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ABSTRACT

Scaling laws provide important insights that can guide the design of large language
models (LLMs). Existing work has primarily focused on studying scaling laws for
pretraining (upstream) loss. However, in transfer learning settings, in which LLMs
are pretrained on an unsupervised dataset and then finetuned on a downstream
task, we often also care about the downstream performance. In this work, we
study the scaling behavior in a transfer learning setting, where LLMs are finetuned
for machine translation tasks. Specifically, we investigate how the choice of the
pretraining data and its size affect downstream performance (translation quality)
as judged by two metrics: downstream cross-entropy and BLEU score. Our experi-
ments indicate that the size of the finetuning dataset and the distribution alignment
between the pretraining and downstream data significantly influence the scaling
behavior. With sufficient alignment, both downstream cross-entropy and BLEU
score improve monotonically with more pretraining data. In such cases, we show
that it is possible to predict the downstream BLEU score with good accuracy using
a log-law. However, there are also cases where moderate misalignment causes
the BLEU score to fluctuate or get worse with more pretraining, whereas down-
stream cross-entropy monotonically improves. By analyzing these observations,
we provide new practical insights for choosing appropriate pretraining data.

1 INTRODUCTION

There has been extensive research on scaling laws for upstream perplexity or cross-entropy loss (i.e.,
evaluated on pretraining data) of large language models (LLMs), demonstrating that these quantities
can be well predicted using power laws (Kaplan et al., 2020; Hoffmann et al., 2022; Gordon et al.,
2021; Hernandez et al., 2022; Fernandes et al., 2023; Bansal et al., 2022; Henighan et al., 2020;
Johnson et al., 2018). However, in practical applications, LLMs often undergo transfer learning–they
are first pretrained on unsupervised data and then finetuned for specific downstream1 tasks such as
coding or translation. The question of whether scaling laws can be used to predict downstream task
performance is critical, yet remains largely unanswered Hernandez et al. (2021); Tay et al. (2021).
Here, the term task performance refers to metrics that measure task-related quantities such as accuracy
and BLEU score, which are different from next-token prediction metrics such as cross-entropy.

In this work, we study scaling laws for transfer learning and focus on machine translation tasks.
Specifically, we look into the relation between the pretraining dataset size and the downstream task
performance after finetuning on the task. We find that, in addition to the finetuning data size and the

∗Work done while interning at Google Research.
1We use the term downstream to refer to the finetuning task or metrics computed on it, and the term upstream

to refer to the metrics computed on the pretraining dataset.
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choice of the performance metric, this relation fundamentally depends on the alignment between the
pretraining data and the downstream task. While similar observations have been made in different
contexts in the transfer learning literature (Tamkin et al., 2020; Agostinelli et al., 2022), our work
provides new insights and concrete scaling laws for the downstream performance of LLMs.

We carry out systematic experiments in which we pretrain LLMs on multilingual unsupervised
datasets and then finetune them on several machine translation tasks. Across the experiments, we vary
the type of pretraining data (to control the degree of distribution alignment with the downstream task)
and the finetuning data size. We study two metrics: downstream BLEU Papineni et al. (2002) score2

and downstream cross-entropy. We find that in settings where the distributions are well-aligned,
both BLEU and downstream cross-entropy improve monotonically with more pretraining. In these
settings, we demonstrate that the BLEU score can be well predicted using the following log-law:
f(Dp) = (log(A · Dα

p ))
β , where Dp denotes the size of the pretraining data, and A, α, β are

the coefficients to be fit. We further propose a power-law L(Dp) = E + A
Dα

p
for the downstream

cross-entropy as the pretraining data scales – echoing similar laws developed for the upstream
cross-entropy as a function of the pretraining dataset size (Kaplan et al., 2020; Hoffmann et al., 2022)
and downstream cross-entropy as a function of the finetuning dataset size (Hernandez et al., 2021).

However, when distributions are not sufficiently aligned and the finetuning data size is relatively
small, we find that there are cases where the BLEU score exhibits an unclear, non-monotonic behavior,
whereas the downstream cross-entropy still improves monotonically following a power-law. This
observation suggests that using cross-entropy as a proxy for task-related metrics like BLEU score
may lead to critical misjudgments in practice if used to make decisions about the “relevance” of
the pretraining data for the downstream task or the required size of the pretraining data for the
target downstream performance. Arguing that the value of pretraining data should be evaluated
using downstream task-related metrics like BLEU score, we propose a practical guide for such an
assessment by leveraging the proposed scaling law for BLEU score in Appendix C.

Finally, our empirical studies suggest that pretraining brings little to no improvement on the BLEU
score when the finetuning (translation) dataset is already large enough, complementing the findings
of Hernandez et al. (2021). We discuss related work in Appendix B

2 SCALING LAWS FOR TRANSFER LEARNING

2.1 A SCALING LAW FOR THE BLEU SCORE

Different from cross-entropy and perplexity, which follow a power-law scaling behavior Kaplan et al.
(2020); Hoffmann et al. (2022), we find out that BLEU score scales closer to a log-law, as evident
from Figures 1, 2, and 5. Therefore, we propose the following scaling law for BLEU score as a
function of the pretraining dataset size Dp:

f(Dp) = (log(A ·Dα
p ))

β , (1)

where A, α, and β are coefficients to be fit. We notice that these coefficients depend on how aligned
the pretraining dataset with the target downstream task (translation from language 1 to language
2) and how large the finetuning (translation) dataset is. With extensive experiments across several
translation tasks and multilingual pretrained models, we demonstrate that the law in (1) indeed well
describes BLEU score scaling, with a small prediction error which we quantify in Appendix E.2.

