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ABSTRACT

As fine-tuning becomes impractical at scale, probing is emerging as the preferred
evaluation protocol. However, standard linear probing can understate the capa-
bility of models whose pre-training optimizes local representations rather than an
explicit global representation. This motivates attentive probing, an alternative that
uses attention to selectively aggregate patch-level features. Despite growing adop-
tion, attentive probing is still underexplored: existing approaches are often over-
parameterized and computationally inefficient. In this work, we revisit attentive
probing through the lens of the accuracy vs. parameter-efficiency trade-off. We
present the first comprehensive study of existing methods, analyzing their design
choices and benchmarking their performance. Building on these insights, we pro-
pose efficient probing (EP), a lightweight yet effective multi-query cross-attention
mechanism that eliminates redundant projections and reduces the number of train-
able parameters. Across multiple benchmarks and pre-training paradigms, EP con-
sistently outperforms linear probing and previous attentive probing methods, and
remains effective when combined with parameter-efficient fine-tuning. Beyond
evaluation, our analysis uncovers emerging properties of EP, including comple-
mentary attention maps, which open new directions for leveraging probing beyond
protocol design. Project page: https://vrg.fel.cvut.cz/ep/.

1 INTRODUCTION

The past few years have witnessed remarkable progress in representation learning, with pre-training
paradigms ranging from self-supervised learning (Chen et al., 2020; Caron et al., 2021; Kakogeor-
giou et al., 2022), to vision–language models (Radford et al., 2021; Jia et al., 2021), and auto-
regressive architectures (El-Nouby et al., 2024; Fini et al., 2025). These diverse approaches share
a common goal: learning rich, transferable visual representations that minimize reliance on task-
specific labels and scale to large datasets. Evaluating the quality of such pre-trained representations
is therefore central to measuring progress. Conventional evaluation protocols include k-NN clas-
sification, linear probing (LP), and full fine-tuning (FT). While k-NN and LP assess the quality of
the learned representations under a frozen backbone, FT measures the utility of pre-training as ini-
tialization for downstream tasks. Although FT achieves the highest performance, it is increasingly
viewed as unsustainable and prohibitive at scale (Xin et al., 2024; Shuttleworth et al., 2024; Zou
et al., 2023). As a result, probing is emerging as a practical evaluation protocol (Oquab et al., 2024;
Bardes et al., 2024; Darcet et al., 2025).

However, probing protocols remain misaligned with many pre-training approaches. Standard LP
typically relies on a single global representation. e.g., the [CLS], which is well-suited for archi-
tectures trained with global objectives, but poorly reflects the potential of models such as masked
image modeling (He et al., 2022), autoregressive (El-Nouby et al., 2024), or diffusion (Ma et al.,
2024), where valuable information is distributed across local representations. This gap motivates
the rise of attentive probing (Darcet et al., 2025; Chen et al., 2023; Bardes et al., 2024). Despite its
promise, attentive probing remains underexplored. Existing methods vary significantly in design,
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often suffering from excessive parameterization and inefficiency. Moreover, the connection between
how attention aggregates features and why it improves predictive performance remains unclear.

In this work, we address these limitations by conducting the first comprehensive study of attentive
probing, revisiting its design through the lens of the accuracy vs. parameter-efficiency trade-off.
We introduce a unified framework that encompasses a wide range of attention-based aggregation
methods—including those proposed for probing (El-Nouby et al., 2024; Bardes et al., 2024; Darcet
et al., 2025) and others from unrelated tasks (Psomas et al., 2023; Noh et al., 2017; Rymarczyk
et al., 2021). Through this framework, we derive efficient probing (EP), a simple multi-query cross-
attention mechanism that eliminates redundant projections, reduces parameter count and computa-
tional cost, while matching or surpassing prior state-of-the-art performance. Moving beyond the
parameter-efficient probing (PEP), we compare EP against parameter-efficient fine-tuning (PEFT)
methods. We find that EP remains beneficial even when PEFT is allowed: combining EP with
LoRA (Hu et al., 2022) yields configurations that dominate both pure probing and pure LoRA.

Beyond efficiency and accuracy, a common ingredient of both existing methods and EP is the use of
multiple independent attention predictors (e.g., heads or queries). We show that a predictor’s con-
tribution to classification accuracy correlates with its localization quality: predictors with sharper,
foreground-focused attention drive larger accuracy gains. Rather than resorting to shortcut learning,
e.g., leveraging background cues like water to classify a “fish”, EP’s predictors consistently attend
to the object, improving interpretability, robustness, and performance. Notably, the attention maps
of EP are more diverse and complementary than those of existing methods, with different predictors
specializing in distinct object regions. Our contributions are threefold:

1. We conduct the first systematic benchmark and analysis of attentive probing methods across
diverse pre-training paradigms, comparing their accuracy, efficiency, and design choices.

2. We introduce efficient probing (EP), which achieves state-of-the-art accuracy, while bring-
ing substantial gains in compute, memory, and parameter efficiency.

3. We uncover a correlation between spatial localization and predictive performance, and
show that EP produces diverse, complementary, and interpretable attention maps.

2 RELATED WORK

Self-supervised learning (SSL) has transformed visual representation learning, with evaluation typ-
ically performed via (i) k-NN on frozen features, (ii) linear probing (LP) using a shallow classifier
on a frozen encoder, or (iii) fine-tuning (FT) the entire model. Although FT achieves the high-
est accuracy, it is computationally expensive, motivating the evaluation under frozen backbones.
Two dominant SSL paradigms are joint embedding architectures (JEA) and masked image mod-
eling (MIM). JEA methods (e.g., DINO (Caron et al., 2021)) contrast or cluster augmentations to
learn global representations via a [CLS] token or pooled features. In contrast, MIM methods (e.g.,
MAE (He et al., 2022)) reconstruct masked regions, yielding localized, patch-distributed representa-
tions. This global vs. local distinction affects evaluation: LP is effective for JEA (Caron et al., 2021)
but under-performs for MIM (He et al., 2022; Przewieźlikowski et al., 2024), where discriminative
information is not concentrated in a single token.

Beyond SSL, vision–language models (VLMs) pre-train on web-scale image–text corpora (e.g.,
LAION (Schuhmann et al., 2022)) and optimize cross-modal alignment (e.g., CLIP (Ilharco et al.,
2021; Radford et al., 2021)). Although these models expose strong global descriptors, much of
the signal remains distributed across patch tokens, making attentive aggregation appealing at probe
time. Likewise, auto-regressive (AR) families (e.g., AIM/AIMv2 (El-Nouby et al., 2024; Fini et al.,
2025)) and diffusion-based transformers (e.g., DiT (Peebles & Xie, 2023)) are primarily trained for
generation (next-token prediction or denoising), not representation learning per se; nevertheless,
their frozen features can be probed to assess representation quality. In all these cases, protocols that
assume a single discriminative token may under-utilize the information spread across patches.

To address this, recent work explores attentive probing (El-Nouby et al., 2024; Chen et al., 2023;
Bardes et al., 2024; Darcet et al., 2025), which learns attention to selectively aggregate patch tokens
into informative descriptors for a linear classifier. While methods like AIM (El-Nouby et al., 2024),
CAE (Chen et al., 2023), and V-JEPA (Bardes et al., 2024) adopt this idea, no unified evaluation
exists. We fill this gap with a comprehensive benchmark and introduce a novel attention mechanism
achieving a strong accuracy–efficiency trade-off. Additional related work appears in Appendix A.
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3 METHOD

3.1 ATTENTIVE POOLING

Preliminaries. Let X ∈ RDi×N be the feature matrix obtained from a pre-trained and frozen ViT
backbone, where Di is the number of feature channels and N = W × H the number of features,
one per image patch across the spatial dimensions W × H . Given the input features X , the goal
is to generate an output image-level feature y ∈ RDo by applying an attentive pooling mechanism.
The output feature is used to train a C-way linear classifier with Do(C + 1) parameters.

We consider M attention predictors, to be discussed in subsection 3.2. For each predictor j ∈
{1, . . . ,M}, let aj ∈ RN be the ℓ1-normalized attention vector it generates. Each vector, reshaped
to W × H , is an attention map indicating the locations on which the predictor focuses. Let V ∈
RDo×N be the value features, commonly obtained by a linear transformation V = WV X , where
WV ∈ RDo×Di is a learnable projection matrix.

Let the output feature y, value features V and projection matrix WV be partitioned into M subvec-
tors / submatrices according to

y =

 y1

...
yM

 , V =

 V1

...
VM

 ,WV =

WV1

...
WVM

 , (1)

with yj ∈ Rdo , Vj ∈ Rdo×N , WVj
∈ Rdo×Di and do = Do

M .

The attentive pooling operation is then given by

yj = Vjaj = WVj
Xaj . (2)

Each attention predictor is responsible for the weighted pooling of N features into a do-dimensional
subspace of the final representation space. In the following, we explore existing and novel ways for
designing these attention predictors. We focus on the number of additional parameters to be learnt
on top of the frozen backbone and the computational complexity of the pooling operation.

3.2 ATTENTION PREDICTORS

Multi-Head Cross-Attention (MHCA). A vanilla approach is to perform multi-head cross-
attention between the input features and an input vector u ∈ RDi , where each head corresponds to a
separate attention predictor. The query feature q ∈ RDa and key features K ∈ RDa×N are obtained
by linear transformations q = WQu, K = WKX with projection matrices WQ,WK ∈ RDa×Di .

Let the query feature q and projection matrix WQ be partitioned into M subvectors / submatrices
according to

q =

 q1
...

qM

 ,WQ =

WQ1

...
WQM

 , (3)

with qj = WQju ∈ Rda , WQj ∈ Rda×Di and da = Da

M . Similarly, let the key features K and
projection matrix WK be partitioned according to

K =

K1

...
KM

 ,WK =

WK1

...
WKM

 , (4)

with Kj = WKjX ∈ Rda×N and WKj ∈ Rda×Di .

