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ABSTRACT
To rigorously benchmark the performance of low-power wireless
protocols, it is essential to monitor and quantify the RF activity in a
given testing environment. Indeed, unwanted radio interference in
the surroundings of wireless nodes may worsen their communica-
tion performance. Similarly, an inconsistent RF noise across multi-
ple test runs may prevent the ability to fairly compare their results.
Unfortunately, to date, this aspect is often neglected by the com-
munity, especially due to the lack of monitoring tools enabling
a quantitative assessment of RF activity in large testing facilities.
In this paper, we move the first steps towards the creation of a
low-cost tool automating the distributed monitoring of RF usage
in a low-power wireless testbed. Specifically, we first instrument
the latest generation Raspberry Pi devices to sense any ongoing
activity on the RF channel, enabling a functionality that is typically
not available on off-the-shelf Wi-Fi hardware. We then show that
one can synchronize the RF measurements of multiple Raspberry Pi
connected to a common Ethernet backbone with an average error
below 200 `s.We further devise exemplary strategies to quantify the
difference in RF activity across test runs, and enable the real-time
detection of deviations in the current RF channel usage compared to
what was measured in earlier runs. We finally showcase the ability
to compare the RF activity during several test runs and detect when
additional interference was present in the environment, as well as
when diverse interference patterns were artificially generated.

Data availability statement. The firmware used for the data col-
lection as well as the scripts developed to process the raw data
and generate the plots presented in this paper are available at
http://www.iti.tugraz.at/ schuss20towards. The authors commit to
keep the data publicly available on this institutional repository for
at least three years.

1 INTRODUCTION
The research community traditionally validates low-power wireless
solutions experimentally on real-world testbeds [20]. A large variety
of testbeds exist: from small-scale installations used internally by
various research groups [13, 28], to large-scale publicly-available
facilities such as FIT-IoTLab [1], Indriya [12], and FlockLab [26].
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An aspect that is common to most of these low-power wireless
testbeds is that they are located in office or university buildings, i.e.,
the nodes are deployed in open spaces and dynamic environments.
As a consequence, these testbeds are often subject to a level of
uncontrollable RF activity, e.g., generated by laptops, smart-phones,
and other devices used by people operating in close proximity.

This is especially relevant as low-powerwireless nodes are highly
susceptible to radio interference [6]. For example, the transmissions
of IEEE 802.15.4 and Bluetooth Low Energy devices are highly vul-
nerable to transmissions of surroundingWi-Fi devices, which share
the same frequencies (the 2.4 GHz ISM band), use a wider channel
bandwidth (20 to 40MHz), and operate at a transmission power
that is higher by several orders of magnitude (up to 20 dBm).

As a result, when evaluating the performance of low-power
wireless protocols and comparing it to the state-of-the-art, it is
common to make use of testbeds during night or during weekends [6,
10, 16, 21, 22, 39, 42], i.e., when buildings are at their quietest, so to
minimize the impact of external interference on the experiments.

However, some occasional RF activity may still be present in the
testbed area, e.g., due to the idle activities of Wi-Fi access points
installed nearby, or due to night owls working until late. Such RF
activity may be sufficient to bias the experiments and lead to wrong
conclusions, for example when comparing the reliability of state-
of-the-art protocols, which is nowadays often close to 100% [7, 14].

Generalizing, whenever benchmarking protocol performance, it is
important to account for the inherent variability of the experimen-
tal conditions and to detect any deviations in the RF environment.
The same holds true when carrying out experiments involving the
generation of artificial radio interference to stress-test protocols
(e.g., using tools similar to JamLab-NG [37]): the synthetic interfer-
ence patterns should remain consistent throughout different runs
and no uncontrolled RF noise should be present in the surroundings.
Only this way, one can ensure reproducible and comparable results.

Ideally, such an RF activity monitoring is fully automated and
integrated into the experimentation chain, i.e., offered by low-power
wireless testbed facilities, as highlighted by Boano et al. in an open
manifesto to the community [5]. This way, the testing infrastructure
can autonomously refute and rerun measurements: for example, in
case the RF activity largely varies from that of previous runs.

