

)
= inf

fobs
2 ∈Fobs

EPXY S
d2(X, g1(g2(Y, f

obs
2 (X,Y, S)), S)),
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where Fobs = {fobs
2 : X × Y × S → Z2 : (ΠY ,ΠS , f

obs
2 )♯PXY S = PY S ⊗ PZ2

} and ΠY :
(x, y, s) 7→ y, ΠS : (x, y, s) 7→ s are projections. The latter constraint set means

fobs
2 (X,Y, S)

d
= Z2, (Y, S) ⊥⊥ fobs

2 (X,Y, S). (9)

In order to combine the two Wasserstein losses and constraints Eq. (7) to (9), let us extend Y to
Ȳ = Y ∪ {∗}, where ‘∗’ represents the missing value. For any (funobs

1 , funobs
2 ) ∈ Funobs and

fobs
2 ∈ Fobs, define f1 : X × Ȳ × S → Y and f2 : X × Ȳ × S → Z2 as

f1(x, y, s) =

{
y, y ̸= ∗,
funobs
1 (x, s), y = ∗, f2(x, y, s) =

{
fobs
2 (x, y, s), y ̸= ∗,
funobs
2 (x, s), y = ∗.

Then we can formulate the learning problem for the WFAE in a penalized form

min
g1,g2

min
f1,f2

EPXY S
d2
(
X, g1

(
g2(Y, f2(X,Y, S)), S

))
+ EPXS

d2
(
X, g1

(
g2(f1(X, ∗, S), f2(X, ∗, S)), S

))
+ λ1D1((f1,ΠS)♯PXY S∥PY S) + λ2D2(f2♯PXY S∥PZ2) + λ3H3((f1,ΠS , f2)♯PXY S)

+ λ4H4((g2 ⋆ f1)♯(PXY S ⊗ PZ2
)),

where g2 ⋆f1(x, y, z2, s) = (g2(f1(x, y, s), z2), s); D1 and D2 are appropriate divergences between
two probability distributions, and H3, H4 promotes independence between two random variables.
Note, unlike Example 1 in which only the encoder f is constrained, Eq. (7) imposes a constraint on
the decoder g2. Also note that, the divergence D1 can be estimated in a two-sample fashion, namely
from the a sample drawn from PY S , i.e., (yi, si) with yi observed, and another sample drawn from
(f1,ΠS)♯PXY S , either as (yj , sj) if yj is observed or (f1(xj , ∗, sj), sj) otherwise. Hence all the
data from the minibatch can be utilized. Likewise, divergence D2 and the independence penalties
H3 and H4 can utilize the full minibatch.

Remark 2 VAE-based models, e.g., VFAE, assume a specific factorization of the variational poste-
rior (encoder). Since the factor qϕ(y|z) for imputing Y does not appear in the evidence lower bound
(ELBO) of the observed likelihood, an additional penalty on this factor evaluated for the fully ob-
served sample is coined (Louizos et al., 2016, Eq. 5), making the bound not tight. In the WFAE,
on the contrary, the D1 term that arises naturally from constraint equation 8 for the Wasserstein
distance penalizes the imputing encoder f1 for both fully (by requiring f1(xj , yj , sj) = yj) and
partially (by the divergence) observed samples.

Example 3 The model shown in Fig. 1c extends Example 1 with two independent nuisance variables
that can be missing. Here Y may represent a person’s identity in her portrait, which may be missing,
and S partially observed attributes (e.g., sunglasses on/off, mouth open/closed, and gender). In this
setup we want two different portraits of a person to have similar values of Z, and those of two
different people to have quite distinct values of Z, even if the encoder does not know whose portraits
they are. We may also want Z to represent something immune even to gender switch.

Proceeding as Example 2, we obtain for g̃ : Y×Z×S → X ×Y×S: g̃(y, z, s) = (g(y, z, s), y, s),

