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Abstract

Large language models (LLMs) have become001
a dominant and important tool for NLP re-002
searchers in a wide range of tasks. Today,003
many researchers use LLMs in synthetic data004
generation, task evaluation, fine-tuning, distil-005
lation, and other model-in-the-loop research006
workflows. However, challenges arise when007
using these models that stem from their scale,008
their closed source nature, and the lack of stan-009
dardized tooling for these new and emerging010
workflows. The rapid rise to prominence of011
these models and these unique challenges has012
had immediate adverse impacts on open science013
and on the reproducibility of work that uses014
them. In this ACL 2024 theme track paper, we015
introduce DataDreamer, an open source Python016
library that allows researchers to write simple017
code to implement powerful LLM workflows.018
DataDreamer also helps researchers adhere to019
best practices that we propose to encourage020
open science and reproducibility.021

1 Introduction022

While large language models (LLMs) have estab-023

lished a new era in NLP research through the024

prompt-and-predict paradigm that has proven ef-025

fective on a wide variety of tasks, the use of these026

models has come with significant drawbacks (Liu027

et al., 2023). Many popular models like GPT-4028

(OpenAI et al., 2023) are closed source and behind029

a remote API, while running models locally can030

be technically complex and expensive due to their031

scale. Moreover, the now well-established prompt-032

ing paradigm can be brittle with results widely033

varying between different models, configurations,034

and environments (Sclar et al., 2023; Jaiswal et al.,035

2023). These challenges have made it difficult for036

researchers to share, reproduce, extend, and com-037

pare work, hindering the rate of research progress.038

In context of the rapid shift to using these large039

models in research, this year’s 2024 ACL theme040

Figure 1: DataDreamer helps researchers implement
many types of LLM workflows easier and makes repro-
ducibility automatic and simple. These workflows often
involve synthetic data generation with a LLM-in-the-
loop and/or fine-tuning, aligning, and distilling models.

track calls for “stimulating discussion about open 041

science and reproducible NLP research, as well 042

as supporting the open source software movement” 043

and invites “high-quality open source software im- 044

plementations”.4 In concordance with this theme, 045

we introduce DataDreamer, our open source Python 046

package that provides both practical utility to re- 047

searchers and scientific utility to the community: 048

4https://2024.aclweb.org/calls/main_conferenc
e_papers/#theme-track-open-science-open-data-and
-open-models-for-reproducible-nlp-research
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• DataDreamer helps researchers implement049

state-of-the-art emerging workflows involv-050

ing LLMs such as synthetic data generation,051

fine-tuning, instruction-tuning, and alignment.052

It simplifies implementations by providing a053

single library with a standardized interface for054

many of these tasks while reducing technical055

complexity around switching between models,056

caching, resumability, logging, multi-GPU in-057

ference and training, using adapter and quan-058

tization optimizations, and publishing open059

datasets and models.060

• DataDreamer makes chaining data between061

tasks, an increasingly common practice, sim-062

ple. For example, a user can generate data063

with a synthetic data workflow and then fine-064

tune on that synthetic data.065

• DataDreamer helps researchers implement066

workflows while crucially producing output067

that is compatible with open science and repro-068

ducible ideals with minimal effort, through au-069

tomatic caching, reproducibility fingerprints,070

and more best-practice artifacts.071

2 LLM Workflows 072

To motivate DataDreamer, we first discuss the LLM 073

workflows that it supports. We discuss challenges 074

to open science that arise from these usage patterns. 075

In this paper, we do not seek to validate or critique 076

these approaches. Instead, we offer a solution to im- 077

plement them and make them reproducible. These 078

LLM workflows are often used in combination with 079

each other (Yuan et al., 2024), and orchestration of 080

multi-stage workflows is frequently implemented 081

through multiple shell or Python scripts. Reproduc- 082

ing these multi-stage workflows is challenging as 083

shell scripts may rely upon a particular author’s job 084

scheduler or environment and require execution in 085

a specific order. In Section 4 and 5, we discuss how 086

DataDreamer’s task orchestration, caching system, 087

and simple multi-GPU training make it easier to 088

implement these multi-stage workflows in a single 089

Python program, minimizing these issues. 090

Synthetic Data Generation Recent work has ex- 091

plored using LLMs to create synthetic data for tasks 092

or to augment existing datasets to boost task per- 093

formance (Yu et al., 2023; Kumar et al., 2020a,b; 094

Feature LangChain1 Axlotl2 HF Transformers + TRL3 DataDreamer

Implementation

Accessible via Python API ✓ ✗ ✓ ✓
Built for Researchers ✗ ✗ ✓ ✓

Integrations

Open Source Models ✓ ✓ ✓ ✓
Commercial & API-based Models ✓ ✗ ✗ ✓

Tasks

Prompting & Prompt “Chaining” ✓ ✗ ✗ ✓
Synthetic Data Generation & Augmentation ✓ ✗ ✗ ✓
Fine-tuning LLMs ✗ ✓ ✓ ✓
Instruction-tuning LLMs ✗ ✓ ✓ ✓
Aligning LLMs ✗ ✓ ✓ ✓
Training Classifier Models ✗ ✗ ✓ ✓
Training Embedding Models ✗ ✗ ✗ ✓

Conveniences

Caching # ✗ ✗ ✓
Resumability ✗ ✓ # ✓
Simplifies Boilerplate Code (tokenization, etc.) ✓ ✓ ✗ ✓
Simplifies Multi-GPU Inference and Training ✗ # ✗ ✓
Publishing Datasets & Models ✗ # ✓ ✓

Open Science and Reproducibility

Reproducibility Fingerprints ✗ ✗ ✗ ✓
Saves Intermediate Outputs ✗ ✗ ✗ ✓
Synthetic Data and Model Cards ✗ ✗ ✗ ✓

