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Abstract

Genomic Language Models achieve strong performance on biological tasks but rely
on tokenization methods that overlook the complexity of the genome. We introduce
a biologically grounded tokenization strategy that partitions the DNA sequence
into meaningful “words” based on transcription factor (TF) motifs. Embedding
biological insight into vocabulary design preserves predictive power while poten-
tially improving interpretability and computational efficiency. Proof-of-concept
results demonstrate that motif-informed tokens generate representations that better
capture the language of gene regulation, opening the door to models that are both
highly predictive and capable of decoding the regulatory genomic grammar vital
for drug discovery and precision medicine. The code for tokenization and model
training is available at https://github.com/pdavar/Genome_tokenization.

1 Introduction

Just as modeling language at the level of words or subwords, rather than individual letters, provides
semantic and computational advantages, studying the regulatory genome can benefit from identifying
meaningful units beyond single base pairs [1, 2]. To uncover the “grammar” of this biological language,
we must move from treating DNA as a simple string of letters toward recognizing genomic “words” that
carry regulatory meaning. Unlike prokaryotic genomes, where most of the DNA is coding and regulation
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is relatively straightforward, the mammalian genome is 98.5% non-coding with a far more complex
regulatory grammar [3]. Gene expression in mammals is orchestrated by layered control from these
expansive non-coding regions, making the study of regulatory “language” essential for deciphering gene
programs and, ultimately, advancing drug discovery, precision medicine, and personalized therapies.

Most state-of-the-art genomic language models tokenize DNA at the base-pair level and use convo-
lutional layers to extract features from one-hot–encoded sequences [4–11]. Although this strategy
achieves strong predictive performance on downstream tasks, it has notable limitations. First, because
base-pair tokenization does not shorten the sequence, and the attention mechanism used in these models
scales quadratically with sequence length, such models are computationally expensive and often
impractical to train from scratch in academic settings. The long input lengths also constrain context
windows, reducing the ability to capture long-range promoter–enhancer interactions [12]. Second,
in analogy to NLP—where single-character tokenization impairs performance by forcing models to
infer higher-level structure from minimal context [13], genomic models must similarly “spell out”
regulatory words from scratch, potentially hindering the learning of meaningful semantic relationships.

To address this, some methods tokenize into fixed-length k-mers (commonly k=3–5) [14, 15]. While
codons are biologically meaningful in protein-coding regions, over 98% of the genome is non-coding
yet crucial for regulation, making fixed-length k-mers arbitrary and poorly aligned with biological
structure. Others have adopted Byte Pair Encoding (BPE) to create variable-length tokens [16, 17].
BPE reduces sequence length in a data-driven manner, but has three key drawbacks: the vocabulary
size must be set arbitrarily; it assumes explicit token boundaries (“spaces”) absent in DNA; and
it merges tokens solely by frequency, without biological knowledge. Inspired by the dual role of
tokenization in NLP—both reducing data sparsity by composing unseen sequences from a finite
vocabulary and aligning tokens with meaningful linguistic units—we sought to design a biologically
grounded tokenization strategy for the genome that better captures the regulatory grammar of DNA.

2 Methodolgy

To design biology-informed tokens, we used Transcription Factor (TF) binding motifs—short DNA
patterns recognized by TFs—as tokens, since TFs are central to gene regulation and >92% of the
human genome (>99% excluding centromeres and unmapped regions) is covered by at least one motif.
Motif annotations were obtained from JASPAR 2022 [18] yielding 1684 motif features across both
DNA strands. While these empirical annotations do not represent the entirety of the complex regulatory
landscape of the human genome, they encode far more domain knowledge beyond just the base pair
sequence. Our tokenization strategy can be summarized two steps. The first step is binning, which uses
the distribution of the TF motifs across the genome to partition the DNA into “bins” (Figure 1a). Each
bin is then represented as a 1684-dimensional vector, with entries corresponding to the probability of
a given TF binding to the region of the DNA in that bin. Next, to reduce redundancy among correlated
motifs, we computed a genome-wide non-linear correlation (i.e. Inter-Dependence Scores [19]) across
all 1684 motif features and applied hierarchical clustering, yielding 871 motif clusters (features).
Details of our tokenization strategy are provided in the appendix A.

Linguistic laws Early efforts treating biological sequences as natural language have revealed
preliminary linguistic features, statistical ‘grammars’ akin to those in human languages, emerging
from genomic data [20, 21]. A well-known example is Zipf’s law, which states that word frequency
is inversely proportional to its rank [22]. Early studies 20–30 years ago applied this metaphorically
by treating short k-mers as “words,” reporting Zipf-like distributions in DNA [23, 24]. However, these
analyses were small-scale, and even random sequences showed similar patterns, suggesting artifacts
of nucleotide composition rather than biologically meaningful units.

Building on this foundation, we evaluated our motif-based tokenization against k-mers and BPE
approaches. Our tokens follow Zipf’s law closely (Pearson r ≈ –0.99), outperforming BPE600
(–0.77), BPE4096 (–0.94), and k-mers (figure 1c). Additionally, motif coverage scores—computed
via correlations between known TF motif PFMs and one-hot representations—showed that our method
captures motifs better than others (figure 1d).

