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distinguished older gentleman in
a vintage study, surrounded by
books and dim lighting [...]

saharian landscape at sunset , 4k
ultra realism, BY Anton Gorlin,
trending on artstation, [...]

chinese red blouse, in the style
of dreamy and romantic compo-
sitions, floral explosions. [...]

futuristic simple multilayered ar-
chitecture, habitation cabin in
the trees, dramatic soft light [...]

poster art for the collection of
the asian woman, dynamic anime
[...], mysterious realism, [...]

A fantasy-themed portrait of a
female elf with golden hair and
violet eyes, her attire [...]

very beautiful girl in [...], white
short top, charismatic personal-
ity, professional photo, [...]

steampunk atmosphere, a stun-
ning girl with a mecha musume
aesthetic, adorned in [...]

(Pirate ship sailing into a biolu-
minescence sea with a galaxy in
the sky), epic, 4k, ultra.

tshirt design, colourful, no back-
ground, yoda with sun glasses,
dancing at a festival [...] 8k.

Figure 1: Example generation results of resolution 512x512 from the one-step generator distilled from Stable
Diffusion 2.1-base using the proposed method: Score identity Distillation with Long-Short Guidance.

ABSTRACT

Diffusion-based text-to-image generation models trained on extensive text-image
pairs have demonstrated the ability to produce photorealistic images aligned with
textual descriptions. However, a significant limitation of these models is their
slow sample generation process, which requires iterative refinement through the
same network. To overcome this, we introduce a data-free guided distillation
method that enables the efficient distillation of pretrained Stable Diffusion models
without access to the real training data, often restricted due to legal, privacy, or cost
concerns. This method enhances Score identity Distillation (SiD) with Long and
Short Classifier-Free Guidance (LSG), an innovative strategy that applies Classifier-
Free Guidance (CFG) not only to the evaluation of the pretrained diffusion model
but also to the training and evaluation of the fake score network. We optimize
a model-based explicit score matching loss using a score-identity-based approxi-
mation alongside our proposed guidance strategies for practical computation. By
exclusively training with synthetic images generated by its one-step generator, our
data-free distillation method rapidly improves FID and CLIP scores, achieving
state-of-the-art FID performance while maintaining a competitive CLIP score.
Notably, the one-step distillation of Stable Diffusion 1.5 achieves an FID of 8.15
on the COCO-2014 validation set, a record low value under the data-free setting.

1 INTRODUCTION

The pursuit of generating high-resolution, photorealistic images that matches the textual descriptions
has driven the machine learning community in developing powerful text-to-image (T2I) generative
models. T2I diffusion models (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Rombach
et al., 2022; Podell et al., 2024) are currently leading the way in delivering unprecedentedly visual
quality, diverse generation, and accurate text-image correspondences. They are renowned for their
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straightforward implementation and stability during optimization, and they receive substantial acclaim
for the robust support from the open-source community (Rombach et al., 2022; Podell et al., 2024).

Despite these advantages, a significant limitation of diffusion models, including those used for T2I
tasks, is their slow sampling process, which involves iterative refinement through repeated passes
of the generation network. Originally, this required thousands of stochastic sampling steps (Song &
Ermon, 2019; Ho et al., 2020; Dhariwal & Nichol, 2021; Song et al., 2021a). Recent advancements in
ODE-based deterministic samplers have significantly reduced the required number of sampling steps
to just tens or hundreds (Song et al., 2021a; Liu et al., 2022a; Lu et al., 2022b; Karras et al., 2022).
To further reduce the number of steps below ten, or even down to one, the focus has shifted toward
distilling the iterative-refinement based multi-step T2I generative progress, using a wide variety of
acceleration techniques (Zheng et al., 2023b; Meng et al., 2023; Liu et al., 2022b; Luo et al., 2023b;
Nguyen & Tran, 2024; Sauer et al., 2023b; Xu et al., 2023; Yin et al., 2023). However, they often
result in clearly reduced ability to match the original data distribution, reflected as clearly worsening
FIDs. All of them, with the exception of SwiftBrush (Nguyen & Tran, 2024), also require access to
real images or the assistance of extra regression or adversarial losses.

It is commonly believed that student models used for distillation sacrifice performance for increased
speed. However, recent findings from Score identity Distillation (SiD) (Zhou et al., 2024) present a
notable discovery. The SiD-based single-step student model, although trained in a data-free manner,
not only simplifies the multi-step generation process required by the teacher diffusion model, EDM
by Karras et al. (2022), but also excels in performance. It surpasses the teacher model in terms of
Fréchet inception distance (FID) (Heusel et al., 2017) on the CIFAR10-32x32, FFHQ-64x64, and
AFHQ-v2 64x64 datasets. It only slightly underperforms in FID in comparison on ImageNet 64x64.

The success of SiD in distilling EDM diffusion models for non-T2I generation in the pixel space has
inspired us to adapt it to open-source T2I latent diffusion models, specifically Stable Diffusion (SD)
versions 1.5 and 2.1-base, aiming to significantly enhance their generation speed while maintaining
performance. However, adapting SiD poses several notable challenges: first, SiD-EDM does not
incorporate classifier-free guidance (CFG) (Ho & Salimans, 2022), which is integral to SD; second,
SiD has primarily been applied to distill pre-trained EDM models, which utilize noise scheduling and
preconditioning methods markedly different from the DDPM noise scheduling employed in SD; third,
both the complexities and sizes of the data and model in EDM are much smaller than those in SD.

To address these challenges, we explore the integration of CFG and SiD for T2I diffusion distillation.
In addition to testing the conventional approach of enhancing CFG on the pretrained score network,
we introduce a novel strategy of reducing CFG on the fake score network, as well as a combined
approach that employs both strategies, which we refer to as long and short guidance (LSG). This new
method efficiently distills SD models into one-step T2I generators without requiring training data.
Surprisingly, it achieves a new benchmark on the COCO-2014 validation set with a zero-shot FID
score of 8.15, the lowest to date for one-step, data-free distillation, despite not relying on additional
regression or adversarial losses, nor real data—key components of recent distillation techniques.

The development of our SiD-LSG approach builds significantly on prior work in generative models,
CFG, and acceleration methods. A comprehensive review of related work is provided in Appendix B.

2 DATA-FREE GUIDED SCORE IDENTITY DISTILLATION

We explore the use of SiD and CFG to distill SD, the leading open-source platform for T2I diffusion
models that operate on the latent space of an image encoder-decoder (Rombach et al., 2022), with a
specific focus on the data-free setting. Our focus is specifically on SD-v1-5 (SD1.5) and SD-v2-1-base
(SD2.1-base), which are two versions extensively benchmarked for diffusion distillation.

A significant hurdle involves incorporating CFG (Ho & Salimans, 2022), essential for T2I diffusion
models to enhance their photorealism and text alignment, into the SiD loss functions. The second
challenge is adapting SiD, initially tested with EDM noise scheduling, to the DDPM scheduling
employed by SD. Addressing these challenges primarily requires modifying the derivation and loss
functions of SiD. A third challenge arises because SD models are significantly larger and trained on
bigger, more complex, and higher resolution data. Overcoming this challenge requires addressing
numerous technical details, such as establishing the minimum hardware requirements and configuring
the appropriate software settings to align with the constraints of the available computing platforms.
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Figure 2: Rapid advancements in distilling Stable Diffusion 1.5 are showcased by the proposed SiD method that
incorporates long-short guidance (LSG). Key parameters include a batch size of 512, a learning rate of 1e-6, and
an LSG scale of 2. This data-free approach achieves a zero-shot FID of 9.56 on the COCO-2014 validation set,
along with a competitive CLIP score of 0.313. By reducing the LSG scale to 1.5, the FID can be further lowered
to a record 8.15 among data-free diffusion distillation models, with a corresponding CLIP score of 0.304. The
series of images, generated from the same set of random noises post-training the SiD generator with varying
counts of synthesized images, illustrates progressions at 0, 0.02, 0.1, 0.2, 0.5, 1, 2, 3, 4, and 5 million images.
These are equivalent to 0, 40, 200, 400, 1k, 2k, 4K, 6K, 8k, and 10k training iterations respectively, organized
from the top left to the bottom right. The progression of FIDs and CLIPs is detailed in the orange solid curves in
the left plot of Fig. 4. The corresponding COCO-2014 validation text prompts are listed in Appendix F.

