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Abstract
In recent years, video generation has drawn signif-
icant attention. However, there is little consider-
ation in audio-to-video generation, though audio
contains unique qualities like temporal semantics
and magnitude. Hence, we propose The Power of
Sound (TPoS) model to incorporate audio input
that includes both changeable temporal semantics
and magnitude. To generate video frames, TPoS
utilizes a latent stable diffusion model with textual
semantic information, which is then guided by the
sequential audio embedding from our pretrained
Audio Encoder. As a result, this method produces
audio reactive video contents. We demonstrate
the effectiveness of TPoS across various tasks and
compare its results with current state-of-the-art
audio-to-video generation techniques.

1 Introduction
Recent advancements in generative models have demon-
strated their ability to create visually appealing video frames
using a simple text prompt (e.g., “a video of a person on
the street on a rainy day”) as input (Singer et al., 2022; Ho
et al., 2022b). However, generating complex sequential pro-
cedures through text can be challenging, i.e., “a video of
a person on the street on a rainy day, but a rain suddenly
stops, and a wind blows.” To address this issue, we leverage
sounds for the video generation models, i.e., sound-driven
video generation. Audio complements text by providing
sequential information or temporal semantics, enabling con-
tinuous transitions, such as the sound of light rain to the
sound of heavy rain. However, existing sound-guided video
generation approaches are limited to specific applications,
such as face generation (Prajwal et al., 2020) and music

1Department of Computer Science and Engineering, Ko-
rea University 2Department of Artificial Intelligence, Ko-
rea University 3NVIDIA Research, NVIDIA Corporation.
*Correspondence to: Sangpil Kim <spk7@korea.ac.kr>, Jinkyu
Kim <jinkyukim@korea.ac.kr>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

Prompt

“A	photo	of	beautiful	beach	
with	blue	sky”

Frame 4

(M
ag

ni
tu

de
 C

ha
ng

e)
(S

em
an

tic
 C

ha
ng

e)
(S

in
gl

e 
So

un
d)

Frame 3Frame 2Frame 1 Frame 5

Increase in Magnitude

Change in Semantics

Figure 1: The Power of Sound (TPoS) is a novel framework
that generates audio-reactive video sequences. Built upon
the Stable Diffusion model, our model first generates an
initial frame from a user-provided text prompt (e.g. “a
photo of a beautiful beach with a blue sky”), then reactively
manipulates the style of generated images corresponding to
the sound inputs.

videos (Le Moing et al., 2021; Chatterjee & Cherian, 2020)
(e.g., a video of musicians playing violin).

Recently, Lee (Lee et al., 2022a) introduced a sound-guided
landscape video generation model, leveraging the latent
space of StyleGAN (Karras et al., 2021). They focus on us-
ing audio only for semantic labels (i.e., a sound of the wind
is simply encoded into a meaning of wind) but not temporal
semantics – i.e. semantic information that changes over
time. Thus, in this work, we focus on leveraging temporal
semantics from audio inputs such that our video generator
reactively manipulates video frames.

Our work starts with Stable Diffusion (Rombach et al.,
2022), a text-driven image generator with advantages in
generating high-resolution images based on the latent dif-
fusion models. Its architectural advantages (i.e., attention
mechanism and diffusion process) help leverage audio as a
driving condition, generating temporally reactive and con-
sistent video frames. Given the latent space of trained Sta-
ble Diffusion, we generate video frames temporally guided
by audio sequences with regularizers to ensure temporal
consistency (between generated consecutive frames) and
correspondence with audio inputs.
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Our model consists of two main modules: (i) Audio Encoder,
which is attention based and designed to encode temporal
semantics of audio sequences, producing a sequence of
the latent vectors. (ii) Audio Semantic Guidance Module,
which uses the above-mentioned latent vectors as a condition
in the diffusion process to generate corresponding image
outputs. We apply identity regularizer to produce temporally
consistent video frames, while we apply audio semantic
guidance to generate audio-reactive video frames. We first
generate an initial frame using pre-trained Stable Diffusion
model with a text prompt, then generate the following video
frames conditioned on audio inputs. We summarize our
contributions as follows:

• We propose a novel sound-driven video generation
method built upon Stable Diffusion (Rombach et al.,
2022) and can generate video frames reactively with
audio sequence inputs.

• Our attention-based Audio Encoder produces
temporally-aware latent vectors, which are consumed
by Stable Diffusion as a per-time manipulation
condition, producing audio-reactive video frames.