Table 1: We compare feature coverage between other popular libraries and solutions available to researchers today
that target similar workflows. DataDreamer integrates these features into a single library with a standardized
interface making experimentation and chaining data between tasks simple. (✗= No; ✓= Yes; # = Partial Support)
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Yoo et al., 2021; Han et al., 2021a; Ye et al., 2022;095

Honovich et al., 2022, inter alia). Synthetic data096

generation involves using a LLM once or multiple097

times in a multi-stage workflow to process data,098

sometimes referred to as “chaining” (Rush, 2023).099

When prompting LLMs to generate or augment100

datasets, a reproducibility challenge that arises is101

“prompt sensitivity” where even small variations in102

a prompt can lead to significantly different results103

(Sclar et al., 2023). Moreover, it is imperative to tag104

synthetically generated datasets because of model105

degradation concerns (Shumailov et al., 2023).106

LLMs for Task Evaluation Another increas-107

ingly common workflow is using LLMs as judges108

or as automatic metrics for evaluating a model’s109

performance on a task (Zheng et al., 2023; Fu et al.,110

2023; Dubois et al., 2023; Chiang and Lee, 2023,111

inter alia). Many of the reproducibility challenges112

applicable to synthetic data also arise here.113

Fine-tuning and Alignment Another common114

workflow is the creation of task-specific expert115

models using knowledge from larger models to cre-116

ate smaller, more efficient models via fine-tuning117

and distillation (Han et al., 2021b; Liu et al., 2022;118

Hsieh et al., 2023). Instruction-tuning is fine-tuning119

that allows base pre-trained models to better follow120

natural language human instruction and improve121

their generalized task performance (Ouyang et al.,122

2022; Wei et al., 2021; Sanh et al., 2021; Mishra123

et al., 2021). Closely related, alignment techniques124

steer model responses towards those more prefer-125

able to humans (Stiennon et al., 2020; Bai et al.,126

2022; Rafailov et al., 2023). Implementing resuma-127

bility and efficient training techniques are practical128

challenges often faced. Reproducibility challenges129

include sharing exact data and hyperparameters.130

Self-improving LLMs Self-improving LLMs131

through self-feedback training loops is an increas-132

ingly active area of research interest (Huang et al.,133

2022; Wang et al., 2022; Li et al., 2023; Chen et al.,134

2024; Yuan et al., 2024; Gunasekar et al., 2023).135

These workflows can be uniquely complex to both136

implement and reproduce due to requiring multiple137

rounds that chain together synthetic data genera-138

tion, automatic evaluation, and model re-training.139

DataDreamer supports all of these workflows and140

makes it simple to chain data between them.141

1https://github.com/langchain-ai/langchain
2https://github.com/OpenAccess-AI-Collective/

axolotl

3 Demonstration and Examples 142

Before delving into the structure and implemen- 143

tation of DataDreamer, we first provide a simple 144

demonstration of DataDreamer’s capabilities and 145

API through an example synthetic data generation 146

and distillation workflow in Example 1. The 147

LLM used in this example is GPT-4 (OpenAI 148

et al., 2023). As an initial step, the example uses 149

the LLM to generate 1,000 NLP research paper 150

abstracts. The LLM is then used to summarize 151

those abstracts in a tweet-like style. These two 152

steps result in a fully synthetic dataset of abstracts 153

and tweets summarizing them. Using a trainer, 154

this synthetic dataset is then distilled to a small, 155

local model that is capable of summarizing paper 156

abstracts in a tweet-like style. As a final step, 157

the example demonstrates how both the synthetic 158

dataset and the trained model can be published and 159

shared. For illustrative purposes, we demonstrate a 160

sample generation of the trained model’s output on 161

this paper’s abstract: 162

“Introducing DataDreamer, an open source Python
library for advanced #NLP workflows. It offers easy
code to create powerful LLM workflows, addressing
challenges in scale, closed source nature, and tooling.
A step towards open science and reproducibility! #AI
#MachineLearning”

163

164

Further example workflows can be found in the 165

Appendix (Example 2, Example 3, Example 4, Ex- 166

ample 5). 167

4 DataDreamer 168

DataDreamer is an open source Python package 169

that allows researchers to implement all of the 170

LLM workflows discussed in Section 2 using a 171

single library. DataDreamer provides a standard- 172

ized interface for prompting and training models, 173

abstracting away vendor-specific libraries and tool- 174

ing. This makes research code simpler to imple- 175

ment, modify, experiment with, and share with 176

others. DataDreamer integrates with other open 177

source LLM libraries like transformers (Wolf 178

et al., 2019) and trl (von Werra et al., 2020), as 179

well as commercial model APIs like OpenAI and 180

Anthropic5 for commercial LLMs (Brown et al., 181

2020). Moreover, DataDreamer automatically im- 182

plements the best practices for reproducibility dis- 183

cussed in Section 5. 184

3Wolf et al. (2019); von Werra et al. (2020)
5https://www.anthropic.com/
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1 from datadreamer import DataDreamer
2 from datadreamer.llms import OpenAI
3 from datadreamer.steps import DataFromPrompt , ProcessWithPrompt
4 from datadreamer.trainers import TrainHFFineTune
5 from peft import LoraConfig
6

7 with DataDreamer("./ output"):
8 # Load GPT -4
9 gpt_4 = OpenAI(model_name="gpt -4")

10

11 # Generate synthetic arXiv -style research paper abstracts with GPT -4
12 arxiv_dataset = DataFromPrompt(
13 "Generate Research Paper Abstracts",
14 args={
15 "llm": gpt_4 ,
16 "n": 1000,
17 "temperature": 1.2,
18 "instruction": (
19 "Generate an arXiv abstract of an NLP research paper."
20 " Return just the abstract , no titles."
21 ),
22 },
23 outputs ={"generations": "abstracts"},
24 )
25

