
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Memory Efficient Stochastic Adaptive Optimization via Subset-Norm

Thien Hang Nguyen NGUYEN.THIEN@NORTHEASTERN.EDU

Huy Le Nguyen HU.NGUYEN@NORTHEASTERN.EDU

Northeastern University, Boston, MA

Abstract
As deep neural networks grow larger, memory efficiency becomes crucial, with optimizer states of
popular algorithms like Adam consuming substantial memory. This paper generalizes existing
high-probability convergence analysis for AdaGrad and AdaGrad-Norm to arbitrary parameter
partitions, encompassing both algorithms. We reveal a trade-off between coordinate-noise density
and the convergence rate’s dimensional dependency, suggesting an optimal grouping between the
full coordinate version (AdaGrad) and the scalar version (AdaGrad-Norm). This insight leads to
a principled compression approach called Subset-Norm, targeting coordinate-wise second moment
term in AdaGrad, RMSProp, and Adam. We demonstrate the empirical effectiveness of subset-
norm step sizes in LLM pre-training tasks on LLaMA models, showing competitive performance
to baselines like Adam while significantly reducing memory usage for the optimizer’s state from
O(d) to O(

√
d) while introducing no additional hyperparameter.

1. Introduction

Training modern deep neural networks, such as large language models (LLMs) and large vision
models (LVMs), is costly. Consequently, theoretical interest in the convergence analysis of adaptive
methods extends beyond asymptotic considerations. It now encompasses not only assumptions
about the objective function (e.g., convexity, smoothness) and stochastic gradients (e.g., noise
distribution), but also non-asymptotic dependencies on the total number of iterations, parameter
count, and failure probability. As deep neural networks continue to grow in the era of LLMs and
LVMs, concerns that were previously overlooked, such as the memory consumption of optimizer
states, have become an active area of research. Indeed, numerous methods have recently emerged
to reduce the memory footprint of optimizer states (e.g. Adam’s momentum and second moment
terms) with approaches ranging from quantization [6, 7, 17], low-rank decomposition [14, 19, 28,
36] , sketching-based dimensionality reduction [12, 22], etc.

Algorithm 1: AdaGrad-Norm
Input: x1, η > 0
for t = 1 to T do

bt =
√

b20 +
∑t

i=1 ∥∇̂f(xi)∥2;

xt+1 = xt − η
bt
∇̂f(xt);

end

Algorithm 2: AdaGrad-Coordinate

Input: x1, b0 ∈ Rd, η ∈ R
for t = 1 to T do

bt,i =
√
b20,i +

∑t
j=1 ∇̂if(xj)2, i ∈ [d];

xt+1,i = xt,i − η
bt,i
∇̂if(xt), i ∈ [d];

end

© T.H. Nguyen & H.L. Nguyen.

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Algorithm 3: AdaGrad-Subset-Norm

Input: x1 ∈ Rd and step size η > 0
Data: Partition coordinates into c subsets: [d] =

⋃c−1
i=0 Ψi where Ψk ∩Ψj = ∅ if k ̸= j.

for t = 1 to T do

b2t,i = b2t−1,i +
∥∥∥∇̂Ψif(xt)

∥∥∥2, for i = 0, . . . , c− 1;

xt+1,k = xt,k − η
bt,i
∇̂f(xt), where k ∈ Ψi for i = 0, . . . , c− 1;

end

Convergence analysis for adaptive methods like Adam [16] and AdaGrad [9] remains an active
area of research. Recently, [21] presented high-probability noise-adapted and optimal (in terms of
total iterations T) convergence analyses for AdaGrad-Norm [33] (Algorithm 1) and the standard
AdaGrad [9] algorithm (Algorithm 2) under relaxed conditions, including sub-Gaussian noise and
unbounded gradients. While the per-coordinate version of AdaGrad (Algorithm 2) is primarily
used in practice, certain technical difficulties (as discussed in [21]) have led researchers to focus
theoretical analysis on the normed version (Algorithm 1) as a proxy [3, 15, 20, 21, 33]. While
AdaGrad-Norm has primarily served as a theoretical proxy for the original AdaGrad (and by extension,
for Adam), its practical performance and comparisons against other methods have been underexplored.
Theoretical results for coordinate-wise AdaGrad were limited until recent developments [5, 13,
21], resulting in a scarcity of comparisons between AdaGrad-Norm and coordinate-wise AdaGrad.
There are several advantages of AdaGrad-Norm over AdaGrad-Coordinate that the present results
(Theorem 4.5 and 4.6 of [21]) suggest. First, the current results suggest that AdaGrad-Norm
converges with no dependency on the dimension of the problem i.e. the parameter count. Second,
the memory cost of AdaGrad-Norm is constant whereas AdaGrad-Coordinate needs to maintain
the adaptive step-size state bt ∈ Rd. Hence, current theory suggests that AdaGrad-Norm should
be the superior optimizer. However, we perform pre-training experiments to compare the practical
performance between AdaGrad-Coordinate and AdaGrad-Norm: there is a wide gap between AdaGrad-
Norm and AdaGrad-Coordinate, as shown in Figure 1. Indeed, the theoretical comparison previously
discussed is not fair: the noise models and step size dependency on the dimension do not entirely
align as the dimensions could be hidden.

Hence, in this paper, we provide an answer to this discrepancy by unifying the analysis of
AdaGrad-Norm over AdaGrad-Coordinate under both the coordinate-wise sub-Gaussian noise model
and provide a proof that generalizes the adaptive step sizes of the algorithms to be able to use
arbitrary partitions of the model parameters (Algorithm 3).

Our Contributions.

• We unify and generalize high-probability non-convex convergence proofs for AdaGrad-Norm
and AdaGrad-Coordinate under a general adaptive step size using subset-norm (Algorithm 3)
for coordinate-wise sub-Gaussian noise (Section 3.1).

• We analyze the interactions between coordinate noise sparsity, subset size, and convergence
rate’s dimensional dependency, showing that the optimal subset size lies between AdaGrad-
Norm and AdaGrad-Coordinate, depending on noisy coordinate density (Section 3.2).

2

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

• We demonstrate the effectiveness of the subset-norm adaptive step size in LLM pre-training
by incorporating it into Adam [16] and RMSProp [29], replacing the second moment term
with an exponential moving average subset-norm adaptive step size (Algorithms 4 and 5).
This approach outperforms baselines for LLaMA 60M and 130M while using significantly
less memory (

√
d instead of d) and requiring minimal additional tuning (Section 4).

2. Preliminaries

We consider the unconstrained non-convex stochastic optimization problem minx∈Rd f(x) where
f : Rd → R is the objective function. We assume access to an history independent, non-biased
stochastic gradient ∇̂f(x) for any x ∈ X , that is E

[
∇̂f(x) | x

]
= ∇f(x). Furthermore, we assume

that f is an L-smooth function: ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd. Smoothness
implies the following quadratic upperbound that we will utilize: for all x, y ∈ Rd we have f(y) −
f(x) ≤ ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2 . Before discussing the assumption on the stochastic gradient
noise, let us first define some notations.

Notations. We let vi denote the i-th coordinate of a vector v ∈ Rd. If a vector like xt is already
indexed as part of a sequence of vectors (where xt denotes the t-th update) then we use xt,i to
denote xt’s i-th coordinate and xt,Ψ ∈ Rk to denote the indexing with respect to an ordered subset
Ψ ⊆ [d] of size k where (xt,Ψ)k = xt,Ψ(k) where Ψ(k) is the k-th element of Ψ. For gradients, we
let ∇if(x) := ∂f

∂xi
denote the partial derivative with respect to the i-th coordinate. Similarly, for

stochastic gradients ∇̂f(x), we let ∇̂if(x) denotes its i-th coordinate. If a, b ∈ Rd, then ab and a/b
denotes coordinate-wise multiplication and division, respectively: (ab)i = aibi and (a/b)i = ai/bi.

Coordinate sub-Gaussian noise assumptions. If we denote the stochastic gradient noise as ξt :=
∇̂f(xt) − ∇f(xt) and ξt,i as the i-th coordinate of ξt, then we assume the noise is per-coordinate
subgaussian i.e. there exists σi > 0 for i ∈ [d] such that ξt satisfies

E
[
exp

(
λ2ξ2t,i

)]
≤ exp

(
λ2σ2

i

)
, ∀ |λ| ≤ 1

σi
,∀i ∈ [d] . (1)

Note that ∥ξt∥ being σ-subgaussian implies that each ξt,i is also σ-subgaussian, so our assumption
is more general than the subgaussian noise assumption. Furthermore, when ∥·∥ is used without
explicitly specifying the norm, one can assume it is the ℓ2 norm ∥·∥2. We also use 0-indexing
convention i.e. [n] := {0, 1, . . . , n− 1} for integer n ∈ N.