W 2
2 (PX ,ΠX g̃♯(PY ⊗ PZ ⊗ PS)) = inf

(fX
1 ,fX

2 ,fX
3 )∈FX

EPX
d2(X, g(fX

1 (X), fX
2 (X), fX

3 (X))),

FX = {(f1, f2, f3) : (f1, f2, f3)♯PX = PY ⊗ PZ ⊗ PS , f1 : X → Y, f2 : X → Z, f3 : X → S}

when both Y and S are unobserved,

W 2
2 (PXS ,ΠXS g̃♯(PY ⊗ PZ ⊗ PS)) = inf

(fXS
1 ,fXS

2 )∈FXS
EPXS

d2(X, g(fXS
1 (X,S), fXS

2 (X,S), S)),

FXS = {(f1, f2) : (f1, f2,ΠS)♯PXS = PY ⊗ PZ ⊗ PS , f1 : X × S → Y, f2 : X × S → Z}

when only Y is unobserved,

W 2
2 (PXY ,ΠXY g̃♯(PY ⊗ PZ ⊗ PS)) = inf

(fXY
2 ,fXY

3 )∈FXY
EPXY

d2(X, g(Y, fXY
2 (X,Y ), fXY

3 (X,Y ))),

FXY = {(f2, f3) : (ΠY , f2, f3)♯PXY = PY ⊗ PZ ⊗ PS , f2 : X × Y → Z, f3 : X × Y → S}
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when only S is unobserved, and

W 2
2 (PXY S , g̃♯(PY ⊗ PZ ⊗ PS)) = inf

fXY S
3 ∈FXY S

EPXY S
d2(X, g(Y, fXY S

2 (X,Y, S), S)),

FXY S = {f2 : (ΠY , f2,ΠS)♯PXY S = PY ⊗ PZ ⊗ PS , f2 : X × Z → S}

when the data are fully observed. If we expand Y to Ȳ = Y ∪ {∗} and S to S̄ = S ∪ {∗}, then the
learning problem is

min
g

min
(f1,f2,f3)∈F

EPXY S
d2
(
X, g

(
Y, f2(X,Y, S), S)

))
+ EPXY

d2
(
X, g

(
Y, f2(X,Y, ∗), f3(X,Y, ∗))

))
+ EPXS

d2
(
X, g

(
f1(X, ∗, S), f2(X, ∗, S), S)

))
+ EPX

d2
(
X, g

(
f1(X, ∗, ∗), f2(X, ∗, ∗), f3(X, ∗, ∗))

))
+ λ1D1(f1♯PXY S∥PY ) + λ2D2(f2♯PXY S∥PZ) + λ3D3(f3♯PXY S∥PS)

+ λ4H4((f1, f2, f3)♯PXY S),

where H4 measures dependence of three random variables, e.g., the d-variate HSIC (Lopez et al.,
2018) with d = 3, and F = {(f1, f2, f3) : f1 : X × Ȳ × S̄ → Y, f2 : X × Ȳ × S̄ → Z, f3 :
X × Ȳ × S̄ → S}, for

f1(x, y, s) =


fX
1 (x), y = ∗, s = ∗,
fXS
1 (x, s), y = ∗, s ̸= ∗,
y, y ̸= ∗,

f3(x, y, s) =


fX
3 (x), y = ∗, s = ∗,
fXY
3 (x, y), y ̸= ∗, s = ∗,
s, s ̸= ∗,

and f2(x, y, s) is equal to fX
2 (x) if y = ∗, s = ∗, to fXY

2 (x, y) if y ̸= ∗, s = ∗, to fXS
2 (x, s) if

y = ∗, s ̸= ∗, and to fXY S
2 (x, y, s) otherwise.

Remark 3 If variable Y is removed and S is fully observed, Example 3 reduces to Example 1,
where the f2(x, y, s) from the former corresponds to the f(x, s) from the latter. The Fader Networks
(Lample et al., 2018) implicitly use this model to obtain attribute-invariant representations of facial
images. The adversarial penalty for training the network (Lample et al., 2018, Eq. 2) can be
understood as promoting independence between S and Ẑ = f(X,S). While in Lample et al. (2018)
the encoder f does not depend on S, Example 1 shows that it is more natural to take S as an input
to remove its effect on Ẑ. Example 3 can be considered a generalization of the Fader Networks for
missing attributes and unknown identities.