2.1 PRELIMINARIES ON SCORE IDENTITY DISTILLATION

We denote c as the text representation of a pretrained text encoder, such as CLIP (Radford et al., 2021).
Our objective is to distill a student model pθ(xg | c) from a pretrained T2I diffusion model, such as
SD1.5, which can generate text-guided random samples in a single step as: xg = Gθ(z, c), z ∼ p(z),
where Gθ is a neural network parameterized by θ that deterministically transforms noise z ∼ p(z)
into generated data xg under the guidance of text c. The distribution of xg is often implicit (Mohamed
& Lakshminarayanan, 2016; Tran et al., 2017; Yin & Zhou, 2018), lacking an analytic probability
density function (PDF) but is straightforward to sample from. The marginals of the real and generated
data under the forward diffusion process can be expressed as:

pdata(xt | c) =
∫
q(xt |x0)pdata(x0 | c) dx0, pθ(xt | c) =

∫
q(xt |xg)pθ(xg | c) dxg.

This structure, characterized by explicit conditional layers but implicit marginals, exemplifies a
semi-implicit distribution (Yin & Zhou, 2018; Yu et al., 2023). This concept is employed by Zhou
et al. (2024) to develop SiD, a method whose single-step data-free distillation capability has so far
been demonstrated only on non-T2I diffusion models based on EDM.

We define the forward diffusion transition as q(xt |x0) = N (atx0, σ
2
t I), and unlike in SiD, which

adheres to EDM noise scheduling where at = 1, we allow at to vary within [0, 1] to align with the
DDPM scheduling used by SD. This necessitates generalizing the equations used in SiD by permitting
at ̸= 1. We note that other diffusion types, such as categorical (Austin et al., 2021; Hoogeboom et al.,
2021; Gu et al., 2022; Hu et al., 2022), Poisson (Chen & Zhou, 2023), and beta diffusions (Zhou
et al., 2023), also align with the semi-implicit framework and can potentially be adapted similarly.

Score identities. The scores S(xt) := ∇xt ln pdata(xt | c) and ∇xt ln pθ(xt | c) are generally
unknown. However, the score of the forward conditional q(xt |x) ∼ N (x, σ2

t I) is analytic:

If xt = atx+ σtϵt, ϵt ∼ N (0, I), then ∇xt ln q(xt |x) = σ−2t (atx− xt) = −σ−1t ϵt.

Exploiting the semi-implicit constructions, we follow SiD to present the following three identities:

E[x0 |xt, c] =
∫
x0q(x0 |xt, c) dx0 = (xt + σ2

t∇xt ln pdata(xt | c))/at,
E[xg |xt, c] =

∫
xgq(xg |xt) dxg = (xt + σ2

t∇xt ln pθ(xt | c))/at,
Epθ(xt | c)

[
uT (xt)∇xt ln pθ(xt | c)

]
= Eq(xt |xg)pθ(xg | c)

[
uT (xt)∇xt ln q(xt |xg, c)

]
.

MESM loss. A pretrained T2I diffusion model, such as SD, provides a score network Sϕ parameter-
ized by ϕ that estimates the true data score as

−σt∇xt ln pdata(xt | c) ≈ −σtSϕ(xt, c) := σ−1t (xt − atfϕ(xt, t, c)) = ϵϕ(xt, c).

It adopts fϕ(xt, t, c) as the functional approximation of the conditional expectation of the real
image x0 given noisy image xt and text c, expressed as E[x0 |xt, c], adopts ϵϕ(xt, t, c) to predict
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the noise inside xt, and adopts −σ−1t ϵϕ(xt, c) as the functional approximation of the true score
∇xt ln pdata(xt | c). Given time step t ∼ p(t) and text c, we define the model-based explicit score-
matching (MESM) distillation loss, which is a form of Fisher divergence (Lyu, 2009; Holmes &
Walker, 2017; Yang et al., 2019; Yu & Zhang, 2023), as

Lθ = Ext∼pθ(xt)[∥Sϕ(xt, c)−∇xt ln pθ(xt | c)∥22]. (1)

Loss approximation for distillation. The MESM loss in (1) is in general intractable to compute as
∇xt ln pθ(xt | c) is unknown. To denoise the noisy fake data xt generated as

xt = atxg + σtϵt, ϵt ∼ N (0, I), xg = Gθ(z, c), z ∼ p(z), (2)

there exists an optimal denoising network defined as fψ∗(θ)(xt, t, c) = E[xg |xt, c] = (xt +

σ2
t∇xt ln pθ(xt | c))/at. Given this optimal denoising network, the MESM loss in (1) would become

Lθ = Ext∼pθ(xt)[∥atσ
−2
t (fϕ(xt, t, c)− fψ∗(θ)(xt, t, c)∥22]. (3)

As ψ∗(θ) is unknown in practice, we follow SiD to alternates between optimizing ψ and θ using

min
ψ

L̂ψ(xt, c, t) = a2t
σ2
t
∥fψ(xt, t, c)− xg∥22 = ∥ϵψ(xt, t, c)− ϵt∥22, (4)

min
θ
L̃θ(xt, t, ϕ, ψ) = ω(t)

a2t
σ4
t
(fϕ(xt, t, c)− fψ(xt, t, c))

T (fψ(xt, t, c)− xg), (5)

= ω(t) 1
σ2
t
(ϵψ(xt, t, c)− ϵϕ(xt, t, c))

T (ϵt − ϵψ(xt, t, c)),

where xt is generated as in (2) and ω(t) are weighted coefficients that will be specified.

2.2 SID WITH CLASSIFIER-FREE GUIDANCE

An essential practice for enhancing photorealism and alignment with text instructions in T2I diffusion
models involves incorporating CFG into reverse diffusion. This principle also applies to distillation
methods for these models, where CFG must be integrated into the appropriate terms of their distil-
lation loss functions. Therefore, a key distinction in the distillation of SD, compared to previous
unconditional and label-conditional diffusion models, lies in the need to introduce CFG.

SiD presents a unique opportunity to apply CFG to enhance its T2I generation performance. First,
we note CFG enhances text guidance by modifying the distribution of xt given text c as

p(xt | c, κ) ∝ p(c |xt)κp(xt) ∝
(p(xt | c)
p(xt)

)κ
p(xt),

which means ∇xt ln p(xt | c, κ) = ∇xt ln p(xt) + κ[∇xt ln p(xt | c) − ∇xt ln p(xt)]. Second,
the score network, when reaching its optimal, is related to the true score as f(xt, t, c) =
a−1t (xt + σ2

t∇xt ln p(xt | c)) = a−1t (xt − σtϵ(xt, t, c)). Therefore, with “·” representing ϕ or ψ,
we can express the score network f·(xt, t, c) under CFG with scale κ as

f·,κ(xt, t, c) = f·(xt, t) + κ[f·(xt, t, c)− f·(xt, t)]. (6)

Similarly, for noise prediction network, we have ϵ·,κ(xt, t, c) = ϵ·(xt, t)+κ[ϵ·(xt, t, c)−ϵ·(xt, t)].
With CFG, the score and noise prediction networks are related in the same way, which means that
ϵ·,κ(xt, t, c) = σ−1t (xt − atf·,κ(xt, t, c)) and f·,κ(xt, t, c) = a−1t (xt − σtϵ·,κ(xt, t, c)).

Inspecting the two losses in (4) and (5) suggests four potential places to inject CFG. More specifically,
with κ1, κ2, κ3, κ4 ∈ R+, where R+ = {x : x ≥ 0}, we modify the losses with CFGs as

L̂ψ(xt, c, t) = a2t
σ2
t
∥fψ,κ1(xt, t, c)− xg∥22,= ∥ϵψ,κ1(xt, t, c)− ϵt∥22, (7)

L̃θ(xt, t, ϕ, ψ) = ω(t)
a2t
σ4
t
(fϕ,κ4

(xt, t, c)− fψ,κ2
(xt, t, c))

T (fψ,κ3
(xt, t, c)− xg). (8)

2.3 LONG AND SHORT GUIDANCE

Previous works equipped with a fake score network fψ typically only consider adding CFG when
evaluating the pretrained score network fϕ, such as in DMD (Yin et al., 2023). In the context of
SiD, this corresponds to setting κ1 = κ2 = κ3 = 1 and κ4 > 1. In this paper, we discover that a
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Algorithm 1 SiD-LSG: Score identity Distillation with Long-Short classifier-free Guidance
Input: Pretrained score network fϕ, generator Gθ , fake score network fψ , tinit = 625, tmin = 20, tmax = 979, guidance scales
κ1 = κ2 = κ3 = κ4 = 1.5
Initialization θ ← ϕ, ψ ← ϕ
repeat

Sample z ∼ N (0, I) and c, replacing c with the embedding of an empty text string 10% of the time; Define xg = Gθ(z, c) =
fθ(σtinitz, tinit, c); Sample t ∈ {tmin, . . . , tmax} and ϵt ∼ N (0, I), and let xt = atxg + σtϵt