26 # Use GPT -4 to convert the abstracts to tweets
27 abstracts_and_tweets = ProcessWithPrompt(
28 "Generate Tweets from Abstracts",
29 inputs ={"inputs": arxiv_dataset.output["abstracts"]},
30 args={
31 "llm": gpt_4 ,
32 "instruction": "Given the abstract , write a tweet to summarize the work.",
33 "top_p": 1.0,
34 },
35 outputs ={"inputs": "abstracts", "generations": "tweets"},
36 )
37

38 # Create training data splits
39 splits = abstracts_and_tweets.splits(train_size =0.90, validation_size =0.10)
40

41 # Train a model to convert research paper abstracts to tweets with the
42 # synthetic dataset
43 trainer = TrainHFFineTune(
44 "Train an Abstract => Tweet Model",
45 model_name="google/t5-v1_1 -base",
46 peft_config=LoraConfig (),
47 )
48 trainer.train(
49 train_input=splits["train"]. output["abstracts"],
50 train_output=splits["train"]. output["tweets"],
51 validation_input=splits["validation"]. output["abstracts"],
52 validation_output=splits["validation"]. output["tweets"],
53 epochs =30,
54 batch_size =8,
55 )
56

57 # Publish and share the synthetic dataset
58 abstracts_and_tweets.publish_to_hf_hub("repo_id")
59

60 # Publish and share the trained model
61 trainer.publish_to_hf_hub("repo_id")

Example 1: In this demonstration snippet, DataDreamer generates a fully synthetic dataset of tweets summarizing
research paper abstracts and then trains a smaller T5 distilled model (Raffel et al., 2020) to perform the task and
publishes both the synthetic dataset and the trained model. DataDreamer makes it simple to chain data from each
step in the workflow to the next and automatically caches each step of this workflow to the ./output/ folder to
allow interruption and resumability at any point in the script. The standardized API also makes it easy to switch to
and experiment with different models, both open source and commercial, for generation and training.
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4.1 Installation185

DataDreamer can be installed with the wheel file:186

pip install <WHEEL_FILE >187

4.2 Sessions188

All code using the DataDreamer library is placed189

within a “session” using a Python context manager190

instantiated using the with keyword:191

from datadreamer import DataDreamer192
193

with DataDreamer("./ output"):194
...195

Workflow tasks can be run within the session196

context manager. These tasks are called “steps”197

(loading a dataset, prompting a model, etc.) or198

“trainers”. The session allows DataDreamer to au-199

tomatically organize the resulting datasets, outputs,200

caches, training checkpoints, and trained models201

that result from tasks run within the session into202

the ./output/ folder. Each step in a workflow as-203

signs a custom descriptive name for its subfolder204

under ./output/. DataDreamer sessions automat-205

ically provide user-friendly logging around work-206

flow tasks run within the session (see Figure 2).207

4.3 Steps208

Steps are the core operators in a DataDreamer ses-209

sion. A step in DataDreamer transforms from an210

input dataset to an output dataset (Lhoest et al.,211

2021). This is useful for tasks like generating212

synthetic data from LLMs, or data augmentation213

for existing datasets. The output of one step can214

be directly used as the input to another step or215

as the input to a trainer, allowing users to chain216

together multiple steps/trainers to create complex217

workflows. DataDreamer comes with a number of218

built-in steps for common operations in LLM work-219

flows, some examples of which can be seen in Table220

2. Useful standard data processing operations such 221

as .map(), .filter(), and .shuffle() can also 222

quickly be applied to the output of a step for custom 223

processing. DataDreamer uses memory-mapping 224

to handle large datasets stored on disk and can be 225

run lazily over iterable, streaming datasets. 226

4.4 Models 227

Models can be loaded in a DataDreamer ses- 228

sion and then be passed as an argument to steps 229

like FewShotPrompt and ProcessWithPrompt. 230

DataDreamer creates a standardized interface for 231

accessing open source and commercial LLMs. It in- 232

cludes interfaces for embedding models as well as 233

LLMs. Examples of supported models and model 234

providers can be found in Table 2. 235

4.5 Trainers 236

Trainers can train on a dataset produced by a 237

step in a DataDreamer workflow. The dataset 238

may be loaded from an external source or pro- 239

duced as the output of a step in a multi-step work- 240

flow. DataDreamer’s trainers support a wide vari- 241

ety of techniques and tasks including fine-tuning, 242

instruction-tuning, alignment via RLHF (Ouyang 243

et al., 2022) and DPO (Rafailov et al., 2023), distil- 244

lation, training classifiers, and training embedding 245

models. Examples of supported techniques are 246

shown in Table 2. 247

4.6 Caching and Sharing Workflows 248

Caching has practical utility in LLM workflows as 249

these large models can be both computationally and 250

financially expensive to run. Therefore, eliminating 251

re-computation can save both time and resources. 252

Caching in DataDreamer happens at multiple levels. 253

When a step or trainer is completed, its resulting 254

dataset or trained model is saved to disk and loaded 255

Type Examples

Steps
Load a Dataset DataSource, HFHubDataSource, JSONDataSource, CSVDataSource, ...

Prompting
Prompt, RAGPrompt, ProcessWithPrompt, FewShotPrompt, DataFromPrompt,
DataFromAttributedPrompt, FilterWithPrompt, RankWithPrompt,
JudgeGenerationPairsWithPrompt, ...

Other Embed, Retrieve, CosineSimilarity, ...

Models OpenAI, OpenAIAssistant, HFTransformers, CTransformers, VLLM, Petals,
HFAPIEndpoint, Together, MistralAI, Anthropic, Cohere, AI21, Bedrock, Vertex, ...

Trainers TrainOpenAIFineTune, TrainHFClassifier, TrainHFFineTune,
TrainSentenceTransformer, TrainHFDPO, TrainHFPPO, ...