4 RELATED WORK

The literature on VAEs is vast. β-VAE (Higgins et al., 2017) is one of well-known ways of adding
penalties to the ELBO of a VAE, which adds one proportional to the expected KL divergence be-
tween the variational posterior (encoder) and prior PZ . It is observed that this penalty promotes fac-
torization of the aggregate posterior QZ (Kim & Mnih, 2018). In fair representation, VFAE (Louizos
et al., 2016) and HSIC-constrained VAE (HCV, Lopez et al., 2018) add penalties to the ELBO for
semi-supervised disentanglement along this line. Adversarial penalties have been also considered
(Edwards & Storkey, 2016; Madras et al., 2018). Song et al. (2019) bring an information-theoretic
interpretation to these approaches. In this regard, penalizing MI between nuisance variable S and
encoded latent variable Z (Moyer et al., 2018; Song et al., 2019; Creager et al., 2019) or its tractable
upper bounds, e.g., based on a variational approximation (Rodrı́guez-Gálvez et al., 2021), has been
advocated. Recently proposed FairDisCo (Liu et al., 2022) uses the L2 distance between the joint
density of S and Z and the product density of their marginals, showing its asymptotic equivalence to
the MI. However, as stated in Sect. 1, these penalties promoting desired structures are chosen rather
ad hoc and loosens the already-not-tight ELBO. Furthermore, there is no principle for choosing the
encoder structure corresponding the imposed decoder structure.

The WAE framework discussed in the previous section can overcome these pitfalls in VAEs. The
WAE literature has focused on improving the divergence in the penalized form of Eq. (2) that
matches the prior PZ and the aggregated posterior. The original proposal by Tolstikhin et al. (2018)
is to employ either the MMD or GAN divergence. Kolouri et al. (2019) propose to use the sliced
Wasserstein distance in order to simplify computation. Patrini et al. (2020) consider the Sinkhorn
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Figure 2: Fair representation trade-off.
Figure 3: T-SNE map of Z1 in Ex-
tended Yale B

divergence (Genevay et al., 2018), computing of which can be boosted by using the Sinkhorn algo-
rithm (Cuturi, 2013). Xu et al. (2020) and Nguyen et al. (2021) propose and improve the relational
divergence called the fused Gromov-Wasserstein distance. The latter three works consider the set-
ting in which the prior PZ is structured. In contrast, we focus on the setting in which the decoder is
structured and nuisance information is (partially) available. According to the taxonomy of Tschan-
nen et al. (2018), the former is close to the clustering meta-prior whereas the latter is close to the
disentangling one. We emphasize that the cited divergences are compatible with our framework.

5 EXPERIMENTS

We experimented WFAEs with various real-world datasets. The generative models for these datasets
mainly follow Examples 2 and 3, in most of which variable Y (and sometimes S) has the meaning
of a label and thus categorical. In order to embed this variable to the Euclidean space RB where
B does not necessarily depend on the number of categories, we employed the entity embedding
network (Guo & Berkhahn, 2016) for observed labels. The trained embedding network naturally
becomes a pretrained encoder f1 or f3 from Examples 2 and 3. A by-product of this embedding is
that it is even possible to impute categories not present in training data.

5.1 FAIR REPRESENTATIONS

To demonstrate the performance of WFAEs on fair representation, we reproduced experiments in Liu
et al. (2022) using two categorical datasets, namely the Adult Income and Health datasets. Refer to
the appendix for data summary and network implementation. The generative model for the WFAE
was the structure of Example 2. With the Z1 = g2(Y, f2(X,Y, S)) encoded from the trained model,
we quantified the trade-off between fairness and utility (Zhao et al., 2017): we classified S and Y
using random forest method, calculated the area under the ROC curve (AUC) on the test data (sAUC
and yAUC) as a function of demographic parity ∆DP, and compared the performance with the HSIC-
constrained VFAE (HCV) and the FairDisCo. The results are summarized in Fig. 2. While WFAE
shows a clear trade-off, other methods are relatively insensitive to demographic parity.

5.2 INVARIANT REPRESENTATIONS

The same structure as Sect. 5.1 is used to test the ability of WFAEs to learn invariant representations
of controlled photographs. The cropped Extended Yale B dataset Georghiades et al. (2001); Lee
et al. (2005) comprises of facial images of 38 human subjects in various lighting conditions. For
each subject, the pictures of the person are split into training and test data with a fixed ratio, resulting
in 1,664 and 750 images for the training and test respectively. We set the identity of the image as
Y and the lighting condition (elevation and azimuth of the light direction normalized into [−1, 1]×
[−1, 1]) as S. In the training stage, we first trained f1 to estimate Y , then trained the rest of the
network with f1 held fixed. In consequence, we were able to encode and decode the test data
without the information about Y by replacing it with f1(X, ∗, S). Although we trained the model

7
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Net-
work

ID accu-
racy

Lighting group (Acc.) Lighting direction (MSE)

RF Logistic RF Linear

VAE 0.71 0.74 0.74 0.03 0.07
HCV 0.75 0.60 0.45 0.13 0.22

FairDisCo 1.0 0.34 0.37 - -
WFAE 0.97 0.35 0.28 0.23 0.23

Table 1: Invariant representation of Extended Yale
B. RF=random forest, Logistic=logistic regression, Lin-
ear=linear regression. Classification accuracy for discrete
and mean squared error for continuous variables.