The attention vector for head j is then given by

aj = softmax(âj) (5)

with
âj = K⊤

j qj = (WKjX)⊤(WQju). (6)
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Figure 1: Comparison of multi-head cross-attention (MHCA, left) vs. our multi-query cross-attention
(EP, right). MHCA uses an input vector u projected into query space and interacts with key features
K in (two) separate subspaces, each corresponding to an attention predictor. Attention predictor
outputs aj are used to aggregate value features V into sub-vectors yj , forming the final output y. In
contrast, EP employs (two) learnable queries qj , one per attention predictor, to compute attention
with input features directly in the full representation space. Attention predictor outputs aj are used
as in MHCA to perform the aggregation.

That is, the input features X and input vector u are projected to da-dimensional subspaces where
attention subvectors are computed via dot product followed by softmax normalization over patches.
This attention predictor requires Da(2Di + 1) parameters and has complexity O(NDaDi). As
discussed in subsection 3.3, there are several existing methods that fit within this generic framework.

MHCA with a learnable query. If we consider input vector u to be learnable, then there is no
need for the projection matrix WQ in (6). Instead, we can set the query feature q to be learnable,
thus absorbing WQ and u:

âj = (WKj
X)⊤qj = X⊤W⊤

Kj
qj (7)

where the query feature qj ∈ Rda is learnable.

We observe that W⊤
Kj

maps qj to the Di-dimensional space of input features to compute the atten-
tion vector. Thus, standard MHCA ensures that each query subvector is interacting with the full
representation space of the input features, despite being defined in a smaller dimensional space. Us-
ing a learnable query feature directly simplifies the architecture, reduces the amount of computations
and the number of parameters to Da(Di + 1).

In order to explore ways for reducing the total number of parameters and to better understand the
role of key transformation, we simplify the architecture by removing it. Letting WK be fixed to the
identity matrix, (7) becomes

âj = X⊤
j qj (8)

where the feature matrix X is partitioned into M submatrices according to

X =

X1

...
XM

 , (9)

with Xj ∈ Rdi×N and di =
Di

M . We thus observe that the query feature only interacts with a di-
dimensional subspace of the input features for M > 1, which is a limitation. We experimentally
verify that setting WK to identity matrix results in a noticeable performance drop. Based on this
observation, in the following, we revisit (7) and design attention predictors that have less parameters
and require less compute but do not experience a performance drop due to mathematical equivalence.

Parameter-efficient Multi-Query Cross-Attention (MQCA). Instead of using the key submatri-
ces WKj to project the query subvectors qj to the Di-dimensional input feature space, we propose
to learn M effective query features uj := W⊤

Kj
qj ∈ RDi in that space directly (Figure 1). Thus, uj

absorbs WKj and qj and attention prediction becomes

âj = X⊤uj (10)

for j ∈ {1, . . . ,M}. As a result, there are no projection matrices and there are no parameters other
than the learnable query features uj .
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This choice reduces the number of additional parameters to be learned and saves from one more
matrix-vector multiplication. In particular, it requires DiM parameters for the attention compared
to Da(Di+1) for (6), while the number of operations drops to NDiM compared to NDa(Di+1).
Typically, M is one to two orders of magnitude smaller than Di and Da, which are commonly equal
to each other, making the proposed approach more efficient in parameters and operations.

There is a connection between EP and slot attention (Locatello et al., 2020), where slots are also
multiple vectors in the input feature space. To derive EP from slot attention, one needs to perform
only a single iteration; remove LayerNorm, GRU and MLP; make slot vectors learnable rather than
initialized at random; and concatenate the output features into a global representation of appropriate
dimension. Thus, EP can be seen as a lightweight counterpart of slot attention, where the absence of
interactions is compensated by the query features being learned.

3.3 EXISTING VARIANTS

We analyze existing methods as instances of the presented framework (Table 1), and examine com-
mon variants, considering their relationship to the framework despite slight deviations. Additional
methods considered in experiments are presented in Appendix B.

AbMILP (Rymarczyk et al., 2021) is the simplest variant. It fixes WK and WV to identity and is
equivalent to MHCA with a learnable query feature framework in (7), with a single head (M = 1). It
can also be seen as a special case of our proposed method in (10) with one learnable query feature,
i.e. M = 1. AbMILP requires only Di parameters and computes attention with a single matrix-
vector multiplication, but its performance is limited by the single head/query.

AIM (El-Nouby et al., 2024) is an instance of MHCA with a learnable query feature. It deviates
from the generic framework by applying batch normalization on the input features. It does follow
(2) and (7) with M heads and Da = Di = Do, but replaces X by BN(X). Batch normalization
introduces minor additional parameters and a slight computational overhead compared to the default
variant of the framework.

DELF (Noh et al., 2017) feeds each of the N input features to a MLP whose output is a scalar
attention value in [0, 1]. It can be viewed as an instance of the MHCA with a learnable query
feature and M = 1 with the following modifications. Key and value projection matrices share
the same weights, i.e. WK = WV = W , a non-linearity is introduced in equation (7) by â =
ReLU(WX)⊤q, where subscript j is skipped due to M = 1, and softmax in (5) is replaced by
element-wise softplus, a = σp(â). In the context of DELF, the query feature q can be seen as the
parameter of a 1× 1 convolutional layer. DOLG (Yang et al., 2021) adopts a similar design choice.

SimPool (Psomas et al., 2023) can be seen as an instance of MHCA with a single head (M = 1)
that uses a data-dependent input vector u, WV fixed to identity, and layer normalization on the input
features. Specifically, the query feature is obtained as q = WQu, u = 1

N X⊤ 1 (M = 1). X
is replaced by LN(X) for key and value transforms. Compared to MHCA with a learnable query,
SimPool saves Di parameters and has the same complexity.

V-JEPA. The first part of V-JEPA (Bardes et al., 2024) is identical to the MHCA framework but
applies layer normalization on the input features for key and value transforms, like SimPool. Its
second part is an MLP with GeLU activation (Hendrycks & Gimpel, 2016) and residual connections,
making the overall process equivalent to a transformer block.

Table 1: Attentive pooling variants as aligned algorithmic steps, fitting the framework of Sec. 3.1–
3.2. We list (i) how the query is formed, (ii) key/value transforms, (iii) attention predictor outputs,
and (iv) pooling operation. σm: softmax, σp: softplus. ϕ(x) := W2 GeLU(W1x). blue: learnable.

METHOD QUERY SOURCE KEY TRANSFORM VALUE TRANSFORM ATTENTION POOLING

MHCA qj ∈ Rda Kj=WKj
X Vj=WVj

X aj=σm(K⊤
j qj) yj=Vjaj

AbMILP q ∈ RDi K=X V=X a=σm(K⊤q) y=V a

AIM qj ∈ Rda Kj=WKj
BN(X) Vj=WVj

BN(X) aj=σm(K⊤
j qj) yj=Vjaj

DELF q ∈ RDi K=ReLU(WX) V=WX a=σm(K⊤q) y=V a

SimPool q=WQu ∈ RDi ,u= 1
N X⊤1 K=WKLN(X) V=LN(X) a=σm(K⊤q) y=V a

V-JEPA qj=WQj
u ∈ Rda ,u ∈ RDi Kj=WKj

LN(X) Vj=WVj
LN(X) aj=σm(K⊤

j qj) y=ϕ(WPVjaj)

EP (ours) qj ∈ RDi K=X Vj=WVj
X aj=σm(K⊤qj) yj=Vjaj
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate attentive probing across diverse image classification benchmarks, including
ImageNet-1K (IN-1K) (Deng et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Places365 (Zhou
et al., 2014), CUB-200 (Wah et al., 2011), FGVC Aircraft (Maji et al., 2013), Stanford Cars (Krause
et al., 2013), and Food-101 (Bossard et al., 2014). More details in subsection C.1.

Pre-training methods. We conduct attentive probing experiments with frozen models from diverse
pre-training paradigms: MIM (e.g., MAE and CAPI), JEA (e.g., BYOL and DINO), hybrid (e.g.,
iBOT and DINOv2), VLMs (e.g., CLIP and SigLIP), and generative (e.g., DiT and AIMv2). Model
sizes vary from small (e.g. ViT-S for MAE) to extra large (e.g. DiT-XL for DiT).

Pooling/probing methods. We compare attentive probing against a diverse set of methods, cov-
ering different paradigms. First, we evaluate attentive poolings originally designed for probing,
including AIM (El-Nouby et al., 2024), CAE (Chen et al., 2023), CAPI (Darcet et al., 2025), and
V-JEPA (Bardes et al., 2024). Second, we include attentive poolings originally proposed in other
contexts but applicable to probing, such as AbMILP (Rymarczyk et al., 2021), SimPool (Psomas
et al., 2023), CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023; Wightman, 2019), CoCa (Yu
et al., 2022), CaiT (Touvron et al., 2021), and DELF (Noh et al., 2017). Additionally, we include fea-
ture re-weighting methods like CBAM (Woo et al., 2018), applying global average pooling to obtain
the global descriptor. As baselines, we use [CLS], which corresponds to standard linear probing
when the backbone provides a classification token, and GAP, which serves as linear probing when
no [CLS] token is available, but can also be interpreted as a baseline attentive probing method with
uniform attention over patch tokens. To establish a reference, we also evaluate a ViT (Dosovitskiy
et al., 2021) block, applying global average pooling to extract the global representation, and MHCA.
All methods operate on the same input features—namely, the patch tokens extracted from the frozen
backbone—ensuring a fair and consistent comparison. Unless otherwise stated, Do=Di=Da.

Parameter-efficient fine-tuning (PEFT) methods. We compare attentive probing against PEFT
methods on ImageNet-1K: LoRA (Hu et al., 2022), BitFit (Ben Zaken et al., 2022), and LayerNorm
tuning (Zhao et al., 2023).

Evaluation protocols. Attentive probing is performed for 90 epochs. We evaluate top-1 classi-
fication accuracy on the validation set of each dataset. Additionally, we compute the number of
parameters and measure the FLOPs to assess computational efficiency and scalability.