• Our model regularizes the latent features of diffusion
models to produce temporally consistent video frames,
preserving identity throughout the generated video.

• We demonstrate the effectiveness of our proposed
model using a public dataset Landscape (Lee et al.,
2022a), generally outperforming other state-of-the-art
sound-driven video generation approaches in terms of
video quality metrics and human evaluation.

2 Method
As shown in Figure 2, our model consists of two main parts:
(i) Audio Encoder, which encodes temporal semantics of
audio sequences, producing a sequence of the latent vectors
(Section 2.1). (ii) Audio Semantic Guidance Module, which
uses the above-mentioned latent vectors as a condition in the
diffusion process to generate corresponding image outputs,
which are temporally consistent (by our identity regularizer)
and audio-reactive (Section 2.2). The preliminary of Latent
Stable Diffusion is illustrated in Appendix Section B.1.

2.1 Encoding Temporal Semantics from Audio

We use an audio modality as a source of generating tem-
poral conditions. By allowing to intercorporate time infor-
mation into the 2D stable diffusion model, we are able to
generate dynamic sequences such as videos. See Figure 4 in
the appendix for a visual illustration of our training process.

Audio Feature Extraction. Audio inputs are first trans-
formed into a mel-spectrogram representation, denoted
as xa ∈ Rd×w, where d represents the number of mel-
frequency bins and w is the width of the spectrogram. To in-
corporate time information, the mel-spectrogram is divided
into N segments. Each segment, denoted as xa

n ∈ Rd×⌈ w
N ⌉,

where n ∈ {1, . . . , N}, is then fed into a shared feature
extraction module, i.e., the pre-trained ResNet18 (He et al.,

2016). The feature extraction module fa(·) learns to extract
low-level features from each audio segment regardless of its
time dependency, i.e., wn = fa(x

a
n)

LSTM-based Temporal Semantic Encoder. Similar
to Lee (Lee et al., 2022a), given audio features w ∈
{w1,w2, . . . ,wN}, which encodes per-segment disjoint au-
dio representation, we apply the standard Long Short-Term
Memory (LSTM) network (Hochreiter & Schmidhuber,
1997) to encode temporal relations or changes between con-
secutive audio features w. Formally, our LSTM takes the au-
dio feature wn−1 as input and updates its hidden state, pro-
ducing an output st: i.e. (sn,hn) = LSTM(hn−1,wn−1).

Aligning Audio Semantics with Image-Text CLIP Joint
Space. As we will use the output s ∈ {s1, s2, . . . , sN} as
a condition to manipulate video frames, it is important to
ensure those audio features are well-aligned with other text
and visual features in the CLIP (Radford et al., 2021)-based
joint embedding space. Similar to Lee (Lee et al., 2022b),
given the pre-trained image-text CLIP space, we apply the
following loss La↔t

CLIP with the InfoNCE loss (Oord et al.,
2018) lsim such that positive pairs (e.g. an audio of raining
and a text prompt “raining”) are pulled close to each other,
while negative pairs are pushed farther away.

La↔t
CLIP = lsim(sN ,CLIPt(t)) + lsim(CLIPt(t), sN ) (1)

where CLIPt is a pre-trained CLIP-based text encoder,
which takes a text prompt t as an input, yielding an d-
dimensional feature. Note that we only apply this loss for
the final output sN for efficient training. Given a set of posi-
tive pairs, we apply the following InfoNCE loss lsim(a,b):

lsim = − log
exp(⟨ai,bi⟩)/τ∑
j exp(⟨ai,bj⟩)/τ)

(2)

where ⟨ai,bi⟩ represents the cosine similarity with temper-
ature τ . Note that we set τ to 0.07.

We add audio augmentation loss for better quality audio
semantic features which denotes La↔a′

CLIP . (See Appendix
Section B.2) Finally, we use the semantic loss Lsemantic: i.e.
Lsemantic = La↔t

CLIP + λsLa↔a′

CLIP where λs is set to 0.6.

Temporal Attention Module (TAM). We further use an
attention-based module to encode temporal semantics from
the audio inputs. Formally, we first compute attention
weight αn for a given audio feature sn by applying an MLP
layer fproj followed by a softmax operation: i.e. αn =
exp(fproj(sn))/

∑
n exp(fproj(sn)) such that

∑
n αn = 1.