Network Extended Yale B MNIST

Sharpness FID Sharpness FID

FairDisCo 3.36e-4 63.7 3.45e-2 111.1
WFAE 4.43e-4 66.5 9.79e-2 19.4

Test Data 3.09e-3 - 1.83e-1 -

Table 2: Sample generation quality
measures.

with continuous S, we present some of the results with S categorized in 5 directions, as in Lopez
et al. (2018). The results are presented Table 1. The Z1 encoded by WFAE shows better performance
in predicting Y and worse in predicting S than others, suggesting better invariant representation.
The t-SNE visualization of Z1 in Fig. 3 accords with this result, showing noticeable separation with
respect to Y , but not with respect to S. In panel A of Fig. 4 (top left), the green box depicts generated
images by encoding the test image X and nuisance data S into Z1 = g2(f1(X, ∗, S), f2(X, ∗, S)),
and then computing g1(Z1, S). Those in the red box were generated by using the same Z1 but setting
S = (±0.3,±0.3). WFAE produced reconstructions closer to the input than HCV and FairDisCo,
and perturbing S only kept the identity of the input in the generated images. The sharpness and the
Fréchet inception distance (FID) scores are shown Table 2 to assess the sample generation quality.
WFAE produced sharper images than FairDisCo, confirming the visual inspection. The FID scores
should be taken with caution, though. Since the sample generation is conducted by varying the
“lighting direction” attribute (considered as the S variable) the generated samples should be different
from the test data with scarce images. Rather, it may indicate samples generated from FairDisCo is
less sensitive to S, which can also be verified visually.

5.3 CONDITIONAL GENERATION

We further investigated the conditional generation capability of WFAEs using the MNIST and VG-
GFace2 datasets (Cao et al., 2018).

MNIST. We treated the digit attribute as S. The generative model for the data is similar to Ex-
ample 3, but without Y . We first trained encoder f3 that estimates S, then trained the rest of the
network. The final network was tested with images with digit information removed. We also trained
a network without the encoder f2 for Z, hence it decodes an image using only estimated S. Fig. 4
summarize the results, all of which were generated from test data without information of S. Penal
A (top right) shows decoded samples from g with estimated S and i) not using f2 (blue box), ii)
using encoded Z = f2(X,S) from the test data (green box), and iii) using Z sampled from prior
PZ (red box). Decoded images with the same S all retained their digit information. Reconstruction
without using f3, although recognizable, produced degraded images, implying loss of information.
FairDisCo with a similar architecture produced quite degraded results; see also Table 2.1 In panel B
(top), we estimated Z from the source and S from the target and generated new images by g(Z, S).

VGGFace2. This dataset contains 3.14M training images of faces of total 8631 subjects and 169k
test images of total 500 subjects, with partially observed binary attributes such as gender, wearing
of sunglasses, and openness of mouth, available for a subset of 30,000 images. Here, we treat
the identity of the image as class Y and the vector of attributes as S. The generative model for
this dataset is the same as Example 3. The class-preserving generation and style transfer tasks
were conducted in the same manner as MNIST. In addition, we also tried generating samples with
manipulated attributes. Since the attribute encoder f3 embeds S in the Euclidean space, we could
extrapolate input S to decoder g beyond 0 and 1. For this attribute manipulation task, we compared
results with Fader Networks trained with a similar architecture. Fig. 4 shows sample images for
all tasks. Although images of persons who were not in the training data were used, the WFAE
could successfully generate images retaining the identity while employing other identity-invariant

1In this experiment there is no Y and the digit class plays the role of S. So the generation is usual class-
conditional one, hence the FID scores are lower for the WFAE as expected from visual comparison.
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Figure 4: Conditional generation examples of WFAE

features, e.g., camera angle, lighting condition (panel A, bottom). Note in the style transfer task
(panel B, bottom), the generated images possess the styles from the source data and tend to preserve
the specified attribute of the target data. For example, the generated images tend to have open mouth
if the target image has mouth wide open. In the attribute manipulation task, we could successfully
generate images with the desired attributes changed. In panel C, letting the “Mouth Open” attribute
positive produced decoded images having grinning mouth; making it negative produced images with
lips all closed. For the Fader Networks, we extrapolated the attribute scores to a large magnitude as
far as ±400, but it only caused deformation of the original image; see Remark 3.