Update ψ with ψ = ψ − η∇ψL̂ψ , where

L̂ψ =
a2t
σ2t
∥fψ,κ1 (xt, t, c)− xg∥22 = ∥ϵψ,κ1 (xt, t, c)− ϵt∥22

Sample z ∼ N (0, I) and c, and let xg = Gθ(z, c) = fθ(σtinitz, tinit, c); Sample t ∈ {tmin, . . . , tmax} and ϵt ∼ N (0, I),
compute ωt with (9), and let xt = atxg + σtϵt
UpdateGθ with θ = θ − η∇θL̃θ , where

L̃θ =
ω(t)a2t
σ4t

(fϕ,κ4 (xt, t, c)− fψ,κ2 (xt, t, c))
T (fψ,κ3 (xt, t, c)− xg)

=
ω(t)

σ2t
(ϵψ,κ2 (xt, t, c)− ϵϕ,κ4 (xt, t, c))

T (ϵt − ϵψ,κ3 (xt, t, c))

until processing 10M fake images or the training budget is exhausted

Output: Gθ

broad spectrum of combinations of κ1, κ2, κ3, and κ4 can all significantly enhance performance
compared to not using any CFG at all, which means setting κ1 = κ2 = κ3 = κ4 = 1. These different
combinations are found to lead to different balances of minimizing FID, which reflects how well the
generated data match the training data in distribution, and maximizing the CLIP score (Radford et al.,
2021), which reflects how well the generated images follow the textual guidance. This flexibility to
accommodate various CFG combinations expands the design space for SD distillation, balancing
generation quality and text adherence. However, given the vastness of the search space, we are
motivated to develop strategies that constrain the scope of exploration. We present three such
strategies, acknowledging that there may be more effective approaches not explored in this paper.

Long strategy: Enhancing CFG of the pretrained score network fϕ. Aligning with established
practices, the most common approach involves enhancing the CFG of the pretrained score network fϕ.
An example setting under this strategy in SiD is: κ1 = κ2 = κ3 = 1 and κ4 = 3. The rationale is that
by biasing the teacher fϕ to favor generations more aligned with c using a CFG scale greater than 1,
such as κ4 = 3, the student generator is compelled to follow suit. We will present experimental
results to demonstrate the effectiveness of this strategy while also discussing its limitations.

Short strategy: Weakening CFG of the fake score network fψ. With the availability of a fake
score network fψ , we have developed a new strategy to enhance SiD’s T2I generation capabilities by
reducing the CFG of fψ in SiD. An exemplary configuration is setting κ1 = κ4 = 1 while allowing
κ2 = κ3 to vary within (0, 1). The underlying idea is that by diminishing fψ’s capacity to detect
generations aligned with c through a reduced CFG scale (0 < κ2 < 1), the student generator is
incentivized to produce images that better align with the textual guidance to compensate for this
reduction. We will present experiments to assess the efficacy and limitations of this strategy.

Long and short CFGs. We introduce an innovative strategy termed long-short guidance (LSG),
where we enhance CFG during the training of fψ by setting κ1 > 1, and maintain CFGs on fψ and fϕ
during the training of Gθ at the same or a lower scale by setting 1 ≤ κ2 = κ3 = κ4 ≤ κ1. The logic
behind LSG is that enhancing the CFG of fψ during training effectively reduces its CFG at evaluation
time when used at the same or a reduced level. To our knowledge, we are the first to incorporate CFG
into the training of the fake score network fψ. LSG has been shown to effectively balance reducing
FID scores while increasing CLIP scores, and will therefore be used as the default method.

We refer the reader to Appendix C for further discussion on the long and short CFG strategies.

3 EXPERIMENTS

We summarize the parameter settings, such as batch size, learning rate, and optimizer configurations,
in Table 4 in Appendix D. Unless specified in ablation studies, the settings are uniformly applied
across all guidance strategies. We present the details of our method in Algorithm 1, where we
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Figure 3: Left (Long CFG of the true score network): This plot illustrates the gradual decline in FID and the
corresponding rise in CLIP scores, each influenced by different CFGs applied to the true score network. κ values
not specified in the legend are set to 1. FID scores are plotted on the primary y-axis, while CLIP scores are
displayed on the secondary y-axis in corresponding line styles but with slight transparency. Together, these lines
demonstrate how various CFGs impact model performance. Right (No CFG; Short CFG of the fake score
network with κ2 = κ3 ∈ (0, 1); a simple form of LSG that sets κ1 > 1): Analogous plot to the left where
the CFGs of the fake score network are not applied, weakened during evaluation, or enhanced during training.
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Figure 4: The plot with the proposed long-short guidance (LSG) demonstrates the FID and CLIP progressions
of SiD in SD1.5 (left panel) and SD2.1-base (right panel).

generate an image in one step and generalize the setting in DMD and SiD to set ω(t) as

xg = Gθ(z, c) = fθ(σtinitz, tinit, c), z ∼ N (0, I); ω(t) =
σ4
t

a2t

C
∥xg−fϕ,κ4 (xt,t,c)∥1,sg

, (9)

whereC is the total number of pixels in xg . We initialize both ψ and θ using the pretrained ϕ from SD.
We have tested tinit ∈ {354, 550, 625, 675, 800, 900, 999} and found that the model’s performance
under FP32 optimization is not sensitive to these choices. To align with the setting in SiD, we set
tinit = 625, which would result in σtinit/atinit = 2.5 under the DDPM schedule used to train SD1.5.
We conduct a comprehensive study to evaluate the performance of SiD using the proposed LSG for
distilling SD1.5. Additionally, we apply the same LSG scales to distill SD2.1-base, further assessing
the adaptability and effectiveness of our approach across different model versions.

We consider a standard setting that utilizes the Aesthetics6+ prompt (Cherti et al., 2023) for train-
ing and evaluates performance by computing zero-shot FID on the COCO-2014 validation set.
We adhere to the standard protocol by generating 30k images to compare with the 40,504 im-
ages in the COCO-2014 validation set for calculating zero-shot FID. Additionally, we employ the
ViT-g-14-laion2b_s12b_b42k encoder (Ilharco et al., 2021; Cherti et al., 2023) to compute
the CLIP score (Radford et al., 2021). The FID and CLIP scores presented in the figures are calculated
using randomly sampled prompts from the COCO-2014 validation set. When reporting the FID and
CLIP results of SiD in Table 1, we use the exact evaluation code1 provided by GigaGAN (Kang et al.,
2023), where a pre-defined list of 30k text prompts selected from the COCO-2014 validation set is
used to generate the 30k images, which are used for computing FID and CLIP scores with images
from the validation set as the reference.

3.1 LONG AND/OR SHORT GUIDANCE STRATEGIES

No CFG. Figure 3 demonstrates that without CFG, where κ1 = κ2 = κ3 = κ4 = 1, results are
underwhelming, highlighting the need for CFG in SiD to distill T2I diffusion models.

1https://github.com/mingukkang/GigaGAN/tree/main/evaluation
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Table 1: Comparison of image generation methods across various metrics. Inference times are estimated using a
Nvidia A100 GPU as reference. The numbers of the methods marked with † are produced by running the publicly
available model checkpoints. Other data are sourced from corresponding scientific papers with comparisons as
reported. The value followed by symbol ∼ indicates it is estimated based on the plots shown in the paper.

Method Res. Time (↓) # Steps # Param. FID (↓) CLIP (↑)

Autoregressive Models
DALL·E (Ramesh et al., 2021) 256 - - 12B 27.5 -
CogView2 (Ding et al., 2021) 256 - - 6B 24.0 -
Parti-750M (Yu et al., 2022) 256 - - 750M 10.71 -
Parti-3B (Yu et al., 2022) 256 6.4s - 3B 8.10 -
Parti-20B (Yu et al., 2022) 256 - - 20B 7.23 -
Make-A-Scene (Gafni et al., 2022) 256 25.0s - - 11.84 -

Masked Models
Muse (Chang et al., 2023) 256 1.3 24 3B 7.88 0.32

Diffusion Models
GLIDE (Nichol et al., 2022) 256 15.0s 250 5B 12.24 -
DALL·E 2 (Ramesh et al., 2022) 256 - 250+27 5.5B 10.39 -
LDM (Rombach et al., 2022) 256 3.7s 250 1.45B 12.63 -
Imagen (Ho et al., 2022) 256 9.1s - 3B 7.27 -
eDiff-I (Balaji et al., 2022) 256 32.0s 25+10 9B 6.95 -

Generative Adversarial Networks (GANs)
LAFITE (Zhou et al., 2022) 256 0.02s 1 75M 26.94 -
StyleGAN-T (Sauer et al., 2023a) 512 0.10s 1 1B 13.90 ∼0.293
GigaGAN (Kang et al., 2023) 512 0.13s 1 1B 9.09 -

Distilled Stable Diffusion 2.1
†ADD (SD-Turbo) (Sauer et al., 2023b) 512 - 1 - 16.25 0.335