We compute the weighted sum of audio features based
on attention weights, yielding an attended audio feature
oa =

∑
n αnsn. Note that we normalize the scale of output

feature oa by multiplying N in inference stage. We add
another InfoNCE loss Ltemporal to align the audio features
with text:
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Figure 2: An overview of our proposed TPoS model. Our model consists of two main modules: (i) Audio Encoder, which
produces a sequence of latent vectors, encoding temporal semantics of audio input by utilizing CLIP (Radford et al., 2021)
space and highlighting the important temporal features and (ii) Audio Semantic Guidance Module, which is based on the
diffusion process, generating video frames that are temporally consistent and audio-reactive.

Ltemporal = lsim(oa,CLIPt(t))) + lsim(CLIPt(t)),o
a)
(3)

Lastly, we also minimize the MSE loss between text embed-
dings (before the projection layer) and the projected audio
feature MAP(oa): Lcond = ||ct − MAP(oa)||22. More details
are provided in Appendix Section B.2.

Total Loss. We train our Audio Encoder end-to-end by
minimizing the following loss function L:

L = Lsemantic + Ltemporal + Lcond (4)

2.2 Generating Video Frames with Stable Diffusion

Initial Frame Generation from Text Prompt. Our model
first generates the initial frame with a text prompt (e.g. “a
photo of beautiful beach with blue sky”). We follow the
standard image generation process with the Stable Diffusion
model (Rombach et al., 2022), i.e. we compute a latent
vector cp in a CLIP-based embedding space given a text
prompt. Given this generated image as content, we ma-
nipulate its styles according to audio inputs and generate
corresponding video frames, i.e. given a series of latent vec-
tors {c1, c2, . . . , cm}, we generate m video frames. Note
that the number of video frames is controllable by latent
vector interpolation, as we explain in Appendix Section B.3.

Audio Semantic Guidance. We use SEGA (Brack et al.,
2022) to generate sound-styled video frames while preserv-
ing content identity. Attention weight an and audio feature
sn are combined with N as normalization and a hyperpa-
rameter k to produce output cn: cn = Nkaknsn. Note that
we set k = 1 in our paper. The Audio Semantic Guidance
module use cn to generate the nth video frame, guiding
diffusion models ϵθ(zt, t, cp) by additionally adding the au-
dio semantic guidance term λ(zδ, cn) during the denoising
process from t = δ to t = 1, where δ is a hyperparame-
ter. Details of audio semantic guidance are in Appendix

Table 1: Comparison of the quality of generated video
frames with state-of-the-art audio-to-video generations in
terms of IS (Salimans et al., 2016), FVD (Unterthiner et al.,
2018), and CLIP (Radford et al., 2021)-based distances.
Model IS↑ FVD↓ CLIP↑ (a↔ v) CLIP↑ (t↔ v)

Sound2Sight (Chatterjee & Cherian, 2020) 1.02 ± 0.02 494.28 0.0364 0.2164

CCVS (Le Moing et al., 2021) 1.30 ± 0.20 679.94 0.1251 0.2360

TräumerAI (Jeong et al., 2021) 1.47 ± 0.19 736.32 0.1589 0.1778

SVG (Lee et al., 2022a) 1.16 ± 0.16 544.09 0. 1151 0.1702

Ours 1.49 ± 0.38 421.23 0.1964 0.2436

Section B.3.

3 Experiments
Baselines. We compare our methods with existing
audio-to-video generation methods, Sound2Sight (Chat-
terjee & Cherian, 2020), CCVS (Le Moing et al., 2021),
TräumerAI (Jeong et al., 2021) and Sound-guided Video
Generation (Lee et al., 2022a). All baselines are trained
or fine-tuned on the Landscape dataset (Lee et al., 2022a).
Details of experiments are in Appendix Section D.
Quantitative Experiments. Table 1 shows that our ap-
proach produces the best quality results as video. Two video
quality metrics are used for evaluations, Fréchet Video Dis-
tance (FVD) (Unterthiner et al., 2018) and Inception Score
(IS) (Salimans et al., 2016). Additionally, to ensure that the
generated videos are semantically related to the sound, we
compare the cosine similarity between text-audio and video
embedding with CLIP (Radford et al., 2021). Our meth-
ods shows a superior performance in terms of multi-modal
semantics.
Qualitative Video Quality Comparison. In Figure 11,
we show examples of generated video frames by base-
lines and our method. We observe blurring arti-
facts in Sound2Sight (Chatterjee & Cherian, 2020) and
CCVS (Le Moing et al., 2021). Furthermore, StyleGAN-
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Figure 3: Examples of generated video frames given
fire crackling audio by baselines and ours. Note that
Sound2Sight and CCVS use an initial frame (red box).

based TräumerAI (Jeong et al., 2021) and Sound-guided
Video Generation (Lee et al., 2022a) often fail to generate
semantically-aligned audio-reactive video frames. However,
our method generate a scene of a fire on firewood, aligning
well with audio inputs. User study further demonstrates
that our video quality surpass existing methods in Appendix
Section E.