6 CONCLUSION

We have shown that the WAE framework is rich enough to handle various conditional independence
structures, leading to much more principled formulation of learning problems than the VAE counter-
parts. Importantly, a conditional independence structure imposes on the decoder automatically de-
termines the encoder structure and the associated constraints. We hope this paper stimulates further
research on extensions of WAEs in this direction, for instance, to complex hierarchical structures.
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A PROOF OF THEOREM 1

Proof 1 Under the conditions of the theorem statement, the Monge-Kantorovich equivalence holds
(see, e.g., Peyré & Cuturi, 2019, Theorem 2.1):

W 2
2 (PX , PG) = inf

T :X→X :T♯PX=PG

EPX
d2(X,T (X)).
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Hence it suffices to show that

inf
f :X→Z:f♯PX=PZ

∫
X
d2(x, g(f(x)))dPX = inf

T :X→X :T♯PX=PG

∫
X
dp(x, T (x))dPX

or equivalently

{g ◦ f : f : X → Z, f♯PX = PZ} = {T : X → X : T♯PX = PG}.

The forward inclusion ⊂ holds since for any measurable f : X → Z such that f♯PX = PXf−1 =
PZ we have g ◦ f : X → X measurable and for any Borel set E ⊂ X

(g ◦ f)♯PX(E) = PX(g ◦ f)−1(E) = PX(f−1(g−1(E)))

= g♯[PXq−1](E) = g♯f♯PX(E) = g♯PZ(E) = PG(E).

For the backward inclusion ⊃, suppose T : X → X is measurable and satisfies T♯PX = PG. Since
g is injective, it has a left inverse g† : X → Z . Let f = g† ◦ T . Then for any Borel set F ⊂ Z ,

f♯PX(F ) = PX(g† ◦ T )−1(F ) = PX(T−1((g†)−1(F )))

= T♯PX((g†)−1(F ))

= PG((g
†)−1(F ))

= g♯PZ((g
†)−1(F ))

= PZ(g
−1((g†)−1(F )))

= PZ((g
† ◦ g)−1(F )) = PZ(F ),

which completes the proof.

B ADDITIONAL DETAILS FOR THE FAIR REPRESENTATION EXPERIMENT

Following Liu et al. (2022), fair representation experiment were held for the Adult Income and
Health datasets, whose characteristics are described in Table 3. Note that all variables were catego-
rized: one-hot encoding was used for variables with multiple category to make all data either 0 or 1.
The encoder-decoder architecture of the network was adopted from (Louizos et al., 2016) (Table 4)

Data Training data
size

Test Data
Number

Covariate
Dimension

Response
Variable

Sensitive
Variable

Adult Income 30162 15060 115 account gender
Health 44116 11030 254 hospitalization age

Table 3: Information on categorical datasets for fair representation task.
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C FURTHER IMPLEMENTATION DETAILS

In the source code attached, settings for all experiments are gathered as configuration files in direc-
tory configs/train info. All the network architecture are listed in .py files in src/model
directory, and model and architecture keyword in the configuration file specifies which ar-
chitecture to use among them. The running script run.sh that states which configuration was used
for each experiment, managed by Hydra 1.1.1.Yadan (2019), can be found in the experiments
directory. The prior PZ for the encoded Z was set to be a normal distribution N(0, 2Il), where l is
the dimension of the latent space Z . For the penalty divergences Di, we used the generative adver-
sarial network (GAN) loss, which requires an additional discriminator (Tolstikhin et al., 2018). All
the networks were trained using ADAM (Kingma & Ba, 2014) without any learning rate scheduling.

Extended Yale B The cropped version of the Extended Yale Face Database B dataset (Georghiades
et al., 2001; Lee et al., 2005) were resized into a size of 128×128. The encoder-decoder architecture
of the network had total of 18.5M parameters, and the discriminator architecture had 881 parameters
(Table 5). After pre-training the Y -encoder with 2,100 iterations, we optimized the network for
5,200 iterations, which took about 40 minutes. The results were compared with the HSIC-contrained
variational fair autoencoder (HCV, Table 6) and FairDisCo Table 7.

MNIST The encoder-decoder architecture of the network had 3.8M parameters, and the discrim-
inator architecture had 7.4k parameters (Table 8). We pre-trained the S-encoder with 6,000 itera-
tions, then optimized the rest of the network for 11,700 iterations, which took about half an hour.
The results were compared with HCV and FairDisCo with the S information available for decoding
(Table 9 and Table 10).