Distilled Stable Diffusion XL
†ADD (SDXL-Turbo) (Sauer et al., 2023b) 512 - 1 - 19.08 0.343

Stable Diffusion 1.5 and its accelerated or distilled versions
SD1.5 (CFG=3) (Rombach et al., 2022) 512 2.59s 250 0.9B 8.78 -
SD1.5 (CFG=7.5) (Rombach et al., 2022) 512 2.59s 250 0.9B 13.45 0.322
DPM++ (4 step) (Lu et al., 2022a) 512 0.26s 4 0.9B 22.44 0.31
UniPC (4 step) (Zhao et al., 2023) 512 0.26s 4 0.9B 22.30 0.31
LCM-LoRA (4 step) (Luo et al., 2023b) 512 0.19s 4 0.9B 23.62 0.30
LCM-LoRA (1 step) (Luo et al., 2023b) 512 0.07s 1 0.9B 77.90 0.24
InstaFlow-0.9B (Liu et al., 2023) 512 0.09s 1 0.9B 13.10 0.28
InstaFlow-1.7B (Liu et al., 2023) 512 0.12s 1 1.7B 11.83 -
UFOGen (Xu et al., 2023) 512 0.09s 1 0.9B 12.78 -
DMD (CFG=3) (Yin et al., 2023) 512 0.09s 1 0.9B 11.49 -
DMD (CFG=8) (Yin et al., 2023) 512 0.09s 1 0.9B 14.93 0.32
BOOT (Gu et al., 2023) 512 0.09s 1 0.9B 48.20 0.26
Guided Distillation (Meng et al., 2023) 512 - 1 0.9B 37.3 0.27
SiD-LSG (κ = 1.5) 512 0.09s 1 0.9B 8.71 0.302
SiD-LSG (κ = 1.5, double the training time) 512 0.09s 1 0.9B 8.15 0.304
SiD-LSG (κ = 2) 512 0.09s 1 0.9B 9.56 0.313
SiD-LSG (κ = 3) 512 0.09s 1 0.9B 13.21 0.314
SiD-LSG (κ = 4.5) 512 0.09s 1 0.9B 16.59 0.317

Stable Diffusion 2.1-base and its distilled versions
SD2.1-base (Rombach et al., 2022) 512 0.09s 1 0.9B 202.14 0.08
SD2.1 base (Rombach et al., 2022) 512 0.77s 25 0.9B 13.45 0.30
SwiftBrush (Nguyen & Tran, 2024) 512 0.09s 1 0.9B 16.67 0.29
SiD-LSG (κ = 1.5) 512 0.09s 1 0.9B 9.52 0.308
SiD-LSG (κ = 2) 512 0.09s 1 0.9B 10.97 0.318
SiD-LSG (κ = 3) 512 0.09s 1 0.9B 13.50 0.321
SiD-LSG (κ = 4.5) 512 0.09s 1 0.9B 16.54 0.322

Long the CFG of the pretrained score network. For the long strategy, we set κ1 = κ2 = κ3 = 1
and κ4 > 1, specifically exploring values of κ4 from the set {2, 2.5, 3, 3.5, 7.5}. As shown in the
left panel of Figure 3, our experiments results indicate that this setup yields highly competitive
performance, even after processing as few as 2.5 million fake images (approximately 5,000 iterations
with a mini-batch size of 512). The parameter κ4 plays a crucial role in balancing FID and CLIP
scores. For achieving lower FID scores, κ4 = 2 can yield an FID close to 10, while for higher CLIP
scores, κ4 = 7.5 can result in a CLIP score around 0.31. However, our primary objective is to devise
a strategy that lowers FID while minimizing CLIP degradation.

Short the CFG of the fake score network. For the short strategy, we set κ1 = κ4 = 1 and
explore κ2 = κ3 ∈ {0.5, 0.125}. As illustrated in the right panel of Figure 3, this approach delivers
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Table 2: Comparison of HPSv2 score and Precision/Recall on the COCO-2014 validation set. The HPSv2 scores
of ADD (SD-Turbo) are produced based on the publicly available model checkpoint. The HPSv2 scores of the
other baselines are quoted from SwiftBrush (Nguyen & Tran, 2024). The Precision and Recall on COCO-2014
are obtained using the 30K images generated by the corresponding model checkpoints.

Teacher Student Human Preference Score v2 ↑ COCO-2014 Precision & Recall ↑
Anime Photo Concept Art Paintings Precision Recall

SD2.1 ADD (SD-Turbo) (Sauer et al., 2023b) 27.48 26.89 26.86 27.46 0.65 0.35
SD1.5 LCM (Luo et al., 2023b) 22.61 22.71 22.74 22.91 - -
SD1.5 InstaFlow (Liu et al., 2023) 25.98 26.32 25.79 25.93 0.53 0.45
SD1.5 BOOT (Gu et al., 2023) 25.29 25.16 24.40 24.61 - -

SD2.1-base SwiftBrush (Nguyen & Tran, 2024) 26.91 27.21 26.32 26.37 0.47 0.46

SD1.5

SiD-LSG (κ = 1.5) 26.58 26.80 26.02 26.02 0.59 0.52
SiD-LSG (κ = 1.5, double the training time) 26.58 26.80 26.01 26.02 0.60 0.53
SiD-LSG (κ = 2) 26.94 27.03 26.35 26.27 0.64 0.48
SiD-LSG (κ = 3) 27.10 27.11 26.47 26.46 0.65 0.40
SiD-LSG (κ = 4.5) 27.39 27.30 26.65 26.58 0.67 0.34

SD2.1-base
SiD-LSG (κ = 1.5) 26.65 26.87 26.19 26.14 0.60 0.49
SiD-LSG (κ = 2) 26.90 27.08 26.43 26.47 0.62 0.44
SiD-LSG (κ = 3) 27.27 27.22 26.75 26.72 0.64 0.38
SiD-LSG (κ = 4.5) 27.42 27.31 26.81 26.79 0.63 0.34

competitive performance, with κ2 dictating the balance between FID and CLIP scores. However,
compared to the long strategy, this configuration generally produces inferior results, as suggested by
lower CLIP scores when FIDs are controlled to similar levels.

LSG: Long and Short classifier-free Guidance. Below, we explore how to effectively integrate the
long and short strategies to enhance text guidance in diffusion distillation. Initially, we discovered
a “simplest” form of LSG strategy by amplifying the CFG during the training of fψ. Specifically,
we set κ1 to 2 or 3, while keeping κ2 = κ3 = κ4 at 1. As illustrated in the right panel of Figure 3,
setting κ1 = 3 (green lines) proves as effective as the short strategy with κ2 = κ3 = 0.125 (red
lines), and κ1 = 2 (black lines) outperforms the short strategy with κ2 = κ3 = 0.5 (blue lines) and is
comparable to the long strategy with κ4 = 3 (red lines in the left panel). These findings validate this
“simplest” LSG as an effective guidance strategy in text-guided diffusion distillation.

Nevertheless, merely matching the performance of the best long or short strategy is insufficient
to justify adopting this “simplest” LSG. The efficacy of LSG is notably enhanced when the CFG
scale applied to the fake score network during its training exceeds 1 and is maintained throughout
the generator’s training. This strategy strikes an effective balance between minimizing FID and
maximizing CLIP. Specifically, for this recommended LSG configuration, we evaluated κ1 = κ2 =
κ3 = κ4 values within {1.5, 2, 3, 4.5}, presenting the results in Figure 4 for distilling both SD 1.5
and 2.1-base models. Comparisons between SD1.5 outcomes in the left panel of Figure 4 and those
in Figure 3 demonstrate superior performance with this LSG setting, indicated by higher CLIP scores
at controlled FID levels, and lower FID scores at controlled CLIP levels. Generally, within the range
of 1.5 to 4.5, a lower guidance scale correlates with better FID but worse CLIP, and vice versa, as
evidenced by the curves for both SD 1.5 and 2.1-base in Figure 4.

3.2 ABLATION STUDY

We investigate the impact of extended training durations under two different guidance scales, varia-
tions in batch size, and the selection of training prompts. Initially, we doubled the number of fake
images used to train the generator from 10M to 20M and monitored the evolution of the FID and
CLIP scores. From the left panel of Figure 5, we observe continuous improvements in both FID and
CLIP scores for an LSG of 1.5 when training is extended beyond 10M fake images, and sustained
enhancements in CLIP scores for an LSG of 2.0. Notably, by doubling the training input from 10M
to 20M fake images, the FID under LSG 1.5 decreased from 8.71 to a record low of 8.15 among
diffusion distillation methods in the data-free setting.