4.2 EXPERIMENTAL RESULTS

Accuracy vs. parameters. In Figure 2, we compare efficient probing (EP) with baseline and com-
petitor methods using MAE ViT-B, BEiTv2 ViT-B, and CAPI ViT-L on ImageNet-1K, and MAE
ViT-B on Food-101. We plot top-1 accuracy against the number of trainable parameters, including
both attentive pooling and classifier parameters, and overlay the Pareto frontier to highlight optimal
trade-offs. The two primary baselines, [CLS] and GAP, are the most parameter-efficient, as they
introduce no overhead beyond the classifier parameters, but yield noticeably lower accuracy. In con-
trast, methods like V-JEPA, CaiT, SigLIP, and the reference ViT block employ significantly more
parameters, though within the attentive probing setting, their increased complexity provides mostly
marginal accuracy improvements. Among the existing attentive probing or pooling methods, Sim-
Pool provides moderate accuracy but is not particularly parameter-efficient, while CAE and CLIP
achieve stronger performance at the cost of higher parameter counts. AbMILP, DELF, AIM, and
MHCA lie primarily on the Pareto frontier, striking the optimal balance.

EP consistently achieves the best accuracy–parameter trade-off, positioning itself on the left or
upper-left region of the Pareto frontier across pre-training methods and datasets. A key factor is
its flexibility in controlling the number of queries M and the output dimensionality Do (because of
WV ), allowing adaptation to different parameter constraints. Notably, on ImageNet-1K with MAE
ViT-B, EP64 (64 queries) achieves a state-of-the-art top-1 accuracy of 75.6% with less than 1.4M
parameters. EP48 with 48 queries and Do = Di/8 achieves 70.3% top-1 accuracy, while having a
little more than 200k parameters, i.e. almost 4× less than linear probing ([CLS]). On ImageNet-1K
with BEiTv2 ViT-B and with CAPI ViT-L, EP32 and EP64 achieve a state-of-the-art accuracy of

6



Published as a conference paper at ICLR 2026

(a) MAE ViT-B ImageNet-1K
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(b) MAE ViT-B Food-101
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(c) BEiTv2 ViT-B ImageNet-1K
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(d) CAPI ViT-L ImageNet-1K
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Figure 2: Top-1 classification accuracy vs. number of parameters for various self-supervised pre-
training methods across different datasets. We evaluate both dedicated probing mechanisms (e.g.,
V-JEPA) and repurposed attentive pooling methods (e.g., CLIP). EP variants are marked with dif-
ferent colors for different output dimensionalities Do. EPM : efficient probing with M learnable
queries. [CLS]: linear probing using the classification token; GAP: global average pooling over
patch tokens; MHCA: multi-head cross-attention; ViT: default transformer block.

81.7% and 83.7% respectively. On Food-101, a dataset smaller than ImageNet-1K, we observe that
reducing Do even to Di/16 does not significantly hurt performance. More results in subsection C.2.
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Figure 3: Top-1 classification accuracy vs.
GFLOPs for MAE ViT-B with different prob-
ings on ImageNet-1K.

Accuracy vs. computational cost. In Figure 3,
we compare different pooling/probing methods
in terms of top-1 accuracy against computational
cost, measured in GFLOPs. Baselines [CLS]
and GAP are the most efficient but less accurate,
while self-attention methods (e.g., ViT, CLIP) in-
cur higher cost due to additional attention com-
putations. EP achieves better accuracy than a ViT
block with over 10× less compute, and consis-
tently lies on the Pareto frontier, combining high
accuracy with low cost. By adjusting the output
dimensionality Do, EP scales to different compu-
tational budgets without significant accuracy loss.
Note that backbone FLOPs (e.g., 17.58 GFLOPs
for MAE ViT-B) are not shown, since they are
identical across all methods and thus omitted for
fairness. Here we only compare the additional
cost of the pooling/probing methods.
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Table 2: Comparison of pre-training methods in terms of different evaluation protocols on
ImageNet-1K. # PAR.: number of trainable parameters including classifier; †Results reported from
the official paper under different than probing setup (e.g., augmentations); ‡Evaluated using GAP.

METHOD ARCH PRE-TRAINING k-NN LP # PAR. EP # PAR. GAIN FT† # PAR.
M

IM
MAE (He et al., 2022)

ViT-S/16
IN-1K

26.7 47.4 0.4M 64.6 0.5M +17.2 80.6 22M
ViT-B/16 46.1 67.7 0.8M 75.6 1.4M +7.9 83.6 87M
ViT-L/16 58.2 76.0 1.0M 79.3 2.1M +3.3 85.9 304M

BEiTv2 (Peng et al., 2022) ViT-B/16 IN-1K 74.8 79.0 0.8M 81.7 1.4M +2.7 85.0 87M
SimMIM (Xie et al., 2022) ViT-B/16 IN-1K 15.1 51.5 0.8M 65.1 1.4M +13.6 83.8 87M
CAPI (Darcet et al., 2025) ViT-L/14 IN-1K 76.7 81.5 1.0M 83.6 2.1M +2.1 × 304M

JE
A BYOL (Grill et al., 2020) RN-50 IN-1K 64.8 74.3 2.0M 75.1 6.3M +0.8 77.7 26M

DINO (Caron et al., 2021) ViT-B/16 IN-1K 76.1 77.3 0.8M 77.8 1.4M +0.5 82.8 87M

H
Y

B
R

ID

iBOT (Zhou et al., 2022) ViT-B/16 IN-1K 77.0 78.7 0.8M 79.2 1.4M +0.5 84.0 87M

DINOv2 (Oquab et al., 2024) ViT-B/14 LVD-142M 81.8 83.2 0.8M 84.0 1.4M +0.8 × 87M
ViT-L/14 83.5 85.2 1.0M 85.6 2.1M +0.4 × 304M

Franca (Venkataramanan et al., 2025) ViT-L/14 IN-21k 82.2 83.8 1.0M 84.3 2.1M +0.5 × 304M

DINOv3 (Siméoni et al., 2025) ViT-B/16 LVD-1689M 83.0 84.0 0.8M 84.4 1.4M +0.4 × 87M
ViT-L/16 85.3 86.6 1.0M 87.1 2.1M +0.5 × 304M

V
L

M CLIP (Radford et al., 2021) ViT-L/14 WIT 77.2 82.3 0.8M 83.4 2.1M +1.1 × 305M
SigLIP (Zhai et al., 2023) ViT-L/16 WebLI 83.7 84.1‡ 1.0M 86.1 2.1M +2.0 × 305M
SigLIP2 (Tschannen et al., 2025) ViT-L/16 WebLI 84.4 85.2‡ 1.0M 87.0 2.1M +1.8 × 305M

G
E

N DiT (Peebles & Xie, 2023) DiT-XL/2 IN-1K 8.3 32.7‡ 1.2M 57.0 2.5M +24.3 × 676M
AIMv2 (Fini et al., 2025) ViT-L/14 custom∗ 80.8 84.8‡ 1.0M 85.9 2.1M +1.1 × 304M

Note. custom∗: DFN-2B (Fang et al., 2024), COYO (Byeon et al., 2022), HQITP (Fini et al., 2025). Default EP = EP32.

2.5 · 105 5 · 105 106 2 · 106

68

70

72

74

76

78

[CLS]

AbMILP

DELF

AIM

EPDi/8

EPDi/4

EPDi/2
EPDi

number of parameters

to
p-

1
ac

cu
ra

cy
(%

)

Baseline probings
Baseline Pareto
EP at various Do

EP Pareto
LoRA at layer 4
LoRA at layer 8
LoRA at layer 12
LoRA on all layers
BitFit
LayerNorm tuning
LoRA + EP
LoRA + EP Pareto

Figure 4: Accuracy–parameter trade-off of probing and parameter-efficient fine-tuning methods on
ImageNet-1K using a frozen MAE ViT-B/16 backbone. The hybrid LoRA + EP configurations
achieve a strictly better trade-off than both pure EP and pure LoRA.

Comparison of pre-training methods. Table 2 compares methods from diverse pre-training
paradigms under multiple evaluation protocols on ImageNet-1K. Fine-tuning (FT) achieves the
highest accuracy but is compute-intensive and unsustainable at scale, making it increasingly rare
in recent evaluations (×). k-NN consistently underperforms, reflecting the weak separability of raw
features. Linear probing (LP) offers a stronger baseline, yet EP provides consistent gains across all
paradigms, often with only a small increase in parameters. Notably, EP changes the relative ranking
of methods compared to LP and k-NN: for example, MAE surpasses BYOL, and CAPI outperforms
CLIP, challenging the view that MIM methods are weaker. In general, methods whose pre-training
optimizes representations of patch tokens rather than an explicit global representation are benefit
the most from attentive probing (e.g., SimMIM +13.6%, DiT +24.3%). We further analyze this
trend in subsection C.3. Across the board, EP narrows the gap to full fine-tuning while remaining
lightweight and scalable, demonstrating both its generality and effectiveness.

Comparison against PEFT methods. In Figure 4 we compare the most efficient baseline probing
methods ([CLS], AbMILP, DELF, AIM), EP at different output dimensionalities Do, more than
40 LoRA variants, BitFit, and LayerNorm tuning, all on a frozen MAE ViT-B/16. We sweep LoRA
across individual transformer layers (4, 8, 12) as well as all layers, and across multiple configurations
(e.g. WQ-only, WK-only, WV -only, WQ+WK , WQ+WK+WV ) with ranks ρ ∈ {8, 16, 32, 64}.

Overall, LoRA applied to a small subset of layers (red, cyan, magenta crosses) lies roughly on
or slightly above the baseline Pareto front, but is consistently dominated by EP in the accu-
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racy–parameter plane. For instance, EPDi/2 attains 74.9% top-1 accuracy with only 750K param-
eters, whereas the best single-layer LoRA configuration around that region requires around 1.2M
parameters. LayerNorm tuning and BitFit (green and brown crosses) also outperform the pure prob-
ing baselines, yet EP remains strictly more efficient. All-layer LoRA configurations (orange crosses)
move closer to the EP Pareto curve and some even surpass it in accuracy (up to 76.7%). In subsec-
tion C.2, we present an analysis with in- and out-of-domain k-NN experiments on frozen features,
showing that all-layer LoRA modifies the representation more strongly than EP, consistent with their
roles as task-adaptive low-rank fine-tuning (LoRA) versus representation-preserving probing (EP).