2.2 IS CROSS-ENTROPY LOSS ALWAYS A GOOD METRIC?

We also compare the downstream cross-entropy and the BLEU score empirically as prior work has
made the assumption that upstream or downstream cross-entropy is a good indicator for a model’s
downstream task performance. Following the well-understood scaling behavior of the upstream
cross-entropy as a function of the pretraining dataset size Kaplan et al. (2020); Hoffmann et al. (2022),
we demonstrate that the same scaling law can also describe the downstream cross-entropy loss as

L(Dp) = E +
A

Dα
p

, (2)

2In the rest of the paper, we will drop “downstream” when we refer to the downstream BLEU score.
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where E, A, and α are the coefficients to be optimized. Throughout the paper, we report BLEU
score and cross-entropy together for a direct comparison and discover several cases where the two
metrics do not correlate well. This supports some of the findings of Ghorbani et al. (2021) suggesting
inconsistency between the BLEU score and the cross-entropy, but also shows that the exponential
relationship (between the two metrics) advocated by Gordon et al. (2021) does not always hold.
More specifically, our empirical results show that while cross-entropy loss always monotonically
decreases (with appropriate learning rate) as the pretraining dataset size increases, BLEU score may
show a non-monotonic trend when the pretraining data is not sufficiently aligned with the task. For
instance, in Figure 5-(top, right), increasing the en-MC4, de-MC4, or ro-MC4 pretraining datasets’
size sometimes decreases the BLEU score on WMT-15 English-to-French (en-fr) translation task.
Even though they may initially follow the law in (1) for smaller pretraining dataset sizes, the scaling
law breaks for larger data for these datasets and task. Overall, the BLEU score never reaches a good
value compared to other pretraining datasets that include some amount of French – indicating that
pretraining datasets that do not include French are not aligned enough with this particular translation
task. However, if we were to look at only the cross-entropy loss in Figure 5-(bottom, right), we would
conclude that all the pretraining datasets bring noticeable improvements to the model and they all are
worth adding into the pretraining data – which would be a poor decision.

2.3 WHEN DO SCALING LAWS FALL SHORT IN TRANSFER LEARNING?

While the cross-entropy loss always follows a monotonically decreasing trend which can be captured
by the scaling law in (2), we do not always see a monotonic increase in the BLEU score when
increasing the pretraining dataset size (see Figure 2-(top, center) and Figure 5-(top, right)). We
observe that this only happens when the pretraining dataset is not sufficiently aligned with the
translation task – which results in low BLEU scores overall compared to models that were pretrained
in other datasets. For the pretrained models that lead to high BLEU scores after finetuning, we
consistently see that the BLEU score increases monotonically and can be well described with the
scaling law in (1). Therefore, whether the scaling law could fit the empirical BLEU scores or not
could be a good first-check in assessing the value of pretraining data for the downstream (translation)
task. We elaborate more on this in Appendix C and propose a guide for assessing the value of
pretraining dataset for a target downstream task.

3 EXPERIMENTAL SETUP

We first pretrain a model without doing more than one pass over any of the examples. Then, we
finetune selected checkpoints of the pretrained model. Naturally, there is a one-to-one mapping
between the checkpoint number and the number of pretraining tokens seen. This way, we collect
pairs of (number of pretraining tokens, BLEU score) and (number of pretraining tokens, downstream
cross-entropy loss) to analyze them with the proposed scaling laws in (1) and (2). All the plots are on
a log-log scale. See Appendix D for details on how to optimize the coefficients of the scaling laws.

We use the 3-billion and 770-million encoder-decoder T5 models, same as the T5-3B and T5-Large
model in Abnar et al. (2022). More details about model architecture and hyperparameters are provided
in Appendix D. We use the English (en), German (de), French (fr), and Romanian (ro) portions of
the MC4 dataset. We experiment with both pretraining on these languages individually as well as
mixing pairs of languages. In Figure 1, we present results for the models pretrained on (left) a mixture
of 50% en-MC4 + 50% de-MC4, (center) a mixture of 50% en-MC4 + 50% fr-MC4, and (right) a
mixture of 50% en-MC4 + 50% ro-MC4 – meaning that 50% of one pretraining batch is sampled
from en-MC4 and the other 50% is sampled from the other language. In Figure 2, we show results for
the models pretrained only on en-MC4. In Appendix E, in addition to these, we also present results
for the models pretrained on a mixture of 30% en-MC4 + 70%-fr and a mixture of 70% en-MC4 +
30%-fr as well as models pretrained only on de-MC4, only on fr-MC4, and only on ro-MC4. We
finetune the pretrained models on WMT-17 en-de (Bojar et al., 2017), WMT-15 en-fr (Bojar et al.,
2014), and WMT-16 en-ro (Bojar et al., 2016), separately. To understand the effect of the finetuning
dataset size on the scaling laws, we sometimes use a smaller randomly sampled portion from these
translation datasets and indicate the number of tokens used.
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Figure 1: (top) BLEU score vs pretraining dataset size: f(Dp) = (log(A ·Dα
p))

β . (left) WMT-17
en-de translation task. Pretraining dataset has 50% en-MC4 + 50% de-MC4. (center) WMT-15
en-fr translation task. Pretraining dataset has 50% en-MC4 and 50% fr-MC4. (right) WMT-16 en-ro
translation task. Pretraining dataset has 50% en-MC4 + 50% ro-MC4. (bottom) Cross-entropy
(CE) validation loss vs pretraining dataset size: L(Dp) = E+ A

Dα
p
. Same models as the top row.

The markers are the actual experimental results and the black horizontal curves correspond to the
non-pretrained model directly trained on the task dataset. The finetuning dataset size Df increases
in the order of dotted-dashed-solid for all the curves including the black horizontal lines.

Figure 2: Same as Figure 1 but the pretraining dataset is 100% en-MC4 in all plots.