VGGFace2 The face region of the collected data were cropped and resized into a size of 128×128.
The encoder-decoder architecture of the network had 88.4M parameters, and the discriminator ar-
chitecture had 206k parameters (Table 11). We pre-trained the (Y, S)-encoder with 3,000 iterations,
then optimized the rest of the network for 30,000 iterations, which took 16 hours. The results were
compared with the Fader Network having an encoder-decoder architecture with 70.2M parameters
and a discriminator architecture with 483k parameters (Table 12) trained for 20,000 iterations, which
took 11 hours.

Computing infrastructure We trained the networks with Intel® Xeon® CPU E5-2650 v4 @
2.20GHz processors and Nvidia Titan X Pascal GPUs with 12GB memory. For the VGGFace2
experiments, we trained the network using four GPUs; those for the other experiments were all
trained using a single GPU. All the implementations were based on Python 3.6, PyTorch 1.10.2,
PyTorch Lightning 1.5.10, and CUDA 10.2.
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Map Layer Operation Filters Batch norm Activation Linked layer

f2 1 Dense 100 Yes ReLU X
µ Dense dZ No - 1, Y , S
σ2 Dense dZ No - 1, Y , S

Output (Z2|X,Y, S) Sample Z2|X,Y, S - - - µ, σ2

g1 1 Dense 100 Yes ReLU g2, S
2 Dense dX No Sigmoid 1

g2 1 Dense 100 Yes ReLU Z2, S
µ Dense dZ No - 1
σ2 Dense dZ No - 1

Output (Z1|Z2, Y ) Sample Z1|Z2, Y - - - µ, σ2

Discriminator 1 Dense 4dZ No ReLU f1
2 Dense 4dZ No ReLU 1
3 Dense 4dZ No ReLU 2
4 Dense 4dZ No ReLU 3
5 Dense 1 No - 4

Table 4: WFAE architecture for the fairness representation experiment: for the Adult income dataset,
dX = 115, dZ = 50, and for the Health dataset, dX = 254, dZ = 8.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

f1 1 Convolution 64 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 2x2 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 512 3x3 2x2 Yes ReLU 3
5 Convolution 1024 3x3 2x2 Yes ReLU 4
6 Dense 8 - - - - 5

f2 1 Convolution 32 5x5 2x2 Yes ReLU X
2 Convolution 64 5x5 2x2 Yes ReLU 1
3 Convolution 128 5x5 2x2 Yes ReLU 2
4 Convolution 256 3x3 2x2 Yes ReLU 3
5 Convolution 512 3x3 2x2 Yes ReLU 4
6 Dense 2 - - - - 5

g1 1 Dense 8x8x1024 - - No - g2
2 Transpose Convolution 512 3x3 2x2 Yes LeakyReLU 1
3 Transpose Convolution 256 3x3 2x2 Yes LeakyReLU 2
4 Convolution 256 3x3 1x1 Yes LeakyReLU 3
5 Transpose Convolution 128 5x5 2x2 Yes LeakyReLU 4
6 Transpose Convolution 64 5x5 2x2 Yes LeakyReLU 5
7 Convolution 64 5x5 1x1 Yes LeakyReLU 6
8 Convolution 1 5x5 1x1 No Sigmoid 7

g2 1 Dense 50 - - Yes LeakyReLU f1, f2

Discriminator 1 Dense 16 - - No ReLU f2
2 Dense 16 - - No ReLU 1
3 Dense 16 - - No ReLU 2
4 Dense 16 - - No ReLU 3
5 Dense 1 - - No - 4

Table 5: WFAE architecture for the Extended Yale B dataset.
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Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

QZ1|X,S 1 Convolution 64 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 2x2 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 512 3x3 2x2 Yes ReLU 3
5 Convolution 1024 3x3 2x2 Yes ReLU 4
µ Dense 10 - - No - 5, S
σ2 Dense 10 - - No - 5, S

Output (Z1|X,S) Sample Z1|X,S - - - - - µ, σ2

QZ2|Z1,Y 1 Dense 20 - - Yes ReLU Z1, Y
µ Dense 10 - - No - 1
σ2 Dense 10 - - No - 1

Output (Z2|Z1, Y ) Sample Z2|Z1, Y - - - - - µ, σ2

QY |Z1
1 Dense 20 - - Yes ReLU Z1

2 Dense 38 - - No - 1

PZ1|Z2,Y 1 Dense 20 - - Yes ReLU Z2, Y
µ Dense 10 - - No - 1
σ2 Dense 10 - - No - 1