Motivated by these observations, we finally combine one of the most parameter-efficient LoRA
variants (LoRA on all WV matrices across layers) with EP for different output dimensionalities
Do (orange star–cross markers). The resulting LoRA+EP configurations form a new dominant
region in the accuracy–parameter plane, strictly improving over both pure EP and pure LoRA. For
example, a hybrid setting with 850K parameters achieves 76.99% top-1 accuracy, improving over
both the best pure EP configuration (75.58% with 1.38M parameters) and the best all-layer LoRA
variant (76.72% with 1.95M parameters). At the low-parameter end, a LoRA+EP configuration
with only 250K parameters already reaches 71.99% accuracy, i.e. about 4.3% above [CLS] linear
probing (67.66%) while using over 3× fewer parameters. These results indicate that EP captures
information that LoRA alone does not, and vice versa: rather than being redundant with PEFT, EP
provides a complementary, parameter-efficient probing (PEP) mechanism that remains beneficial.

4.3 EXPERIMENTAL ANALYSIS

Impact of WK and WV . Our analysis in subsection 3.2 posits that while a single learnable query
q effectively absorbs the key transformation WK in single-head attention, the same does not hold
in multi-head. To empirically validate this, we probe MAE ViT-B pre-trained on ImageNet-1K
with four variants: single-head (M=1) vs. multi-head (M>1), each with (7) vs. without WK (8).
Specifically, we evaluate AbMILP and AIM for the single-head and multi-head (AIM12 with 12
heads) case, respectively. In single-head attention, removing WK has minimal impact on perfor-
mance (71.8% → 71.7%), while in multi-head the drop is noticeable (75.1% → 72.9%), since each
query now interacts only with a subspace. Note that MHCA (7), that natively includes WK , in
AIM12 and our MQCA (10), that natively does not includes WK , in EP12, configured with the same
number of heads/queries (M=12), attain identical accuracy (75.1%), reflecting their mathematical
equivalence. However, EP12 reaches this performance with far fewer parameters (1.36M for EP12

vs. 1.95M for AIM12), making its design more parameter-efficient. We also ablate the effect of
the value transformation WV , which operates on patch tokens (2), by adding or removing it across
pooling methods. Introducing WV to GAP results in a top-1 accuracy improvement from 66.7% →
68.0%. Conversely, removing WV from EP12 degrades performance from 75.1% → 72.1%. A sim-
ilar accuracy drop is observed for other methods, such as AIM (75.1% → 72.0%) and CAE (74.9%
→ 72.2%), confirming that WV is a critical component.
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Figure 5: Classification accuracy vs. attention quality on ImageNet-1K. Each point corresponds to
an attention predictor (head or query). ∆ accuracy measures the drop when replacing an attention
predictor’s distribution with uniform. Plots show relations to localization quality (1st, 3rd) and
entropy (2nd, 4th). Left: different attentive probing methods; Right: varying Do for EP.

Classification vs. localization. We investigate whether the quality of attention maps in terms of
localization contributes positively to classification accuracy. Localization quality is measured by (i)
the attention mass within the ground-truth bounding box (Deng et al., 2009) and (ii) the entropy of
the attention distribution, averaged over the validation set. To estimate each predictor’s contribution
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Figure 6: Attention maps of EP8. Each query is assigned a distinct color. Semantic correspondences
emerge (e.g., tails, beaks, feet), with each query capturing complementary regions and enabling a
structured decomposition of visual cues. MAE ViT-B pre-trained on IN-1K, probed with EP.
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Figure 7: Complementarity scores of attention maps across different backbones and probings. We
compare the diversity of the internal MHSA heads in the last block against the external EP queries
(left), V-JEPA heads, and AIM heads (right). Number of predictors are matched for fairness.

to classification, we measure the accuracy drop when replacing its attention with a uniform distribu-
tion. Figure 5 shows a clear correlation: predictors with better localization and lower entropy exert
stronger influence on accuracy. This holds across different attentive methods as well as EP with re-
duced output dimensionality Do. As also seen in Figure 2, lowering Do degrades performance; the
rightmost plots further suggest that this effect arises not only from reduced representational capacity
but also from diminished attention quality, as reflected in higher entropy.

Attention complementarity. In Figure 6, we jointly visualize the attention maps of EP8. An emerg-
ing property of EP is that its queries specialize in different object regions, yielding complementary
and interpretable attention patterns. Queries consistently attend to distinct parts, producing seman-
tic correspondences across images and a structured decomposition of visual cues. To quantify this
diversity, we define a complementarity metric measuring how differently attention predictors dis-
tribute mass over patch tokens. For standard backbones, we extract the [CLS]→patch attention
from the internal last-block MHSA heads, and for EP the learned queries, with matched counts for
fairness. We L2-normalize each distribution, compute pairwise cosine similarities, and define com-
plementarity as one minus the average off-diagonal similarity. Higher values indicate more diverse
(less redundant) attention. As shown in Figure 7, EP achieves significantly higher complementarity
than MHSA and outperforms other probing approaches. More experiments in subsection C.3.

5 CONCLUSION

We revisit evaluation protocols for pre-training methods and introduce efficient probing (EP), a
scalable alternative to fine-tuning. Lightweight yet expressive, EP delivers interpretable attention,
strong generalization across paradigms, and consistent gains over linear probing—up to +24.3% on
ImageNet-1K. By comparing EP to standard parameter-efficient fine-tuning (PEFT) baselines, we
show that EP is not only competitive on its own but also complementary: hybrid configurations
achieve the best accuracy–parameter trade-offs, hinting at new research directions.
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A ADDITIONAL RELATED WORKS

A.1 POOLING

Pooling reduces spatial resolution while retaining semantic information. In CNNs, fixed pooling
(e.g., global average pooling (Lin et al., 2013; He et al., 2016)) is standard; in vision transformers
(ViTs) (Dosovitskiy et al., 2021), the [CLS] token aggregates features via self-attention.

Recent work proposes attention-based pooling to enhance representation quality. SimPool (Pso-
mas et al., 2023) replaces global average pooling using trainable attention in both CNNs and
ViTs. Vision-language models such as CLIP (Radford et al., 2021), SigLIP (Wightman, 2019), and
CoCa (Yu et al., 2022) use attentive pooling or cross-attention to fuse modalities. V-JEPA (Bardes
et al., 2024) applies cross-attention pooling for probing pretrained representations. In image re-
trieval, DELF (Noh et al., 2017) and DOLG (Yang et al., 2021) use spatial attention to focus on
salient regions. CaiT (Touvron et al., 2021) improves class-token attention, AbMILP (Rymarczyk
et al., 2021) uses single-query pooling for multiple-instance learning, and CBAM (Woo et al., 2018)
combines channel and spatial attention to recalibrate features. Although these poolings are origi-
nally introduced in diverse contexts, we repurpose them for probing of frozen pre-trained models,
enabling a fair and comprehensive benchmark.

A.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning (PEFT) adapts large pre-trained models to downstream tasks without
updating all model parameters. PEFT techniques broadly include additive, selective, and low-rank
adaptation methods.

Additive. Additive methods introduce small, task-specific modules into the frozen backbone, leav-
ing the pre-trained weights untouched. These modules often reside within the transformer blocks
and are trained to specialize the model for a new domain. Notable examples include Adapter-
Fusion (Pfeiffer et al., 2020), LeTS (Fu et al., 2021), and TADA (Hung et al., 2023) in natural
language processing (NLP), VPT (Jia et al., 2022), AdaptFormer (Chen et al., 2022), and Adapter-
X (Li et al., 2024) in computer vision (CV), and FMA (He et al., 2024), AiRs (Hu et al., 2024), and
DEFLECT (Thoreau et al., 2025) in remote sensing (RS).

Selective. Selective methods fine-tune only specific subsets of parameters, typically chosen based
on their functional role or estimated importance. Examples include BitFit (Ben Zaken et al., 2022),
which adjusts only the bias terms, and norm-tuning approaches (Zhao et al., 2023) which update
only the normalization layers. These techniques avoid introducing new components, making them
lightweight, though sometimes at the expense of performance.

Low-rank adaptation. Low-rank adaptation methods like LoRA (Hu et al., 2022) in NLP as-
sume that parameter updates lie in a low-dimensional subspace. They inject trainable low-rank
matrices into existing layers, yielding strong performance with minimal parameter growth. In the
vision domain, LoRa and its variants have been effectively adapted to vision transformers (ViTs),
often rethinking where and how low-rank modules are inserted to align with the spatial and hier-
archical nature of visual representations. Notable examples include structure-aware methods like
Serial LoRA (Zhong et al., 2025) and Flat-LoRA (Li et al., 2025), layer-wise extensions such as
AdaptFormer (Chen et al., 2022), and task specific designs like PETAH (Augustin et al., 2025) and
MeLo (Zhu et al., 2024), which adapt LoRa to mobile inference and medical imaging, respectively.
Continued pretraining approaches such as ExPLoRA (Khanna et al., 2025) further extend low-rank
adaptation to domain-shifted self-supervised settings.

EP naturally fits the additive PEFT family. It introduces a compact learnable query set interacting
with frozen tokens via multi-head cross-attention. Unlike typical prompt-based methods, it avoids
backbone modifications and focuses training on minimal parameters. Thus, EP efficiently combines
additive PEFT simplicity with task-specific attentive pooling.
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B ADDITIONAL METHODS

We provide here additional attentive pooling/probing methods evaluated in subsection 4.2 but not de-
scribed in detail in subsection 3.3. These approaches represent variations of the MHCA framework,
highlighting only their key deviations from the default design.

CLIP. CLIP (Radford et al., 2021) differs from MHCA by employing self-attention rather than
cross-attention. Specifically, CLIP prepends a global average pooled (GAP) token to the layer-
normalized input features, treating this token as a global representation. All tokens, including
the GAP token, are augmented with learnable positional encodings and processed through a sin-
gle self-attention block (which includes a query projection matrix WQ). The global representation
is extracted from the output corresponding to the GAP token. Additionally, CLIP includes a linear
projection matrix WP after attention aggregation. These modifications enable interactions across all
tokens but increase parameter count and computational complexity.