We assessed the effects of batch size by considering two additional settings: a batch size of 8192 with
a learning rate of 4e-6, a configuration used in SiD to distill the EDM model pretrained on ImageNet
64x64 (Zhou et al., 2024), and a batch size of 64 with a learning rate of 1e-6. The middle panel of
Figure 5 demonstrates that while there are initial differences in the convergence speed in terms of the
number of fake images processed, the performances eventually converge to similar levels. We note
that while smaller batch sizes may seem to converge faster, they require more time to process the same
number of images. This is due to more frequent model parameter updates, higher communication
costs between GPUs, and additional overheads typically associated with smaller batch sizes.
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Figure 5: This figure illustrates the progression of FID and CLIP scores during an ablation study of distilling
SD1.5 using SiD-LSG. The default settings of batch size 512, learning rate 1e-6, LSG scale 2, and Prompt
Aesthetics6+ are maintained unless specified otherwise. Left: The number of training fake images is doubled
from 10M to 20M under LSG scales of 1.5 and 2.0. Middle: Variations in batch size and learning rate settings
under LSG 1.5. Right: Comparison of training prompts Aesthetics6+, Aesthetics6.25+, and Aesthetics6.5+.

Lastly, we explored the effect of changing training prompts, shifting from the Aesthetics6+ prompts
to Aesthetics6.25+ and Aesthetics6.5+ prompts (Cherti et al., 2023). The performance, as shown in
the right panel of Figure 5, appears comparable across these variations. Specifically, under an LSG
of 2.0, switching from Aesthetics6+ to Aesthetics6.25+ enabled us to further reduce the FID from
the 9.56 reported in Table 1 to 9.21, although the CLIP score decreased slightly from 0.313 to 0.311,
indicating no significant performance disparity between them.

The results of the ablation study show that SiD-LSG has low sensitivity to variations in batch size and
training prompts and its performance could potentially be further enhanced with extended training.

3.3 QUANTITATIVE AND QUALITATIVE EVALUATIONS

We present comprehensive results from prior studies across various experimental settings, including
both one-step and multi-step generation methods. When evaluation results are available in existing
literature (Yin et al., 2023; Liu et al., 2023; Kang et al., 2023; Nguyen & Tran, 2024), we directly cite
them; otherwise, if model checkpoints are accessible, either publicly or provided upon request by
the authors, we utilize the evaluation code from GigaGAN to produce the reported results. For our
SiD-LSG, we select κ1 = κ2 = κ3 = κ4 ∈ {1.5, 2.0, 3.0, 4.5}.

For comparisons of FID and CLIP scores, the results are detailed in Table 1. Among all one-step
distillation methods, our approach notably excels in zero-shot text-conditioned image generation
on the COCO-2014 dataset, as reflected by both FID-30K and CLIP scores. Specifically, with the
guidance scale set as 2, our method attains FID scores as low as 9.56 and 10.97, and a CLIP score
above 0.31 and around 0.32, using SD 1.5 and 2.1-base as the pretrained backbones, respectively.
Notably, by setting the guidance scale to 1.5 and doubling the training time, our method achieves
a record-low data-free FID of 8.15, along with a CLIP score of 0.304, when distilling SD1.5.
These results remain highly competitive when compared to other generative approaches, such as
autoregressive models and GANs, and are even comparable to previous multi-step diffusion-based
sampling methods. Analyzing different κ values, we observe a trade-off between FID and CLIP
scores: smaller κ values generally yield better FID metrics, while larger values enhance CLIP scores,
aligning with past findings on the impact of guidance scale.

Beyond FID and CLIP scores, we also assess Precision and Recall (Kynkäänniemi et al., 2019) as
well as Human Preference Score (HPSv2) (Wu et al., 2023), which are presented in Table 2. We
reuse the same 30k images from previous evaluations for the Precision and Recall calculations. For
HPSv2, we follow their established protocol, generating images from 800 text prompts per category.
Except for ADD trained with real data and adversarial loss, our SiD-LSG models outperform other
baselines in HPSv2 scores across all categories, as well as in Precision and Recall metrics. Notably,
with κ = 4.5, SiD-LSG reaches peak performance in distilling SD2.1-base. Regarding Precision and
Recall, higher κ values lead to improved Precision, while lower values result in better Recall.

For qualitative verification, we utilize our models with κ = 4.5, selecting six prompts from across all
HPSv2 categories to generate images. To ensure a fair comparison, we maintain the same random
seed for image generation across all methods. The visual results are illustrated in Figure 6, where
SiD consistently shows superior text-image alignment and visual fidelity.
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Figure 6: Qualitative comparison of one-step distillation methods using identical text prompts and random seeds.

To contextualize the numerical differences in metrics such as FID, CLIP, and HPSv2, we present
Figures 7 and 8 to illustrate their implications for visual perception: the model with the best FID excels
in diversity, while the model with the best CLIP stands out in text alignment and aesthetic quality.

For broader impact, please refer to the discussion in Appendix A. For limitations and computational
requirements, please refer to a detailed discussion in Appendix E.

4 CONCLUSION AND FUTURE WORK

This paper introduces a novel data-free method combining Classifier-Free Guidance (CFG) with
Score identity Distillation (SiD) to efficiently distill Stable Diffusion models into effective one-step
generators. By leveraging our innovative Long and Short CFG strategies (LSG), we distilled these
models using only synthetic images generated by the one-step generator. This approach not only
validates the practical potential of SiD but also sets new benchmarks for data-free one-step diffusion
distillation, achieving remarkable zero-shot FID scores on the COCO-2014 validation set. Our
method enhances efficiency while maintaining generation performance, allowing learning from the
teacher model without the need for real images or the inclusion of additional regression or adversarial
losses. We will make our code and distilled models publicly available to facilitate further research.

In the data-free setting, we are exploring the use of SiD-LSG for privacy and security-sensitive tasks
where access to actual training data is not feasible. While we have advanced the capabilities of
data-free diffusion distillation, our baseline methods such as ADD and DMD, typically require the
use of real or teacher-synthesized images. Moving forward, we plan to lift the data-free constraint
and integrate SiD-LSG with adversarial training. This transition will involve the use of real images to
not only further enhance photo-realism and improve text alignment but also adapt SiD-LSG distilled
one-step generators to domains that differ from those used to train the teacher. This approach aims to
broaden the applicability and effectiveness of our SiD-LSG distilled diffusion models.
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Guided Score Identity Distillation for Data-Free One-Step
Text-to-Image Generation: Appendix

SD1.5 distilled with SiD-LSG (κ = 1.5): FID = 8.15, CLIP = 0.304

SD2.1-base distilled with SiD-LSG (κ = 4.5): FID = 16.54, CLIP = 0.322

Figure 7: Visual comparison of two SiD-LSG models: one preferred for FID and the other for CLIP. All images
are generated from the same text prompt: “A distinguished older gentleman in a vintage study, surrounded by
books and dim lighting, his face marked by wisdom and time. 8K, hyper-realistic, cinematic, post-production."
The model with a lower guidance scale of κ = 1.5, which achieves a record-low one-step-generation FID of 8.15
and a competitive CLIP score of 0.304, produces images that are more diverse but align less closely with specific
text details, such as “dim lighting.” Conversely, the model with a higher guidance scale of κ = 4.5, achieving a
high CLIP score of 0.322 and noted for state-of-the-art human preference scores (HPSv2) as shown in Table 2,
presents a relatively high FID of 16.54, indicating less diversity but superior text alignment and visual quality.

SD1.5 distilled with SiD-LSG (κ = 1.5): FID = 8.15, CLIP = 0.304

SD2.1-base distilled with SiD-LSG (κ = 4.5): FID = 16.54, CLIP = 0.322

Figure 8: Analogous to Figure 7, this plot compares two rows of images generated using two distinct guidance
scales, both conditioning on the same text prompt: “poster art for the collection of the asian woman, in the style
of gloomy, dark orange and white, dynamic anime, realistic watercolors, nintencore, weathercore, mysterious
realism –ar 69:128 –s 750 –niji 5".

A BROADER IMPACT

The broader impact of our work is multifaceted. On one hand, it significantly reduces the energy
required to operate state-of-the-art diffusion models, contributing to more sustainable AI practices.
On the other hand, the ease of distilling and deploying models that might be trained on data with ques-
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tionable content or intentions presents ethical challenges. Therefore, it is crucial for the community to
engage in discussions on how to minimize risks while enhancing the benefits of such advancements.
This involves developing robust guidelines and frameworks to govern the use and deployment of
distilled models, ensuring they are used responsibly and ethically.