4 Conclusion
In this paper, we propose The Power of Sound (TPoS), a
novel audio-to-video generation with Stable Diffusion. Our
work extends the usage of audio modality on generation
models, and broaden the methods of using Stable Diffusion
by generating realistic videos by our Audio Encoder. Su-
perior performances are achieved over widely-used audio-
to-video benchmarks, hence attributing towards the new
formulation of video generation with audio modality.
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A Related Work
Latent Diffusion Models. Recent success (Rombach et al., 2022) suggests that the Latent Diffusion Models (LDM) improve
the efficiency of the diffusion process, successfully generating high-quality images given a text prompt. One challenge
in LDM is that the generation process is too sensitive to the condition, making it difficult to control semantics. Recently,
there have been introduced to control semantics with LDM by a semantic mask (Avrahami et al., 2022) or by utilizing
semantic information of the cross-attention layers (Hertz et al., 2022). Wu (Wu et al., 2022) used linear combinations of
text embeddings and Liu (Liu et al., 2022) proposed composable diffusion models, but they still remained challenging to
control fine-grained semantic changes. Recently, Semantic Guidance (SEGA) (Brack et al., 2022) computed a guidance
vector in the latent space, enabling semantic control of diffusion models without further inputs. Inspired by SEGA, we also
control the semantics in the latent space with temporally-encoded audio vector sequences.

Text-driven Video Generation. Recent text-to-video generation tools, including Make-A-Video (Singer et al., 2022), Video
Diffusion Models (Ho et al., 2022b), Imagen video (Ho et al., 2022a), and Phenaki (Villegas et al., 2022) have shown
promising performance in generating videos from textual descriptions. However, text-to-video generation has its limitations
in terms of temporal coherence, which mostly leads to short video duration or a linear video change. Recent text-to-video
generation methods, StyleGAN-V (Skorokhodov et al., 2022) and Dreamix (Molad et al., 2023), made progress addressing
these issues. However, conditioning temporal semantics or complex scenarios is still challenging to be obtained from text
inputs. Thus, in this paper, we want to explore conditioning a model with audio inputs, which inherently convey such
temporal semantics.

Audio-driven Video Generation. Leveraging temporal semantics was not seriously considered in previous audio-driven
video generation approaches. Sound2Sight(Chatterjee & Cherian, 2020) and CCVS (Le Moing et al., 2021) generate video
frames conditioned on the (non-temporal) context of the given audio, while TräumerAI (Jeong et al., 2021) utilized the
magnitude of the given audio. Recently, Lee (Lee et al., 2022a) explored a model that can consider audio semantics as a
condition to drive a video generator. Also, their dependency on StyleGAN (Skorokhodov et al., 2022)-based embedding
space makes it difficult for models to generate transitions in video. In this work, we focus on leveraging temporal semantics
from audio inputs such that our generator reactively manipulates video frames.

Table 2: Comparison between existing state-of-the-art audio-driven video generation approaches in terms of whether they
consider the following factors: temporal semantics, magnitude changes of sound, and target domains.

Model Input Temporal Semantics Magnitude Domains (Audio Type)

Sound2Sight (Chatterjee & Cherian, 2020) 1st Frame - ✓ Closed

CCVS (Le Moing et al., 2021) 1st Frame - ✓ Closed (Music)

TräumerAI (Jeong et al., 2021) - - ✓ Closed (Music)

Lee (Lee et al., 2022a) - ✓ - Closed (Nature)

Ours Latent Vector ✓ ✓ Open Domains

B Method Details
B.1 Preliminary: Latent Stable Diffusion

Latent Diffusion Models (LDMs) use an encoder to convert a noised latent vector zT to a denoised latent vector z = x+ ϵθ,
with z being a latent vector of an input image x and ϵ representing noise. Stable Diffusion (Rombach et al., 2022) is a part
of a conditional generation model that uses U-Net(Ronneberger et al., 2015) as denoising autoencoders, denoted as ϵθ. To
generate an output image, the autoencoder takes three inputs: noised latent vector zt, a sequence t, and a conditional input y.
The autoencoder ϵθ(zt, t, τθ(y)) sequentially denoises zt from t = T to t = 1, where y is first transformed into a latent
vector cp through a pretrained function τθ and then it is fed into a cross-attention layer of the U-Net as the key and value.
The resulting denoised latent vector z(= z1) is transmitted to the decoder, which produces the final output image x̃.