CAiT. CAiT (Touvron et al., 2021) adapts the MHCA-with-learnable-query formulation by con-
catenating the learnable query token with the input features and applying self-attention rather than
cross-attention. It retains the query projection matrix WQ and includes a linear projection matrix
WP after attention aggregation, followed by an MLP block with GELU activations, residual connec-
tions, and LayerScale parameters, similar to V-JEPA. The global representation is obtained from the
updated query token after these operations, thus increasing complexity and parameter count relative
to the default MHCA variant.

SigLIP. SigLIP (Zhai et al., 2023; Wightman, 2019) remains close to the MHCA-with-learnable-
query formulation but retains the query projection matrix WQ. After the attention aggregation,
SigLIP incorporates an output projection WP , followed by a transformer-style MLP block with
GELU activation and residual connections, similar to V-JEPA and CAiT. Optional layer normaliza-
tion can also be applied before the MLP. These changes add further parameters and computational
overhead compared to the baseline MHCA design.

CAE. CAE (Chen et al., 2023) follows the MHCA-with-learnable-query template closely but re-
tains the query projection matrix WQ and applies separate layer normalization to both input features
and the query token prior to attention. After attention aggregation, it employs an additional out-
put projection matrix WP . These modifications introduce additional parameters and computational
complexity.

CoCa CoCa (Yu et al., 2022) is aligned with the MHCA-with-learnable-query framework but re-
tains the query projection matrix WQ and layer-normalizes the query token before computing atten-
tion. Attention and value aggregation both occur in a reduced-dimensional space, with dimension
Da = Do < Di. A final linear projection matrix Wproj is then applied to restore the feature di-
mension to the original backbone dimension Di. These choices introduce a controlled amount of
additional complexity and parameters.

In Figure 8 we present a visual comparison of three selected attentive pooling/probing techniques:
AbMILP (Rymarczyk et al., 2021), AIM (El-Nouby et al., 2024), and V-JEPA (Bardes et al., 2024).
AbMILP (top-left) serves as a lightweight method, employing a single-head learnable query without
additional linear projection matrices, thus requiring only Di parameters. AIM (top-right) extends
this by adopting multi-head cross-attention, operating within multiple subspaces. This approach
introduces linear projection matrices for keys and values, increasing the number of parameters,
yet allowing more expressive query-key interactions. V-JEPA (bottom) represents a significantly
more complex and computationally intensive architecture. Beyond multi-head attention and multiple
linear projections for queries, keys, and values, it integrates an additional projection step, followed
by a multi-layer perceptron (MLP) featuring GeLU activation and residual connections.
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Figure 8: Visual comparison of three attentive pooling/probing methods. AbMILP (top-left) em-
ploys a single-head, learnable query without linear projections, minimizing complexity. AIM (top-
right) extends the approach by introducing multi-head attention, operating in multiple subspaces,
and applies linear projections to keys and values. V-JEPA (bottom) offers a more comprehensive
architecture by integrating multi-head attention with extensive linear projections and an additional
MLP block with a residual connection, increasing representational capacity.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Datasets. We evaluate attentive probing across diverse image classification benchmarks. As
a large-scale dataset, ImageNet-1K (Deng et al., 2009) serves as the primary benchmark, con-
taining 1.28M images across 1,000 categories. CIFAR-100 (Krizhevsky et al., 2009) provides a
smaller yet challenging 100-class task with 60K images. To assess scene understanding, we use
Places365 (Zhou et al., 2014), comprising 1.8M images spanning 365 scene types. For fine-grained
classification, we evaluate on CUB-200 (Wah et al., 2011) (11,788 images, 200 bird species), FGVC
Aircraft (Maji et al., 2013) (10K images, 100 aircraft models), Stanford Cars (Krause et al., 2013)
(16K images, 196 car types), and Food-101 (Bossard et al., 2014) (101K images, 101 food cate-
gories). Together, these datasets span a wide spectrum of scales and challenges—large-scale vs.
small-scale, generic vs. fine-grained, and object- vs. scene-centric—providing a comprehensive
testbed for probing methods.

Table 3: AbMILP architecture ablation increas-
ing MLP depth. # PAR.: number of parameters.

METHOD # PAR. ACCURACY

AbMILP (depth 1) 769,769 71.74
AbMILP (depth 2) 1,360,361 72.25
AbMILP (depth 3) 1,950,953 72.84

Pooling/probing methods. We adopt AbMILP
with depth=1, which reduces AbMILP to the
formulation described in Table 1 and subsec-
tion 3.3. In Table 3, we evaluate AbMILP on
ImageNet-1K with larger depths (depth=2,3),
which correspond to the MLP-based variants
and scale as O(D2

i ), exploring their parame-
ter–accuracy tradeoffs. Although deeper MLPs
introduce substantially more parameters (+O(D2

i )), the gains in accuracy are marginal. To ensure a
fair comparison in the accuracy-vs.-parameter-efficiency setting, we consider the most competitive
AbMILP variant (depth=1) as default, which successfully lies on the Pareto front.

Implementation details. We evaluate 15 models spanning five pre-training paradigms: four
masked image modeling (MAE (He et al., 2022), BEiTv2 (Peng et al., 2022), SimMIM (Xie et al.,
2022), CAPI (Darcet et al., 2025)), two joint-embedding (BYOL (Grill et al., 2020), DINO (Caron
et al., 2021)), two hybrid (iBOT (Zhou et al., 2022), DINOv2 (Oquab et al., 2024)), three vision-
language (CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), SigLIP2 (Tschannen et al., 2025)),
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and two generative—DiT (diffusion) (Peebles & Xie, 2023) and AIMv2 (autoregressive) (Fini et al.,
2025). Architectures range from small (e.g., ViT-S for MAE) to extra-large (e.g., DiT-XL for DiT).

To ensure a fair comparison of pooling/probing methods, we mostly adopt the LARS optimizer You
et al. (2017) and conduct a learning rate search in the range [0.1, 5.0] with a step size of 0.1 for
each model. For large-scale datasets such as ImageNet-1K and Places365, we fix the learning rate
to 0.1 due to the computational cost of an exhaustive search. All models are trained for 90 epochs
with 10 warm-up epochs, ensuring consistent training schedules even though many models converge
much earlier (e.g., SigLIP within 15 epochs). The effective batch size is set to 4096 for all datasets
except FGVC Aircraft, where it is reduced to 512 due to the smaller dataset size. Data augmen-
tation follows standard PyTorch (Paszke et al., 2019) image pre-processing: RandomResizedCrop,
horizontal flipping, and normalization. For vision-language models, we adopt their official prepro-
cessing pipelines (e.g., OpenCLIP (Ilharco et al., 2021) transforms for CLIP, SigLIP, and SigLIP2)
to ensure alignment with pre-training distributions. Experiments are conducted on a cluster of 8
NVIDIA A100 GPUs (40 GB VRAM each) and on the LUMI supercomputer, on clusters of 8 AMD
Instinct MI250X GPUs (128 GB HBM2e memory each).

C.2 EXPERIMENTAL RESULTS

Accuracy vs. parameters. We extend the benchmark presented on subsection 4.2 to include ad-
ditional pre-training methods and datasets. Figure 9 and Figure 10 present the trade-off between
top-1 accuracy and the number of trainable parameters (including the classifier) for various pool-
ing/probing methods integrated into MAE and SimMIM with different backbone sizes (ViT-S, ViT-B
and ViT-L). The evaluation spans multiple datasets, including FGVC-Aircraft, CUB200, Places365,
CIFAR-100 and Cars196.

As shown in Figure 9a and Figure 9b, EP consistently outperforms standard linear probing across
MAE ViT-S and ViT-L. Notably, on MAE ViT-L, EP16 with Do = Do/2 achieves an accuracy
boost of 79.1% surpassing linear probing by 3.1% while maintaining the same number of trainable
parameters. Furthermore, EP128 reaches 79.4%, outperforming SigLIP, while reducing the number
of trainable parameters by over 11M.

In Figure 9c, we benchmark attentive probing on SimMIM ViT-B pre-trained on ImageNet-1K.
Baselines such as [CLS] and GAP remain parameter-efficient but yield relatively low accuracy.
Classical attention modules like CBAM and AbMILP do not improve this trade-off, while methods
such as ViT, V-JEPA, and SigLIP achieve higher accuracy but at the cost of orders-of-magnitude
more parameters. EP strikes a favorable balance: scaling the number of queries (EP2–EP64) consis-
tently increases accuracy, while reducing Do effectively lowers parameter count with only moderate
drops in performance. Notably, EP2 with Do = Di/2 achieves 60.6% top-1 accuracy using fewer
than 0.7M parameters, outperforming GAP and DELF under similar budgets. At the high end, EP64

reaches 65.1% accuracy, closing the gap to heavy-weight probing methods while remaining lighter.

In Figure 9d, our EP24 variant, for the FGVC-Aircraft dataset, achieves a remarkable accuracy boost
of 61.2% (+19.5%), while maintaining lower parameter count than linear probing (41.7%). Simi-
larly, in Figure 9e for the CUB200 dataset, our EP64 with Do = Do/4 variant achieves comparable
accuracy (75.9%) with computationally costly poolings such as SigLIP (77.8%) with around 7M
trainable parameters less.

Finally, in Figure 9f, GAP and [CLS], the two primary baselines, exhibit high parameter efficiency
but low classification accuracy. In contrast, methods like SigLIP (54.39%), ViT (54.84%), and V-
JEPA (52.44%) achieve higher accuracy, albeit at the cost of increasing the number of trainable
parameters. EP has the best trade-off between accuracy and parameters, achieving top-1 classifica-
tion accuracy of 53.7% with just 1M extra trainable parameters (EP64).

Moving to the additional datasets shown in Figure 10, we observe consistent benefits of EP. On
CIFAR-100 (Figure 10a), EP128 achieves 78.9%, which is close to the best-performing attention
pooling methods, while using significantly fewer parameters. On Cars196 (Figure 10b), our EP64
variant achieves 82.7% top-1 accuracy, clearly surpassing repurposed pooling methods such as
DELF, while requiring far fewer parameters. Smaller variants (e.g., EP16 and EP24) already provide
substantial gains over linear probing, showing that even lightweight configurations of our method
maintain strong performance on fine-grained datasets.
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(b) MAE ViT-L ImageNet-1k
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(c) SimMIM ViT-B ImageNet-1k
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(d) MAE VIT-B FGVC-Aircraft
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(e) MAE VIT-B CUB200
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(f) MAE VIT-B Places365
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Figure 9: Top-1 classification accuracy vs. number of trainable parameters (including the classifier)
for two self-supervised learning methods, with backbones of varying size (a, b) and across various
datasets (d, e, f). EP variants are marked with different colors for different output dimensionalities
Do. EPM : efficient probing with M learnable queries. [CLS]: linear probing using the class token;
GAP: global average pooling over patch tokens; VIT: default transformer block.