Output (Z1|Z2, Y ) Sample Z1|Z2, Y - - - - - µ, σ2

PX|Z1,S 1 Dense 8x8x1024 - - No - Z1, S
2 Transpose Convolution 512 3x3 2x2 Yes ReLU 1
3 Transpose Convolution 256 3x3 2x2 Yes ReLU 2
4 Convolution 256 3x3 1x1 Yes ReLU 3
5 Transpose Convolution 128 5x5 2x2 Yes ReLU 4
6 Transpose Convolution 64 5x5 2x2 Yes ReLU 5
7 Convolution 64 5x5 1x1 Yes ReLU 6
8 Convolution 1 5x5 1x1 No Sigmoid 7

Table 6: HCV architecture for the Extended Yale B dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

QZ2|X,S 1 Convolution 32 5x5 2x2 Yes ReLU X
2 Convolution 64 5x5 2x2 Yes ReLU 1
3 Convolution 128 5x5 2x2 Yes ReLU 2
4 Convolution 256 3x3 2x2 Yes ReLU 3
5 Convolution 512 3x3 2x2 Yes ReLU 4
µ Dense 2 - - No - 5, S
σ2 Dense 2 - - No - 5, S

Output (Z2|X,S) Sample Z2|X,S - - - - - µ, σ2

PZ1|Z2,Y 1 Dense 50 - - Yes ReLU Z2, Y
µ Dense 10 - - No - 1
σ2 Dense 10 - - No - 1

Output (Z1|Z2, Y ) Sample Z1|Z2, Y - - - - - µ, σ2

PX|Z1,S 1 Dense 8x8x1024 - - No - Z1, S
2 Transpose Convolution 512 3x3 2x2 Yes ReLU 1
3 Transpose Convolution 256 3x3 2x2 Yes ReLU 2
4 Convolution 256 3x3 1x1 Yes ReLU 3
5 Transpose Convolution 128 5x5 2x2 Yes ReLU 4
6 Transpose Convolution 64 5x5 2x2 Yes ReLU 5
7 Convolution 64 5x5 1x1 Yes ReLU 6
8 Convolution 1 5x5 1x1 No Sigmoid 7

Table 7: FairDisCo architecture for the Extended Yale B dataset.
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Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

f2 1 Convolution 64 4x4 2x2 Yes ReLU X
2 Convolution 128 4x4 2x2 Yes ReLU 1
3 Convolution 256 4x4 2x2 Yes ReLU 2
4 Convolution 512 4x4 2x2 Yes ReLU 3
5 Dense 6 - - No - 4

f3 1 Convolution 32 4x4 2x2 Yes ReLU X
2 Convolution 32 4x4 1x1 Yes ReLU 1
3 Convolution 64 4x4 2x2 Yes ReLU 2
4 Convolution 64 4x4 1x1 Yes ReLU 3
5 Dense 6 - - - - 4

g 1 Dense 7x7x256 - - No - f2, f3
2 Transpose Convolution 128 4x4 2x2 Yes LeakyReLU 1
3 Transpose Convolution 64 4x4 2x2 Yes LeakyReLU 2
4 Convolution 64 4x4 1x1 Yes LeakyReLU 3
5 Convolution 1 4x4 1x1 No Sigmoid 4

Discriminator 1 Dense 48 - - No ReLU f3
2 Dense 48 - - No ReLU 1
3 Dense 48 - - No ReLU 2
4 Dense 48 - - No ReLU 3
5 Dense 1 - - No - 4

Table 8: WFAE architecture for the MNIST dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

QZ|X,S 1 Convolution 64 4x4 2x2 Yes ReLU X
2 Convolution 128 4x4 2x2 Yes ReLU 1
3 Convolution 256 4x4 2x2 Yes ReLU 2
4 Convolution 512 4x4 2x2 Yes ReLU 3
5 Dense 100 - - Yes ReLU 4, S
µ Dense 6 - - No - 5
σ2 Dense 6 - - No - 5

Output (Z1|X,S) Sample Z1|X,S - - - - - µ, σ2

PX|Z,S 1 Dense 7x7x256 - - No - Z, S
2 Transpose Convolution 128 4x4 2x2 Yes ReLU 1
3 Transpose Convolution 64 4x4 2x2 Yes ReLU 2
4 Convolution 64 4x4 1x1 Yes ReLU 3
5 Convolution 1 4x4 1x1 No Sigmoid 4