B.2 Details of Audio Encoder
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Figure 4: An overview of our Audio Encoder training process. Our model generates temporally-encoded audio embeddings
with an LSTM (Hochreiter & Schmidhuber, 1997) layer and Temporal Attention Module (TAM). Audio input is partitioned
into N segments, and each of these is encoded and used as a condition to manipulate audio-reactive video sequences (e.g.
light rain → heavy rain). This is done by our Mapping Module (MAP), which maps the audio embedding to the latent space
of Stable Diffusion.

Enriching Audio Semantic Features by Augmentation. Audio data is often limited in volume and diversity; thus,
augmentation techniques may be required to extract better-quality audio semantic features, preventing a representation
collapse. We use SpecAugment (Park et al., 2019) to apply random transformations (such as masking our certain frequency
bands or time segments), yielding augmented audio inputs. We further add the InfoNCE loss (Oord et al., 2018) La↔a′

CLIP to
pull augmented audio features together.

La↔a′

CLIP = lsim(sN , s
′
N ) + lsim(s′N , sN ) (5)

where apostrophe indicates augmented view of an original audio data.

Mapping Module. The Mapping Module, denoted as MAP in our main paper, consists of several MLP layers, which consist
of Linear-Linear-Dropout-GELU layers. The purpose of this module is to align the audio embeddings with textual prompt
in Stable Diffusion (Rombach et al., 2022). The prompt is converted into a sequence vector via the conditional encoder
in Stable Diffusion, which is transformers as CLIP-L/14 (Radford et al., 2021) Text Encoder. Since audio embeddings
from the Temporal Attention Module is not sequence-like vectors, we use the Mapping Module to broaden the dimensions
like text embeddings (e.g. from <SOS> token to <EOS> token). To achieve this, MSE loss is used to align the audio
embeddings (e.g. raining sound) with the text sequence embeddings of the audio class (e.g. “Raining”) from CLIP-L/14.
Specifically, to obtain sequence-like vectors, the <SOS> token is removed from the text embeddings, which is the same for
all prompts. Later, we concatenate the <SOS> token with the converted audio embeddings to feed the audio condition into
Stable Diffusion in the inference stage.

B.3 Details of Video Frame Generation

Temporal Frame Interpolation. We use an interpolated latent vector to generate continuous video frames between two
consecutive frames. Following the work by Ramesh . (Ramesh et al., 2022), we apply a spherical linear interpolation
between all consecutive pairs of cn and cn+1, yielding k interpolated latent vectors. These vectors are then used as a
condition for the diffusion models to generate temporally-interpolated video frames.

Details of Audio Semantic Guidance Module. The denoising autoencoder ϵθ is executed δ − 1 times out of T times to
form incomplete noise along with the original text prompt meaning. From t = δ, the audio semantic guidance operates
through the following equation:
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ϵ̃θ(z
δ, cp) := ϵθ(z

δ, c∅) + g(ϵθ(z
δ, cp)− ϵθ(z

δ, c∅)) + λ(zδ, cn) (6)

where zδ is denoised random noised latent vector at t = δ, g is the guidance scale of the text prompt, λ(zδ, cn) is the audio
semantic guidance term, and c∅ represents an unconditioned prompt that does not make any semantic difference. As a
result, only the λ(zδ, cn) term has been added to the original denoising process from t = δ. Note that zT is fixed through
frames in one video. The audio semantic guidance λ(zt, cn) is defined as follows:

λ(zδ, cn) = gsψ(z
δ, cp, cn) + smΦm (7)

where sm ∈ [0, 1] is the momentum hyper parameter that scales the momentum Φm. To determine the audio semantic
guidance direction in the Stable Diffusion latent space, the semantic difference ψ(zδ, cp, cn) between the guidance provided
by cn and the unconditioned guidance c∅ is used:

ψ(zδ, cp, cn) = ϵθ(z
δ, cn)− ϵθ(z

δ
∅, c∅) (8)

The data distribution function ψ(zt, cp, cn) is used to identify the audio part that needs to be modified from the original
prompt. First, the difference between the concept-conditioned and unconditioned estimates, denoted as ψ, is scaled. Then,
the values in the upper and lower tail are used as the dimension that represent the specified concept. Therefore, the location
to be changed can be obtained, and it can be expressed as:

gs =

{
se, where |ψ| ≥ ηλ(|ψ|)
0, otherwise. (9)

where ηλ(|ψ|) indicates that it will cause a change in the distribution by (100 - ψ)%, and se determines the degree of the
semantic guidance effect.