Figure 11: ImageNet-1K accuracy from
intermediate MAE ViT-B layers for LP
vs. EP, with EP–LP gains.

LAYER LP EP GAIN

12 67.7 75.6 +7.9
10 66.2 75.9 +9.7
9 64.5 75.4 +10.9
6 45.8 69.6 +23.8

Layer-wise probing. Figure 11 presents a layer-wise
comparison between standard linear probing (LP) and
efficient probing (EP) using patch token representations
from intermediate layers of a pre-trained and frozen MAE
with ViT-B. While LP exhibits a clear degradation in per-
formance as we move toward earlier layers (dropping
from 67.7% at layer 12 to just 45.8% at layer 6), EP
demonstrates remarkable robustness. It maintains high
accuracy even from lower layers, with performance stabi-
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(a) MAE ViT-B CIFAR-100
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(b) MAE ViT-B Cars-196
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Figure 10: Top-1 classification accuracy vs. number of parameters for MAE ViT-B on two datasets
(a, b). We evaluate both dedicated probing mechanisms (e.g., V-JEPA) and repurposed attentive
pooling methods (e.g., CLIP). EP variants are marked with different colors for different output di-
mensionalities Do. EPM : efficient probing with M learnable queries. [CLS]: linear probing using
the classification token; GAP: global average pooling over patch tokens; VIT: default transformer
block.

lizing beyond layer 9. Notably, EP yields a significant relative improvement of +23.8% at layer 6
over LP, underscoring its ability to extract and utilize meaningful representations from less seman-
tically enriched stages of the encoder. These results highlight the effectiveness of EP in unlocking
information from earlier layers that standard LP fails to exploit.

Table 4: Top-1 accuracy on ImageNet-1k with
limited training data for MAE ViT-B. Results
for linear probing (LP), efficient probing (EP),
and fine-tuning (FT) on 5% and 10% subsets.
The last column shows the percentage of the
LP→FT performance gap closed by EP. For ref-
erence, the gap closed by EP on the full training
set (100%) is 49.7%.

SUBSET LP EP FT % GAP

5% 49.6 60.9 64.7 74.8%
10% 55.9 65.2 68.9 71.5%

Low-shot probing. Table 4 evaluates the per-
formance of LP, EP, and FT under limited super-
vision, using only 5% and 10% of the ImageNet-
1K training set, stratified by class. Although
LP struggles in this low-shot regime, EP substan-
tially bridges the gap toward FT. Specifically, EP
closes 74.8% and 71.5% of the LP→FT perfor-
mance gap for the 5% and 10% subsets, respec-
tively. These improvements are particularly im-
pressive given that EP remains significantly more
parameter-efficient than FT, with a complexity
comparable to that of LP. These findings highlight
the strong data efficiency of EP.

In- and out-of-domain k-NN evaluation. To further examine how EP behaves relative to LoRA-
based fine-tuning, we perform a cross-dataset k-NN evaluation on MAE ViT-B features, using
ImageNet-1K, StanfordCars, and Food101 as target datasets (Table 5). The first row reports the
baseline k-NN accuracy obtained directly from the frozen MAE backbone. The next three rows
evaluate features produced by EP when the probe is trained on each dataset independently; the diag-
onal entries (e.g., 70.5% on ImageNet-1K, 70.0% on StanfordCars, 75.2% on Food101) correspond
to in-domain performance, while off-diagonal entries measure cross-dataset generalization. The last
three rows report the corresponding results when MAE is adapted with the best-performing LoRA
configuration for each dataset. As expected, LoRA generally achieves the strongest in-domain ac-
curacy (e.g., 72.3% on ImageNet-1K, 75.4% on StanfordCars, 80.3% on Food101), reflecting the
benefit of supervised feature adaptation. However, EP consistently provides stronger or comparable
out-of-domain performance: for instance, when trained on StanfordCars, EP features achieve 51.7%
on ImageNet-1K and 42.0% on Food101, compared to 45.8% and 38.7% for LoRA-tuned features;
similarly, EP trained on Food101 yields 58.2% on ImageNet-1K and 23.4% on StanfordCars, ver-
sus 56.7% and 15.2% for LoRA. These results suggest a complementary behavior: LoRA excels
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at specializing the backbone to a specific task, while EP preserves more of the original pre-trained
structure and thus offers more robust cross-dataset generalization.

Table 5: Cross-dataset k-NN evaluation on MAE ViT-B using frozen, EP-probed, and LoRA-tuned
features. Default EP corresponds to EP32, while the “best LoRA” configuration applies LoRA to all
12 layers on the WQ,WK ,WV , and WO projection matrices with rank ρ=8.

FEATURES
K-NN EVALUATION ON

IMAGENET-1K STANFORDCARS FOOD101

frozen MAE backbone 46.1 9.5 28.8

+ EP probed on ImageNet-1K 70.5 31.4 64.2
+ EP probed on StanfordCars 51.7 70.0 42.0
+ EP probed on Food-101 58.2 23.4 75.2

+ best LoRA tuned on ImageNet-1K 72.3 24.7 65.6
+ best LoRA tuned on StanfordCars 45.8 75.4 38.7
+ best LoRA tuned on Food-101 56.7 15.2 80.3

Table 6: Unsupervised ImageNet-1K localiza-
tion (MaxBoxAccV2). EP substantially im-
proves localization quality across five back-
bones and three model sizes, with an average
gain of +9.8% over baseline attention.

MODEL ARCH LP EP ∆ACC. (%)

MAE ViT-S/16 46.0 58.5 +12.5
MAE ViT-B/16 54.2 60.4 +6.2
MAE ViT-L/16 46.9 61.2 +14.3
BEiTv2 ViT-B/16 47.0 61.2 +14.2
SimMIM ViT-B/16 45.2 60.0 +14.8
iBOT ViT-B/16 57.6 63.7 +6.1
SigLIP ViT-L/16 44.0 44.2 +0.2

AVERAGE 48.7 58.5 +9.8

Object localization. A key empirical property
of EP is that its queries specialize in comple-
mentary and semantically meaningful object parts
(subsection 4.3). To examine EP utility beyond
standard classification, we evaluate its perfor-
mance in an unsupervised object localization set-
ting, on ImageNet-1K (Table 6), using the WSOL
protocol (Choe et al., 2020; 2022). We average
EP ’s attention maps, without any modification
or additional training, and compare them to the
standard last-layer [CLS]→ patch attention.
Across five backbones and three model sizes, EP
consistently improves MaxBoxAccV2 by +9.8%
on average. This demonstrates that EP ’s attention
maps act as strong unsupervised localizers “out-
of-the-box”.

Image retrieval. Table 7 and Table 8 evaluate EP in a zero-shot image retrieval setting, following
the standard Recall@K protocol on two fine-grained datasets, CUB200 and Cars196, respectively.
In both cases, we use the same EP mechanism trained once on ImageNet-1K, without any further
adaptation on the target dataset. Across all retrieval experiments, we utilize the entire datasets (full
set of images and classes), all of which remain fully unseen during the training stage on ImageNet-
1K. Every image serves as a query, ensuring a robust zero-shot evaluation protocol. On CUB200, EP
consistently improves performance across five models (e.g., +40.8% for MAE, +11.2% for BEiTv2,
+10.3% for iBOT, +5.3% for CLIP, +15.9% for SigLIP on R@1 metric). Similarly, on Cars196 the
gains remain significant in most cases (e.g., +21.5% for MAE, +8.6% for iBOT, +4.6% for SigLIP).
These findings show that EP ’s features can be used “out-of-the-box” for image retrieval, consistently
outperforming the features of the frozen backbones.

C.3 EXPERIMENTAL ANALYSIS

Attention complementarity. To further expand our analysis of attention complementarity, we
complement the average-based metric reported in Figure 7 with an additional measure: 1− max off-
diagonal similarity, which reflects the strongest redundancy between predictors. As shown in Fig-
ure 12a and Figure 12b, EP achieves substantially higher complementarity than the internal MHSA
heads across all backbones, regardless of whether we use the average or max metric. A natural con-
cern is whether this effect is biased by considering only the last block. To address this, we compute
complementarity for MAE ViT-B across all 12 blocks (Figure 12c). The best scores obtained inter-
nally (0.37 for average, 0.10 for max) remain far below those of EP (0.65 and 0.22, respectively),
confirming that the gap is not specific to the last block. Another question is whether the low diversity
arises from self-attention itself. However, even SigLIP—which uses a cross-attention mechanism in
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Table 7: Zero-shot image retrieval performance (Recall@K) on CUB200 dataset (images: 11788,
classes: 200) across five different backbones with and without Efficient Probing (EP).

FEATURES R@1 R@2 R@4 R@8 R@16 R@32

frozen MAE backbone 16.3 23.7 33.3 45.0 58.0 70.8
+ EP on ImageNet-1K 57.1 69.5 79.5 87.5 93.0 96.2

frozen BEiTv2 backbone 57.0 68.2 78.0 85.8 90.9 94.2
+ EP on ImageNet-1K 68.2 78.7 86.7 92.3 95.9 97.8

frozen iBOT backbone 51.8 64.0 74.7 83.2 90.0 94.1
+ EP on ImageNet-1K 62.1 73.7 82.4 89.7 94.0 96.8

frozen CLIP backbone 75.0 84.3 91.3 95.3 97.5 98.7
+ EP on ImageNet-1K 80.3 88.0 92.9 95.8 97.6 98.6

frozen SigLIP backbone 60.8 72.1 81.6 88.8 93.5 96.4
+ EP on ImageNet-1K 76.7 85.7 92.0 95.7 97.8 98.8

Table 8: Zero-shot image retrieval performance (Recall@K) on Cars196 dataset (images: 16185,
classes: 196) across five different backbones with and without Efficient Probing (EP).