Challenges. However, in order to integrate such functionality in
existing testing facilities, several challenges need to be tackled.
Accurate monitoring of RF activity on a large scale. First, one needs
the ability to observe the RF spectrum across an entire testbed
installation. One approach to do this consists in using low-power
wireless nodes (e.g., TelosB nodes and nRF52840 dongles) spread
across the testbed to scan the received signal strength.

http://www.iti.tugraz.at/schuss20towards
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However, besides introducing extra costs, this approach is not opti-
mal due to the limited channel bandwidth of these devices, which
makes them unsuitable to accurately detect Wi-Fi activity. Using
Wi-Fi devices to fulfil the same task is not feasible, as Wi-Fi hard-
ware does not allow developers to measure RF activity. Therefore,
one currently has to resort to spectrum analyzers and software
defined radios [3, 23], which is very expensive and does not scale
when testbed installations span several floors or large buildings.
Synchronization of distributed RF measurements. A second challenge
is to establish a common timebase in order to correlate and fuse the
RF measurements of several nodes. However, depending on the em-
ployed hardware, this may be complex: for example, when connect-
ing RF monitoring devices via USB, the jitter of the FTDI interface
makes it hard to accurately time-stamp their measurements [35].
Quantitative assessment of RF activity during a run. The ability to
monitor the RF spectrum, alone, is insufficient. Without a metric
quantifying the RF activity during a test run, indeed, only a visual
inspection of the RF channel is possible, which is subjective and
only allows a qualitative assessment [25, 38]. Instead, to rigorously
benchmark protocols and claim reproducibility and comparability,
a quantitative assessment is necessary. To this end, one needs to
identify which data a device should collect to objectively and unam-
biguously quantify the amount of RF activity in its surroundings.
Moreover, when using this data to derive a metric capturing the
amount of RF activity, one should be able to filter the transmissions
of low-power wireless nodes that are part of the testing facility
(i.e., the devices running the solution being tested). Without doing
so, the computed metric would not only capture the amount of RF
noise, but also the “spectrum friendliness” of the tested solution.
Ideally, one would have the ability to distinguish between the two.
Comparing RF activity across test runs. Finally, as the ultimate goal
is to compare whether different test runs have been executed un-
der similar settings, one needs to weigh the currently-measured
RF activity against that of previous runs. Specifically, it should be
possible to juxtapose the metrics computed across different runs
and return whether there were major deviations in RF activity (e.g.,
additional RF noise or different interference patterns). One should
not only account for temporal deviations, but also for spatial dis-
crepancies, as wireless nodes are typically spread across a large area.
This comparison process should ideally require a limited amount
of time and not be resource-intensive. This way, right at the end of
an experiment, one can deem whether a rerun is necessary.

Contributions. In this paper, we tackle these challenges and move
the first steps towards the creation of a low-cost tool automating
the monitoring of RF activity in low-power wireless testbeds.

We first show that it is possible to use the Wi-Fi module embed-
ded on off-the-shelf Raspberry Pi 3B+/4 hardware to monitor RF
usage at sufficient granularity to recognize common interference
sources in the 2.4 GHz band. This is important, as these devices are
often already used as observer nodes in low-power wireless testbeds
to orchestrate activities, measure performance, and generate RF
noise [8, 29, 35, 37]. We achieve this by using Nexmon, a C-based
firmware patching framework for Cypress Wi-Fi chips [33, 34].

We then show that one can synchronize the RF measurements of
multiple Raspberry Pi 4B (RPi4) connected to a common Ethernet
backbone (i.e., in the same way as observer nodes are connected in

a testbed facility), with an average error below 200 `s. This enables
us to correlate distributed RF measurements and devise exemplary
strategies to quantify the difference in RF activity across test runs.