3. AdaGrad-Subset-Norm: Better Convergence, Less Memory

We partition the parameters’ coordinates [d] into disjoint subsets [d] =
⋃c−1

i=0 Ψi with Ψi ∩ Ψj =
∅, if i ̸= j (e.g. Ψi = {ik + 1, ik + 2, . . . , ik + k} for some subset size k ∈ N so that kc = d).
Given a stochastic gradient ∇̂f(xt) ∈ Rd at time t for parameter xt, we denote ∇̂Ψif(xt) ∈ Rk

to be the subset of the coordinates of the stochastic gradient with respect to the subset Ψi (e.g.(
∇̂Ψif(xt)

)
j
= ∇̂ik+j−1f(xt)). Similarly, we can define ∇Ψif(xt) to be ∂f(xt)

∂xΨi
. We define the

3

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

“subset-norm adaptive step size” bt,i for subset Ψi and the update rule for xt+1:

b2t,i = b2t−1,i +
∥∥∥∇̂Ψif(xt)

∥∥∥2 = b20 +
t∑

j=1

∥∥∥∇̂Ψif(xt)
∥∥∥2 , i = 0, 1, . . . , c− 1

xt+1,k = xt,k −
η

bt,i
∇̂kf(xt), where k ∈ Ψi, for all i ∈ [c]. (2)

The algorithm is also presented in Algorithm 3. Note that choosing c = d and c = 1 recovers
AdaGrad-Coordinate and AdaGrad-Norm, respectively.

3.1. High-probability convergence of AdaGrad-Subset-Norm for non-convex objectives

We present the following high-probability convergence result for AdaGrad-subset-norm from (2):

Theorem 1 Suppose that f : Rd → R is L-smooth and lower bounded by f∗ ∈ R. Assume access
to unbiased stochastic gradients ∇̂f(xt) with stochastic gradient noise ξt := ∇̂f(xt) − ∇f(xt)
being σi-per-coordinate subgaussian for i ∈ [d]. For partitions of the parameters into disjoint
subsets [d] =

⋃c−1
i=0 Ψi with Ψi ∩Ψj = ∅ if i ̸= j, the iterates xt given by (2) satisfy the following

with probability at least 1− δ (for failure probability δ > 0):

1

T

T∑
t=1

∥∇f(xt)∥22 ≤ G(δ) · Õ

(∑c−1
i=0 ∥σΨi∥√

T
+
∥σ∥22 +

∑c−1
i=0 ∥σΨi∥+ Lc

T

)
, where

G(δ) := Õ

(
c−1∑
i=0

∥σΨi∥
4 + σmax ∥σ∥22 + cL+ c3/2σmax

)
,

and ∥σ∥22 =
∑d

i=1 σ
2
i and ∥σΨi∥

2 =
∑

j∈Ψi
σ2
j .

Polylog terms are hidden in Theorem 1 for simplicity. The full theorem (Theorem 2) and proofs
are deferred to Appendix D. Theorem 1 provides guarantee for all partitions of the parameters into
arbitrary disjoint subsets and generalizes AdaGrad-Norm (c = 1) and AdaGrad-Coordinate (c = d)
results. The result is noise-adapted: if

∑c−1
i=0 ∥σΨi∥ is small enough, the rate becomes the optimal

deterministic rate of O(1
T). The next section explores implications of Theorem 1.

3.2. Coordinate-noise sparsity and dimension dependency

Theorem 1 presents trade-offs between the number of subsets c, and stochastic gradient noise.
Intuitively, if few coordinates contribute to the total noise, the scalar version is more useful as
∥σΨi∥

2 is small for most subsets. However, when many coordinates contribute to the noise, ∥σΨi∥
2

can be large for many subsets and become the dominating term.

Coordinate-noise sparsity dβ . To make the intuition above concrete, consider the scenario with
various coordinate-noise sparsity rate: for rate β ∈ [0, 1], some dβ coordinates have noise α > 0
while the rest are 0. When β = 0, we only have 1 coordinate with noise. When β = 1, all
coordinates have noise. The rate β controls the density of coordinate noise. Furthermore, α upper
bounds all coordinate noise, i.e. ∥σ∥∞ ≤ α, which is common in coordinate-wise analysis [5].

4

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Table 1: Dimension dependency versus convergence rate under various coordinate-noise sparsity.
Given a sparsity rate β ∈ [0, 1], convergence rates are highlighted in red and green to denote the
worst and best dependency on the dimension d, respectively. Note that memory usage of AdaGrad-
Coordinate and AdaGrad-Norm is O(d) and O(1) while AdaGrad-Subset-Norm (with the equal
partition strategy) is O(d/k), where k = d1.4β−0.6 is the noise dependent subset size.

Sparsity AdaGrad-Coordinate AdaGrad-Norm AdaGrad-Subset-Norm (equal partition)

β ∈ [0, 1] Õ
(
d1.5+β/

√
T + d2.5/T

)
Õ
(
d2.5β/

√
T + d3β/T

)
Õ
(
d0.3+1.8β/

√
T + dβ+1/T

)
if β ∈ [0, 2/3]

Õ
(
d0.3+1.8β/

√
T + d1.6β+0.6/T

)
if β ∈ [2/3, 1]

β = 0 Õ (d1.5/
√
T + d2.5/T) Õ (1/

√
T + 1/T) Õ (d0.3/

√
T + d/T)

β = 0.5 Õ (d2/
√
T + d2.5/T) Õ (d1.25/

√
T + d1.5/T) Õ (d1.2/

√
T + d1.5/T)

β = 1 Õ (d2.5/
√
T + d2.5/T) Õ (d2.5/

√
T + d3/T) Õ (d2.1/

√
T + d2.2/T)

Derivation of convergence rate given coordinate noise sparsity dβ . Given β ∈ [0, 1], we can
obtain a concrete expression for the convergence rates of various methods (different subset size)
from Theorem 1. For AdaGrad-Subset-Norm, we consider an equal partition strategy, where we
divide the coordinates into c = d1−βk subsets of size dβ/k each with the dβ noisy coordinates into
just k subsets so that the rest of the c− k subsets have no noisy coordinate. We defer the derivation
details to Appendix C and summarize the results in the first row of Table 1.

Discussions. In Table 1, the equal subset-size partition strategy for AdaGrad-Subset-Norm has
much better dependency on the dimension when the noise is not completely sparse i.e. β = 0.
Hence, if we expect the actual noise sparsity β to be around 0.751, then compressing with a subset
size of around d0.45 is optimal. The dependency on d is important for modern neural network due
to the number of parameters d being much greater than the total number of iterations T .

4. Experiments

We perform LLMs pre-training experiments on Adam-Subset-Norm (AdamSN) and RMSProp-Subset-
Norm (RMSPropSN), where we replace the second moment term of Adam [16] and RMSProp2 [29]
with the subset-norm (SN) adaptive step size (Algorithms 4 and 5 in Appendix B.3). We use a simple
subset partitioning scheme with no additional hyperparameter: for p ∈ Rm×n, the adaptive step size
state is set to max(m,n). This compression scheme maintains the norm of the larger dimension and
aims for the rough d0.45 subset size as discussed in Section 3.2.

Setup. We test our method on the task of pre-training LLaMA models [8, 30] on the C4 dataset
[26]. All of our experiments are conducted on NVIDIA RTX4090/3090 GPUs. We follow the
experimental setup as in GaLore [36]. Hyperparameter details are presented in Appendix B.1.

Results. Table 2 contains the main results on LLaMA 60M and LLaMA 130M, where we compare
against Adam [16], and memory efficient methods like RMSProp [29], and GaLore [36].

1. This is a prior implicitly imposed when selecting a subset size, where one should empirically estimate the actual
noise sparsity rate.

2. Note that we consider the version of RMSProp with a bias correction term, which is equivalent to Adam with β1 = 0.

5

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Table 2: Final validation perplexity for various
optimizers for pre-training LLaMA.

Method 60M 130M 350M Opt-sizea

Adam 30.45 24.59 18.67 2mn
AdamSN 29.75 22.90 17.49 mn+m

RMSProp 35.51 25.94 20.01 mn
RMSPropSN 34.57 25.67 18.72 m

GaLore 34.73 25.31 18.95 2mkb

a. Opt-size = optimizer state memory for parameter
of size m× n with m ≥ n.

b. k is typically n/4.

Table 3: Peak GPU Memory Usage (Gb) for various
model sizes, obtained with batch size 1 and activation
checkpointing to measure the optimizer state footprint.

Model Size Adam AdamSN RMSPropSN GaLore

60M 2.26 2.14 2.03 2.27
130M 2.98 2.62 2.35 2.78
350M 5.40 4.13 3.37 4.09
1B 15.37 10.36 7.55 9.41
3B OOMa 18.25 12.68 16.01

a. Max memory of RTX4090/3090 is 24Gb.