4 RESULTS AND ANALYSIS

In Figure 1, we analyze the models that are pretrained on different portions of (left) a mixture of 50%
en-MC4 + 50% de-MC4, (center) a mixture of 50% en-MC4 + 50% fr-MC4, and (right) a mixture of
50% en-MC4 + 50% ro-MC4. These models are then finetuned on different portions of (left) en-de,
(center) en-fr, and (right) en-ro translation datasets. In the top row, we report the BLEU score and, in
the bottom row, we report the downstream cross-entropy loss. The dotted, dashed, and solid lines
correspond to the scaling laws in (1) and (2) for different finetuning dataset sizes Df . The black lines
correspond to “non-pretrained” models that are directly trained on different portions of the finetuning
dataset. In all cases, the scaling laws fit well to the empirical results (the markers). As expected,
as the finetuning dataset size increases (going in the order of dotted-dashed-solid lines), the BLEU
score increases and the cross-entropy loss decreases smoothly and monotonically. Similarly, as the
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pretraining dataset size Dp increases (along the x-axis), we see improvements in both metrics. Notice
that the improvements by an increase in the pretraining dataset size is more effective for smaller
finetuning datasets. When the finetuning dataset is large enough (e.g., solid lines), BLEU score is
more or less constant regardless of the pretraining dataset size. In fact, we see little to no improvement
of pretraining compared to the non-pretrained models (black lines) when the finetuning dataset is
large. In Figure 2, we change the pretraining dataset to 100% en-MC4 in all plots. Intuitively, we
expect this dataset to be less aligned with the translation tasks than the multilingual pairs in Figure 1
since it does not include one of the languages in the translation tasks. Indeed, we see smaller BLEU
score and higher cross-entropy loss in general for the same finetuning dataset size. Most of the
conclusions from Figure 1 carry over to the results in Figure 2. One noticeable difference is in the
BLEU scores for the en-fr translation task (center). We see that, for Df = 42M and Df = 210M ,
the scaling law for BLEU score actually breaks once the pretraining dataset size passes a threshold
while the cross-entropy loss scales as expected. This is counter-intuitive because the BLEU score
sometimes decreases for larger pretraining dataset. Notice that this break in scaling law does not
happen in en-de or en-ro translation tasks as the scaling law fits well to the pretraining for these tasks.
We investigate this mismatch between the BLEU score and the downstream cross-entropy when the
alignment is not sufficient in detail in Appendix E.

5 DISCUSSION AND CONCLUSION

We study the scaling behavior of the downstream performance of LLMs as the pretraining data grows
and propose scaling laws for both downstream cross-entropy and the BLEU score. We demonstrate
that the scaling behavior is significantly influenced by (1) the degree of alignment between the
pretraining and the downstream data and (2) the finetuning dataset size. In favorable cases where
the distributions are sufficiently aligned, we show that BLEU score can be accurately predicted
using a log scaling law. However, with less alignment, there are cases where BLEU score fluctuates
unpredictably whereas downstream cross-entropy improves monotonically. We also observe that
when the finetuning dataset size is sufficiently large, pretraining has little to no value. Our findings
highlight the importance of studying downstream performance metrics and not making decisions
solely based on cross-entropy (whether upstream or downstream). This echoes the findings of
Schaeffer et al. (2023) about the discrepancy in behavior between smooth and non-smooth metrics
when models are scaled. We refer the reader to the Appendix for the full details of our work.

6 BROADER IMPACT

In this work, we study the scaling behavior of downstream task performance as a function of the
pretraining data size and analyze several factors that affect this behavior. We believe our findings are
important to avoid costly pretraining on irrelevant datasets – reducing the carbon footprint of training
LLMs and freeing compute resources for more impactful tasks.
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A CONTRIBUTIONS

Our contributions and main findings can be summarized as follows.

• We carry out systematic experiments on 770-million and 3-billion encoder-decoder T5
Raffel et al. (2020) models to study how downstream performance, measured by downstream
cross-entropy and BLEU score, scales with the pretraining dataset size. For pretraining,
we experiment with different subsets of the Multilingual C4 (MC4) dataset (Raffel et al.,
2020), including English (en), German (de), French (fr), and Romanian (ro). For finetuning,
we study the following translation tasks: WMT-17 en-de Bojar et al. (2017), WMT-15
en-fr Bojar et al. (2014), and WMT-16 en-ro Bojar et al. (2016).

• We observe that, when the distributions of the pretraining and downstream tasks are
well-aligned, the BLEU score and downstream cross-entropy improve monotonically with
more pretraining. For BLEU score, we propose a new log scaling law and show that it has
good predictive accuracy. item When the distributions are not sufficiently aligned and the
finetuning data size is relatively small, the BLEU score fluctuates or even gets worse with
more pretraining–losing the monotonic scaling behavior. In these same settings, we find
that the downstream cross-entropy still scales monotonically according to a power-law.

• We argue that the value of pretraining data should be evaluated using downstream
task-related metrics like BLEU score and propose a practical guide for such an assessment
by leveraging the proposed scaling law for BLEU score.

B RELATED WORK

Scaling laws for transformers. Scaling laws for LLMs have attracted significant attention as
they can inform the decisions about key design choices such as model size and the type and size
of the pretraining data Kaplan et al. (2020); Hoffmann et al. (2022); Hernandez et al. (2021).
Most of the pioneering work has focused on how upstream cross-entropy loss or perplexity scales
with more pretraining data, larger models, or longer training Kaplan et al. (2020); Hoffmann et al.
(2022). Follow-up works have analyzed scaling behavior of translation models (Ghorbani et al., 2021;
Zhuocheng et al., 2023; Gordon et al., 2021; Fernandes et al., 2023; Bansal et al., 2022; Zhang et al.,
2022), studied theoretical foundation behind scaling laws Sharma & Kaplan (2020); Hutter (2021);
Bahri et al. (2021), or extended the laws to the vision models Zhai et al. (2022); Jain et al. (2023).
Closest to our work, Hernandez et al. (2021) have analyzed transfer learning but with a focus on
how the cross-entropy loss behaves as the finetuning data scales. Unlike our work, their scaling law
describes the relation between the size of a (finetuning) dataset and the cross-entropy loss on the
same dataset – making this closer to the standard scaling laws in the literature since the finetuning
loss and the finetuning dataset are computed over samples from the same distribution. On the other
hand, we propose scaling laws for the downstream metrics on the finetuning dataset as the pretraining
data scales – switching the focus to an “out-of-distribution” analysis. The only work we are aware
of that has proposed scaling laws for the downstream task performance as a function of pretraining
dataset size is by Sun et al. (2017) who have focused on classification tasks in the vision domain and
used small models relative to LLMs.