Table 2: A few examples of built-in steps, models, and trainers available in DataDreamer.
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from disk if the step or trainer is executed again256

with the same inputs and arguments, instead of be-257

ing run again. Additionally, DataDreamer caches258

at the model-level, caching the results of prompts259

or texts being run against a model to a SQLite260

database file. During training, DataDreamer simi-261

larly automatically saves checkpoints and resumes262

from them if interrupted and restarted. Caching263

uses minimal disk space (storing mainly text) and264

adds minimal overhead in these workloads domi-265

nated by heavy model inference computation, but266

can be granularly disabled if desired.267

DataDreamer’s cache system allows a researcher268

to share both their workflow script and their session269

output folder with others, giving them access to use-270

ful caches and saved outputs. These allow others271

to easily reproduce and extend the entire work-272

flow while also benefiting from avoiding expensive273

computations when unnecessary. For example, a274

researcher could extend another researcher’s work-275

flow by adding another step at the end. Only the276

additional added step would need to be computed,277

while all of the original steps could have their re-278

sults loaded from disk.279

4.7 Resumability280

Caching allows resumability during development,281

so scripts can be interrupted and resumed. This282

allows graceful handling of crashes, server preemp-283

tion, and other situations where only a portion of a284

workflow was previously computed. Furthermore,285

caching can be useful during experimentation of a286

workflow. For example, when modifying a single287

prompt in the middle of a multi-step synthetic data288

generation workflow, the change may only affect289

a certain number of inputs to the next step. If so,290

only that portion of the work will be re-computed.291

4.8 Sharing Open Data and Open Models292

DataDreamer provides convenient utilities for ex-293

porting and publishing datasets and trained models294

produced by steps or trainers. Resources can be295

exported to disk or published to the Hugging Face296

Hub.6 When resources are published, DataDreamer297

can automatically upload a demonstration snip-298

pet and set up the live demonstration widget on299

the Hugging Face Hub, which makes shared re-300

sources easily usable. Additionally, these resources301

are automatically given appropriate metadata such302

as tags clearly indicating when data is syntheti-303

6https://huggingface.co/

Date & Time

The date and time the step or trainer was run. This is
important to document when using API-based LLMs that
can be updated over time.

Dataset Name & Card

The name of any datasets used as part of a step or trainer’s
operation along with their data cards.

Model Name & Card

The name of any models used in a step or trainer’s opera-
tion along with their model cards.

URL

A URL that can be referenced for more information about
the step or trainer.

License

Any known license that may apply as a result of a model
or dataset being used in a step or trainer.

Citations

Citations for datasets and models used in a trainer.

Reproducibility Fingerprint

A hash of all inputs, arguments, and configurations that
may affect reproducibility for a step or trainer. When steps
and trainers are chained in a multi-stage workflow, the
reproducibility hash is computed recursively through the
chain. These fingerprints can be used to compare if two
workflows within DataDreamer are exactly identical.

Other Reproducibility Information

Other miscellaneous reproducibility information such as
environment information, system information, and ver-
sions of packages and dependencies.

Table 3: Information automatically recorded in a syn-
thetic data card or synthetic model card. An example
synthetic data card can found in Appendix E.