Discussions. In Table 2, for both 60M and 130M models, AdamSN performs the best while using
less memory for the second moment state than Adam. For memory efficient methods, RMSPropSN’s
performance is competitive to other memory efficient methods like GaLore (fourth row), despite
using much less memory (due to no momentum state). See Table 3 for memory footprint of the
methods considered across different model sizes with batch size 1.

Finally, recent memory efficient methods for pre-training LLMs like GaLore [36], FLORA [12],
and GRASS [22] require additional hyperparameter tuning (e.g. GaLore has 3 additional parameters
including the scaling, rank k, and update gap) and computation (e.g. GaLore requires an expensive
SVD computation O(mn2) every 200 steps). In contrast, the subset-norm step size only requires an
additional norm computation, which can be fused to existing kernels for more efficiency.

5. Conclusion and Future Works

Our unified high-probability analysis for AdaGrad-Coordinate and AdaGrad-Norm, generalized to
arbitrary subsets, yields a convergence rate with improved dimensional dependency and a smaller
memory footprint. The proposed subset-norm adaptive step size shows promise in LLM pretraining,
offering a memory-efficient alternative to traditional adaptive optimizers without performance loss
or excessive additional tuning.

Future works. It is important to extend experiments to larger models to assess scalability. Some
future directions include combining subset-norm adaptive step size with momentum compression
techniques [12, 22, 36] for enhanced efficiency/performance and experimenting with different subset
sizes. It will be interesting to obtain principled parameter-sharing scheme similarly to subset-norm
but for the momentum term. Obtaining convergence results for other optimizers like Adam, and/or
under affine smoothness [3, 32], affine noise [11, 13], heavy-tailed noise [24, 25, 34, 35] are also of
great interest. These extensions will broaden the applicability of our findings and potentially lead
to more robust, efficient training algorithms across diverse machine learning applications.

References

[1] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive
optimization. Advances in Neural Information Processing Systems, 32, 2019.

6

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

[2] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical
Programming, 199(1):165–214, 2023.

[3] Amit Attia and Tomer Koren. Sgd with adagrad stepsizes: Full adaptivity with high probability
to unknown parameters, unbounded gradients and affine variance. In International Conference
on Machine Learning, pages 1147–1171. PMLR, 2023.

[4] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2018.

[5] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. Transactions on Machine Learning Research, 2022.

[6] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-
wise quantization. arXiv preprint arXiv:2110.02861, 2021.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[8] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[10] Alina Ene and Huy L Nguyen. Adaptive and universal algorithms for variational inequalities
with optimal convergence s. arXiv preprint arXiv:2010.07799, 2021.

[11] Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai,
and Rachel Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded
gradients and affine variance. arXiv preprint arXiv:2202.05791, 2022.

[12] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

[13] Yusu Hong and Junhong Lin. Revisiting convergence of adagrad with relaxed assumptions.
arXiv preprint arXiv:2402.13794, 2024.

[14] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[15] Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class
of nonconvex algorithms with adagrad stepsize. In International Conference on Learning
Representations, 2021.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

7

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

[17] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances
in Neural Information Processing Systems, 36, 2024.

[18] Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed
assumptions. Advances in Neural Information Processing Systems, 36, 2024.

[19] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

[20] Zijian Liu, Ta Duy Nguyen, Alina Ene, and Huy Nguyen. On the convergence of
adagrad(norm) on \mathbb{R}^d: Beyond convexity, non-asymptotic rate and acceleration.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=ULnHxczCBaE.

[21] Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High
probability convergence of stochastic gradient methods. In International Conference on
Machine Learning, pages 21884–21914. PMLR, 2023.

[22] Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass:
Compute efficient low-memory llm training with structured sparse gradients. arXiv preprint
arXiv:2406.17660, 2024.

[23] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ 2). In Doklady an ussr, volume 269, pages 543–547, 1983.

[24] Ta Duy Nguyen, Thien H Nguyen, Alina Ene, and Huy Nguyen. Improved convergence in
high probability of clipped gradient methods with heavy tailed noise. Advances in Neural
Information Processing Systems, 36:24191–24222, 2023.

[25] Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Le Nguyen. High probability
convergence of clipped-sgd under heavy-tailed noise. arXiv preprint arXiv:2302.05437, 2023.

[26] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2023. URL https://arxiv.org/abs/1910.10683.

[27] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
In International Conference on Learning Representations, 2018.

[28] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[29] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[30] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

8

https://openreview.net/forum?id=ULnHxczCBaE
https://openreview.net/forum?id=ULnHxczCBaE
https://arxiv.org/abs/1910.10683

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

[31] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[32] Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for
non-convex objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual
Conference on Learning Theory, pages 161–190. PMLR, 2023.

[33] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. In International Conference on Machine Learning, pages 6677–6686.
PMLR, 2019.

[34] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient
clipping accelerates training: A theoretical justification for adaptivity. arXiv preprint
arXiv:1905.11881, 2019.

[35] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances
in Neural Information Processing Systems (NeurIPS), 33:15383–15393, 2020.

[36] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and
Yuandong Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv
preprint arXiv:2403.03507, 2024.

[37] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for
convergences of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11127–11135, 2019.

9

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Table 4: Learning rate obtained from grid search. We find the best learning for 60M and found that
it works similarly well for the 130M model (as compared to experiments from [36] that have tuned
the learning rate for larger models)

Adam AdamSN GaLore RMSPropSN RMSProp

Learning rate 60M 0.005 0.05 0.01 0.01 0.001
Learning rate 130M 0.005 0.05 0.01 0.01 0.001

Appendix A. Related Works

Convergence analysis of non-convex optimization methods has seen significant progress, with recent
works providing convergence proofs for adaptive algorithms like Adam [5, 16, 18]. Numerous
studies have explored convergence properties of various adaptive and stochastic gradient methods
[4, 5, 10, 20, 21, 23, 27, 33, 37], while lower bound analyses [2] have illuminated fundamental
limitations in non-convex optimization.

As model sizes grow, memory-efficient training techniques have become crucial. Following up
on AdaFactor [28], low-rank decomposition methods like Galore [36], LoRA [12], and ReLORA
[19] approximate large weight matrices with lower-rank representations. Projection-based approaches,
such as GRASS [22] and Flora [12], compress gradients or combine low-rank ideas with projections
to reduce memory requirements. A related but different method from ours is SM3 [1] where subset
(cover) statistics are used to show convergence in the context of online learning. These techniques
align with our work’s goal of enhancing memory efficiency in adaptive optimization methods for
large-scale machine learning models.

Appendix B. Additional Experimental Details

B.1. Hyperparameter details

In Table 2, we run all experiments on BF16 format, weight decay of 0, gradient clipping of 1.0,
cosine learning rate decay to 10% of the max learning rate with 10% linear warmup steps, and batch
size of 512. We only tune for the learning rate across a grid of {0.1, 0.05, 0.01, 0.005, 0.001}. We
train for 10,000 steps and 20,000 steps for the 60M and 130M models, respectively. Table 4 shows
the learning rate obtained for each method which is used across both the 60M and 130M model’s
experiments.

B.2. AdaGrad, AdaGrad-Norm, and AdaGrad-Subset-Norm

We examine the subset-norm step size for AdaGrad in Figure 1. We again see that subset-norm is
slightly better than the full coordinate version while using a lot less memory. This is consistent with
our observations for Adam and RMSProp when we replace the standard coordinate-wise step size
with the subset-norm adaptive step size.

B.3. Adam-Subset-Norm Implementation

Algorithm 4 presents the pseudocode for Adam-Subset-Norm as mentioned in Section 4.

10

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Algorithm 4: Adam-Subset-Norm with a simple partitioning scheme
Input: Learning rate η, EMA parameters β1 and β2, ϵ > 0, optional weight decay wd ≥ 0
Output: Updated parameters
for p ∈ Rm×n in params do

grad← p.grad;
r ← 0 if m ≥ n else 1;
k ← p.shape[r] ; // where k = m if r = 0 else k = n

gradN← grad.norm(dim=1− r) ∈ Rk ; // subset norm
m← β1m+ (1− β1)· grad ∈ Rm×n;
v ← β2v + (1− β2) · gradN2 ∈ Rk ; // omitting bias correction terms
p← p+ η m√

v+ϵ
; // broadcast division

p← p− η · wd ; // weight decay

end

Algorithm 5: RMSProp-Subset-Norm with a simple partitioning scheme
Input: Learning rate η, EMA parameter β, ϵ > 0, optional weight decay κ ≥ 0
Output: Updated parameters
for p ∈ Rm×n in params do

grad← p.grad;
r ← 0 if m ≥ n else 1;
k ← p.shape[r] ; // where k = m if r = 0 else k = n

gradN← grad.norm(dim=1− r) ∈ Rk ; // subset norm

v ← β · v + (1− β) · gradN2 ∈ Rk;
p← p+ η grad√

v+ϵ
; // broadcast division

p← p− η · κ ; // weight decay

end

11

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

0 2000 4000 6000 8000 10000
Update Step

4

5

6

7

8

Lo
ss

Training Loss (Smoothed)

AdaGrad-Subset-Norm Mem=O(d)
AdaGrad-Coordinate Mem=O(d)
AdaGrad-Norm Mem=O(1)

(a) Training loss (10,000 steps)

2000 4000 6000 8000 10000
Update Step

100

200

300

400

500

600

P
er

pl
ex

ity

Evaluation Perplexity

AdaGrad-Subset-Norm Mem=O(d)
AdaGrad-Coordinate Mem=O(d)
AdaGrad-Norm Mem=O(1)

(b) Validation perplexity (10,000 steps)

Figure 1: Pretraining LLaMA 60M on the C4 dataset for AdaGrad variants. Memory consumption
estimate as a function of parameter count d is shown in the legend.