Transferability metrics and value of pretraining. While it may be commonly suggested that
pretraining data improves both upstream and downstream performance, this rule has been challenged
in the vision domain. Zoph et al. (2020); He et al. (2019); Shen et al. (2019); Ghiasi et al. (2018);
Mikami et al. (2022) have demonstrated that pretraining can sometimes have no effect on the
downstream task performance and sometimes it can even hurt the performance. We make similar
observations in the language domain with extensive experiments on LLMs and identify cases where
(a) adding more pretraining data hurts the downstream task performance when pretraining data
is not aligned enough with the task and (b) pretraining does not improve the downstream task
performance noticeably when the finetuning dataset is large enough. Another related line of work is
on transferability metrics Tamkin et al. (2020); Chiang & Lee (2022); Ibrahim et al. (2022); Tran et al.
(2019); Agostinelli et al. (2022); Tran et al. (2019); Nguyen et al. (2020); You et al. (2021); Dai et al.
(2019); Huang et al. (2022); Ibrahim et al. (2022); Tran et al. (2019); Bao et al. (2019); Van Asch &
Daelemans (2010); Plank & Van Noord (2011), which are efficient heuristics used to select the most
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appropriate source models or pretraining data for a given target task. We note that transferability
metrics are designed to solve ranking problems, different from scaling laws. For example, these
metrics answer questions such as given a pool of source models (or pretraining datasets), which
source model (or pretraining dataset) is the best to finetune on for a given target task. These metrics
are not designed to predict the performance of the model when key quantities (e.g., pretraining data
size) are scaled.

C A GUIDE FOR PRETRAINING DATA VALUATION

In this section, combining our findings on the scaling behavior of BLEU score, we propose the
following guide for assessing the value of pretraining dataset for a target downstream task:

1. Given a pretraining dataset, pretrain as long as possible under the given computational and
time constraints3. Periodically choose pretraining checkpoints, finetune on them, and record
the downstream performance metric (we recommend the BLEU score over cross-entropy
due to the discussion in Section 2.3).

2. Since the law in (1) has three coefficients to be fit, once we have 3 pairs of (number
of pretraining tokens seen, BLEU score), we try to find the optimal coefficients. If the
BLEU scores have a non-monotonic behavior, we cannot fit the scaling law. Since the
non-monotonic behavior could be an indication of misalignment (following the discussion
in Section 2.3), we recommend checking the BLEU score of the best available finetuned
checkpoint and comparing it to the performance of the non-pretrained model trained on
the downstream task directly. If the scaling law fits well, then we make the initial prediction
for the BLEU score as we increase the pretraining dataset size (or pretrain for more steps).
If we are not satisfied with the predicted BLEU score, then we conclude that it is not worth
pretraining on this dataset. If the predicted BLEU score is high enough, then we keep
pretraining until we reach the target BLEU score. If the scaling law breaks at any point,
we conclude that the pretraining dataset is not sufficiently aligned with the downstream
task and pretraining further may not be beneficial.

D ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

In the experiments, we first pretrain a model without doing more than one pass over any of the
examples. Then, we finetune selected checkpoints of the pretrained model. Naturally, there is a
one-to-one mapping between the checkpoint number and the number of pretraining tokens seen. This
way, we collect pairs of (number of pretraining tokens, BLEU score) and (number of pretraining
tokens, downstream cross-entropy loss) to analyze them with the proposed scaling laws in (1) and (2).
All the plots are on a log-log scale.

Model. We use the 3-billion encoder-decoder T5 model with 24 encoder layers, 24 decoder layers,
embedding dimension 1024, and 32 heads with dimension 128. We note that this is the same model
as the T5-3B model in Abnar et al. (2022). In Appendix E.1, we also provide results with a smaller
770-million encoder-decoder T5 model. This model corresponds to T5-Large in Raffel et al. (2020).
We share more details about the architectures in Tables 1 and 2. For encoding the text as WordPiece
tokens (Sennrich et al., 2016; Kudo, 2018), we use SentencePiece (Kudo & Richardson, 2018) trained
with a vocabulary of size 250, 112 that covers all the languages in the MC4 dataset (Raffel et al.,
2020).

Datasets. We use the English (en), German (de), French (fr), and Romanian (ro) portions of the
MC4 dataset. We experiment with both pretraining on these languages individually as well as mixing
pairs of languages. In Figure 1, we present results for the models pretrained on (left) a mixture of
50% en-MC4 + 50% de-MC4, (center) a mixture of 50% en-MC4 + 50% fr-MC4, and (right) a
mixture of 50% en-MC4 + 50% ro-MC4 – meaning that 50% of one pretraining batch is sampled

3We avoid repeating sequences as repetitions may complicate the scaling behavior Hernandez et al. (2022);
Muennighoff et al. (2023); Tirumala et al. (2023). This means as pretraining goes on, we effectively pretrain
each checkpoint on a “larger dataset”.
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Table 1: T5-3B Raffel et al. (2020) architecture details.

Embedding Dimension 1024
Number of Heads 32

Number of Encoder Layers 24
Number of Decoder Layers 24

Head Dimension 128
MLP Dimension 16384

Table 2: T5-770M Raffel et al. (2020) architecture details.