Specifically, we use the distribution of the observed power over
time at the various nodes and illustrate different techniques allow-
ing the real-time detection of deviations in the RF channel usage
compared to what was measured in earlier runs. We further show
how this approach allows to filter the activity of a testbed’s own
nodes and showcase the ability to detect when additional radio in-
terference was present in the environment, as well as when diverse
interference patterns were artificially generated by JamLab-NG.
After describing related work in § 2, this paper proceeds as follows:
• We instrument RPi4 devices to monitor nearby RF activity (§ 3).
• We illustrate how we can observe the same RF activity across
multiple RPi4 with low synchronization errors (§ 4).

• We describe how to quantify the difference and detect deviations
in the measured RF activity across several test runs (§ 5).

• We close the paper in § 6 along with a discussion on future work.

2 RELATEDWORK
To account for variations in RF activity and avoid inconsistencies
across test runs, researchers often monitor the RF spectrum and de-
termine if its usage is steady. To this end, they use low-cost spectrum
analyzers such as the Wi-Spy1 [23, 25, 31, 38], or low-power wire-
less nodes to sample the received signal strength [15, 18]. However,
this process mostly consists in a visual inspection of the RF channel
usage, which is subjective and only allows a qualitative assessment.
Instead, we aim to provide a quantitative assessment of RF activity.

A few low-power wireless testbed facilities (e.g., FlockLab [41],
TWIST [11, 23, 24], and w-iLab.2 [40]) embed software-defined ra-
dios, Wi-Spy, or high-end spectrum analyzers to allow their users
to monitor RF activity in the surroundings of the testbed nodes.
However, they have just one monitoring node across the testbed [3],
operate in sub-GHz frequency only [41], or rely on old Wi-Fi hard-
ware with limited functionality, such as the ath9k chips [40]. More-
over, they do not perform any synchronization of the distributed
measurements and do not endeavour to compute a metric quan-
tifying the RF activity, so to enable a better reproducibility and
comparability of results, which is the ultimate goal of our work.

A few researchers have analyzed the RF activity on a channel
using off-the-shelf hardware for different purposes. Hermans et
al. [19] aim to identify the source of interference in IEEE 802.15.4
networks. Similarly, Grimaldi et al. [17] aim to classify external in-
terference in real-time via supervised learning. Noda et al. [30] try
to quantify the quality of the channel to build interference-aware
wireless sensor networks. Brown et al. [9] measure the probability
distribution function of idle periods to estimate the packet reception
rate of an IEEE 802.15.4 network before deployment. These works
monitor the RF channel with the goal of mitigating radio interfer-
ence. In contrast, in this work, we aim to perform a distributed RF
monitoring to account for the inherent variability of the conditions
in the testing environment and inform the user accordingly.

Puccinelli et al. [32] have proposed a metric capturing key prop-
erties of the network topology that may affect protocol performance.
Such metric allows to recognize whether performance variations

1https://www.metageek.com/products/hardware/
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Figure 1: Sketch of our RF monitoring functionality on
RPi4. A userland application (RF Measurement App) inter-
acts with a scheduler running within the BCM43455C0 radio
firmware (RF Measurement Scheduler) in order to collect a
sequence of RF power estimates.

across experiments are due to properties of the network topology.
Our aim is close in spirit, but with focus on RF activity, i.e., we ulti-
mately aim to provide a mechanism assessing whether performance
variations across runs are caused by changes in RF activity.

3 MONITORINGSURROUNDINGRFACTIVITY
USING OFF-THE-SHELF WI-FI HARDWARE

Our aim is to design a low-cost solution to monitor the RF activity
within a low-power wireless testbed. To this end, as discussed in
§ 2, the use of specialized hardware such as spectrum analyzers
and software-defined radios (SDR) is not an option due to their
high costs. Indeed, even the cheapest SDR costs over 100e, and
requires a dedicated powerful computer to orchestrate its opera-
tions. For this reason, instrumenting a testbed with several of these
high-end devices would be both expensive and labor-intensive.

Also using a fraction of the low-power wireless nodes embedded
in the testbed is not an option to directly observe the RF spectrum.
Indeed, tools such as TI’s SmartRF Studio2, Nordic Semiconductors’
nRF Connect RSSI viewer3, and Contiki’s RSSI scanner4, have only a
limited channel bandwidth: one would either require several nodes
to monitor a single Wi-Fi channel, or let a single node continuously
shift frequency at a cost of a lower sampling rate. Moreover, these
low-power radios would need to be connected to one of the observer
nodes in the testbed for further data processing or storage.