cally generated and its source LLM. DataDreamer 304

also produces what we call “synthetic data cards” 305

and “synthetic model cards”. Synthetic data and 306

model cards are automatically produced by recur- 307

sively tracing through all steps, models, and train- 308

ers that DataDreamer used to produce the dataset or 309

model. Each step, model, and trainer has associated 310

metadata including license information and citation 311

information. DataDreamer collects this informa- 312

tion and produces a synthetic data card (or model 313

card) that reports the information along with repro- 314

ducibility information for each step, model, and 315

trainer in the workflow. The information collected 316

in our cards is defined in Table 3. 317

These automatically generated synthetic data 318

cards and model cards can aid in preventing con- 319

tamination of pre-training sources with model- 320

generated synthetic data. As synthetic data gener- 321

ation becomes more prevalent, contamination can 322

6



be a concern due to the performance degradation323

that has been observed when synthetic datasets are324

shared and trained on, possibly without the knowl-325

edge of the model developer (Shumailov et al.,326

2023). DataDreamer’s cards can also help other re-327

searchers understand what license restrictions may328

apply to the synthetically generated data, among329

other usability concerns. These automatically gen-330

erated cards are not a replacement for traditional331

data cards and model cards (Pushkarna et al., 2022;332

Mitchell et al., 2019) that recommend a wider set333

of important attributes such as potential dataset bi-334

ases. Instead, they provide supplemental informa-335

tion that is crucial to the usability and reproducibil-336

ity of LLM workflows. We encourage researchers337

to review and add information that cannot be auto-338

matically detected to our generated cards.339

4.9 Efficiency and Optimizations340

LLMs workflows often benefit from or require cer-341

tain optimizations to be applied in order to load342

or process the scale of data and models typically343

used. DataDreamer supports many of the common344

optimizations that researchers may want to apply.345

Parallelization DataDreamer supports running346

steps in background processes and running steps347

concurrently to easily implement parallel task or-348

chestration in a workflow.349

Quantization and Adapters DataDreamer sup-350

ports quantization of model weights that can reduce351

memory usage (Dettmers and Zettlemoyer) as well352

as parameter-efficient fine-tuning techniques like353

LoRA adapters (Hu et al., 2021; Mangrulkar et al.,354

2022). It standardizes using these optimizations355

across different model architectures and minimizes356

boilerplate, making it as simple as a single argu-357

ment to configure training with LoRA in Exam-358

ple 1. DataDreamer attempts to create uniform359

support for features across all of its supported in-360

tegrations when possible. So while the underly-361

ing sentence_transformers and transformers362

libraries do not support training embedding models363

with LoRA (Reimers and Gurevych, 2019; Wolf364

et al., 2019), DataDreamer supports this, which365

extends the benefits of LoRA to these models.366

Multi-GPU Usage DataDreamer makes it simple367

to load models on multiple GPUs and train mod-368

els on multiple GPUs with PyTorch FSDP (Paszke369

et al., 2019; Zhao et al., 2023). For example, train-370

ing a model on multiple GPUs is as simple as pass-371

ing a list of torch.devices to the device parame- 372

ter of a trainer (device=["cuda:0", "cuda:1"]). 373

DataDreamer automatically configures FSDP and 374

launches distributed processes within the session 375

so that a command line launcher like torchrun 376

never has to be used, simplifying multi-GPU train- 377

ing. The use of torchrun can often force com- 378

plex, multi-stage workflows being split into multi- 379

ple scripts launched via shell scripts since training 380

portions need to be isolated from data generation 381

or data processing portions. This added complex- 382

ity in running the workflow end-to-end can make 383

reproducibility challenging. With DataDreamer, 384

workflows do not need to be re-orchestrated around 385

portions needing to be launched via torchrun. 386

Since DataDreamer handles this distributed orches- 387

tration automatically, users can build multi-stage 388

workflows involving data generation, data process- 389

ing, and training on multiple GPUs all in a single 390

Python program, obviating the use of orchestration 391

through multiple shell scripts. Example 4 in the 392

Appendix provides an example of such a workflow. 393

4.10 Configuration and Extensibility 394

DataDreamer seeks to minimize configuration and 395

boilerplate code that for most research workflows 396

do not need to be customized, for example automat- 397

ically handling tokenization and applying the cor- 398

rect padding, among other tasks. DataDreamer ap- 399

plies sensible defaults and standard research prac- 400

tices to minimize configuration. Some researchers, 401

however, may need to customize these choices and 402

the option to override and extend is provided and 403

well-documented. 404

5 Reproducibility 405

We outline a few best practices, specific to the 406

emerging use of LLMs in research workflows that 407

DataDreamer adopts. We believe instituting these 408

practices can alleviate a number of reproducibility 409

concerns. Of course, when closed-source models 410

are involved, these concerns can never be fully 411

eliminated (see Section 6 for further discussion on 412

limitations). We discuss how DataDreamer makes 413

it easier to implement these practices or automati- 414

cally implements these practices in this section. 415

Adaptable to Model Substitution While experi- 416

mental workflows can often be sensitive to model 417

choice and the transferability of prompts can be 418

unreliable (Liu et al., 2023), for reproducibility pur- 419

poses and for ease of experimentation, workflow 420
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Figure 2: DataDreamer logs produced by the workflow in Example 1 when resuming from a prior interrupted run.

implementation code should attempt to minimize421

dependence on a specific model and should allow422

other researchers to easily substitute one LLM for423

another. This can also be useful if a model is not424

accessible to another researcher or if a model has425

become obsolete. DataDreamer’s API and model426

abstractions make model substitution simple.427

Sharing Prompts Exact prompts used should428

be shared since even minor variations can signif-429

icantly impact performance (Sclar et al., 2023).430

DataDreamer makes it easy to share an entire work-431

flow and session output folder. DataDreamer can432

also help ensure a re-implementation is exactly433

identical between two experimental setups by com-434

paring the reproducibility fingerprints of individual435

steps or the entire workflow in aggregate.436

Sharing Intermediate Outputs In multi-stage437

workflows, intermediate outputs should be shared438

for inspection and analysis by other researchers as439

well as for extendability purposes. DataDreamer440

makes this simple by automatically saving the re-441

sults of each step in a multi-stage workflow in442

an easily inspectable Hugging Face datasets for-443

mat (Lhoest et al., 2021). When API-based LLMs444

are used, there is greater risk to reproducibility.445

DataDreamer allows workflows to be exactly re-446

produced from caches in the session output folder,447

even if the remote API is no longer available.448

Synthetic Data Cards and Model Cards Syn-449

thetic data and model cards can help other re-450

searchers understand the source of synthetic data,451

license restrictions that may apply, citations that452

may apply, among other attributes. Importantly,453

these cards and other metadata-like tags can help454

prevent contamination of pre-training data (Shu- 455

mailov et al., 2023). Finally, these cards carry 456

reproducibility information, useful for validating 457

two experimental setups as identical. 458

Sharing Optimization Configurations Opti- 459

mizations like quantization can have an effect on 460

generations (Jaiswal et al., 2023). DataDreamer’s 461

reproducibility fingerprints account for these con- 462

figurations and with its easily shareable workflows, 463

DataDreamer makes it easy to reproduce an exact 464

workflow, along with configured optimizations. 465

Environment-Agnostic Code For reproducibil- 466

ity, code should attempt to minimize dependence 467

on local environments, job schedulers, shell scripts, 468

etc. DataDreamer helps make this easier by provid- 469

ing tools for workflow orchestration (steps, paral- 470

lelization, managed distributed processes for multi- 471

GPU training) that can be all be done within Python. 472

DataDreamer also minimizes dependencies on lo- 473

cal file paths, by organizing results and outputs into 474

the session output folder automatically. 475

6 Conclusion 476

The current moment in NLP research and recent 477

progress is exciting yet raises important questions 478

for the community. We introduce DataDreamer, 479

an open source Python package for implementing 480

common patterns and workflows involving LLMs. 481

We believe DataDreamer provides both practical 482

and scientific utility to the research community 483

and that its adoption can help advance the rate of 484

research progress in workflows involving LLMs by 485

making implementation easier and making research 486

output reproducible and extendable. 487
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Limitations488