Embedding Dimension 1024
Number of Heads 16

Number of Encoder Layers 24
Number of Decoder Layers 24

Head Dimension 64
MLP Dimension 2816

from en-MC4 and the other 50% is sampled from the other language. In Figure 2, we show results
for the models pretrained only on en-MC4. In Figure 5, in addition to these, we also present results
for the models pretrained on a mixture of 30% en-MC4 + 70%-fr and a mixture of 70% en-MC4 +
30%-fr as well as models pretrained only on de-MC4, only on fr-MC4, and only on ro-MC4. We
finetune the pretrained models on WMT-17 en-de (Bojar et al., 2017), WMT-15 en-fr (Bojar et al.,
2014), and WMT-16 en-ro (Bojar et al., 2016), separately. To understand the effect of the finetuning
dataset size on the scaling laws, we sometimes use a smaller randomly sampled portion from these
translation datasets and indicate the number of tokens used.

Hyperparameters. During pretraining, we use a batch size of 256 and a sequence length of 512 for
1, 000, 000 steps except for the ro-MC4 pretraining. For ro-MC4, we pretrain for 510, 000 steps since
otherwise, we would need to do repetitions over the sequences. Following Raffel et al. (2020), we use
an “inverse square root” learning rate schedule, 1√

max(n,k)
, where n is the current pretraining step

and k is set to 104. We do a grid search for the base learning rate from {0.05, 0.1, 0.5, 1.0, 2.0, 5.0}
and pick the best one for each pretrained model based on upstream cross entropy. During finetuning,
again following Raffel et al. (2020), we use a batch size of 128 and a sequence length of 512 for 300
steps. We use a constant learning rate by selecting the best from {0.001, 0.005, 0.01, 0.05, 0.1}. In
both stages, we use the AdaFactor optimizer (Shazeer & Stern, 2018).

Optimizing the scaling law coefficients. To fit the coefficients in the scaling laws in (1) and
(2), similar to Hoffmann et al. (2022), we use the Huber loss (Huber, 1992) and the L-BFGS
algorithm (Nocedal, 1980) to estimate the scaling law robustly in the presence of outliers. For the
Huber loss, we use δ = 0.1 for the BLEU score and δ = 1e− 3 for the downstream cross-entropy
loss. We select the best fit among a grid of initializations and report the prediction error computed via
the Huber loss in Appendix E.2. To optimize the coefficients, we use the first four data points that
require the smallest amount of pretraining data and leave the remaining data points as held-out data
to evaluate the accuracy of the laws. We note that, ideally, three points should be enough since both
laws have three coefficients to be optimized for. However, adding more points improves the fit by
making the optimization more robust to outliers. We refer the reader to Appendix E.2 for the list of
optimized coefficients and the prediction errors.

Next, we provide more details on how we optimize the coefficients of the scaling laws. Following
Hoffmann et al. (2022), we use the Huber loss (Huber, 1992) to minimize overfitting to the outliers.
Huber loss is particularly useful to suppress the effect of the outlier data points in the optimization
problem. More specifically, if the data point with value r is predicted by the law as r̂, the loss for that
data point would be
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ℓδ(r, r̂) =

{
1
2 (r − r̂)2 for |r − r̂| ≤ δ,

δ · (|r − r̂| − 1
2δ) otherwise.

(3)

Due to the numerical range difference between the BLEU score (between 0 and 100) and the
downstream cross-entropy typically taking much smaller values, we use δ = 0.1 for the BLEU score
law in (1) and δ = 1e− 3 for the downstream cross-entropy law in (2).

For optimization, we use the L-BFGS algorithm (Nocedal, 1980). Specifically, for the BLEU score
law in (1), we solve

min
E,A,α,β

∑
Data point i

ℓδ(log fi, log f̂(Dpi)), (4)

where Dpi is the pretraining dataset size and fi is the BLEU score for the data point i, and f̂(·) is the
approximation for the optimal law f(·). Similarly, for the downstream cross-entropy loss law in (2),
we solve

min
E,A,α

∑
Data point i

ℓδ(logLi, log L̂(Dpi)), (5)

where Dpi is the pretraining dataset size and Li is the downstream cross-entropy loss for the data
point i, and L̂(·) is the approximation for the optimal law L(·).

E RESULTS AND ANALYSIS

In Figure 1, we analyze the models that are pretrained on different portions of (left) a mixture of 50%
en-MC4 + 50% de-MC4, (center) a mixture of 50% en-MC4 + 50% fr-MC4, and (right) a mixture of
50% en-MC4 + 50% ro-MC4. These models are then finetuned on different portions of (left) en-de,
(center) en-fr, and (right) en-ro translation datasets. In the top row, we report the BLEU score and, in
the bottom row, we report the downstream cross-entropy loss. The dotted, dashed, and solid lines
correspond to the scaling laws in (1) and (2) for different finetuning dataset sizes Df . The black lines
correspond to “non-pretrained” models (randomly initialized) that are directly trained on different
portions of the finetuning dataset. In all cases, the scaling laws fit well to the empirical results (the
markers) with prediction error at most 0.061 for the BLEU score (δ = 0.1) and 5.95e− 12 for the
downstream cross-entropy (δ = 1e − 3) (see Appendix E.2 for more details). As expected, as the
finetuning dataset size increases (e.g., going in the order of dotted-dashed-solid lines), the BLEU
score increases and the cross-entropy loss decreases smoothly and monotonically. Similarly, as
the pretraining dataset size Dp increases (along the x-axis), we see improvements in both metrics.
Notice that the improvements by an increase in the pretraining dataset size is more effective for
smaller finetuning datasets. When the finetuning dataset is large enough (e.g., solid lines), BLEU
score is more or less constant regardless of the pretraining dataset size. In fact, we see little to no
improvement of pretraining compared to the non-pretrained models (black lines) when the finetuning
dataset is large. This implies that, for these tasks, there is no need to pretrain the models when
the finetuning dataset is large enough. Luckily, we can correctly predict whether this is going
to be the case (i.e., whether the available finetuning data is enough to eliminate pretraining
altogether) with the use of scaling laws. All we need to do is to pretrain the model on a small
portion of the pretraining dataset with reasonable compute cost to optimize the coefficients of
the scaling laws, and then follow the guideline provided in Section C.