The ideal case would be to reuse a testbed’s observer nodes for this
purpose. For example, many low-power wireless testbeds make use
of devices such as the Raspberry Pi as observer nodes to orchestrate
activities, measure performance, and generate RF noise [27, 29, 35,
37]. As these devices embed radio modules operating in the 2.4 GHz

2http://www.ti.com/tool/SMARTRFTM-STUDIO
3https://github.com/NordicSemiconductor/pc-nrfconnect-rssi
4https://github.com/contiki-os/contiki/tree/master/examples/rssi-scanner

band, they could be used to also monitor the surrounding RF activi-
ties. Unfortunately, the Raspberry Pi 3B and later revisions embed a
Wi-Fi module, but they do not allow to measure the strength of the
RF signal at an arbitrary point in time – a problem that is common
to most off-the-shelf Wi-Fi hardware5.

In this work, we tackle this limitation and enable off-the-shelf
observer nodes to monitor the surrounding RF activity. While also
the Cypress (former Broadcom) BCM43455C0 Wi-Fi module found
on recent Raspberry Pi devices does not provide a way to instanta-
neously measure the strength of the RF signal, one can use reverse
engineering and flash patching tools to craft an RF power estimator
on these low-cost Wi-Fi modules. To this end, we use Nexmon, a
C-based firmware patching framework that has been used in the
past to i.a., enable monitor mode on Cypress Wi-Fi chips [34].

Thanks to Nexmon, one can already record each individualWi-Fi
transmission (even those from networks with which a device is not
associated) using tools such as Wireshark or tcpdump, and derive
a list of sniffed packets in pcap format. However, besides Wi-Fi
activity, no other source of RF noise can be currently monitored.

Therefore, we extend Nexmon as follows. First, we make use of
Ghidra6, a software reverse engineering suite, to gleam into the
inner workings of the BCM43455C0 firmware and spot leftover func-
tionality that is usually not accessible to end-users (e.g., hidden
functions that are only partially implemented, as well as a remnant
of calibration and compliance testing features). We identify one
function (wlc_phy_rx_iq_est_acphy), that fits exactly our pur-
poses: it instructs the RF front-end to compute the power estimate
over a given number of samples (210 in our implementation). While
the power estimate returned by this function is sufficient to monitor
RF activity (we use this value in the remainder of this paper), a
manual calibration is needed to express the power estimate in dBm.

Building upon this function, we create a userland application (RF
Measurement App) and a scheduler runningwithin the BCM43455C0
radio firmware (RFMeasurement Scheduler) that interact in order to
collect a sequence of RF power estimates, as shown in Fig. 1. Specif-
ically, we use Nexmon’s nexutil tool to trigger commands for the
RF measurement scheduler using input/output control (IOCTL) sys-
tem calls. As the overhead of the system calls is significant, polling
the radio for RF power measurements would result in a limited and
non-deterministic sampling rate. Therefore, similar to the approach
used in JamLab-NG [37], we make use of the IOCTL interface to
only instruct the radio to begin periodic measurements on a specific
channel with a given bandwidth.

Internally, the RFmeasurement scheduler uses a timer (hw_timer)
to periodically call the wlc_phy_rx_iq_est_acphy function. We
timestamp the power estimates returned by this function with a
µs-precision timer (tsf_timer), and generate a UDP packet to be
injected into the wlan0 interface. Each UDP packet contains a sin-
gle timestamped power estimate and it is sent to port 5555, such
that it can be captured by the RF measurement app accordingly.

5A notable exception is the ath9k series of Wi-Fi cards from Qualcomm. These chips
allow fast polling of a binary channel clear assessment (CCA). Although the CCA
threshold can be manually configured, the device can only return a true/false assess-
ment, which is insufficient for an accurate analysis of nearby RF activity [2].
6https://ghidra-sre.org/
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Figure 2: Power estimates returned by a RPi4 in the presence
of different devices generating RF noise in the 2.4GHz band.