In this work, we outline best practices and im-489

plement these practices in an open source system490

called DataDreamer. We believe these contribu-491

tions can help aid open science in our field, how-492

ever, we acknowledge that as long as the research493

community chooses to use closed-source models494

for experiments, especially those served behind an495

API on remote servers, challenges to reproducibil-496

ity are inevitable. With DataDreamer, we provide a497

way to reproduce and further analyze some of these498

experiments long after these remote APIs may be499

changed or unavailable through the session-based500

caching system as well as provide a way to easily501

substitute models where needed through abstrac-502

tions. To the best of our knowledge, there are no503

significant ethical considerations that arise from504

this work. We believe the broader impacts of this505

work to be largely positive, making state-of-the-art506

LLM workflows both easier and more accessible507

to implement and reproduce as well as reducing508

carbon emissions through DataDreamer’s caching509

system that helps researchers avoid expensive re-510

computation when possible.511
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A Instruction-Tuning a LLM 858

1 from datadreamer import DataDreamer 859
2 from datadreamer.steps import HFHubDataSource 860
3 from datadreamer.trainers import TrainHFFineTune 861
4 from peft import LoraConfig 862
5 863
6 with DataDreamer("./ output"): 864
7 # Get the Alpaca instruction -tuning dataset (cleaned version) 865
8 instruction_dataset = HFHubDataSource( 866
9 "Get Instruction -Tuning Dataset", "yahma/alpaca -cleaned", split="train" 867

10 ) 868
11 869
12 # Keep only 1000 examples as a quick demo 870
13 instruction_dataset = instruction_dataset.take (1000) 871
14 872
15 # Some examples taken in an "input", we’ll format those into the instruction 873
16 instruction_dataset.map( 874
17 lambda row: { 875
18 "instruction": ( 876
19 row["instruction"] 877
20 if len(row["input"]) == 0 878
21 else f"Input: {row[’input ’]}\n\n{row[’instruction ’]}" 879
22 ), 880
23 "output": row["output"], 881
24 }, 882
25 lazy=False , 883
26 ) 884
27 885
28 # Create training data splits 886
29 splits = instruction_dataset.splits(train_size =0.90, validation_size =0.10) 887
30 888
31 # Define what the prompt template should be when instruction -tuning 889
32 chat_prompt_template = "### Instruction :\n{{ prompt }}\n\n### Response :\n" 890
33 891
34 # Instruction -tune the base TinyLlama model to make it follow instructions 892
35 trainer = TrainHFFineTune( 893
36 "Instruction -Tune TinyLlama", 894
37 model_name="TinyLlama/TinyLlama -1.1B-intermediate -step -1431k-3T", 895
38 chat_prompt_template=chat_prompt_template , 896
39 peft_config=LoraConfig (), 897
40 device =["cuda:0", "cuda:1"], 898
41 dtype="bfloat16", 899
42 ) 900
43 trainer.train( 901
44 train_input=splits["train"]. output["instruction"], 902
45 train_output=splits["train"]. output["output"], 903
46 validation_input=splits["validation"]. output["instruction"], 904
47 validation_output=splits["validation"]. output["output"], 905
48 epochs=3, 906
49 batch_size =1, 907
50 gradient_accumulation_steps =32, 908
51 ) 909

Example 2: In this demonstration snippet, we instruction-tune a model (Ouyang et al., 2022; Zhang et al., 2024;
Taori et al., 2023). DataDreamer reduces boilerplate around tokenization, caching, training resumability, multi-GPU
training, parameter-efficient fine-tuning, and more.
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B Aligning a LLM910

1 from datadreamer import DataDreamer911
2 from datadreamer.steps import HFHubDataSource912
3 from datadreamer.trainers import TrainHFDPO913
4 from peft import LoraConfig914
5915
6 with DataDreamer("./ output"):916
7 # Get the DPO dataset917
8 dpo_dataset = HFHubDataSource(918
9 "Get DPO Dataset", "Intel/orca_dpo_pairs", split="train"919

10 )920
11921
12 # Keep only 1000 examples as a quick demo922
13 dpo_dataset = dpo_dataset.take (1000)923
14924
15 # Create training data splits925
16 splits = dpo_dataset.splits(train_size =0.90, validation_size =0.10)926
17927
18 # Align the TinyLlama chat model with human preferences928
19 trainer = TrainHFDPO(929
20 "Align TinyLlama -Chat",930
21 model_name="TinyLlama/TinyLlama -1.1B-Chat -v1.0",931
22 peft_config=LoraConfig (),932
23 device =["cuda:0", "cuda:1"],933
24 dtype="bfloat16",934
25 )935
26 trainer.train(936
27 train_prompts=splits["train"]. output["question"],937
28 train_chosen=splits["train"]. output["chosen"],938
29 train_rejected=splits["train"]. output["rejected"],939
30 validation_prompts=splits["validation"]. output["question"],940
31 validation_chosen=splits["validation"]. output["chosen"],941
32 validation_rejected=splits["validation"]. output["rejected"],942
33 epochs=3,943
34 batch_size =1,944
35 gradient_accumulation_steps =32,945
36 )946

Example 3: In this demonstration snippet, we align a model using DPO (Rafailov et al., 2023; Zhang et al., 2024;
Lian et al., 2023; Mukherjee et al., 2023). DataDreamer reduces boilerplate around tokenization, caching, training
resumability, multi-GPU training, parameter-efficient fine-tuning, and more.
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C Self-Rewarding LLMs 947

1 from datadreamer import DataDreamer 948
2 from datadreamer.steps import ( 949
3 HFHubDataSource , 950
4 Prompt , 951
5 JudgeGenerationPairsWithPrompt , 952
6 ) 953
7 from datadreamer.trainers import TrainHFDPO 954
8 from datadreamer.llms import HFTransformers 955
9 from peft import LoraConfig 956