B RELATED WORK

Generative modeling of high-dimensional data has long been a focal point in machine learning
research. This area primarily concentrates on replicating various data distributions: the original data
distribution, conditional distributions influenced by labels, noisy or incomplete measurements, textual
descriptions, or the joint distribution of data and other modalities. This has spurred the development
of a diverse range of generative models and methodologies. Initially, these models were only capable
of handling simpler, low-dimensional data such as 28 × 28 grayscale or binarized MNIST digits
(Hinton et al., 2006; Salakhutdinov & Hinton, 2009; Vincent et al., 2010), vector-quantized local
descriptors (Fei-Fei & Perona, 2005; Chong et al., 2009), or patches of natural and hyperspectral
images (Zhou et al., 2009; Xing et al., 2012; Polatkan et al., 2015). Early models often utilized neural
networks with stochastic binary hidden layers or shallow hierarchical Bayesian models, which are
simpler to train but have limited capacities.

Deep generative models. To tackle the generation of high-dimensional data, such as images
comprising millions of pixels, substantial advancements in generative models have been made over
the past decade. This period has marked the emergence of diverse deep generative models, including
variational auto-encoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014), normalizing
flows (Papamakarios et al., 2019), generative adversarial networks (GANs) (Goodfellow et al., 2014;
Reed et al., 2016; Karras et al., 2019; Wang et al., 2023b), autoregressive models (Gregor et al.,
2015; Mansimov et al., 2015), and diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020; Song & Ermon, 2020; Song et al., 2021b;a; Dhariwal & Nichol, 2021; Karras
et al., 2022; Peebles & Xie, 2023; Zheng et al., 2024). Additionally, essential resources for creating
effective T2I synthesis systems, such as large language models (Vaswani et al., 2017; Devlin et al.,
2018; Radford et al., 2018; 2019; Raffel et al., 2020; He et al., 2020; Brown et al., 2020; Achiam
et al., 2023; Touvron et al., 2023; Jiang et al., 2023), large vision-language models (Radford et al.,
2021; Ilharco et al., 2021; Cherti et al., 2023), advanced visual tokenization and compression (Rolfe,
2016; van den Oord et al., 2017; Esser et al., 2021; Rombach et al., 2022; Podell et al., 2024), and
extensive training datasets (Thomee et al., 2016; Changpinyo et al., 2021; Schuhmann et al., 2022),
have transitioned from proprietary tools of major tech companies to publicly available assets.

Previously, T2I models primarily utilized GANs and focused on small-scale, object-centric domains
like flowers, birds, and face images (Reed et al., 2016; Zhang et al., 2017; Xu et al., 2018; Zhang
et al., 2020). Powered by text encoders that leverage pretrained large language models or vision-
language models, which offer profound language comprehension and extract semantically rich latent
representations, and supported by an extensive collection of text-image pairs, three main families of
generative models—GANs (Zhou et al., 2022; Sauer et al., 2022; Kang et al., 2023), autoregressive
models (Ramesh et al., 2021; Zhang et al., 2021; Ding et al., 2021; Gafni et al., 2022; Yu et al.,
2022; Chang et al., 2023), and diffusion models (Nichol et al., 2022; Ramesh et al., 2022; Saharia
et al., 2022; Rombach et al., 2022; Xu et al., 2022; Wang et al., 2023a; Qin et al., 2023)—have
effectively capitalized on these technological advancements. These developments have facilitated
the creation of T2I synthesis systems that demonstrate exceptional photorealism and sophisticated
language understanding.

Acceleration of diffusion-based generation. Early-stage diffusion models were notably slow in
sampling, spurring extensive research aimed at speeding up the reverse diffusion process. Researchers
have approached this by interpreting diffusion models through stochastic or ordinary differential
equations and using advanced numerical solvers to enhance efficiency (Song et al., 2021c;a; Liu et al.,
2022a; Lu et al., 2022b; Zhang & Chen, 2023; Karras et al., 2022). Additional strategies include
truncating the diffusion chain to initiate generation from more structured distributions (Pandey et al.,
2022; Zheng et al., 2023b; Lyu et al., 2022), integrating these models with GANs to boost generation
speed (Xiao et al., 2022; Wang et al., 2023b), and exploring flow matching in diffusion modeling
(Liu et al., 2022b; Lipman et al., 2022; Albergo et al., 2023). More recently, research has pivoted
towards distilling reverse diffusion chains to refine and expedite the generation process, a direction

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

that continues to evolve with new methodologies and insights (Luhman & Luhman, 2021; Salimans
& Ho, 2022; Zheng et al., 2023a; Meng et al., 2023; Song et al., 2023; Song & Dhariwal, 2023; Kim
et al., 2023; Sauer et al., 2023b; Xu et al., 2023; Yin et al., 2023; Luo et al., 2023c; Zhou et al., 2024).

T2I diffusion distillation. Recent efforts aim to accelerate the sampling process from pre-trained
diffusion teachers like SD (Rombach et al., 2022). Sauer et al. (2023b) focused on distilling diffusion
models into generators capable of one or two-step operations through adversarial training. Xu et al.
(2023) introduced UFOGen, utilizing a time-step-dependent discriminator for generator initialization.
Luo et al. (2023a) applied consistency distillation (Song et al., 2023) to text-guided latent diffusion
models (Ramesh et al., 2022) for efficient, high-fidelity T2I generation. Building on the idea of
using a pre-trained 2D T2I diffusion model for text-to-3D synthesis (Poole et al., 2022; Wang et al.,
2023c), SwiftBrush (Nguyen & Tran, 2024) showcases its effectiveness of distilling pre-trained stable
diffusion models. Distribution Matching Distillation (DMD) by Yin et al. (2023) further enhances
distillation quality by adding a regression loss term.

How does SiD-LSG differ from previous methods? SiD-LSG introduces several unique features
that distinguish it from previous T2I diffusion distillation methods. Firstly, similar to SwiftBrush
(Nguyen & Tran, 2024), SiD-LSG is a data-free distillation method, which eliminates the need for
original training datasets or synthetic data generated with SDE/ODE solvers during the distillation
process. However, unlike SwiftBrush, SiD-LSG necessitates gradient backpropagation through the
score networks, a critical step akin to gradient backpropagation through the discriminator in methods
employing adversarial losses. Additionally, SiD-LSG applies CFG to both the training and evaluation
of the fake score network. This is a departure from previous methods, which typically apply CFG
only during the evaluation of the pretrained score network. Finally, SiD-LSG aims to minimize a
model-based explicit score-matching loss, a type of Fisher divergence. In contrast, previous methods
often focus on minimizing losses based on KL divergence, consistency, regression, GAN-based
adversarial tactics, or a combination thereof.

C FURTHER DISCUSSION ON LONG, SHORT, AND LONG-SHORT GUIDANCE

Regarding the relationship between the choice of κ2 = κ3 and the categorization into long, short,
and long-short guidance, we clarify that various combinations of κ1,2,3,4 can define these strategies:

Long Strategy: This strategy involves enhancing the teacher’s CFG more than the fake score
network during inference or making them equal but both larger than one. It is typically represented
by κ1 = κ2 = κ3 = 1, κ4 > 1, but also includes configurations where κ1 = κ2 = κ3 = κ4 > 1.

Short Strategy: This approach aims to reduce the fake-score-network’s CFG during evaluation
compared to training or maintain them equal but greater than one. This strategy is exemplified by
κ1 = κ4 = 1, 0 < κ2 = κ3 < 1, and can also be part of κ1 = κ2 = κ3 = κ4 > 1.

Long-Short Strategy: The “simplest” LSG configuration κ1 > 1, κ2 = κ3 = κ4 = 1 can be
interpreted as incorporating both long and short strategies since increasing κ1 for training the fake
score network effectively implies that during inference, the fake score network is guided by a weaker
CFG than both the teacher and its own training setting.

SiD-LSG employs a default setting where κ1 = κ2 = κ3 = κ4 = κ > 1. This implies that while
the teacher’s training CFG is 1 and evaluation CFG is κ > 1, the fake score network’s training and
evaluation CFG are both κ > 1, making the teacher’s CFG during inference stronger than that of the
fake score network.

FID-CLIP Compromise: We evaluate various CFG strategies based on the best FID achieved with
fewer than 2.56M fake images used to distill generators on Stable Diffusion 1.5, alongside their
corresponding CLIP scores. The results, whose trajectories are depicted in Figures 3 and 4 and
detailed in Table 3 and Figure 9, indicate that the proposed LSG strategy achieves the best balance
between lowering FID and enhancing CLIP scores.

D TRAINING AND EVALUATION DETAILS

The hyperparameters tailored for our study are outlined in Table 4. It’s important to note that the time
and memory costs reported in Table 4 do not account for those incurred during periodic evaluations
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Table 3: Comparison of different CFG strategies in terms of the best FID achieved when iterating with fewer
than 2.56M fake images to distill the generators on Stable Diffusion 1.5 and their corresponding CLIP scores.