FEATURES R@1 R@2 R@4 R@8 R@16 R@32

frozen MAE backbone 12.7 17.6 23.7 31.8 42.9 55.7
+ EP on ImageNet-1K 34.2 44.8 55.6 65.9 76.4 85.2

frozen BEiTv2 backbone 48.3 60.7 72.3 81.8 89.2 94.5
+ EP on ImageNet-1K 44.2 56.4 68.5 79.1 87.3 93.7

frozen iBOT backbone 31.5 40.7 50.2 60.0 69.9 79.0
+ EP on ImageNet-1K 40.1 50.6 61.0 70.7 79.5 87.6

frozen CLIP backbone 79.6 88.9 94.6 97.8 99.2 99.7
+ EP on ImageNet-1K 79.8 89.3 94.8 97.8 99.2 99.7

frozen SigLIP backbone 85.8 92.3 96.1 98.0 99.1 99.6
+ EP on ImageNet-1K 90.4 95.4 97.8 99.0 99.6 99.8

its last block—still yields lower complementarity than EP, suggesting that the effect is not explained
by self-attention alone.

Figure 12d and Figure 12e further compare EP against other attentive probing methods (V-JEPA,
AIM). Interestingly, all attentive probing mechanisms achieve higher complementarity than the in-
ternal MHSA heads, with AIM coming close to EP. This pattern might suggest that attentive probing,
when designed effectively, encourages predictors to specialize in complementary regions, likely be-
cause probing operates on frozen backbones and must learn to aggregate features as efficiently as
possible. This evidence indicates that complementarity may be an inherent property of attentive
probing, rather than a byproduct of backbone architecture or attention type, opening new directions
for future work.
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Figure 13: Validation top-1 accuracy on
ImageNet-1K over training epochs for EP, with
and without the auxiliary attention-similarity loss.
The additional loss slightly accelerates early train-
ing but both variants converge to identical final
performance.

Attention complementarity as a loss. We
further examine the role of query com-
plementarity by encouraging diversity be-
tween queries/heads via an auxiliary attention-
similarity loss. Specifically, for AIM, V-JEPA,
and EP we add to the cross-entropy loss, an
extra term Lattn that penalizes similarity be-
tween the attention maps of different queries.
On MAE ViT-B probed on ImageNet-1K, this
yields a small gain for V-JEPA (74.1% →
74.3%), while AIM and EP retain essentially
identical final accuracy but converge faster (e.g.
EP reaches 64.1% at epoch 10 with Lattn vs.
60.0% without it, before both converge to the
same final score). These results suggest that
complementarity is a beneficial property that
can modestly help or accelerate training. How-
ever, methods such as AIM and EP, learn highly
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(a) Complementarity measured as 1 minus average off-diagonal similarity.

MAE
ViT-B

MAE
ViT-L

iBOT
ViT-B

DINOv2
ViT-B

DINOv2
ViT-L

DINOv3
ViT-B

DINOv3
ViT-L

Franca
ViT-L

CLIP
ViT-L

SigLIP
ViT-L

0

0.1

0.2

0.3

0.09
0.07

0.13

0.02
0.004

0.05

0.006 0.004 0.004 0.003

0.22
0.2

0.18
0.19

0.17
0.18

0.15

0.06

0.23

0.18

C
om

pl
em

en
ta

ri
ty

MHSA

EP

(b) Complementarity measured as 1 minus max off-diagonal similarity.
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(c) Complementarity of MAE ViT-B across all 12 blocks, using both average and max.
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(d) Complementarity measured as 1 minus average off-diagonal similarity.
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(e) Complementarity measured as 1 minus max off-diagonal similarity.

Figure 12: Complementarity scores of attention maps across different backbones (a, b, c) and prob-
ing methods (d, e). We compare the diversity of internal MHSA heads in the last block against the
external V-JEPA heads, AIM heads, and EP queries.
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complementary queries, without Lattn, via the attention mechanism that naturally discovers this
structure on its own.

Entropy. Figure 14 examines the relation between last block attention entropy and probing per-
formance across different pre-training methods. Models with lower entropy exhibit more concen-
trated and focused attention distributions, correlating with stronger probing accuracy under EP. This
is particularly evident for methods like as DINOv2 and DINOv3, which couple low entropy with
strong LP and EP performance. In contrast, models like MAE ViT-S (MAE-S) or SimMIM ViT-B
(SimMIM-B) show higher entropy, reflecting more diffuse attention and correspondingly weaker
probing under LP. Crucially, EP consistently boosts accuracy across all entropy levels, with bubble
sizes indicating particularly large gains for the high-entropy models. This aligns with our broader
finding that methods optimizing patch-level representations rather than explicit global tokens benefit
most from attentive probing, as EP effectively compensates for diffuse attention and makes probing
more robust to the quality of backbone distributions.
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Figure 14: Entropy analysis of last-block attention distribution across different pre-training meth-
ods. Bubble color indicates efficient probing (EP) accuracy, bubble size encodes ∆ accuracy
(EP−LP). Lower entropy corresponds to more focused attention and higher accuracy under EP.
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Figure 15: Effect of varying the number of
heads/queries M , Da, and output dimension Do on
probing accuracy. Black: standard (Do = Di); blue:
reduced classifier dimension (Do = Di/2); green: re-
duced attention dimension (Da = Di/2); half-blue-
half-green: simultaneous reduction of both Do and Da.

Impact of attention predictors, Da, and
Do. We analyze the effect of increasing
the number M of heads (in AIM) and the
number M of queries (in EP) on probing
performance. Figure 15 shows that both
lead to accuracy improvements. For AIM,
increasing the number of heads incurs no
additional cost in terms of parameters, but
its effectiveness depends on the presence
of WK . In contrast, EP achieves similar
or better performance by leveraging addi-
tional queries, while removing WK . AIM
introduces an additional attention dimen-
sionality Da, since its query is learnable
and interacts with WK . Lowering Da re-
duces the parameters but leads to a greater
accuracy drop (green points), indicating
that the learned query formulation benefits
from a large attention space. We also eval-
uate the impact of reducing the output di-
mensionality Do (blue points). On EP, we
observe that lowering Do to Di/2 reduces
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parameters while maintaining competitive performance. Interestingly, this strategy also general-
izes well to AIM, demonstrating that extracting lower-dimensional features can achieve comparable
accuracy with reduced computational cost.

EP convergence. Although all probing methods are trained for 90 epochs for fairness (following
the protocol of He et al. (2022) and Przewieźlikowski et al. (2024)), we also examine how quickly
EP converges. As shown in Table 9, EP trained for only 10 epochs (EP@10) already matches or
even surpasses the performance of standard linear probing trained for the full 90 epochs (LP@90)
across 12 models. Moreover, EP recovers on average more than 97% of its final accuracy within
these first 10 epochs. These results highlight that in practical scenarios, EP requires only a small
fraction of the standard training budget to achieve near-optimal probing performance and produce
highly discriminative features.

Table 9: EP convergence on ImageNet-1K. EP@10 is EP accuracy after 10 epochs; LP@90 and
EP@90 are final probing results after 90 epochs.

MODEL EP@10 LP@90 EP@90 EP@10 VS. LP@90 GAP EP@10 VS. EP@90 GAP

MAE ViT-B/16 60.0 67.7 75.6 88.6% 79.4%
BEiTv2 ViT-B/16 80.0 79.0 81.7 101.3% 97.9%
CAPI ViT-L/14 82.3 81.5 83.6 101.0% 98.4%
iBOT ViT-B/16 78.6 78.7 79.2 99.9% 99.2%
DINOv2 ViT-B/14 83.6 83.2 84.0 100.5% 99.5%
DINOv2 ViT-L/14 85.0 85.2 85.6 99.8% 99.3%
Franca ViT-B/16 83.8 83.8 84.3 100.0% 99.4%
DINOv3 ViT-B/16 84.4 84.0 84.4 100.5% 100.0%
DINOv3 ViT-L/14 86.7 86.6 87.1 100.1% 99.5%
CLIP ViT-L/14 82.7 82.3 83.4 100.5% 99.2%
SigLIP ViT-L/16 85.6 84.1 86.1 101.8% 99.4%
AIMv2 ViT-L/14 85.5 84.8 85.9 100.8% 99.5%

Table 10: Comparison of EP variants using different numbers of
original maps (queries) and projected maps on ImageNet-1K with
MAE ViT-B. Attention mixing refers to projecting multiple query
maps into a smaller set via a linear+softmax layer. While projec-
tion improves over directly training with few queries (e.g., 64→8
vs. 8 original), it does not outperform the un-projected setting with
the same number of queries, and adds extra parameters.

# ORIGINAL # PROJECTED ACCURACY
# ORIGINAL ACCURACYEP MAPS EP MAPS EP MAPS

32 8 75.4
8 74.864 8 75.6

128 8 75.5

64 16 75.5
16 75.0128 16 75.8

256 16 75.6

64 32 75.6
32 75.6128 32 75.6

256 32 75.7

128 64 75.8
64 75.6256 64 75.8

384 64 75.9

256 128 75.8 128 75.5384 128 76.0

Attention mixing. We fur-
ther explore an attention mix-
ing variant of EP, where a larger
set of query maps is linearly
projected into a smaller num-
ber of effective maps. For ex-
ample, projecting 64 queries
into 8 maps achieves 75.6% ac-
curacy, outperforming the 8-
query baseline (74.8%) and
suggesting that mixing can im-
prove the expressivity of a
small query budget. How-
ever, compared to the un-
projected 32 or 64 query vari-
ants (75.6%), attention mixing
offers no clear advantage while
introducing additional param-
eters through the projection
layer. For this reason, we do
not include attention mixing in
the final design of EP, though
it may inspire future extensions
exploring alternative aggrega-
tion strategies.