10 957
11 with DataDreamer("./ output"): 958
12 # Get a dataset of prompts 959
13 prompts_dataset = HFHubDataSource( 960
14 "Get Prompts Dataset", "Intel/orca_dpo_pairs", split="train" 961
15 ).select_columns (["question"]) 962
16 963
17 # Keep only 3000 examples as a quick demo 964
18 prompts_dataset = prompts_dataset.take (3000) 965
19 966
20 # Define how many rounds of self -reward training 967
21 rounds = 3 968
22 969
23 # For each round of self -reward training 970
24 adapter_to_apply = None 971
25 for r in range(rounds): 972
26 # Use a partial set of the prompts for each round 973
27 prompts_for_round = prompts_dataset.shard( 974
28 num_shards=rounds , index=r, name=f"Round #{r+1}: Get Prompts" 975
29 ) 976
30 977
31 # Load the LLM 978
32 llm = HFTransformers( 979
33 "TinyLlama/TinyLlama -1.1B-Chat -v1.0", 980
34 adapter_name=adapter_to_apply , 981
35 device_map="auto", 982
36 dtype="bfloat16", 983
37 ) 984
38 985
39 # Sample 2 candidate responses from the LLM 986
40 candidate_responses = [] 987
41 for candidate_idx in range (2): 988
42 candidate_responses.append( 989
43 Prompt( 990
44 f"Round #{r+1}: Sample Candidate Response #{ candidate_idx}", 991
45 inputs ={"prompts": prompts_for_round.output["question"]}, 992
46 args={ 993
47 "llm": llm , 994
48 "batch_size": 2, 995
49 "top_p": 1.0, 996
50 "seed": candidate_idx , 997
51 }, 998
52 ) 999
53 ) 1000
54 1001
55 # Have the LLM judge its own responses 1002
56 judgements = JudgeGenerationPairsWithPrompt( 1003
57 f"Round #{r+1}: Judge Candidate Responses", 1004
58 args={ 1005
59 "llm": llm , 1006
60 "batch_size": 1, 1007
61 "max_new_tokens": 5, 1008
62 }, 1009
63 inputs ={ 1010
64 "prompts": prompts_for_round.output["question"], 1011
65 "a": candidate_responses [0]. output["generations"], 1012
66 "b": candidate_responses [1]. output["generations"], 1013
67 }, 1014
68 ) 1015
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691016
70 # Unload the LLM1017
71 llm.unload_model ()1018
721019
73 # Process the judgements into a preference dataset1020
74 dpo_dataset = judgements.map(1021
75 lambda row: {1022
76 "question": row["prompts"],1023
77 "chosen": (1024
78 row["a"]1025
79 if row["judgements"] == "Response A"1026
80 else row["b"]1027
81 ),1028
82 "rejected": (1029
83 row["b"]1030
84 if row["judgements"] == "Response A"1031
85 else row["a"]1032
86 ),1033
87 },1034
88 lazy=False ,1035
89 name=f"Round #{r+1}: Create Self -Reward Preference Dataset",1036
90 )1037
911038
92 # Create training data splits1039
93 splits = dpo_dataset.splits(train_size =0.90, validation_size =0.10)1040
941041
95 # Align the TinyLlama chat model with its own preferences1042
96 trainer = TrainHFDPO(1043
97 f"Round #{r+1}: Self -Reward Align TinyLlama -Chat",1044
98 model_name="TinyLlama/TinyLlama -1.1B-Chat -v1.0",1045
99 peft_config=LoraConfig (),1046

100 device =["cuda:0", "cuda:1"],1047
101 dtype="bfloat16",1048
102 )1049
103 trainer.train(1050
104 train_prompts=splits["train"]. output["question"],1051
105 train_chosen=splits["train"]. output["chosen"],1052
106 train_rejected=splits["train"]. output["rejected"],1053
107 validation_prompts=splits["validation"]. output["question"],1054
108 validation_chosen=splits["validation"]. output["chosen"],1055
109 validation_rejected=splits["validation"]. output["rejected"],1056
110 epochs=3,1057
111 batch_size =1,1058
112 gradient_accumulation_steps =32,1059
113 )1060
1141061
115 # Unload the trained model from memory1062
116 trainer.unload_model ()1063
1171064
118 # Use the newly trained adapter for the next round of self -reward1065
119 adapter_to_apply = trainer.model_path1066

Example 4: This demonstration snippet implements a simplified version of the self-rewarding LLMs (Yuan et al.,
2024) procedure. This workflow involves using an LLM to judge its own generations in order to self-align and self-
improve itself over a number of rounds. DataDreamer allows this complex multi-stage workflow to be implemented
intuitively, without needing to split generation and training logic into separate files and without needing to involve
a launcher like torchrun to perform multi-GPU training. DataDreamer also makes this complex multi-round,
multi-stage workflow automatically cachable and resumable.
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D Augmenting an Existing Dataset 1067

1 from datadreamer import DataDreamer 1068
2 from datadreamer.llms import OpenAI 1069
3 from datadreamer.steps import ProcessWithPrompt , HFHubDataSource 1070
4 1071
5 with DataDreamer("./ output"): 1072
6 # Load GPT -4 1073
7 gpt_4 = OpenAI(model_name="gpt -4") 1074
8 1075
9 # Get HotPot QA questions 1076

10 hotpot_qa_dataset = HFHubDataSource( 1077
11 "Get Hotpot QA Questions", 1078
12 "hotpot_qa", 1079
13 config_name="distractor", 1080
14 split="train", 1081
15 ).select_columns (["question"]) 1082
16 1083
17 # Keep only 1000 questions as a quick demo 1084
18 hotpot_qa_dataset = hotpot_qa_dataset.take (1000) 1085
19 1086
20 # Ask GPT -4 to decompose the question 1087
21 questions_and_decompositions = ProcessWithPrompt( 1088
22 "Generate Decompositions", 1089
23 inputs ={"inputs": hotpot_qa_dataset.output["question"]}, 1090
24 args={ 1091
25 "llm": gpt_4 , 1092
26 "instruction": ( 1093
27 "Given the question which requires multiple steps to solve ," 1094
28 " give a numbered list of intermediate questions required to" 1095
29 " solve the question. Return only the list , nothing else." 1096
30 ), 1097
31 }, 1098
32 outputs ={"inputs": "questions", "generations": "decompositions"}, 1099
33 ).select_columns (["questions", "decompositions"]) 1100