CFG Strategy κ1 κ2 κ3 κ4 FID CLIP

Long CFG

1 1 1 2 10.01 0.297
1 1 1 2.5 10.98 0.303
1 1 1 3 11.75 0.303
1 1 1 3.5 12.82 0.304
1 1 1 7.5 15.78 0.308

No CFG 1 1 1 1 15.49 0.269

Short CFG 1 0.5 0.5 1 11.09 0.299
1 0.125 0.125 1 15.54 0.305

“Simplest” LSG 2 1 1 1 11.76 0.306
3 1 1 1 16.38 0.304

LSG

1.5 1.5 1.5 1.5 10.66 0.295
2 2 2 2 10.44 0.304
3 3 3 3 13.88 0.310

4.5 4.5 4.5 4.5 16.69 0.310

10 11 12 13 14 15 16 17
FID

0.296

0.298
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= (1, 1, 1, 2)

= (1, 1, 1, 2.5) = (1, 1, 1, 3)

= (1, 1, 1, 3.5)

= (1, 1, 1, 7.5)

= (1, 0.5, 0.5, 1)

= (1, 0.125, 0.125, 1)

= (2, 1, 1, 1)

= (3, 1, 1, 1)

= (1.5, 1.5, 1.5, 1.5)

= (2, 2, 2, 2)

= (3, 3, 3, 3) = (4.5, 4.5, 4.5, 4.5)

CLIP Score vs. FID by CFG Strategy

CFG Strategy
Long CFG
Short CFG
Simplest LSG
LSG

Figure 9: Comparison of different CFG strategies in terms of the best FID achieved when iterating with fewer
than 2.56M images to distill the generators on Stable Diffusion 1.5 and their corresponding CLIP scores. The
markers represent different CFG strategies: Long CFG is denoted by red squares, Short CFG by blue circles, the
“simplest” LSG by black diamonds, and LSG by orange stars.

of the FID and CLIP scores of the single-step generator, nor do they include the resources used to
save model checkpoints during the distillation process. These costs can vary significantly depending
on the computing resources used, including the versions of CUDA and Flash Attention, as well as the
storage platforms employed and the frequency of operations.

E LIMITATIONS AND COMPUTATIONAL REQUIREMENTS

Memory and speed. Table 4 in Appendix D offers a detailed examination of the computational
resources required for the SiD distillation process employing various CFG strategies—Long, Short,
“simplest” Long-Short, and the recommended Long-Short—across different NVIDIA GPU platforms
(RTX-A5000 with 24GB, RTX-A6000 with 48GB, and H100 with 80GB). Key observations include:

SiD-LSG can be effectively operated on the RTX-A5000, which has 24GB of memory, by enabling
xFormers (Lefaudeux et al., 2022) and switching to FP16 for model and gradient precision. On
the RTX-A6000 with 48GB of memory, it runs using FP32 with xFormers enabled. However, on
our available H100 with 80GB of memory, where xFormers were not supported at the time of our
experiments, there was a noticeable increase in GPU memory consumption.
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Table 4: Hyperparameter settings and comparison of distillation time and memory usage between different long
and short guidance strategies of SiD. Note in order to run the long-short guidance (LSG) with κ1 = κ2 = κ3 =
κ4 > 1, we need to turn off the EMA network for some cases (indicated with “no EMA”), otherwise it will be
out of memory.

Computing platform Hyperparameters Long Strategy Short Strategy Long-Short Long-Short

General Settings

CFG scales κ4 > 1 0 < κ2 = κ3 < 1 κ1 > 1 κ1,2,3,4 > 1
κ1 = κ2 = κ3 = 1 κ1 = κ4 = 1 κ2 = κ3 = κ4 = 1 κ1 = κ2 = κ3 = κ4

Batch size 512
Learning rate 1e-6

Half-life of EMA 50k images
Optimizer under FP32 Adam (β1 = 0, β2 = 0.999, ϵ = 1e-8)
Optimizer under FP16 Adam (β1 = 0, β2 = 0.999, ϵ = 1e-6)

α 1.0
Time parameters (tmin, tinit, tmax) = (20, 625, 979)

RTX-A5000 (24G), FP16

xFormers available and enabled Yes
Batch size per GPU 1

# of GPUs 8
# of gradient accumulation round 64

Max memory in GB allocated 22.9 22.9 22.6 22.0 (no EMA)
Max memory in GB reserved 23.0 23.0 23.0 22.1 (no EMA)

Time in seconds per 1k images 74 75 80 102
Time in hours per 1M images 21 21 22 29

RTX-A6000 (48G), FP32

xFormers available and enabled Yes
Batch size per GPU 1

# of GPUs 8
# of gradient accumulation round 64

Max memory in GB allocated 45.7 45.7 45.0 45.8 (no EMA)
Max memory in GB reserved 45.7 45.7 45.9 46.0 (no EMA)

Time in seconds per 1k images 365 365 366 502
Time in hours per 1M images 102 102 102 139

H100 (80G), FP16

xFormers available and enabled No
Batch size per GPU 4

# of GPUs 8
# of gradient accumulation round 16

Max memory in GB allocated 55.8 55.8 47.7 63.9
Max memory in GB reserved 57.3 58.3 49.2 65.4

Time in seconds per 1k images 17 17 18 23
Time in hours per 1M images 5 5 5 6

H100 (80G), FP16

Flash Attention available and enabled Yes
Batch size per GPU 4

# of GPUs 8
# of gradient accumulation round 16

Max memory in GB allocated 32.3 32.2 29.2 35.2
Max memory in GB reserved 32.6 32.4 29.6 35.4

Time in seconds per 1k images 12 12 12 15
Time in hours per 1M images 3 3 3 4

H100 (80G), FP32

xFormers available and enabled No
Batch size per GPU 1

# of GPUs 8
# of gradient accumulation round 64

Max memory in GB allocated 58.9 57.4 53.4 62.9
Max memory in GB reserved 60.0 59.0 54.0 64.0

Time in seconds per 1k images 74 74 76 90
Time in hours per 1M images 21 21 21 25

The recommended LSG strategy, which provides an improved balance between FID and CLIP scores,
demands approximately 20% more computation time per iteration and exhibits about 10% more peak
memory usage on the H100 compared to the Long or Short strategies. This underlines a trade-off
between achieving performance enhancements and managing resource utilization.

FP16 versus FP32. SiD-LSG can be trained under FP16 mixed precision, which significantly
conserves memory and enhances processing speed, as detailed in Table 4. Although this reduced
precision in optimization leads to quicker improvements in both FID and CLIP scores, it also restricts
the potential for achieving the lowest FID and highest CLIP scores compared to results under
FP32. These effects are demonstrated in the ablation study shown in Figure 10. Additionally, FP16
operation is less stable and requires the use of gradient clipping to maintain training stability. For
instance, we employ torch.nn.utils.clip_grad_value_(G.parameters(), 1) to
prevent sudden model divergence—a precaution that is not necessary with FP32.

Further investigation is needed to optimize FP16 performance to match that of FP32. This may
involve refining loss scaling techniques, updating packages like Flash Attention or XFormers, or
implementing an effective warmup period with FP16 before transitioning to FP32. We plan to address
these challenges in our future studies.
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Figure 10: Comparison between FP16 and FP32 under three different guidance strategies. Top: Long strategy
with κ1 = κ2 = κ3 = 1 and κ4 = 3. Middle: Short strategy with κ1 = κ4 = 1 and κ2 = κ3 = 0.5. Bottom:
Long-short guidance (LSG) with κ1 = κ2 = κ3 = κ4 = 2.

We note that our initial experimental platform did not provide proper support for FlashAttention (Dao
et al., 2022; Dao, 2023), which adversely affected our FP16 results. Now that we have established
proper support for FlashAttention, we are keen to further explore the potential of FP16 in distilling
SiD-LSG, especially to determine if it can match FP32’s performance at a lower cost. We have
updated Table 4 displayed above to reflect significant memory reductions and a noticeable acceleration
in iteration speed under FP16, facilitated by the availability of FlashAttention. This enhancement
would enable us to use larger batch sizes per GPU under FP16, further improving time efficiency.

Reaching a performance plateau. Zhou et al. (2024) demonstrate through extensive comparisons
that the SiD distilled one-step generator can reduce the FID at an exponential decay rate, showing a
log-log linear relationship between the number of iterations and FID. This approach can match or
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even surpass the performance of both unconditional and label-conditional teacher diffusion models
trained under the EDM framework (Karras et al., 2022), provided sufficient training.

However, results shown in Figures 4 and 5 indicate that the SiD-LSG distilled one-step generator
on SD1.5 quickly reaches a performance plateau in reducing FID and/or increasing CLIP scores,
particularly when the LSG scale exceeds 2. Additionally, data from Table 1 demonstrate that after
processing 10M images (approximately 20k iterations at a batch size of 512), SiD-LSG still does
not match the text-image alignment performance of the teacher model, which achieves higher CLIP
scores after 250 generation steps. Notably, by reducing the LSG scale to 1.5 and doubling the training
duration, SiD-LSG achieves a record-low data-free FID of 8.15, establishing a new benchmark among
all data-free diffusion distillation methods. This achievement also surpasses the teacher model’s FID
of 8.78, which was obtained with a CFG scale of 3 and 250 generation steps. However, this reduction
in the LSG scale to 1.5 also results in a significant decline in its CLIP score.