Following this procedure, we can instrument the RPi4 to estimate
surrounding RF activity at 7.8 kHz7. Fig. 2 shows exemplary power
estimates returned by the RF measurement app in the presence of
Wi-Fi and BLE traffic, as well as a microwave oven operating nearby.
The Wi-Fi traffic is generated by a second RPi4 placed 2m away,
whereas the BLE traffic is generated by an nRF52840DK node placed
30 cm away. The microwave oven was used to heat up water and
was located 1.5m away from the RPi4 sniffing nearby RF activity.
All measurements make use of a channel bandwidth of 20MHz.

We also place a third RPi4 using Nexmon’s monitor mode and
tcpdump to capture the duration and strength of the generated
Wi-Fi traffic in a pcap file. This third RPi4 is also placed 2m away
from the one generatingWi-Fi traffic and its measurements are syn-
chronized with those of the RPi4 sniffing RF activity as described in
§ 4. Fig. 2a shows that the power estimate returned by the sniffing
RPi4 (blue line) correctly captures the over-the-air duration of the
Wi-Fi packet extracted by tcpdump’s pcap file (orange line).

4 SYNCHRONIZATION OF DISTRIBUTED
RF MEASUREMENTS

To measure the RF activity across large-scale testbed installations
(i.e., to have a good spatial coverage) and to monitor the activities
in the entire 2.4 GHz ISM band (i.e., to monitor several Wi-Fi chan-
nels at once), several RPi4 devices should be used to perform RF
measurements at the same time. Therefore, it is important to syn-
chronize their activities and establish a common time-base. Given
that the time between two samples is 128 µs, the timesync error
between any two RPi4 should ideally be in the same range or lower.

To this end, we have implemented time-stamping twice through-
out the measurement chain shown in Fig. 1. We first timestamp the
collected power estimates using the RF measurement app. To do
this, we employ the RPi4’s unix timestamp: as this is the operat-
ing system’s time, it can be kept in sync across different RPi4 in a
testbed using the network time protocol (NTP), as shown in [37].
With all devices attached to the same wired network, the NTP im-
plementation used (chrony), reported an estimated offset of >30 ns
and a standard deviation of >20 µs. These numbers depend on the
size and topology of the network, but should not exceed 100 µs for
common testbeds using Ethernet to connect the RPi4 devices.

However, as each power estimate is independently passed from
the RF front-end to the RF measurement app through the operating

7Note that one can achieve a higher rate by decreasing the number of samples and
by sending several measurements in a single UDP packet. In this work, we focus on a
prototypic implementation and leave these optimizations as future work.
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Figure 3: Power estimate returned by five RPi4, spread over
16𝑚2 in a room, observing the same source of Wi-Fi traffic.

0 500 1000 1500 2000
Event #

0.0

0.2

0.4

0.6

0.8

M
ax

d
ev

ia
ti

on
(m

s)

(a) Max deviation across all RPi4
pi

1
pi

2
pi

3
pi

4

−0.5

0.0

0.5

R
el

at
iv

e
off

se
t

(m
s)

(b) Relative offset to pi5

Figure 4: Synchronization error across five RPi4monitoring
the sameRF activity. The boxes andwhiskers in Fig. 4b show
the median (green center line), the first and third quantile
(box body), as well as the 1.5 interquartile range (whiskers).

system and its network stack, one experiences non-deterministic
delays affecting the accuracy of individual samples.

Therefore, we add a second timestamp as soon as the power
estimates have been sampled by the RF front-end, i.e., right after
the wlc_phy_rx_iq_est_acphy function has returned, using the
time synchronization function timer (tsf_timer8). This second
timestamp provides a more fine-grained resolution that allows to
accurately account for ephemeral RF events (e.g., a sequence of
short BLE beacons). Hence, one could use this timestamp to correct
the unix timestamps added by the RF measurement app.