Matryoshka representation learning. In our accuracy vs. parameter trade-offs (e.g., Figure 2),
each evaluation scale (Do=Di, Di/2, Di/4, Di/8) requires training a separate classifier, and the
resulting accuracies potentially serve as an upper bound for that dimensionality, since each probe is
fully specialized to its target output size. To reduce training cost and enable a single probe that op-
erates across multiple scales, we investigate whether Matryoshka representation learning (Kusupati
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et al., 2022)—originally proposed for training from scratch or fine-tuning—can be applied to atten-
tive probing under EP. Matryoshka jointly optimizes probing across multiple output dimensionalities
by summing their losses (e.g., L=λLD+LD/2). We study two variants: (i) Efficient Matryoshka,
which uses a single classifier with nested subspaces spanning multiple dimensionalities, and thus
adds no extra parameters; (ii) Vanilla Matryoshka, which trains separate classifiers for each dimen-
sionality, increasing the parameter count. Table 11 reports results with MAE ViT-B probed using
EP. Without Matryoshka, probing at D (Do=Di) achieves the highest accuracy (75.6%), but perfor-
mance drops sharply at smaller dimensions (50.7% at D/2, 20.1% at D/4, 5.5% at D/8). Efficient
Matryoshka substantially improves performance at reduced dimensions (e.g., +22.5% at D/2) while
maintaining accuracy at D. Accuracy at D slightly decreases as λ (the weight of the full-dimensional
loss) is reduced, reflecting the trade-off between full- and low-dimensional performance. Vanilla
Matryoshka alleviates the performance drop at D but requires more parameters. To further illustrate
these effects, we evaluate the standard linear probing (LP) baseline without Matryoshka under the
same D/2, D/4, D/8 evaluation protocol, as also extending LP with Matryoshka. In Table 12 we
observe that standard LP (without Matryoshka) suffers from an even sharper performance collapse
than EP (e.g., 34.5% at D/2, 10.8% at D/4, and 1.4% at D/8). This confirms that the drop at
reduced dimensions is not specific to EP, but is an inherent limitation of evaluating ViT representa-
tions at truncated dimensionalities without explicit multi-scale optimization. Overall, Matryoshka
probing provides a promising way to probe across multiple scales simultaneously, improving effi-
ciency, and adaptability of evaluation. However, it does not yet match the upper-bound performance
of dimension-specific probes, thus we present it here as an exploratory analysis that highlights an
exciting direction for future work.

Table 11: Comparison of EP with and without Matryoshka representation learning on ImageNet-
1K (MAE ViT-B). Without Matryoshka, probing at D (Do=Di) achieves the best accuracy but
collapses at smaller dimensions. Efficient Matryoshka enables multi-scale probing without extra
parameters, improving performance at reduced dimensions with relatively small degradation at D.
Vanilla Matryoshka partly restores performance at D but at the cost of additional parameters.

WITHOUT MATRYOSHKA EFFICIENT MATRYOSHKA VANILLA MATRYOSHKA

D D/2 D/4 D/8 D, D/2, D/4, D/8 D, D/2, D/4, D/8

EVAL. ON λ=0.8 λ=0.6 λ=0.4 λ=0.25 λ=0.6 λ=0.25

D 75.6 – – – 75.0 74.7 74.3 73.9 75.4 75.2
D/2 50.7 74.4 – – 72.2 73.1 73.6 73.8 73.8 74.4
D/4 20.1 – 72.4 – 69.5 70.9 71.4 71.6 71.7 72.2
D/8 5.5 – – 69.8 65.7 67.3 67.9 68.2 68.6 68.9

# PAR.
1.4M 1.4M 1.4M 1.4M

1.4M 2.1M
5.5M

Table 12: Comparison of LP with and without Matryoshka representation learning on ImageNet-1K
(MAE ViT-B). Without Matryoshka, linear probing collapses sharply at reduced output dimension-
alities. Matryoshka improves low-dimensional performance, without increasing parameters, though
the accuracy at D decreases as λ (the weight of the full-dimensional loss) is reduced.

EVAL. ON WITHOUT MATRYOSHKA
EFFICIENT MATRYOSHKA

λ = 0.8 λ = 0.6 λ = 0.4 λ = 0.25

D 66.4 66.1 65.8 65.4 65.0
D/2 34.5 59.2 60.6 61.2 61.4
D/4 10.8 52.5 54.5 55.3 55.7
D/8 1.4 43.4 46.1 47.0 47.4

Visualizations. To better understand the behavior of different attentive pooling/probing methods,
we present visualizations of attention maps across various configurations.

Figure 16 explores the effect of varying the number of queries in EP, visualizing configurations with
1, 2, 4, and more queries. When only a single query (EP1) is used, the attention map tends to capture
a coarse, global representation of the object. As the number of queries increases, the attention
becomes more fine-grained and spatially distributed, with each query specializing in distinct object
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original EP1 EP2 EP2 EP4 EP4 EP4 EP4
image q1 q1 q2 q1 q2 q3 q4

EP8 EP8 EP8 EP8 EP8 EP8 EP8 EP8
q1 q2 q3 q4 q5 q6 q7 q8

EP16 EP16 EP16 EP16 EP16 EP16 EP16 EP16
q1 q2 q3 q4 q5 q6 q7 q8

EP16 EP16 EP16 EP16 EP16 EP16 EP16 EP16
q9 q10 q11 q12 q13 q14 q15 q16

Figure 16: Attention maps of efficient probing (EP) variants grouped by the number of queries (1, 2,
etc.). MAE ViT-B pre-trained on ImageNet-1K, probed with EP. Images: ImageNet-1k validation
set.

regions. This highlights the flexibility of EP in controlling the granularity of attention: fewer queries
encourage holistic coverage, while more queries promote detailed, part-based localization.

Figure 17 shows the attention maps obtained from four single-head attention probing methods
(CBAM, AbMILP, DELF, and SimPool) using an ImageNet-1K pretrained MAE ViT-B model.
Among them, CBAM exhibits poor localization, often failing to focus on the target object, which
is consistent with its low classification accuracy across datasets. In contrast, AbMILP, DELF, and
SimPool produce more precise and meaningful attention, highlighting relevant object regions while
suppressing background noise. Due to their single-head nature, these methods are compelled to
concentrate all semantic information into a single attention vector, which encourages a global view
of the input image rather than fine-grained discrimination.

Figure 18 compares attention maps from multi-head probing methods. Rather than visualizing just
the average attention across heads,which can obscure useful per-head behavior, we show the min-
imum, maximum, and standard deviation across attention heads. The first column contains maps
from the [CLS] token of the pretrained MAE ViT-B model. The remaining columns display maps
from CAE, CaiT, CLIP, CoCa, ViT, V-JEPA, SigLIP, and AIM, alongside EP using 16 learnable
queries (EP16). Notably, EP produces high-quality attention maps that rival the best-performing
methods in both clarity and relevance, while retaining computational efficiency.

Figure 19 presents the attention maps corresponding to each individual query in EP. We observe
that each query qi attends to distinct, complementary regions of the object (e.g., head, torso, bound-
aries), illustrating how EP distributes attention cooperatively across salient features without redun-
dancy. This diversity among queries reveals the model’s capacity to decompose complex objects
into meaningful sub-parts.
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input CBAM AbMILP DELF SimPool
image

Figure 17: Attention maps of single-head attention pooling methods. MAE ViT-B pre-trained on
ImageNet-1k. Images: ImageNet-1k validation set.
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[CLS] CAE CaiT CLIP CoCa ViT V-JEPA SigLIP AIM EP16

Figure 18: Attention maps of multi-head attention pooling methods for different attention predictor
aggregators: mean, standard deviation (std), minimum (min), and maximum (max). MAE ViT-B
pre-trained on ImageNet-1K. Images: ImageNet-1k validation set. EP16: efficient probing (EP) with
16 queries.

q1 q2 q3 q4 q5 q6 q7 q8

Figure 19: Attention maps of efficient probing (EP) with 8 queries. Each query qi learns to focus
on distinct and complementary regions, capturing diverse spatial and semantic information. MAE
ViT-B pre-trained on ImageNet-1K, probed with EP. Images: ImageNet-1k validation set.
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D LIMITATIONS AND FUTURE WORK

While our study provides the first systematic benchmark of attentive probing and introduces a
lightweight yet effective alternative, several limitations remain. First, our evaluation focuses ex-
clusively on frozen backbones. Although this setting isolates the effect of probing mechanisms, it
leaves open how efficient probing might interact with lightweight fine-tuning strategies or adapter-
based methods. Exploring the synergy between probing and parameter-efficient fine-tuning could
offer a broader view of scalable evaluation.

Second, our current experimental protocol always performs a full forward pass of the backbone
during training, even though the backbone is frozen. In practice, one could pre-compute and store
patch-token features once and run probing purely on top of these cached features. Systematically
studying this “frozen-feature” protocol—its memory/IO trade-offs, impact on optimization dynam-
ics, and applicability across architectures—is an interesting direction for future work.

Third, while we introduced complementarity metrics (average and max similarity) to study the diver-
sity of attention predictors, our analysis remains largely diagnostic. A deeper theoretical understand-
ing of why attentive probing tends to yield more complementary maps—and whether this property
can be explicitly optimized—could further extend probing beyond evaluation into representation
refinement.

Fourth, our experiments concentrate on image classification benchmarks. Attentive probing may
also benefit other tasks that naturally require part-level reasoning, such as detection, segmentation,
or retrieval, where its complementary attention maps could act as implicit part detectors. Extending
probing to such structured tasks is a promising direction.

Fifth, although we examined variants such as attention mixing and Matryoshka probing, both were
limited to ImageNet-scale experiments. Their potential on larger models and multimodal settings
(e.g., vision–language tasks) remains underexplored. Similarly, the alternative protocol of probing
with pre-stored frozen features, requiring only one backbone forward pass, is left for future work.

Finally, the broader implications of probing as more than an evaluation protocol deserve attention.
Our results suggest that attentive probing exhibits emerging properties—such as diversity and inter-
pretability—that are not trivially inherited from the backbone. Understanding whether these prop-
erties generalize across modalities and can be exploited for tasks like explainability, robustness, or
adaptive computation opens up an exciting line of future research.

E USE OF LARGE LANGUAGE MODELS

This paper has made limited use of large language models (LLMs), specifically to aid in the pol-
ishing and refinement of writing. LLMs were not used for ideation, technical contributions, exper-
imental design, analysis, or related work retrieval. All research ideas, methodology, experiments,
and conclusions presented are solely the work of the authors.
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