Algorithm 6: Generic Subset-Norm Adaptive Step Size Update Rule (PyTorch-y notation)
Input: Parameter P ∈ Rm×n, step size η > 0, β, and ϵ > 0, and partition size k such that k

divides mn
R← (∇P).reshape(m× n/k, k) ; // Reshape gradient into shape mn

k × k
V ← βV + (1− β) · (R.sum(dim=1)) ; // Update state V via subset norm
reduction on dim 1

U ← R√
V+ϵ
∈ R

mn
k

×k ; // Broadcast addition and division for update

step
P ← P − η · U.view(m,n) ; // Reshape U back to Rm×n and update P

B.4. Generic Subset-Norm Adaptive Step Size Implementation

The implementations above is simple and does not require any tuning. To modify existing algorithms
to work with arbitrary subsets, one could utilize reshape as in Algorithm 6 for RMSProp as an
example.

Appendix C. Coordinate-noise sparsity convergence rate derivation

AdaGrad-Coordinate. For c = d (AdaGrad-Coordinate), we get
∑c−1

i=0 ∥σΨi∥ = αdβ , ∥σ∥22 =
α2dβ , and

∑c−1
i=0 ∥σΨi∥

4 = α4dβ , so our bound is

1

T

T∑
t=1

∥∇t∥22 ≤ Õ
(
α4dβ + α3dβ + dL+ d1.5α

)
· Õ
(
αdβ√
T

+
α2dβ + αdβ + Ld

T

)
.

The dependency on d for the slow term O(1/
√
T) is d1.5dβ = d1.5+β . The dependency on d for the

fast term O(1/T) is d1.5d = d2.5. Note that there is an inherent d1.5 dependency for the slow term
that does not reduce as the coordinate-noise density decrease.

12

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

AdaGrad-Norm For c = 1 (AdaGrad-Norm), we get ∥σ∥22 =
∑d

i=0 ∥σi∥
2 = α2dβ , ∥σ∥2 =

αdβ/2, and ∥σ∥4 = α4d2β . This means that our bound is

1

T

T∑
t=1

∥∇t∥22 ≤ Õ
(
α4d2β + α3dβ + L+ α

)
· Õ

(
αdβ/2√

T
+

α2dβ + αdβ/2 + L

T

)
.

The dependency on d for the slow term O(1/
√
T) is d2β · dβ/2 = d2.5β . The dependency on d for

the fast term O(1/T) is d2β · dβ = d3β . Note that when β = 0, or when all the noise is on a single
coordinate, we recover the dimension-free results of previous works.

AdaGrad-Subset-Norm. Now, consider the following partition strategy, where we divide the
coordinates into c = d1−βk subsets of size dβ/k each with the dβ noisy coordinates into just
k subsets so that the rest of the c − k subsets do not contain any noisy coordinate. We have∥∥σΨj

∥∥2
2

= α2dβ/k =⇒
∥∥σΨj

∥∥
2

= αdβ/2/k0.5 if j is a noisy subset. We can compute∑c−1
i=0 ∥σΨi∥ = αdβ/2k0.5, ∥σ∥22 =

∑c−1
i=0 ∥σΨi∥

2
2 = α2dβ , and

∑c−1
i=0 ∥σΨi∥

4 = α4d2β/k. We
get a bound of

1

T

T∑
t=1

∥∇t∥22 ≤ Õ

(
α4d2β/k + α3dβ + d1−βkL+

(
d1−βk

)3/2
α

)
·

Õ

(
αdβ/2k0.5√

T
+

α2dβ + αdβ/2k0.5 + Ld1−βk

T

)
.

Set k = d7β/5−3/5 so that
(
d1−βk

)3/2
= d2β/k = d3β/5+3/5. Then we can simplify

1

T

T∑
t=1

∥∇t∥22 ≤ Õ
(
α4d3(β+1)/5 + α3dβ + d2(β+1)/5L+ d3(β+1)/5α

)
·

Õ

(
αd(12β−3)/10

√
T

+
α2dβ + αd(12β−3)/10 + Ld2(β+1)/5

T

)
.

The dependency on d for the slow term O(1/
√
T) is d3(β+1)/5 · d(12β−3)/10 = d3(1+6β)/10 =

d0.3+1.8β . The dependency on d for the fast term O(1/T) is a bit more complicated: For β ∈
[0, 23], we have the dependency on d is d3(β+1)/5 · d2(β+1)/5 = dβ+1. For β ∈ [23 , 1], we have the
dependency on d is d3(β+1)/5 · dβ = d3(β+1)/5+β = d1.6β+0.6. Note that this is only a possible
partition strategy where the subset sizes are of equal size (which is probably the most natural and
easiest to implement). There, the optimal subset size is k = d1.4β−0.6, for which if we plug in
β ∈ [0, 1] we get a range from 1 to d0.8.

Appendix D. Full Theorem and Proof

We show the full result in Theorem 2 with all the polylog terms omitted from Theorem 1.

Theorem 2 Suppose that f : Rd → R is L-smooth and lower bounded by f∗. Given unbiased
stochastic gradients ∇̂f(xt) with stochastic gradient noise ξt := ∇̂f(xt) − ∇f(xt) being σi-per-
coordinate subgaussian for i ∈ [d]. For partitions of the parameters into disjoint subsets [d] =

13

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

⋃c−1
i=0 Ψi with Ψi ∩ Ψj = ∅, if i ̸= j, the iterates xt given by (2) satisfies the following inequality

with probability at least 1− 6cδ (for failure probability δ > 0):

1

T

T∑
t=1

∥∇t∥22 ≤ G(δ) ·

(
4
∑c−1

i=0 ∥σΨi∥√
T

+
I(δ)

T

)
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+H(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√
log

1

δ

)
log

(
4
√
T
∑c−1

i=0 ∥σΨi∥+ I(δ)

b0,min

)

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√
log

1

δ

c−1∑
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

H(δ) :=
c−1∑
i=0

(
ln (T/δ) ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b20,i
+ 2 log

(
1 + ∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ

))
.

where ∥σ∥22 =
∑d

i=1 σ
2
i , ∥σΨi∥

2 =
∑

j∈Ψi
σ2
j , σmax = maxi∈[d] σi, ∆1 = f(x1) − f∗, b0,min =

mini∈[d] b0,i > 0.

D.1. Proof of Theorem 2

For simplicity, in our analysis, we will use ∇̂t,i := ∇̂if(xt) and ∇t,i := ∇if(xt) to denote the
i-th coordinate of the stochastic gradients and gradients at iterate t, respectively. The proof utilizes
techniques and follows the strategies [21], where the main effort is to adapt the techniques for
handling subsets from the AdaGrad-Norm and AdaGrad-Coordinate proofs in [21].

Proof We write ∇̂t
bt

to denote
(
∇̂t
bt

)
k
= ∇̂kf(xt)

bt,i
for k ∈ Ψi (we will use this notation briefly to

show some steps and will not be crucial in the main analysis). We start with the smoothness of f
and ∆t := f(xt)− f∗.

∆t+1 −∆t ≤ ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= −η

〈
∇t,
∇̂t

bt

〉
+

η2L

2

∥∥∥∥∥∇̂t

bt

∥∥∥∥∥
2

(3)

= −η
c−1∑
i=0

∑
j∈Ψi

∇t,j∇̂t,j

bt,i
+

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

= −η
c−1∑
i=0

∑
j∈Ψi

∇t,j (ξt,j +∇t,j)

bt,i
+

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i
(ξt,i = ∇̂t,i −∇t,i)

= −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
bt,i

+
η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

= −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑
i=0

∑
j∈Ψi

(
1

at,i
− 1

bt,i

)
∇t,jξt,j +

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i
.