In Figure 2, we change the pretraining dataset to 100% en-MC4 in all plots. Intuitively, we expect
this dataset to be less aligned with the translation tasks than the multilingual pairs in Figure 1 since it
does not include one of the languages in the translation tasks. Indeed, we see smaller BLEU score
and higher cross-entropy loss in general for the same finetuning dataset size. Most of the conclusions
from Figure 1 carry over to the results in Figure 2. For instance, the pretraining data matters less when
the finetuning dataset is large enough. One noticeable difference is in the BLEU scores for the en-fr
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Figure 3: (top) BLEU score vs pretraining dataset size: f(Dp) = (log(A ·Dα
p))

β . (left) WMT-17
en-to-de translation task. Pretraining dataset has 50% en-MC4 + 50% de-MC4. Dotted, dashed, and
solid blue curves correspond to the fitted scaling laws for different finetuning dataset sizes, Df = 6M ,
Df = 31M , Df = 3B tokens, respectively. (center) WMT-15 en-to-fr translation task. Pretraining
dataset has 50% en-MC4 and 50% fr-MC4. Dotted, dashed, and solid orange curves correspond to
the fitted scaling laws for different finetuning dataset sizes, Df = 42M , Df = 210M , Df = 21B
tokens, respectively. (right) WMT-16 en-to-ro translation task. Pretraining dataset has 50% en-MC4
+ 50% ro-MC4. Dotted, dashed, and solid green curves correspond to the fitted scaling laws for
different finetuning dataset sizes, Df = 625K, Df = 3M , Df = 312M tokens, respectively.
(bottom) Cross-entropy (CE) validation loss vs pretraining dataset size: L(Dp) = E+ A

Dα
p
.

Same models as the top row. For all the plots, the markers are the actual experimental results and the
black horizontal curves correspond to the non-pretrained model directly trained on the task dataset.
The finetuning dataset size increases in the order of dotted-dashed-solid for all the curves
including the black horizontal lines.

translation task (center). We see that, for Df = 42M and Df = 210M , the scaling law for BLEU
score actually breaks once the pretraining dataset size passes a threshold while the cross-entropy loss
scales as expected. This is counter-intuitive because the BLEU score sometimes decreases for larger
pretraining dataset. Notice that this break in scaling law does not happen in en-de or en-ro translation
tasks as the scaling law fits well to the pretraining data with prediction error at most 0.025 for these
tasks (δ = 0.1). To better investigate this, in Figure 5, we take a closer look at some less aligned
pretraining datasets due to the choice of language.

In Figure 5-(left), we provide the scaling laws for en-de translation task where the pretraining datasets
are 100% en-MC4 (same as Figure 2-(left)), 50% en-MC4 and 50% de-MC4 (same as Figure 1-(left)),
100% de-MC4, 100% fr-MC4 (less aligned), and 100% ro-MC4 (less aligned). Notice that the last two
pretraining datasets are expected to be the least aligned with the translation task since the translation
pair does not include these languages. We see that, despite this, the scaling laws consistently fit well
for both the BLEU score and the cross-entropy loss. However, this is not always the case for the en-fr
translation task. In Figure 5-(right), we provide the scaling laws for the en-fr translation task where
the pretraining datasets are different mixtures of en-MC4 and fr-MC4 datasets. We also include the
“less aligned” pretraining datasets such as 100% de-MC4 and 100% ro-MC4. Surprisingly, we see
that the scaling law for the BLEU score breaks after some point for the only-English (100% en-MC4),
only-German (100% de-MC4), and only-Romanian (100% ro-MC4) pretraining datasets while the
cross-entropy loss always follows the scaling law in (2). Interestingly, we do not observe such a
break in the BLEU score scaling for the only-French (100% fr-MC4) pretraining dataset – hinting
that not including French data in pretraining leads to poor scaling in the en-fr translation task but not
including English does not have such an effect. We also notice that the BLEU score is the lowest
for these three pretraining datasets where scaling breaks. This suggests that the scaling law in (1)
works well for the BLEU score as long as the pretraining dataset has the promise to give rise
to a good performance. However, when the scaling law does not fit well, we may suspect the
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Figure 4: (top) BLEU score vs pretraining dataset size: f(Dp) = (log(A ·Dα
p))

β . (left) WMT-17
en-to-de translation task. Dotted, dashed, and solid red curves correspond to the fitted scaling laws
for different finetuning dataset sizes, Df = 6M , Df = 31M , Df = 3B tokens, respectively.
(center) WMT-15 en-to-fr translation task. Dotted, dashed, and solid red curves correspond to the
fitted scaling laws for different finetuning dataset sizes, Df = 42M , Df = 210M , Df = 21B
tokens, respectively. (right) WMT-16 en-to-ro translation task. Dotted, dashed, and solid red curves
correspond to the fitted scaling laws for different finetuning dataset sizes, Df = 625K, Df = 3M ,
Df = 312M tokens, respectively. (bottom) Cross-entropy (CE) validation loss vs pretraining
dataset size: L(Dp) = E+ A

Dα
p
. Same models as the top row. For all the plots, the markers are

the actual experimental results and the black horizontal curves correspond to the non-pretrained
model directly trained on the task dataset. The finetuning dataset size increases in the order of
dotted-dashed-solid for all the curves including the black horizontal lines.