Following this procedure, we instrument five RPi4 located in the
same room and interconnected by an Ethernet backbone to sense
the ongoing RF activity on the same Wi-Fi channel. We also place
in the same room another RPi4 running JamLab-NG to generate
periodic Wi-Fi packets. Fig. 3 shows the power estimates collected
from each RPi4 using the unix timestamp. As expected, due to the
different location of the nodes and their distance from the RPi4
generating Wi-Fi traffic, the absolute value of the estimated power
is different. However, each spike, which corresponds to the on-air
time of a Wi-Fi packet, is well-synced across the five RPi4.

To better quantify the synchronization error across the different
RPi4, we consider more than 2000 Wi-Fi packets and compare
the timestamp of each rising edge in the estimated power (i.e.,
the beginning of each spike in Fig. 3). Fig. 4 shows the maximum
deviation across all the five RPi4 and the relative error to a specific
device (pi5). Regardless of which RPi4 is used as reference, the
median synchronization error including all uncertainties in our

8The tsf_timer is used by Nexmon’s monitor mode to perform time-stamping at the
MAC layer and keep synchronized the Wi-Fi stations connected to the same access
point (AP). However, as a RPi4 is not connected to an AP when collecting power
estimates, its measurements are not automatically synced to those of nearby nodes.



Towards an Automated Monitoring of RF Activity in Low-Power Wireless Testbeds CPS-IoTBench’20, Sept 25, 2020, London, UK

−90 −85 −80 −75 −70 −65 −60
Power estimate

0

1

2

3

D
en

si
ty

pi1

pi2

pi3

pi4

pi5

Figure 5: Probability density function of power estimates
computed with a 300 s window on 5 RPi4 observing the same
Wi-Fi activity. The red portion marks noise floor samples.

measurement chain does not deviate by more than 22 µs, with 95%
of the samples never exceeding an error of 209 µs.

As shown in Fig. 3 and 4, the synchronization accuracy of the
unix timestamp is quite satisfactory. One can further increase ac-
curacy by correcting these timestamps using those obtained with
the tsf_timer. Moreover, as the unix timestamps are already drift-
corrected using NTP, one could use linear regression to calculate a
correction factor for the timestamps obtained with the tsf_timer.
The latter exhibits a drift that strongly depends on the temperature
of the RPi4, which varies as a function of its computational load9.

5 QUANTIFYING THE DIFFERENCE IN
RF ACTIVITY ACROSS TEST RUNS

With the ability to measure the RF activity using off-the-shelf RPi4
outlined in § 3 and § 4, one can manually inspect the measurements
and look for outliers. As this results in subjective and qualitative
assessments only (see § 2), in this section we derive a metric that
allows to determine in real-time whether the ongoing RF activities
are similar to those recorded in a previous experiment. Note that
our aim is not to derive the best metric to compare the RF conditions
in different experiments, but rather to showcase the feasibility of
such real-time comparison as a seed for future work in the area.

Selecting a metric. In order to enable a real-time detection of
deviations in the RF channel usage compared to what was mea-
sured in earlier runs, a first necessary step is the selection of a
metric capturing the large number of power estimates sampled
over time into a compact representation. While one could model
or learn different RF interference patterns and compare those with
the currently measured power estimates, we choose to make no as-
sumptions about the characteristics of the RF activity and forgo any
training. Instead, we derive a probability density function (PDF) of
the observed power estimates over a time window. This approach is
more generic, it allows to account for the strength of the RF signal
(e.g., to capture whether sources of interference have moved closer
or further away over time), and is more practical than learning in
the presence of several sources of RF noise at the same time.

Fig. 5 shows the PDF computed for five RPi4 deployed in the
same configuration used earlier (i.e., in the presence of an additional
RPi4 in the same room generating periodicWi-Fi traffic) over a time
window of approximately five minutes. The region marked in red
indicates the absence of RF noise (i.e., the noise floor of each RPi4).
Although the PDF shown in Fig. 5 allows to capture the ongoing RF
activity measured by each RPi4, it does not contain a fine-grained
9We observed clock differences in the range of 5ms within 10 minutes (i.e., 8 ppm).

information about the power estimates in the time domain. For this
reason, RF interference occurring for a short amount of time gets
averaged out and cannot be accounted for. To mitigate this problem,
one can simply shorten the observation window, such that one can
also account for ephemeral RF interference.