(4)

14

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Now, we analyze 1
at,i
− 1

bt,i
for i = 0, 1, . . . , c− 1:∣∣∣∣ 1

at,i
− 1

bt,i

∣∣∣∣ = ∣∣∣∣bt,i − at,i
at,ibt,i

∣∣∣∣
=

∣∣∣∣∣ b2t,i − a2t,i
at,ibt,i (bt,i + at,i)

∣∣∣∣∣
=

∣∣∣∣∣∣∣
b2t−1,i +

∥∥∥∇̂Ψif(xt)
∥∥∥2 − b2t−1,i − ∥∇Ψif(xt)∥

2

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥∇̂Ψif(xt)

∥∥∥2 − ∥∇Ψif(xt)∥
2

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
(∥∥∥∇̂Ψif(xt)

∥∥∥− ∥∇Ψif(xt)∥
)(∥∥∥∇̂Ψif(xt)

∥∥∥+ ∥∇Ψif(xt)∥
)

at,ibt,i (bt,i + at,i)

∣∣∣∣∣∣ .
Since bt,i =

√
b2t−1,i +

∥∥∥∇̂Ψif(xt)
∥∥∥2 ≥ ∥∥∥∇̂Ψif(xt)

∥∥∥ and at,i =
√
b2t−1,i + ∥∇Ψif(xt)∥

2 ≥
∥∇Ψif(xt)∥, we have

∣∣∣∣ 1

at,i
− 1

bt,i

∣∣∣∣ ≤
∣∣∣∣∣∣
(∥∥∥∇̂Ψif(xt)

∥∥∥− ∥∇Ψif(xt)∥
)(∥∥∥∇̂Ψif(xt)

∥∥∥+ ∥∇Ψif(xt)∥
)

at,ibt,i

(∥∥∥∇̂Ψif(xt)
∥∥∥+ ∥∇Ψif(xt)∥

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∥∥∥∇̂Ψif(xt)

∥∥∥− ∥∇Ψif(xt)∥

at,ibt,i

∣∣∣∣∣∣
≤

∥∥∥∇̂Ψif(xt)−∇Ψif(xt)
∥∥∥

at,ibt,i

=
∥ξt,Ψi∥
at,ibt,i

.

Hence, we have ∣∣∣∣ 1

at,i
− 1

bt,i

∣∣∣∣ ≤ ∥ξt,Ψi∥
at,ibt,i

.

15

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Then from 4, taking the absolute value of
∑c−1

i=0

∑
j∈Ψi

(
1

at,i
− 1

bt,i

)
∇t,jξt,j , we can bound:

∆t+1 −∆t ≤ −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η
c−1∑
i=0

∑
j∈Ψi

∣∣∣∣ 1

at,i
− 1

bt,i

∣∣∣∣ |∇t,jξt,j |+
η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

≤ −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η
c−1∑
i=0

∥ξt,Ψi∥
at,ibt,i

∑
j∈Ψi

|∇t,jξt,j |+
η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

(1)

≤ −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑
i=0

∥ξt,Ψi∥
at,ibt,i

∥∇t,Ψi∥ ∥ξt,Ψi∥+
η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

≤ −η
c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η
c−1∑
i=0

∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i
,

where (1) is due to
∑

j∈Ψi
|∇t,jξt,j | = ⟨|∇t,Ψi | , |ξt,Ψi |⟩ ≤ ∥∇t,Ψi∥ ∥ξt,Ψi∥ and |·| denotes coordinate-

wise absolute value when we apply to vectors. The last inequality is due to 2ab ≤ a2 + b2. Now,
we can sum both sides for t = 1, . . . , T to telescope the LHS:

∆T+1 −∆1 ≤
T∑
t=1

(
−η

c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
− η

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+ η

c−1∑
i=0

∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i

)
.

Rearranging gives

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
≤ ∆1 −∆T+1

η
−

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i︸ ︷︷ ︸

A

+

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
︸ ︷︷ ︸

B

+
ηL

2

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i︸ ︷︷ ︸
C

.

On the LHS, we note that

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇2
t,j

bt,i
=

T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2

bt,i
.

16

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

We now bound each term separately. It’s easiest to bound C:
∑T

t=1

∑c−1
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i
:

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

b2t,i
=

c−1∑
i=0

T∑
t=1

∑
j∈Ψi

∇̂2
t,j

b2t,i
=

d∑
i=1

T∑
t=1

b2t,i − b2t−1,i

b2t,i
≤

d∑
i=1

2 log
bT,i
b0,i

.

=

c−1∑
i=0

T∑
t=1

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

=
c−1∑
i=0

T∑
t=1

b2t,i − b2t−1,i

b2t,i

=
c−1∑
i=0

T∑
t=1

1−
b2t−1,i

b2t,i

≤
c−1∑
i=0

T∑
t=1

log
b2t,i
b2t−1,i

= 2
c−1∑
i=0

log
T∏
t=1

bt,i
bt−1,i

= 2
c−1∑
i=0

log
bT,i
b0,i

.

We now have a useful inequality

T∑
t=1

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

≤ 2 log
bT,i
b0,i

, ∀i = 0, . . . , c− 1. (5)

Next, we deal with−
∑T

t=1

∑c−1
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

via a martingale argument. LetFt := σ (ξ1, . . . , ξt−1)

denote the natural filtration. Note that xt isFt-measurable. For any w > 0, we have for each i ∈ [c]:

E

exp
−w ∑

j∈Ψi

∇t,jξt,j
at,i

− 2w2
∑
j∈Ψi

σ2
j∇2

t,j

a2t,i

 | Ft

= exp

−2w2
∑
j∈Ψi

σ2
j∇2

t,j

a2t,i

E

exp
−w ∑

j∈Ψi

∇t,jξt,j
at,i

 | Ft

≤ 1.

Then a simple inductive argument and using Markov’s inequality gives with probability at least
1− δ:

−w
T∑
t=1

∑
j∈Ψi

∇t,jξt,j
at,i

≤ 2w2
T∑
t=1

∑
j∈Ψi

σ2
j∇2

t,j

a2t,i
+ log

1

δ
.

17

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

By a union bound across all c subsets, we have w.p. at least 1− cδ:

−
T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

≤
T∑
t=1

c−1∑
i=0

∑
j∈Ψi

wσ2
j∇2

t,j

a2t,i
+

c

w
log

1

δ
. (6)

Let’s call the event that (6) happens E1. Now, consider
∑T

t=1

∑c−1
i=0

∑
j∈Ψi

∇2
t,j

a2t,i
. We have

∑
j∈Ψi

∇2
t,j

a2t,i
=
∥∇t,Ψi∥

2

a2t,i
=

∥∇t,Ψi∥
2

b2t−1,i + ∥∇t,Ψi∥
2

(∗)
≤

2
∥∥∥∇̂t,Ψi

∥∥∥2 + 2 ∥ξt,Ψi∥
2

b2t−1,i + 2
∥∥∥∇̂t,Ψi

∥∥∥2 + 2 ∥ξt,Ψi∥
2

∥∇t,Ψi∥
2

a2t,i
≤ 2

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i
.

For (∗) we use the fact that x
c+x is an increasing function and ∥∇t,Ψi∥

2 =
∥∥∥∇̂t,Ψi + ξt,Ψi

∥∥∥2 ≤
2
∥∥∥∇̂t,Ψi

∥∥∥2 + 2 ∥ξt,Ψi∥
2. Let σmax := maxi∈[d] σi, then under event E1, we have with probability

at least 1− cδ:

−
T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

≤
T∑
t=1

c−1∑
i=0

∑
j∈Ψi

wσ2
j∇2

t,j

a2t,i
+

c

w
log

1

δ

≤ wσ2
max

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇2
t,j

a2t,i
+

c

w
log

1

δ

≤ wσ2
max

T∑
t=1

c−1∑
i=0

2

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

+
c

w
log

1

δ

= σmax

√
c log

1

δ︸ ︷︷ ︸
=:α

T∑
t=1

c−1∑
i=0

2

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

+ σmax

√
c log

1

δ

(set w :=

√
c log 1

δ

σmax
)

= 2α
T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+
∥ξt,Ψi∥

2

b2t,i

+ α.

where the second to last equality is due to choosing w =

√
c log 1

δ

σmax
and the last equality is letting

α := σmax

√
c log 1

δ for readability.

18

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Let MT,i = maxt≤T |ξt,i|. Using our notation, we can define MT,Ψi := maxt≤T ∥ξt,Ψi∥. Under
event E1 (and our new bound for C), we have that with probability at least 1− cδ:

T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2

bt,i

(C)
≤ ∆1

η
−

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

+
T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+ ηL

c−1∑
i=0

log
bT,i
b0,i

≤ ∆1

η
−

T∑
t=1

c−1∑
i=0

∑
j∈Ψi

∇t,jξt,j
at,i

(7)

+

T∑
t=1

c−1∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+ ηL

c−1∑
i=0

log
bT,i
b0,i

(def of MT,Ψi)

(E1)

≤ ∆1

η
+ 2α

T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i︸ ︷︷ ︸

bound with (C)

+
∥ξt,Ψi∥

2

b2t,i

+ α+

T∑
t=1

c−1∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+ ηL

c−1∑
i=0

log
bT,i
b0,i

(8)

(C)
≤ ∆1

η
+ 2α

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+

T∑
t=1

c−1∑
i=0

MT,Ψi

(
∥ξt,Ψi∥

2

2b2t,i
+
∥∇t,Ψi∥

2

2a2t,i

)
+ (ηL+ 4α)

c−1∑
i=0

log
bT,i
b0,i

(9)

≤ ∆1

η
+ 2α

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+ (10)

T∑
t=1

c−1∑
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2t,i
+

T∑
t=1

c−1∑
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2t,i
+ (ηL+ 4α)

c−1∑
i=0

log
bT,i
b0,i

.