BLEU score to be low overall. Therefore, whether we can fit the scaling law for the BLEU score
seems to give a good indication about the degree of alignment between the pretraining data and
the particular translation task.

Remark 1. We observe another interesting phenomenon in Figure 5. For both en-de and en-fr tasks,
100% en-MC4 leads to significantly worse BLEU score and downstream cross-entropy than the
more aligned 50% en-MC4 + 50% de/fr-MC4 balanced datasets, respectively. However, de-MC4
and fr-MC4 perform almost as well as the balanced datasets in en-de and en-fr tasks. We leave the
investigation of why pretraining on only German/French helps more than pretraining on only English
for the given en-de and en-fr tasks to future work.

We also highlight that we cannot make any strong conclusion about the degree of alignment of the
pretraining dataset with the task by only looking at the downstream cross-entropy loss because of the
inconsistency with the BLEU score, a task-related metric, observed in the en-fr plots in Figures 2
and 5. This is a counter-example for the claim by Gordon et al. (2021) that the two metrics have
an exponential relation. To better demonstrate this, in Figure 6, we provide a BLEU score vs.
downstream cross-entropy log-log plot for en-de and en-fr translation tasks, respectively. While the
two metrics indeed seem correlated in Figure 6-(left) on the en-de task, we observe a somewhat
arbitrary relation for the en-fr task in Figure 6-(right) in some cases – which clearly cannot be
explained with an exponential relation. This suggest that downstream cross-entropy is not always
a good indicator for BLEU score. This raises the question whether the scaling laws that have
been developed for the upstream cross-entropy loss are actually useful predictors for models’
downstream behavior.

Remark 2. We also revisit the definition of the BLEU score to better understand the root cause of the
non-smooth behavior and check if we could see a smooth monotonic scale in at least some elements
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Figure 5: Comparison of scaling behavior for different pretraining datasets. (top) BLEU score vs
pretraining dataset size: f(Dp) = (log(A ·Dα

p))
β . (left) WMT-17 en-de translation task. (right)

WMT-15 en-fr translation task. (bottom) Cross-entropy (CE) validation loss vs pretraining dataset
size: L(Dp) = E+ A

Dα
p
. Same as the top row but for CE loss instead of BLEU score. For all the

plots, the markers are the actual experimental results and the black horizontal curves correspond to
the non-pretrained model directly trained on the task dataset.

Figure 6: BLEU score vs. downstream cross-entropy loss. (left) For en-de translation task, we
see a consistent correlation between the two metrics for all the pretraining datasets. This supports
the findings of Gordon et al. (2021). (right) For en-fr translation task, the two metrics usually show
an arbitrary relation. Sometimes, the BLEU score increases while the cross-entropy also increases.
Unlike the en-de results in (left), the exponential relation in (Gordon et al., 2021) is not observed
here.

of the BLEU score calculation. Recall that the common form of BLEU score is defined as

BLEU = brevity-penalty ·

(
4∏

i=1

precisioni

)1/4

, (6)

where precisionn refers to the precision of n-grams, and the second term is the geometric mean of the
precision when n is varied from 1 to 4. In all the experiments, we observe brevity-penalty = 1, i.e.,
the non-smooth behavior can be attributed to the precision terms. Hence, our findings, including the
scaling law in (1), would also apply for precision–another downstream task metric.
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E.1 ADDITIONAL RESULTS (ON T5-770M)

In Figures 7 and 8, we present results similar to Figures 1 and 2 in Section 4, but for T5-770M
instead of T5-3B. In general, we observe a similar trend. The proposed scaling laws describe the
downstream behavior well when the pretraining and downstream data are aligned.

Figure 7: (top) BLEU score vs pretraining dataset size: f(Dp) = (log(A ·Dα
p))

β . (left) WMT-17
en-to-de translation task. Pretraining dataset has 50% en-MC4 + 50% de-MC4. Dotted and dashed
blue curves correspond to the fitted scaling laws for different finetuning dataset sizes, Df = 6M
and Df = 31M tokens, respectively. (right) WMT-15 en-to-fr translation task. Pretraining dataset
has 50% en-MC4 and 50% fr-MC4. Dotted and dashed orange curves correspond to the fitted
scaling laws for different finetuning dataset sizes, Df = 42M and Df = 210M tokens, respectively.
(bottom) Cross-entropy (CE) validation loss vs pretraining dataset size: L(Dp) = E+ A

Dα
p
.

Same models as the top row. For all the plots, the markers are the actual experimental results and the
black horizontal curves correspond to the non-pretrained model directly trained on the task dataset.
The finetuning dataset size increases in the order of dotted-dashed for all the curves including
the black horizontal lines.

E.2 OPTIMIZED COEFFICIENTS AND PREDICTION ERRORS OF THE SCALING LAWS

In Tables 3, 4, 5, and 6, we provide the optimized coefficients for the scaling laws plotted in Figures 1
and 2 together with the prediction error.
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Figure 8: (top) BLEU score vs pretraining dataset size: f(Dp) = (log(A ·Dα
p))

β . (left) WMT-17
en-to-de translation task. Dotted and dashed red curves correspond to the fitted scaling laws for
different finetuning dataset sizes, Df = 6M and Df = 31M tokens, respectively. (right) WMT-15
en-to-fr translation task. Dotted and dashed red curves correspond to the fitted scaling laws for
different finetuning dataset sizes, Df = 42M and Df = 210M tokens, respectively. (bottom)
Cross-entropy (CE) validation loss vs pretraining dataset size: L(Dp) = E+ A

Dα
p
. Same models

as the top row. For all the plots, the markers are the actual experimental results and the black
horizontal curves correspond to the non-pretrained model directly trained on the task dataset. The
finetuning dataset size increases in the order of dotted-dashed for all the curves including the
black horizontal lines.