Quantifying deviations inRF channel usage. In order to enable
an automatic comparison of RF activity between runs, we inves-
tigate how to quantitatively compare two PDFs (such as the one
shown in Fig. 5). To this end, we reuse existing methods included in
the popular computer vision suite opencv to compare histograms10.
Among others, we make use of correlation (Eq. 1), Hellinger dis-
tance (Eq. 2), as well as Kullback-Leibler divergence (Eq. 3). The
first two are bounded between [0, 1] but behave differently for
small discrepancies; the latter is an example of an open-ended scale.
These three methods are defined as follows:

𝑑 (𝐻1, 𝐻2) =
∑
𝐼 (𝐻1 (𝐼 ) − 𝐻1) (𝐻2 (𝐼 ) − 𝐻2)√∑

𝐼 (𝐻1 (𝐼 ) − 𝐻1)2
∑
𝐼 (𝐻2 (𝐼 ) − 𝐻2)2

(1)

𝑑 (𝐻1, 𝐻2) =
√
1 − 1√

𝐻1𝐻2𝑁
2

∑
𝐼

√
𝐻1 (𝐼 ) · 𝐻2 (𝐼 )) (2)

𝑑 (𝐻1, 𝐻2) =
∑
𝐼

𝐻1 (𝐼 )𝑙𝑜𝑔
(
𝐻1 (𝐼 )
𝐻1 (𝐼 )

)
(3)

where 𝑁 is the number of histogram bins, 𝐻𝑘 (𝐼 ) represents the bin
of histogram 𝑘 using a power estimate 𝐼 , 𝐻𝑘 = 1

𝑁

∑
𝐽 𝐻𝑘 (𝐽 ), and

𝑑 (𝐻1, 𝐻2) is a representation of the “distance” across histograms
computed based on the three aforementioned techniques.

We compare the deviation in RF activity across different runs
using these three methods as follows. Using the same setup illus-
trated previously, we let five RPi4 record power estimates on Wi-Fi
channel 7 (2442MHz) over 5-minutes runs. During each run, a
nearby Raspberry Pi 3B using JamLab-NG generates a reproducible
interference pattern on the same Wi-Fi channel during the first
minute and the last three minutes (i.e., no interference is generated
from 60 s to 120 s). We also collocate two TelosB nodes running
Contiki in the same room. These two nodes periodically exchange
8 packets/sec using nullmac, nullrdc, and Rime on IEEE 802.15.4
channel 18 (2440MHz); logging the packet reception rate (PRR), i.e.,
the number of correctly received packets over time.

Fig. 7 shows the recorded power estimates of an exemplary RPi4,
as well as the PRR of the TelosB nodes for three different runs.
Whilst the first and the second run are identical, in the third run
we purposely create changes in the RF environment: a short burst
of strong interference at 90 s lasting five seconds and a switch to a
different (lighter) interference pattern in the last two minutes of the
runs, i.e., after 180 s. Note that the spikes in Fig. 7a at 120 s and 240 s
are due to a periodic self-calibration function of the Wi-Fi module
and can be easily filtered due to their high value (up to 5000).

Fig. 6 shows the deviation between the three runs using the
aforementioned histogram comparison methods. To generate the
histograms for the comparison, we employ a time window of 1 s and
compute 128 bins in the range [−92, 0]. While correlation has the
advantage of having an upper bound, obtained by the comparison of

10https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#
ga994f53817d621e2e4228fc646342d386

https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
https://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
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Figure 6: Deviation between the power estimates obtained in three exemplary runs (see Fig. 7a) using three different methods.
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(b) PRR of TelosB nodes
Figure 7: Recorded power estimate by a RPi4 (a) and PRR of
two TelosB nodes (b) in the presence of Wi-Fi interference.
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Figure 8: Power estimate for five RPi4 spread out across a
room observing a single TelosB generating RF activity.

the first run (run1) with itself, the Hellinger distance and Kullback-
Leibler divergence start from 0 for identical histograms and increase
proportionally to the difference between runs. From these results,
we can conclude that the Hellinger distance is especially sensitive
to small changes, whereas correlation does not penalize smaller
deviations in the RF activity. Conversely, the Kullback-Leibler di-
vergence can capture and significantly penalize ephemeral changes
such as the self-calibration spike at 240 s.