(11)

Let us turn our attention to MT,Ψi := maxt≤T ∥ξt,Ψi∥. Note that

Pr

[
max
t∈[T]
∥ξt,Ψi∥

2 ≥ A

]
= Pr

[
exp

(
maxt∈[T] ∥ξt,Ψi∥

2

w

)
≥ exp

(
A

w

)]
(for w > 0)

≤ exp

(
−A

w

)
E

[
exp

(
maxt∈[T] ∥ξt,Ψi∥

2

w

)]
(Markov)

= exp

(
−A

w

)
E

[
max
t∈[T]

exp

(
∥ξt,Ψi∥

2

w

)]

≤ exp

(
−A

w

) ∑
t∈[T]

E

[
exp

(
∥ξt,Ψi∥

2

w

)]
.

19

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

We have

E

[
exp

(
∥ξt,Ψi∥

2

w

)]
= E

[
exp

(∑
j∈Ψi

ξ2t,j
w

)]

= E

[
exp

(∑
j∈Ψi

ξ2t,j
w

)]

= E

∏
j∈Ψi

exp

(
ξ2t,j
w

)
=
∏
j∈Ψi

E

[
exp

(
ξ2t,j
w

)]
. (independence)

Since sub-gaussianity give us

E
[
exp

(
λ2ξ2t,i

)]
≤ exp

(
λ2σ2

i

)
, ∀ |λ| ≤ 1

σi
,∀i ∈ [d] ,

we have E
[
exp

(
ξ2t,j
w

)]
≤ exp

(
σ2
j

w

)
if
√

1
w ≤

1
σj

. We pick w := ∥σΨi∥
2 =

∑
j∈Ψi

σ2
j ≥

σ2
j , ∀j ∈ Ψi . Hence, we have

E

[
exp

(
∥ξt,Ψi∥

2

∥σΨi∥
2

)]
≤
∏
j∈Ψi

exp

(
σ2
j

∥σΨi∥
2

)

= exp

(
∥σΨi∥

2

∥σΨi∥
2

)
= 1. (12)

We have actually shown that ξt,Ψi is a ∥σΨi∥
2-subgaussian random variable in Rk (see Proposition

2.5.2 in [31]). This fact will come in handy later. Now, we have

Pr

[
max
t∈[T]
∥ξt,Ψi∥

2 ≥ A

]
≤ exp

(
− A

∥σΨi∥
2

) ∑
t∈[T]

E

[
exp

(
∥ξt,Ψi∥

2

∥σΨi∥
2

)]

= exp

(
− A

∥σΨi∥
2

)
T.

Setting exp

(
− A

∥σΨi∥
2

)
T = δ gives A = ∥σΨi∥

2 lnT/δ. Hence, we have with probability at least

1− δ,
MT,Ψi = max

t∈[T]
∥ξt,Ψi∥

2 ≤ ∥σΨi∥
2 lnT/δ. (13)

Union bounding across all i = 0, 1, . . . , c− 1, we have that with probability at least 1− cδ,

MT,Ψi ≤ ∥σΨi∥
2 lnT/δ, ∀i = 0, 1, . . . , c− 1. (14)

20

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Let us denote the event in (14) by E2. Combining it with event E1 and starting from 10, we have
that with probability 1− cδ:

T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2

bt,i
≤ ∆1

η
+ 2α

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

b2t,i
+ α+

T∑
t=1

c−1∑
i=0

MT,Ψi

∥ξt,Ψi∥
2

2b2t,i
+

T∑
t=1

c−1∑
i=0

MT,Ψi

∥∇t,Ψi∥
2

2a2t,i
+ (ηL+ 4α)

c−1∑
i=0

log
bT,i
b0,i

≤ ∆1

η
+ 2α

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

b2t,i
+ lnT/δ

T∑
t=1

c−1∑
i=0

∥σΨi∥
2 ∥ξt,Ψi∥

2

2b2t,i
+ α+

lnT/δ

T∑
t=1

c−1∑
i=0

∥σΨi∥
2 ∥∇t,Ψi∥

2

2a2t,i
+ (ηL+ 4α)

c−1∑
i=0

log
bT,i
b0,i

=
∆1

η
+

c−1∑
i=0

(
lnT/δ

∥σΨi∥
2

2
+ 2α

)
T∑
t=1

∥ξt,Ψi∥
2

b2t,i
+ α+

lnT/δ
c−1∑
i=0

∥σΨi∥
2

2

T∑
t=1

∥∇t,Ψi∥
2

a2t,i
+ (ηL+ 4α)

c−1∑
i=0

log
bT,i
b0,i

.

Recall that ∥∇t,Ψi∥
2

a2t,i
≤ 2
∥∇̂t,Ψi∥

2

b2t,i
+ 2
∥ξt,Ψi∥

2

b2t,i
, we then have

lnT/δ
c−1∑
i=0

∥σΨi∥
2

2

T∑
t=1

∥∇t,Ψi∥
2

a2t,i
≤ lnT/δ

c−1∑
i=0

∥σΨi∥
2

2

T∑
t=1

2

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ 2
∥ξt,Ψi∥

2

b2t,i

= lnT/δ

c−1∑
i=0

∥σΨi∥
2

T∑
t=1

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ lnT/δ
c−1∑
i=0

∥σΨi∥
2

T∑
t=1

∥ξt,Ψi∥
2

b2t,i

≤ lnT/δ

c−1∑
i=0

∥σΨi∥
2 log

bT,i
b0,i

+ lnT/δ

c−1∑
i=0

∥σΨi∥
2

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
.

(from 5)

Hence, we have with probability at least 1− 2cδ:
T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2

bt,i
≤ ∆1

η
+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + 2α
) T∑

t=1

∥ξt,Ψi∥
2

b2t,i
(15)

+ α+
c−1∑
i=0

lnT/δ ∥σΨi∥
2 log

bT,i
b0,i

+

c−1∑
i=0

(ηL+ 4α) log
bT,i
b0,i

=
∆1

η
+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + 2α
) T∑

t=1

∥ξt,Ψi∥
2

b2t,i
(16)

+ α+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)
log

bT,i
b0,i

. (17)

21

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Now, we bound
∑T

t=1
∥ξt,Ψi∥

2

b2t,i
and log

bT,i

b0,i
. We need to first lower bound

∑t
s=1

∥∥∥∇̂t,Ψi

∥∥∥2. We

proceed by noting that

∥∇̂t,Ψi∥2 = ∥∇t,Ψi + ξt,Ψi∥2

= ∥∇t,Ψi∥2 + 2⟨ξt,Ψi ,∇t,Ψi⟩+ ∥ξt,Ψi∥2

⇒ ∥∇t,Ψi∥ − ∥∇̂t,Ψi∥2 + ∥ξt,Ψi∥2 = 2⟨ξt,Ψi ,∇t,Ψi⟩.

Define for t ∈ {0, 1, · · · , T} and some constant vs to be specified later:

Ut+1 = exp

(
t∑

s=1

ws

(
∥∇s,Ψi∥ − ∥∇̂s,Ψi∥2 + ∥ξs,Ψi∥2

)
− vs∥∇s,Ψi∥2

)
= Ut · exp

(
wt

(
∥∇t,Ψi∥ − ∥∇̂t,Ψi∥2 + ∥ξt,Ψi∥2

)
− vt∥∇t,Ψi∥2

)
= Ut · exp

(
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥2

)
.

First, note that Ut ∈ Ft. We show that Ut is a supermartingale

E [Ut+1 | Ft] = E
[
Ut · exp

(
wt (2⟨ξt,Ψi ,∇t,Ψi⟩)− vt∥∇t,Ψi∥2

)
| Ft

]
= Ut exp

(
−vt∥∇t,Ψi∥2

)
E [exp (2wt⟨ξt,Ψi ,∇t,Ψi⟩) | Ft]

(∗)
≤ Ut exp

(
−vt∥∇t,Ψi∥2

)
E
[
exp

(
4w2

t ∥σΨi∥
2 ∥∇t,Ψi∥2

)
| Ft

]
= Ut, (vt=4w2

t ∥σΨi∥
2)

where (∗) is due to Lemma 2.2 of [21] and the fact that ξt,Ψi is ∥σΨi∥
2-subgaussian from (12).