Table 3: The coefficients for the BLEU score law f(Dp) = (log(A ·Dα
p ))

β for the results in Figure 1-
(top). For the BLEU score laws, we use δ = 0.1 for the Huber Loss. We report logA instead of A
since A typically takes very small and very large values.

Pretraining Dataset Finetuning Dataset Finetuning Dataset Size logA α β Prediction Error

50% en + 50% de-MC4 WMT-17 en-de 6M −180.75 9.00 0.75 0.034
50% en + 50% de-MC4 WMT-17 en-de 31M −1.68× 103 84.04 0.49 0.050
50% en + 50% de-MC4 WMT-17 en-de 3B −1.64× 108 9.91× 106 0.19 0.048

50% en + 50% fr-MC4 WMT-15 en-fr 42M −1.82× 104 8.98× 102 0.42 0.061
50% en + 50% fr-MC4 WMT-15 en-fr 210M −2.33× 104 1.21× 103 0.40 0.013
50% en + 50% fr-MC4 WMT-15 en-fr 21B 5.08× 103 4.61× 108 0.16 0.005

50% en + 50% ro-MC4 WMT-16 en-ro 625K −36.02 1.77 1.28 0.042
50% en + 50% ro-MC4 WMT-16 en-ro 3M −0.115.03 5.69 0.89 0.015
50% en + 50% ro-MC4 WMT-16 en-ro 312M −1.82× 104 9.04× 102 0.40 0.015
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Table 4: The coefficients for the downstream cross-entropy law L(Dp) = E + A
Dα

p
for the results in

Figure 1-(bottom). For the downstream cross-entropy laws, we use δ = 10−5 for the Huber Loss.

Pretraining Dataset Finetuning Dataset Finetuning Dataset Size E A α Prediction Error

50% en + 50% de-MC4 WMT-17 en-de 6M 3.21× 10−5 35.45 0.64 1.36× 10−12

50% en + 50% de-MC4 WMT-17 en-de 31M 3.28× 10−5 4.70× 102 0.78 3.17× 10−12

50% en + 50% de-MC4 WMT-17 en-de 3B 2.24× 10−5 2.56× 10−2 0.36 5.76× 10−14

50% en + 50% fr-MC4 WMT-15 en-fr 42M 2.72× 10−5 2.01× 106 1.18 7.52× 10−13

50% en + 50% fr-MC4 WMT-15 en-fr 210M 2.57× 10−5 1.75× 107 1.30 2.24× 10−13

50% en + 50% fr-MC4 WMT-15 en-fr 21B 1.11× 10−7 3.41× 10−5 1.82× 10−2 5.20× 10−14

50% en + 50% ro-MC4 WMT-16 en-ro 625K 2.45× 10−5 0.49 0.41 3.61× 10−12

50% en + 50% ro-MC4 WMT-16 en-ro 3M 2.62× 10−5 2.40 0.49 2.19× 10−12

50% en + 50% ro-MC4 WMT-16 en-ro 312M 2.08× 10−5 3.94 0.53 5.95× 10−12

Table 5: The coefficients for the BLEU score law f(Dp) = (log(A ·Dα
p ))

β for the results in Figure 2-
(top). For the BLEU score laws, we use δ = 0.1 for the Huber Loss. We report logA instead of A
since A typically takes very small and very large values.

Pretraining Dataset Finetuning Dataset Finetuning Dataset Size logA α β Prediction Error

100% en-MC4 WMT-17 en-de 6M −1.88 0.15 3.30 0.014
100% en-MC4 WMT-17 en-de 31M −1.81× 104 896.12 0.28 0.006
100% en-MC4 WMT-17 en-de 3B 1.02× 10−7 104.92 0.42 0.015

100% en-MC4 WMT-15 en-fr 42M 1.00 2.57× 10−5 1.11× 104 0.042
100% en-MC4 WMT-15 en-fr 210M −6.38× 107 3.43× 106 0.20 0.034
100% en-MC4 WMT-15 en-fr 21B 204.81 3.80× 1014 9.97× 10−3 0.004

100% en-MC4 WMT-16 en-ro 625K −10.54 0.55 1.12 0.008
100% en-MC4 WMT-16 en-ro 3M −40.41 2.11 0.79 0.025
100% en-MC4 WMT-16 en-ro 312M 3.61 8.17× 105 0.19 0.018

Table 6: The coefficients for the downstream cross-entropy law L(Dp) = E + A
Dα

p
for the results in

Figure 2-(bottom). For the downstream cross-entropy laws, we use δ = 10−5 for the Huber Loss.

Pretraining Dataset Finetuning Dataset Finetuning Dataset Size E A α Prediction Error

100% en-MC4 WMT-17 en-de 6M 3.22× 10−13 3.18× 10−3 0.15 5.79× 10−12

100% en-MC4 WMT-17 en-de 31M 3.24× 10−5 5.20× 10−3 0.20 9.25× 10−13

100% en-MC4 WMT-17 en-de 3B 2.24× 10−5 2.56× 10−2 0.36 5.76× 10−14

100% en-MC4 WMT-15 en-fr 42M 3.49× 10−5 1.05× 10−2 0.25 3.63× 10−13

100% en-MC4 WMT-15 en-fr 210M 4.24× 10−5 19.39 0.66 5.40× 10−13

100% en-MC4 WMT-15 en-fr 21B 1.26× 10−7 2.59× 10−5 4.81× 10−3 3.63× 10−14

100% en-MC4 WMT-16 en-ro 625K 5.79× 10−12 1.03× 10−3 7.76× 10−2 5.56× 10−12

100% en-MC4 WMT-16 en-ro 3M 1.78× 10−12 9.98× 10−4 8.33× 10−2 8.23× 10−12

100% en-MC4 WMT-16 en-ro 312M 5.85× 10−5 1.37× 103 0.88 3.05× 10−13
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