Example 5: In this demonstration snippet, we augment an existing dataset, HotpotQA (Yang et al., 2018), a multi-hop
QA dataset. DataDreamer makes it easy to perform synthetic dataset augmentation with a LLM. In this example, we
add intermediate questions required to solve the multi-hop question.
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E Example Synthetic Data Card1101

1 {1102
2 "data_card": {1103
3 "Generate Research Paper Abstracts": {1104
4 "Date & Time": "<DATE_TIME_HERE >",1105
5 "Model Name": [1106
6 "gpt -4"1107
7 ],1108
8 "Model Card": [1109
9 "https ://cdn.openai.com/papers/gpt -4-system -card.pdf"1110

10 ],1111
11 "License Information": [1112
12 "https :// openai.com/policies"1113
13 ],1114
14 "Citation Information": [1115
15 "@article{OpenAI2023GPT4TR ,\n title={GPT -4 Technical Report},\n1116

↪→ author ={ OpenAI},\n journal ={ArXiv},\n year ={2023} ,\n1117
↪→ volume ={abs /2303.08774} ,\n1118
↪→ url={https ://api.semanticscholar.org/CorpusID :257532815}\n}",1119

16 "@article{ouyang2022training ,\n title={ Training language models to1120
↪→ follow instructions with human feedback},\n author ={Ouyang , Long and Wu,1121
↪→ Jeffrey and Jiang , Xu and Almeida , Diogo and Wainwright , Carroll and1122
↪→ Mishkin , Pamela and Zhang , Chong and Agarwal , Sandhini and Slama , Katarina1123
↪→ and Ray , Alex and others},\n journal ={ Advances in Neural Information1124
↪→ Processing Systems},\n volume ={35} ,\n pages ={27730 - -27744} ,\n1125
↪→ year ={2022}\n}"1126

17 ]1127
18 },1128
19 "Generate Tweets from Abstracts": {1129
20 "Date & Time": "<DATE_TIME_HERE >",1130
21 "Model Name": [1131
22 "gpt -4"1132
23 ],1133
24 "Model Card": [1134
25 "https ://cdn.openai.com/papers/gpt -4-system -card.pdf"1135
26 ],1136
27 "License Information": [1137
28 "https :// openai.com/policies"1138
29 ],1139
30 "Citation Information": [1140
31 "@article{OpenAI2023GPT4TR ,\n title={GPT -4 Technical Report},\n1141

↪→ author ={ OpenAI},\n journal ={ArXiv},\n year ={2023} ,\n1142
↪→ volume ={abs /2303.08774} ,\n1143
↪→ url={https ://api.semanticscholar.org/CorpusID :257532815}\n}",1144

32 "@article{ouyang2022training ,\n title={ Training language models to1145
↪→ follow instructions with human feedback},\n author ={Ouyang , Long and Wu,1146
↪→ Jeffrey and Jiang , Xu and Almeida , Diogo and Wainwright , Carroll and1147
↪→ Mishkin , Pamela and Zhang , Chong and Agarwal , Sandhini and Slama , Katarina1148
↪→ and Ray , Alex and others},\n journal ={ Advances in Neural Information1149
↪→ Processing Systems},\n volume ={35} ,\n pages ={27730 - -27744} ,\n1150
↪→ year ={2022}\n}"1151

33 ]1152
34 }1153
35 },1154
36 "__version__": "0.1.0",1155
37 "datetime": "<DATE_TIME_HERE >",1156
38 "type": "ProcessWithPrompt",1157
39 "name": "Generate Tweets from Abstracts",1158
40 "version": 1.0,1159
41 "fingerprint": "28 b5e209bdad7d15",1160
42 "pickled": false ,1161
43 "req_versions": {1162
44 "dill": "0.3.7",1163
45 "sqlitedict": "2.1.0",1164
46 "torch": "2.1.2",1165
47 "numpy": "1.26.3",1166
48 "transformers": "4.36.2",1167
49 "datasets": "2.16.1",1168
50 "huggingface_hub": "0.20.2",1169
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51 "accelerate": "0.26.1", 1170
52 "peft": "0.7.1", 1171
53 "tiktoken": "0.5.2", 1172
54 "tokenizers": "0.15.0", 1173
55 "petals": "2.2.0", 1174
56 "openai": "1.9.0", 1175
57 "ctransformers": "0.2.27", 1176
58 "optimum": "1.16.2", 1177
59 "bitsandbytes": "0.42.0", 1178
60 "litellm": "1.15.3", 1179
61 "trl": "0.7.6", 1180
62 "setfit": "1.0.3", 1181
63 "together": "0.2.10", 1182
64 "google.generativeai": "0.2.1", 1183
65 "google -cloud -aiplatform": "1.35.0" 1184
66 }, 1185
67 "interpreter": "3.11.7 (main , Dec 4 2023, 18:10:11) [Clang 15.0.0 1186

↪→ (clang -1500.1.0.2.5)]" 1187
68 } 1188

Example 6: A JSON representation of an example automatically generated synthetic data card produced by
DataDreamer for Example 1. Synthetic data cards and model cards are automatically produced by recursively
tracing through any steps, models, and trainers used to produce a given dataset or model. Each step, model, and
trainer has associated metadata such as license information and citation information. DataDreamer collects this
information and produces a synthetic data card (or model card) that reports the information along with reproducibility
information like the reproducibility fingerprint.
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