Hence, by Ville’s supermartingale inequality, we have

Pr

[
max

t∈[T+1]
Ut ≥ δ−1

]
≤ δE [U1] = δ.

This implies w.p. ≥ 1− δ, ∀0 ≤ t ≤ T :

t∑
s=1

ws

(
∥∇s,Ψi∥ − ∥∇̂s,Ψi∥2 + ∥ξs,Ψi∥2

)
− vs∥∇s,Ψi∥2 ≤ log

1

δ

=⇒
t∑

s=1

(
ws − 4w2

s ∥σΨi∥
2
)
∥∇s,Ψi∥2 +

t∑
s=1

ws∥ξs,Ψi∥2 ≤
t∑

s=1

ws∥∇̂s,Ψi∥2 + log
1

δ

⇐⇒
t∑

s=1

(
1− 4ws ∥σΨi∥

2
)
∥∇s,Ψi∥2 +

t∑
s=1

∥ξs,Ψi∥2 ≤
t∑

s=1

∥∇̂s,Ψi∥2 +
1

ws
log

1

δ
.

Set ws =
1

4∥σΨi∥
2 to get

t∑
s=1

∥ξs,Ψi∥2 ≤
t∑

s=1

∥∇̂s,Ψi∥2 + 4 ∥σΨi∥
2 log

1

δ
, ∀t ≤ T. (18)

22

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

We are now ready to bound
∑T

t=1
∥ξt,Ψi∥

2

b2t,i
. Starting by applying (18), we have that with probability

at least 1− δ

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
=

T∑
t=1

∥ξt,Ψi∥
2

b20,i +
∑t

s=1

∥∥∥∇̂t,Ψi

∥∥∥2
≤

T∑
t=1

∥ξt,Ψi∥
2

b20,i +
(∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

)+
where (x)+ = max {x, 0}. Let τ = max

(
{0} ∪

{
t ∈ N≤T |

∑t
s=1 ∥ξs,Ψi∥

2 ≤ 2C
})

for some
C ≥ 0. We have

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
=

τ∑
t=1

∥ξt,Ψi∥
2

b2t,i
+

T∑
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑t

s=1

∥∥∥∇̂t,Ψi

∥∥∥2
≤ 1

b20,i

τ∑
t=1

∥ξt,Ψi∥
2 +

T∑
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

≤ 2C

b20,i
+

T∑
t=τ+1

∥ξt,Ψi∥
2

b20,i +
∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ

.

Now, since
∑t

s=1∥ξs,Ψi∥
2

2 ≥ C for t > τ , we have b20,i +
∑t

s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥
2 log 1

δ ≥
b20,i − 4 ∥σΨi∥

2 log 1
δ + C + 1

2

∑t
s=1 ∥ξs,Ψi∥2. If b20,i − 4 ∥σΨi∥

2 log 1
δ ≥ 0, then we pick C = 0

and b20,i− 4 ∥σΨi∥
2 log 1

δ +C+ 1
2

∑t
s=1 ∥ξs,Ψi∥2 ≥ 1

2

∑t
s=1 ∥ξs,Ψi∥2. If b20,i− 4 ∥σΨi∥

2 log 1
δ < 0,

we pick C = 4 ∥σΨi∥
2 log 1

δ −b20,i > 0, which gives b20,i−4 ∥σΨi∥
2 log 1

δ +C+ 1
2

∑t
s=1 ∥ξs,Ψi∥2 ≥

1
2

∑t
s=1 ∥ξs,Ψi∥2. In either case, we have b20,i−4 ∥σΨi∥

2 log 1
δ+C+1

2

∑t
s=1 ∥ξs,Ψi∥2 ≥ 1

2

∑t
s=1 ∥ξs,Ψi∥2.

Hence, letting C = max
(
0, 4 ∥σΨi∥

2 log 1
δ − b20,i

)
≤ 4 ∥σΨi∥

2 log 1
δ , we have with probability at

least 1− δ:

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
≤ 2C

b20,i
+ 2

T∑
t=τ+1

∥ξt,Ψi∥
2∑t

s=1 ∥ξs,Ψi∥2

≤ 2C

b20,i
+ 2

T∑
t=1

∥ξt,Ψi∥
2∑t

s=1 ∥ξs,Ψi∥2

≤
8 ∥σΨi∥

2 log 1
δ

b20,i
+ 2

T∑
t=1

∥ξt,Ψi∥
2∑t

s=1 ∥ξs,Ψi∥2
.

23

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Let Xt = 1 +
∑t

s=1 ∥ξs,Ψi∥
2 = Xt−1 + ∥ξt,Ψi∥

2, where X0 = 1. Then,

T∑
t=1

∥ξt,Ψi∥
2∑t

s=1 ∥ξs,Ψi∥2
=

T∑
t=1

Xt −Xt−1

Xt
=

T∑
t=1

1− Xt−1

Xt

≤
T∑
t=1

log

(
Xt

Xt−1

)

= log

(
T∏
t=1

Xt

Xt−1

)

= log

(
XT

X0

)
= log

(
1 +

T∑
t=1

∥ξs,Ψi∥
2

)
.

Hence, with probability at least 1− δ:

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
≤

8 ∥σΨi∥
2 log 1

δ

b20,i
+ 2 log

(
1 +

T∑
t=1

∥ξs,Ψi∥
2

)
. (19)

It remains to bound
∑T

t=1 ∥ξs,Ψi∥
2. Note that

Pr

[
T∑
t=1

∥ξs,Ψi∥
2 ≥ u

]
= Pr

[
exp

(
T∑
t=1

∥ξs,Ψi∥2

∥σΨi∥
2

)
≥ exp

(
u

∥σΨi∥
2

)]

≤
E
[
exp

(∑T
t=1

∥ξs,Ψi
∥2

∥σΨi∥
2

)]
exp

(
u

∥σΨi∥
2

)
≤ exp(T)

exp

(
u

∥σΨi∥
2

) (ξs,Ψi is ∥σΨi∥
2-subgaussian)

Choosing u = ∥σΨi∥
2 T + ∥σΨi∥

2 log 1
δ gives that with probability at least 1− δ, we have

T∑
t=1

∥ξs,Ψi∥
2 ≤ ∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ
. (20)

Having a high probability bound on the sum of the stochastic error of the subset-norm, we can
combine both events from (19) and (20) to get that with probability at least 1− 2δ:

T∑
t=1

∥ξt,Ψi∥
2

b2t,i
≤

8 ∥σΨi∥
2 log 1

δ

b20,i
+ 2 log

(
1 + ∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ

)
. (21)

24

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Then we can also condition on the event that (21) happens and combine it with the event in (17) to
get that with probability at least 1− 2cδ (assuming c ≥ 2), we have

T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2
2

bt,i
≤ ∆1

η
+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + 2α
) T∑

t=1

∥ξt,Ψi∥
2

b2t,i
(22)

+ α+
c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)
log

bT,i
b0,i

(23)

≤ ∆1

η
+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b20,i
+ 2 log

(
1 + ∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ

))
︸ ︷︷ ︸

=:H(δ)

(24)

+ α+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)
log

bT,i
b0,i

=
∆1

η
+H(δ) + α+

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)
log

bT,i
b0,i

. (25)

First, note that bT,i ≤ ∥bT ∥1 =
∑c−1

i=0 bT,i. Letting b0,min := mini b0,i, we then have

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)
log

bT,i
b0,i
≤ log

∥bT ∥1
b0,min

c−1∑
i=0

(
lnT/δ ∥σΨi∥

2 + ηL+ 4α
)

= log
∥bT ∥1
b0,min

(
lnT/δ ∥σ∥22 + cηL+ 4cα

)
.

Now, note the LHS term
∑T

t=1

∑c−1
i=0
∥∇t,Ψi∥

2

2
bt,i

of (23):

(
c−1∑
i=0

∥∇t,Ψi∥
2
2

bt,i

)(
c−1∑
i=0

bt,i

)
≥

(
c−1∑
i=0

∥∇t,Ψi∥2

)2

≥
c−1∑
i=0

∥∇t,Ψi∥
2
2 = ∥∇t∥22

=⇒
∥∇t∥22(∑c−1
i=0 bt,i

) ≤ c−1∑
i=0

∥∇t,Ψi∥
2
2

bt,i
.