The generation process conditioned by cn is separately working through diffusion processes so that the different semantic
meaning or magnitude which presents in cn can generate frames independently.

C Implementation Details

Training details Our end-to-end Audio Encoder model is trained using a combination of Adam (Kingma & Ba, 2014)
optimizer and SGD (Ruder, 2016) optimizer. While the Mapping module is trained with Adam optimizer, the remaining
modules are trained with SGD optimizer. We distribute the inputs evenly across 4 NVIDIA GeForce RTX 3090 GPUs and
train the entire model for 24 epochs. We use the VGG-sound dataset (Chen et al., 2020) and Landscape (Lee et al., 2022a)
for training our model. The Audio Encoder is trained with hyperparameters such as a learning rate of 0.001, a batch size of
160, a weight decaying parameter of 0.0005, dropout of 0.2 and a momentum of 0.9 for the SGD optimizer. We stress that
our Audio Encoder has not been further fine-tuned for any specific task or experiment.

Inference details of Audio Semantic Guidance. To implement the Audio Semantic Guidance module following
SEGA (Brack et al., 2022), three hyperparameters, namely δ, se, and ψ, are required. (The notation for each hyper-
parameter is defined in our main paper.) The parameter δ controls the degree of preservation of the original prompt. Lower
values of δ correspond to a greater preservation of the original prompt and δ = T means no preservation of the original
prompt. In our experiments, we set δ between 800 and 950 to balance the preservation of the original prompt with the
visualization of the effect of audio semantics. The se hyperparameter represents the degree of the scale of audio semantics
effects. We set se between 2.5 and 8 in our experiments. However, the se hyperparameter is not related to the areas that
need to be changed. Instead, it is related to the ψ parameters. ψ is a value between 0 and 1, and we set it between 0.8 and
0.99. Note that we did not adjust these hyperparameters when creating a single video. Since the distribution of each data is
different, we need to make modifications to the hyperparameters for the purpose of improving the visualization of audio
semantics and ensuring that the original prompt remains preserved.

D Experiments details
Datasets. We use two Audio-Video datasets to train our Audio Encoder: VGG-Sound (Chen et al., 2020) and Landscape (Lee
et al., 2022a). VGG-Sound is an audio dataset with about 170,000 of 10-second clips of audio-video data, which consists
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of 309 classes. The dataset has numerous ‘in the wild’ audio data that spans a large number of challenging acoustic
environments and real application noise characteristics. Since audio of nature sound is the perfect tool to stylize compared to
the class such as people talking or sports, we add about 9,000 audio clips of Landscape audio dataset in the training process.

Baselines Setup. To generate videos using Sound2Sight (Chatterjee & Cherian, 2020) and CCVS (Le Moing et al., 2021),
we randomly select the first frame from the Landscape dataset (Lee et al., 2022a) since they need first frame to generate
the video. For TräumerAI (Jeong et al., 2021) and Sound-guided Video Generation (Lee et al., 2022a), we pre-train
StyleGAN (Karras et al., 2021) with the LHQ dataset (Skorokhodov et al., 2021) and then train the models on the Landscape
dataset (Lee et al., 2022a). To ensure a fair comparison, we randomly sample a prompt related to landscapes for our method
to generate landscape-like videos.

Evaluation Metrics. Two video quality metrics are used for evaluations, Fréchet Video Distance (FVD) (Unterthiner
et al., 2018) and Inception Score (IS) (Salimans et al., 2016). FVD measures the distribution gap between real and
synthesized videos in the latent space and is implemented by fine-tuning Inflated 3D ConvNet (Carreira & Zisserman,
2017) with the Landscape (Lee et al., 2022a) dataset. IS is used to evaluate GAN-generated images by computing KL-
divergence and is implemented using pre-trained InceptionNet (Kay et al., 2017) trained on the ImageNet (Deng et al., 2009)
dataset. Additionally, CLIP (Radford et al., 2021)-based cosine similarity is measured between audio and image as well
as text and image, and a textual pivot feature is obtained by feeding the prompt “The photo of <class>” into CLIP text
encoder. For fair comparison with other existing baselines such as TräumerAI (Jeong et al., 2021) and Sound-guided Video
Generation (Lee et al., 2022a) which does not get a hint about what to generate, we use prompt that originally does not
generate the semantics of sound. We set fps 20 and generated videos to extract images from all baselines.