All three methods clearly identify the artificial changes in RF
usage introduced in the third run and are suitable to detect signif-
icant deviations in RF activity. To ultimately assess whether one
should invalidate a test run, one can use Fig. 7b to gauge the impact
of the changes in RF activity on the PRR between the TelosB nodes.
Note that all three methods are computed within a fraction of a
second while the computation of the histogram takes roughly 2 s
on a single core of a modern processor. Hence, one can quickly
detect deviations in the RF channel usage at the end of a test run,
and autonomously make a decision on whether refuting the results
and re-running the same experiment, as envisioned in [5].

Filtering the activity of a testbed’s own nodes. So far, we have
only focused on the detection of surrounding RF activity and ig-
nored the impact of the transmissions of co-located low-power
wireless nodes. However, when integrating such a solution into
a low-power wireless testbed facility, one should be able to filter
the transmissions of low-power wireless nodes that are part of the
testing facility (i.e., the devices running the solution being tested).

Traditionally, such low-power wireless nodes are directly at-
tached to the observer nodes in the testbed, i.e., they are located in
very close proximity. Our experiments have actually shown that one
can easily recognize and filter transmissions of low-power wireless
nodes located in very close proximity to the RPi4 due to the high
magnitude of the power estimate. Fig. 8 shows the power estimate
of five RPi4 devices in the presence of a TelosB node sending pack-
ets periodically (a) and emitting a continuous modulated carrier
tone (b) as in [4] using a transmission power of 0 dBm. The TelosB
node is attached to pi5 and it is located about 50 cm away from pi2,
1m away from pi3, and 2m away from pi1 and pi4. As Fig. 8 shows,
the BCM43455C0 heavily overestimates the narrowband signal to
over 400 on pi5, whereas pi2 still reports a power estimate of about
50, which is easily distinguished from surrounding RF interference,
which typically returns a lower power estimate value. At about 2m
the signal is indistinguishable from the noise floor, and cannot be
detected by pi1 and pi4. Therefore, one can, in principle be agnos-
tic to the transmissions of the nodes attached to a RPi4 acting as
observer node in a low-power wireless testbed.

6 CONCLUSIONS AND FUTUREWORK
When benchmarking the performance of low-power wireless sys-
tems, it is important to account for the inherent variability of the
RF conditions in the testing environment. In this paper, we have
put the basis for the creation of a low-cost tool automating the dis-
tributed monitoring of RF activity in low-power wireless testbeds.
After instrumenting several Raspberry Pi 4B nodes to monitor the
RF activity in their surroundings and synchronizing their measure-
ments, we have showcased the ability to quantitatively compare
the RF usage during several test runs and detect critical deviations.

Our work represents an important step towards a better repro-
ducibility and comparability of results. However, to ensure that
the experimental conditions are exactly the same across multiple
runs, it is not sufficient to only check the amount of RF activity
in the surroundings of the wireless nodes. For example, the ability
to monitor that the link quality between the nodes in the testbed
(which may vary if nodes are slightly moved, nearby shelves are
moved, and doors are opened) did not change across multiple runs,
is an orthogonal effort that goes beyond this paper. Similarly, the
exemplary strategies to quantify the difference in RF activity across
test runs presented in this paper only allow to objectively conclude
how similar the RF conditions were when running several experi-
ments: determining whether the variability of the RF conditions is
sufficient to deem two or more test runs as comparable is not in the
scope of this work. In the future, we plan to tackle also these issues,
and to integrate our full-fledged RF monitoring approach into the
framework of an existing benchmarking facility (e.g., D-Cube [36]).
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