This suggests significant potential for further performance enhancements, possibly by extending
beyond single-step generation, increasing the model size, or incorporating real data and additional
regression or adversarial losses into the distillation process. These avenues for improvement will be
one of the focuses of future studies.

F PROMPTS AND ADDITIONAL EXAMPLE IMAGES

We list the prompts used in Figure 1 as follows:

1. A distinguished older gentleman in a vintage study, surrounded by books and dim lighting,
his face marked by wisdom and time. 8K, hyper-realistic, cinematic, post-production.

2. saharian landscape at sunset , 4k ultra realism, BY Anton Gorlin, trending on artstation,
sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski.

3. chinese red blouse, in the style of dreamy and romantic compositions, floral explosions –ar
24:37 –stylize 750 –v 6

4. Digital 2D, Miyazaki’s style, ultimate detailed, tiny finnest details, futuristic, sci-fi, magical
dreamy landscape scenery, small cute girl living alone with plushified friendly big tanuki
in the gigantism of wilderness, intricate round futuristic simple multilayered architecture,
habitation cabin in the trees, dramatic soft lightning, rule of thirds, cinematic.

5. poster art for the collection of the asian woman, in the style of gloomy, dark orange and
white, dynamic anime, realistic watercolors, nintencore, weathercore, mysterious realism
–ar 69:128 –s 750 –niji 5

6. A fantasy-themed portrait of a female elf with golden hair and violet eyes, her attire
shimmering with iridescent colors, set in an enchanted forest. 8K, best quality, fine details.

7. ’very beautiful girl in bright leggings, white short top, charismatic personality, professional
photo, style of jessica drossin, super realistic photo, hyper detail, great attention to skin and
eyes, professional photo.

8. (steampunk atmosphere, a stunning girl with a mecha musume aesthetic, adorned in intricate
cyber gogle,) digital art, fractal, 32k UHD high resolution, highres, professional photogra-
phy, intricate details, masterpiece, perfect anatomy, cinematic angle , cinematic lighting,
(dynamic warrior pose:1)

9. (Pirate ship sailing into a bioluminescence sea with a galaxy in the sky), epic, 4k, ultra.

10. tshirt design, colourful, no background, yoda with sun glasses, dancing at a festival, ink
splash, 8k.

We list the prompts used in Figure 2, which are taken from the COCO-2014 validation set, as follows:

1. many cars stuck in traffic on a high way

2. an old blue car with a surfboard on top’, 3. ‘a sole person sits in the front pew of a large
church.

3. a shot of the hollywood sign at santa monica blvd.
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4. a bunch of flowers, in front of a forest.

5. there is some sort of vegetables in a bowl

6. a man in a pink shirt stands staring against a green wall.

7. small girl in green shirt holding a slice of pizza to her face

8. two dogs sitting in the back seat of a car looking out the windwo

We list the prompts used in Figure 6 as follows:

1. Half-length head portrait of the goddess of autumn with wheat ears on her head, depicted as
dreamy and beautiful, by wlop.

2. Walter White dressed as a medieval-style king.

3. A serene meadow with a tree, river, bridge, and mountains in the background under a slightly
overcast sunrise sky.

4. A closeup portrait of a gray owl with spreaded wings attacking in cinematic lighting, digital
painting by Greg Rutkowski used as album cover art on Artstation.

5. A hyena fursona sitting in the grass in a savannah at sunset.

6. A puppy staring through a red sectioned window.

We list the prompts used in Figure 11 as follows:

1. A fantasy-themed portrait of a female elf with golden hair and violet eyes, her attire
shimmering with iridescent colors, set in an enchanted forest. 8K, best quality, fine details.

2. pumpkins, autumn sunset in the old village, cobblestone houses, streets, plants, flowers,
entrance, realistic, stunningly beautiful

3. "Highly detailed mysterious egyptian (sphynx cat), skindentation:1.2, bright eyes, ancient
egypt pyramid background, photorealistic, (hyper-realistic:1.2), cinematic, masterpiece:1.1,
cinematic lighting"

4. "vw bus, canvas art, abstract art printing, in the style of brian mashburn, light red and light
brown, theo prins, charming character illustrations, pierre pellegrini, vintage cut-and-paste,
rusty debris –ar 73:92 –stylize 750 –v 6"

5. painterly style, seductive female League of legends Jinx character fighting at war, raging,
crazy smile, crazy eyes, rocket lancher, guns, crazy face expression, character design,
body is adorned with glowing golden runes, intense green aura around her, body dynamic
epic action pose, intricate, highly detailed, epic and dynamic composition, dynamic angle,
intricate details, multicolor explosion, blur effect, sharp focus, uhd, hdr, colorful shot, stormy
weather, tons of flying debris around her, dark city background, modifier=CarnageStyle,
color=blood_red, intensity=1.6

6. A charismatic chef in a bustling kitchen, his apron dusted with flour, smiling as he presents
a beautifully prepared dish. 8K, hyper-realistic, cinematic, post-production.

7. A young adventurer with tousled hair and bright eyes, wearing a leather jacket and a
backpack, ready to explore distant lands. 8K, hyper-realistic, cinematic, post-production.

8. "A watercolor painting of a vibrant flower field in spring, with a rainbow of blossoms under
a bright blue sky. 8K, best quality, fine details.",

9. "digital art of a beautiful tiger pokemon under an apple tree, cartoon style,Matte Paint-
ing,Magic Realism,Bright colors,hyper quality,high detail,high resolution, –video –s 750 –v
6.0 –ar 1:2"

10. "painterly style, Goku fighting at war, raging, blue hair, character design, body is adorned
with glowing golden runes, yellow aura around him, body dynamic epic action pose, in-
tricate, highly detailed, epic and dynamic composition, dynamic angle, intricate details,
multicolor explosion, blur effect, sharp focus, uhd, hdr, colorful shot, stormy weather, tons
of flying debris around him, dark city background, modifier=CarnageStyle, color=blood_red,
intensity=1.6"
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11. A stunning steampunk city with towering skyscrapers and intricate clockwork mechanisms,
gears and pistons move in a complex symphony, steam billows from chimneys, airships
navigate the bustling skylanes, a vibrant metropolis

12. "Samurai looks at the enemy, stands after the battle, fear and horror on his face, tired and
beaten, sand on his face mixed with sweat, an atmosphere of darkness and horror, hyper
realistic photo, In post - production, enhance the details, sharpness, and contrast to achieve
the hyper - realistic effect"

13. A portrait of an elemental entity with strong rim lighting and intricate details, painted
digitally by Alvaro Castagnet, Peter Mohrbacher, and Dan Mumford

14. "A regal female portrait with an ornate headdress decorated with colorful gemstones and
feathers, her robes rich with intricate designs and bright hues. 8K, best quality, fine details.",

15. "A detailed painting of Atlantis by multiple artists, featuring intricate detailing and vibrant
colors.",

16. "A landscape featuring mountains, a valley, sunset light, wildlife and a gorilla, reminiscent
of Bob Ross’s artwork.
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A fantasy-themed portrait of a female elf
with golden hair and violet eyes, [...]

pumpkins, autumn sunset in the old vil-
lage, cobblestone houses, streets, [...]

Highly detailed mysterious egyptian
(sphynx cat), skindentation:1.2, [...]

vw bus, canvas art, abstract art printing,
in the style of brian mashburn [...]

painterly style, seductive female League
of legends Jinx character fighting at [...]

A charismatic chef in a bustling kitchen,
his apron dusted with flour, smiling [...]

A young adventurer with tousled hair
and bright eyes, wearing a leather [...]

A watercolor painting of a vibrant flower
field in spring, with a rainbow of [...]

digital art of a beautiful tiger pokemon
under an apple tree, cartoon style, [...]

painterly style, Goku fighting at war, rag-
ing, blue hair, character design, body [...]

A stunning steampunk city with tower-
ing skyscrapers and intricate [...]

Samurai looks at the enemy, stands after
the battle, fear and horror on his [...]

A portrait of an elemental entity with
strong rim lighting and intricate [...]

A regal female portrait with an ornate
headdress decorated with gemstones[...]

A detailed painting of Atlantis by multi-
ple artists, featuring intricate [...]

A landscape featuring mountains, a val-
ley, sunset light, wildlife and a [...]

Figure 11: More examples from the one-step generator distilled from Stable Diffusion 2.1-base using
the proposed method: Score identity Distillation with Long-Short Guidance.
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