E User Study
We conduct a human evaluation to evaluate the video quality by human judges. We recruit 100 participants from

Amazon MTurk. Participants are shown video frames generated by five different audio-driven video generation models:
Sound2Sight (Chatterjee & Cherian, 2020), CCVS (Le Moing et al., 2021), TräumerAI (Jeong et al., 2021), Lee (Lee et al.,
2022a), and ours. Participants are asked to evaluate the given video frames in terms of realism, vividness, consistency, and
relevance between audio and video on a five-point scale, ranging from “1 - very unrealistic” to “5 - very realistic,” “1 - very
unvivid” to “5 - very vivid,” “1 - very inconsistent” to “5 - very consistent,” and “1 - very irrelevant” to “5 - very relevant,”
respectively. Specifically, we ask participants “On a scale of 1 to 5, how realistic the video is? Please rate the realism, with 1
being very unrealistic and 5 being very realistic”, “On a scale of 1 to 5, how vibrant does the video appear? Please rate the
vividness, with 1 being not vibrant at all and 5 being extremely vibrant.”, “On a scale of 1 to 5, how well does the movement
in the video match the audio levels? Please rate the consistency, with 1 being very inconsistent and 5 being very consistent.”,
and “On a scale of 1 to 5, how relevant video with the audio sound? Please rate the relevance, with 1 being not relevant and
5 being very relevant.”. The order of videos within each question is randomized to prevent participants from inferring the
unique quality of each baseline. We observe in Figure 5 that our proposed method outperforms the other approaches in all
categories. These results are consistent with our quantitative and qualitative results.
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Figure 5: Our human evaluation results. We conduct a user study with 100 participants on Amazon Mechanical Turk (AMT).
Participants are shown generated video frames and asked to evaluate them in terms of realistic, vividness, consistency, and
relevance. The Likert scale is used (higher is better).
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F More Qualitative Results

Effect of Temporal Attention Module. We use Temporal Attention Module (TAM) to improve the representation power to
encode temporal semantics better. To analyze this, we perform an ablation study with and without TAM to see its effect on
video frame generation. We observe in Figure 6 that our model is indeed able to generate video frames reactive to the audio
changes over time. (compare the changes along with the given splashing water sound)

Effect of Audio Semantic Guidance. We demonstrate the effect of Audio Semantic Guidance with ablation study that is
shown in Figure 7. We generate video frames without Audio Semantic Guidance by following equation:

ϵ̃θ(z
δ
n, cp) := ϵθ(z

δ, c∅) + g(ϵθ(z
δ, cp)− ϵθ(z

δ, c∅)) + ϵθ(z
δ, cn) (10)

where δ = T , which implies not preserving the prompt. Audio Semantic Guidance λ(zδ, cn) has been converted to
ϵθ(z

T , cn) to remove the effect of Audio Semantic Guidance (Refer the notation in our main paper).

By leveraging Audio Semantic Guidance, we can generate sequential video frames that has consistent content (e.g. grass on
the ground) yet is able to represent natural temporal variations (e.g. wave of water) by audio sound (e.g. waterfall burbling
sound). On the other hand, without Audio Semantic Guidance, the prompt would struggle to maintain the content, leading
the substantial changes (e.g. grass → toil) in the context. In addition, it is unable to manipulate the audio content based
on its semantic meaning, which could lead to incorrect manipulations. (e.g. water → road). By guiding Stable Diffusion
to generate audio semantics while maintaining consistent content, we can manipulate specific areas with audio semantics,
resulting in enhanced naturalness.

Experiments of Semantic Transition. In Figure 8, we provide examples where audio inputs are changed (e.g., bird singing
→ wind noise, strong wind → raining). As we observe in that figure, our model successfully adapts to the audio change,
generating video frames accordingly. This may confirm that our model is indeed conditioned on the audio sequence and can
generate audio-adaptive video frames.