25

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Now,
∑c−1

i=0 bt,i =
∑c−1

i=0 |bt,i| = ∥bt∥1, so with probability 1− 2cδ:

T∑
t=1

∥∇t∥22
∥bT ∥1

≤
T∑
t=1

∥∇t∥22
∥bt∥1

≤
T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2
2

bt,i

=⇒
T∑
t=1

∥∇t∥22 ≤ ∥bT ∥1
T∑
t=1

c−1∑
i=0

∥∇t,Ψi∥
2
2

bt,i

≤ ∥bT ∥1
(
∆1

η
+ cH(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4cα

)
log
∥bT ∥1
b0,min

)
(26)

≤ ∥bT ∥1
(
∆1

η
+ cH(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4cα

)
log
∥bT ∥1
b0,min

)
. (27)

It remains to bound ∥bT ∥1. We start again from smoothness of f :

∆t+1 −∆t ≤ ⟨∇t, xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= −η

〈
∇t,
∇̂t

bt

〉
+

η2L

2

∥∥∥∥∥∇̂t

bt

∥∥∥∥∥
2

= −η

〈
∇̂t − ξt,

∇̂t

bt

〉
+

η2L

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,Ψj

b2t,i

= −η

〈
∇̂t,
∇̂t

bt

〉
+ η

〈
ξt,
∇̂t

bt

〉
+

η2L

2

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

= −η
c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

bt,i
+ η

c−1∑
i=0

∑
j∈Ψi

ξt,j∇̂t,j

bt,i
+

η2L

2

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

= −η
c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

+
η2L

2

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+ η

c−1∑
i=0

∑
j∈Ψi

ξt,j∇̂t,j

bt,i
. (28)

Note that
c−1∑
i=0

∑
j∈Ψi

ξt,j∇̂t,j

bt,i
≤ 1

2

c−1∑
i=0

∑
j∈Ψi

ξ2t,j
bt,i

+
1

2

c−1∑
i=0

∑
j∈Ψi

∇̂2
t,j

bt,i

=
1

2

c−1∑
i=0

∑
j∈Ψi

ξ2t,j
bt,i

+
1

2

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

.

Plugging back in, we have

∆t+1 −∆t ≤ −
η

2

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

+ η2L

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

+
η

2

c−1∑
i=0

∥ξt,Ψi∥
2

bt,i
.

26

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Summing over T and rearranging, we get

T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

≤ 2∆1

η
+

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

bt,i
+ 2ηL

T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

=⇒
T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

≤ 4∆1

η
+ 2

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

bt,i
+

T∑
t=1

c−1∑
i=0

(
4ηL

b2t,i
− 1

bt,i

)∥∥∥∇̂t,Ψi

∥∥∥2 .
We can bound

∑T
t=1

∑c−1
i=0

(
4ηL
b2t,i
− 1

bt,i

)∥∥∥∇̂t,Ψi

∥∥∥2 as follows. Consider i ∈ [c]. Let τi = max {t ≤ T | bt,i ≤ 4ηL}

so that t ≥ τi implies bt,i > 4ηL ⇐⇒ 4ηL
b2t,i

< 1
bt,i

:

T∑
t=1

(
4ηL

b2t,i
− 1

bt,i

)∥∥∥∇̂t,Ψi

∥∥∥2 = τi∑
t=1

(
4ηL

b2t,i
− 1

bt,i

)∥∥∥∇̂t,Ψi

∥∥∥2 + T∑
t=τi+1

4ηL

b2t,i
− 1

bt,i︸ ︷︷ ︸
<0

∥∥∥∇̂t,Ψi

∥∥∥2

≤
τi∑
t=1

(
4ηL

b2t,i
− 1

bt,i

)∥∥∥∇̂t,Ψi

∥∥∥2

≤ 4ηL

τi∑
t=1

∥∥∥∇̂t,Ψi

∥∥∥2
b2t,i

≤ 8ηL log
bτi,i
b0,i
≤ 8ηL log

4ηL

b0,i
.

Hence, we have

T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

≤ 4∆1

η
+ 2

T∑
t=1

c−1∑
i=0

∥ξt,Ψi∥
2

bt,i
+ 8ηL

c−1∑
i=0

log
4ηL

b0,i
.

Consider the LHS

T∑
t=1

c−1∑
i=0

∥∥∥∇̂t,Ψi

∥∥∥2
bt,i

=

T∑
t=1

c−1∑
i=0

b2t,i − b2t−1,i

bt,i
=

T∑
t=1

c−1∑
i=0

bt,i −
b2t−1,i

bt,i

≥
T∑
t=1

c−1∑
i=0

bt,i −
b2t−1,i

bt−1,i
=

T∑
t=1

c−1∑
i=0

bt,i − bt−1,i

=
c−1∑
i=0

T∑
t=1

bt,i − bt−1,i =
c−1∑
i=0

bT,i − b0,i

= ∥bT ∥1 − ∥b0∥1 .

Hence, we have

∥bT ∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1∑
i=0

T∑
t=1

∥ξt,Ψi∥
2

bt,i
+ 8ηLc log

4ηL

b0,min
.

27

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

It remains to bound
∑T

t=1
∥ξt,Ψi∥

2

bt,i
for each i ∈ [c]. Recall from (21), with probability at least 1− δ

t∑
s=1

∥ξt,Ψi∥2 ≤
t∑

s=1

∥∇̂t,Ψi∥2 + 4 ∥σΨi∥
2 log

1

δ
, ∀t ≤ T.

We have with probability at least 1− 2cδ,

T∑
t=1

∥ξt,Ψi∥
2

bt,i
=

T∑
t=1

∥ξt,Ψi∥
2√

b20,i +
∑t

s=1 ∥∇̂s,Ψi∥2

(1)

≤
T∑
t=1

ξ2t,i√
b20,i +

(∑t
s=1 ∥ξs,Ψi∥2 − 4 ∥σΨi∥

2 log 1
δ

)+
≤

8 ∥σΨi∥
2 log 1

δ

b0,i
+ 2
√
2

√√√√ T∑
s=1

∥ξs,Ψi∥2

(2)

≤
8 ∥σΨi∥

2 log 1
δ

b0,i
+ 4

√
∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ
,

where (1) is due to (18) and (2) is due to Lemma (20). Hence, we have that with probability at least
1− 2cδ,

∥bT ∥1 ≤ ∥b0∥1 +
2∆1

η
+

c−1∑
i=0

8 ∥σΨi∥
2 log 1

δ

b0,i
+

c−1∑
i=0

4

√
∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ
+ 8ηLc log

4ηL

b0,min

≤ ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min

c−1∑
i=0

∥σΨi∥
2 + 4

√
T

c−1∑
i=0

∥σΨi∥+
√

log
1

δ

c−1∑
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

= 4
√
T

c−1∑
i=0

∥σΨi∥+ ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√
log

1

δ

c−1∑
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min︸ ︷︷ ︸
=:I(δ)

.

Hence, we can combine (27) with the bound for ∥bT ∥1 to get that with probability 1− 6cδ:

T∑
t=1

∥∇t∥22 ≤ ∥bT ∥1

(
∆1

η
+H(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4cσmax

√
c log

1

δ

)
log
∥bT ∥1
b0,min

)

≤

(
4
√
T

c−1∑
i=0

∥σΨi∥+ I(δ)

)
·(

∆1

η
+H(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√
log

1

δ

)
log

(
4
√
T
∑c−1

i=0 ∥σΨi∥+ I(δ)

b0,min

))
.

28

MEMORY EFFICIENT STOCHASTIC ADAPTIVE OPTIMIZATION VIA SUBSET-NORM

Dividing both sides by T , we get the theorem that with probability 1− 6cδ:

1

T

T∑
t=1

∥∇t∥22 ≤ G(δ) ·

(
4
∑c−1

i=0 ∥σΨi∥√
T

+
I(δ)

T

)
, where G(δ) and I(δ) are polylog terms:

G(δ) :=
∆1

η
+H(δ) +

(
lnT/δ ∥σ∥22 + cηL+ 4c3/2σmax

√
log

1

δ

)
log

(
4
√
T
∑c−1

i=0 ∥σΨi∥+ I(δ)

b0,min

)

I(δ) := ∥b0∥1 +
2∆1

η
+

8 log 1
δ

b0,min
∥σ∥22 +

√
log

1

δ

c−1∑
i=0

∥σΨi∥+ 8ηLc log
4ηL

b0,min

H(δ) :=

c−1∑
i=0

(
ln (T/δ) ∥σΨi∥

2 + 2α
)(8 ∥σΨi∥

2 log 1
δ

b20,i
+ 2 log

(
1 + ∥σΨi∥

2 T + ∥σΨi∥
2 log

1

δ

))
.

29

	Introduction
	Preliminaries
	AdaGrad-Subset-Norm: Better Convergence, Less Memory
	High-probability convergence of AdaGrad-Subset-Norm for non-convex objectives
	Coordinate-noise sparsity and dimension dependency

	Experiments
	Conclusion and Future Works
	Related Works
	Additional Experimental Details
	Hyperparameter details
	AdaGrad, AdaGrad-Norm, and AdaGrad-Subset-Norm
	Adam-Subset-Norm Implementation
	Generic Subset-Norm Adaptive Step Size Implementation

	Coordinate-noise sparsity convergence rate derivation
	Full Theorem and Proof
	Proof of Theorem 2