Table 9: HCV architecture for the MNIST dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

QZ|X,S 1 Convolution 64 4x4 2x2 Yes ReLU X
2 Convolution 128 4x4 2x2 Yes ReLU 1
3 Convolution 256 4x4 2x2 Yes ReLU 2
4 Convolution 512 4x4 2x2 Yes ReLU 3
µ Dense 6 - - No - 4
σ2 Dense 6 - - No - 4

Output (Z1|X,S) Sample Z1|X,S - - - - - µ, σ2

PX|Z,S 1 Dense 7x7x256 - - No - Z, S
2 Transpose Convolution 128 4x4 2x2 Yes ReLU 1
3 Transpose Convolution 64 4x4 2x2 Yes ReLU 2
4 Convolution 64 4x4 1x1 Yes ReLU 3
5 Convolution 1 4x4 1x1 No Sigmoid 4

Table 10: FairDisCo architecture for the MNIST dataset.
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Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

(f1, f2) 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 256 5x5 2x2 Yes ReLU 1
3 Convolution 512 5x5 2x2 Yes ReLU 2
4 Convolution 1024 5x5 2x2 Yes ReLU 3
5 Dense 71 - - - - 4

f3 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 1x1 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 256 5x5 1x1 Yes ReLU 3
5 Convolution 512 5x5 2x2 Yes ReLU 4
6 Convolution 512 3x3 1x1 Yes ReLU 5
7 Convolution 1024 3x3 2x2 Yes ReLU 6
8 Convolution 1024 3x3 1x1 Yes ReLU 7
9 Dense 32 - - - - 8

g 1 Dense 8x8x1024 - - No - f1, f2, f3
2 Transpose Convolution 512 5x5 2x2 Yes LeakyReLU 1
3 Residual Block 512 5x5, 1x1 1x1 Yes LeakyReLU 2
4 Transpose Convolution 256 5x5 2x2 Yes LeakyReLU 3
5 Residual Block 256 5x5, 1x1 1x1 Yes LeakyReLU 4
6 Transpose Convolution 128 5x5 2x2 Yes LeakyReLU 5
7 Residual Block 128 3x3, 1x1 1x1 Yes LeakyReLU 6
8 Transpose Convolution 64 5x5 2x2 Yes LeakyReLU 7
9 Residual Block 64 3x3, 1x1 1x1 Yes LeakyReLU 8

10 Convolution 3 3x3 1x1 No Sigmoid 9

Discriminator 1 Dense 256 - - No ReLU f3
2 Dense 256 - - No ReLU 1
3 Dense 256 - - No ReLU 2
4 Dense 256 - - No ReLU 3
5 Dense 1 - - No - 4

Table 11: WFAE architecture for the VGGFace2 dataset.

Map Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

Encoder f 1 Convolution 128 5x5 2x2 Yes ReLU X
2 Convolution 128 5x5 1x1 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 256 5x5 1x1 Yes ReLU 3
5 Convolution 512 5x5 2x2 Yes ReLU 4
6 Convolution 512 3x3 1x1 Yes ReLU 5
7 Convolution 1024 3x3 2x2 Yes ReLU 6
8 Convolution 1024 3x3 1x1 Yes ReLU 7
9 Dense 96 - - - - 8

Decoder g 1 Dense 8x8x1024 - - No - S,Z
2 Transpose Convolution 512 5x5 2x2 Yes LeakyReLU 1
3 Residual Block 512 5x5, 1x1 1x1 Yes LeakyReLU 2
4 Transpose Convolution 256 5x5 2x2 Yes LeakyReLU 3
5 Residual Block 256 5x5, 1x1 1x1 Yes LeakyReLU 4
6 Transpose Convolution 128 5x5 2x2 Yes LeakyReLU 5
7 Residual Block 128 3x3, 1x1 1x1 Yes LeakyReLU 6
8 Transpose Convolution 64 5x5 2x2 Yes LeakyReLU 7
9 Residual Block 64 3x3, 1x1 1x1 Yes LeakyReLU 8

10 Convolution 3 3x3 1x1 No Sigmoid 9

Discriminator 1 Dense 384 - - No ReLU Z
2 Dense 384 - - No ReLU 1
3 Dense 384 - - No ReLU 2
4 Dense 384 - - No ReLU 3
5 Dense 7 - - No - 4

Table 12: Fader Network architecture for the VGGFace2 dataset.
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