Comparison to Video Generation with Text. To analyze the benefit of audio modality, we conduct a qualitative experiment
to compare the effect of audio and text modalities in generating visual content. As shown in Figure 9, we first generate an
initial frame with the text prompt “A photo of deep in the sea.” Then we generate the next frames with text “underwater
bubbling” (top) and underwater bubbling sound (bottom). It is difficult to make temporal changes conditioned on text unless
we train our model with a text-video dataset. Thus, we instead change the noise scale to make temporal changes, preserving
identity. However, as shown in Figure 9 (top), it generates distortions or a linear change, but this is not the case for audio.
Our model with audio generates visually-appealing video frames.

Text-Audio Joint Conditioning. As our model is built upon the Stable Diffusion model, it is also possible to use text and
audio as a condition together. In Figure 10, we provide an example where we generate video frames conditioned on a sound
of an explosion along with texts, such as “eruption”, “spew”, or “cloud of ash.” (see 2nd-4th rows) Preserving temporal
semantics, our model successfully generates video frames guided by text as well.

Comparison to Baselines. In Figure 11, we provide more examples of generated video frames by (from top)
Sound2Sight (Chatterjee & Cherian, 2020), CCVS (Le Moing et al., 2021), TräumerAI (Jeong et al., 2021), Lee (Lee et al.,
2022a), and ours. Furthermore, we compare our methods with StyleGAN (Karras et al., 2021) based TräumerAI (Jeong
et al., 2021) and Sound Guided Video Generation (Lee et al., 2022a) in Figure 12. StyleGAN based methods both face
challenges in effectively aligning audio semantics with latent space of StyleGAN despite of fine-tuning. On the contrary,
our model can express the audio semantic meanings in multiple domains thanks to the rich latent space of Stable Diffusion
models. Furthermore, compared to other baselines, our model is able to manipulate certain areas (e.g. fire on the stove top)
via Audio Semantic Guidance through multiple denoising steps in Stable Diffusion. Our experiment reveals that our method
can generate videos that have significant relevance and consistency with audio sound.

Additional Qualitative Examples. Figure 13 and Figure 14 show our model can generate video frames in diverse domains.
Furthermore, Figure 15 and Figure 16 demonstrate the semantic consistency between sound and video. Morevover, our
model can generate multiple high-fidelity frames naturally by the interpolation in Figure 17. Lastly, We further provide the
whole sequences of video frame in Figure 18 at fps 15. It is important to note that we did not conduct any additional training
on our Audio Encoder or Stable Diffusion.
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Figure 6: Generated video frames with and without our Temporal Attention Module. We generate video frames with
splashing water sound where its amplitude changes over time (see top).
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Figure 7: Generated video frames with and without our Audio Semantic Guidance. We generate video frames with waterfall
burbling sound where the accurate modifications is highlighted with red box (see second row).
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Figure 8: Examples of generated video frames with a sound that changes over time (e.g. bird singing → wind noise).
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Figure 9: Examples of our video generation conditioned on text prompt (top) and audio (bottom).
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Figure 10: Example of generated videos with audio-text joint condition (e.g., 2nd row: conditioned with text “eruption” and
explosion sound)

S
o
u

n
d

 g
u

id
ed

V
id

eo
 G

en
er

at
io

n
O

u
rs

C
C

V
S

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

WaterfallFire crackling

T
r
ሷ𝑎
u

m
er

A
I

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

S
o
u

n
d

2
S

ig
h

t

Prompt : “A photo of firewood in forest” Prompt : “A photo of a lake with sky”

Figure 11: Examples of generated video frames (given fire crackling and waterfall audio) by Sound2Sight (Chatterjee &
Cherian, 2020), CCVS (Le Moing et al., 2021), TräumerAI (Jeong et al., 2021), Lee (Lee et al., 2022a), and ours. Note that
Sound2Sight and CCVS use an initial frame (highlighted in a red box).
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Figure 12: Comparison with StyleGAN (Skorokhodov et al., 2022)-based method. First row and second row represent video
frames from TräumerAI (Jeong et al., 2021) and Sound guided Video Generation (Lee et al., 2022a). The last row shows
video frames which are generated from our model.
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Figure 13: Examples of face generation with our methods. The sound of giggling and sobbing are used.
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Figure 14: Examples of diverse examples in open domains. The sound of splashing water, squishing water and fire crackling
are used.
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Figure 15: Example of video frames with multiple seed numbers. We regulate the prompt and audio sound as a given input
feature and change a seed number randomly. The video frames are temporally consistent with the magnitude of audio.
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Figure 17: Example of video frames with interpolation module. A number of video frames are generated reactively by audio
sound.
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Figure 18: Whole sequence of video frames conditioned by the sound that has a semantic change from wave to fire place.
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