Model-agnostic visualization of genomic tokens Unlike one-hot or BPE encodings, our tokens are
biologically interpretable even prior to modeling: each motif feature represents the probability of TF
binding in that genomic region. This allows direct comparison of token similarities, a property lacking
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Figure 1: Motif-driven tokenization methodology and the linguistic laws. (a) partitioning the genome
into bins using peak calling on motif sums. (b) constructing tokens by first stacking the motif-binding
probabilities in each respective bins, then clustering similar motif features together. (c) Zipf’s law
(d) motifs capture comparison of common genome tokenizers

in other tokenization methods. Figure 2 shows a UMAP of all tokens on chromosome 1, colored by
Louvain clusters (details in Appendix A).

3 Genomics Language Modeling

Recent advances in sequence-to-function genomic models offer a powerful way to model biological
function using only the DNA sequence as input, providing scalable alternatives to costly experimental
approaches [4–11]. These models can help interpret regulatory elements, prioritize disease-associated
variants, and support synthetic biology. To test the utility of our tokenization strategy in sequence-to-
function modeling, we sought to predict genome accessibility (obtained by ATAC-seq) from the DNA
sequence. We compared the performance of a deep learning architecture trained using both our tokens
and one-hot tokens. Figure 3a illustrates the architecture choices for these experiments where we tested
both convolutional and transformer-based models. While the one-hot encoded model achieved a slightly
higher correlation (0.73) compared to our tokenization method (0.68), qualitative evaluation of the
predicted tracks indicates that our model effectively captures peak structures (Figures 3 b). Since these
architectures are not optimized for learning from high dimensional sparse features like ours, unlocking
the full potential of our tokenization method in the context of sequence-to-function modeling requires
design of new model architectures which is beyond the scope of this work, yet a promising future
direction to explore. Implementation details as well as additional results are provided in the appendix A.

To measure the interpretability of the models trained using both our and one-hot tokens, we conducted a
systematic evaluation of DeepLift and Input x Gradient [25]. DeepLIFT attributes a model’s prediction
by comparing each input feature’s activation to a reference input and propagating the contribution
differences back to the input, while Input × Gradient attributes importance by multiplying each input
feature’s value by the gradient of the output with respect to that input, highlighting features where small
changes strongly affect the prediction. Using a benchmarking dataset consisting of 41 TF binding
sites [26], we obtained matching scores for each TF at a given genomic locus, and ranked the matching
scores to obtain AUC for each TF (figure 3 c). Further analysis and evaluation metrics are provided
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Figure 2: Token visualization (a) UMAP visualization of tokens, clustered by their sequence similarity.
(b) Prominent motifs in sub-clusters derived from megacluster 2 in (a).

Figure 3: Sequence-to-function modeling. (a) The architectures for our (left) and one-hot (right)
models. (b) Motif detection benchmarking using attribution scores taken from DeepLift applied to
models trained on K562 cell lines.
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in the appendix. We can see that for both DeepLift and Input x Gradient, our tokenization method
performs similarly to the one hot tokenization for most of the TFs.

4 Conclusion and future work

Here, we presented the proof-of-concept of a dynamic tokenization framework of the genome, focusing
on incorporating regulatory genomics domain knowledge through TF motifs. We showed that our
biologically grounded genomic tokens not only offer a natural way of visualizing the genomic in
low-dimensional manifolds, but importantly, they follow clear linguistic laws, providing strong
evidence of DNA as a natural language hypothesis beyond the raw observation through K-mer analysis.

Even though our current tokenization procedure is not complete - as it relies on our incomplete
empirical understanding of the motifs - we were able to achieve comparable performance and
interpretability to one-hot tokenization in terms of sequence-to-function modeling while our approach
offers a computational efficiency advantage due to shortening the sequence length. This highlights
the potential of our approach and how we may be able to achieve better outcomes through enhanced
empirical knowledge and designing customized architectures for these tokens.
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A Technical Appendices and Supplementary Material

A.1 Tokenization Methodology

We used the JASPAR 2022 dataset to get the bed file annotations of the 841 known TF motifs in the
hg38 human genome. We also used the CpG annotations from the UCSC database as an extra feature,
which gave us a total of 1684 motif features across both strands. [27]

Binning The motif annotations on the genome have a high degree of overlap. First, we sought to
partition the genome into dynamic bins where each bin will be used later on as a token. To this end,
for a given genomic position, we added the number of motifs (on both + and - strands) that overlap
that position (Figure 1a). This gave us a 1D “motif coverage” signal across the genome. We then used a
peak calling algorithm on the smoothed motif coverage signal to identify regions of high motif density.
The boundaries of such high intensity regions were used as our bin boundaries. Since some regions
of the genome are unmapped (don’t have any motif annotations), this led to large bins of length >50bps
(0.5% of the total bins). Since we wanted to keep the bin length distribution close to Gaussian, we
trimmed those large bins to bins of length 25 which corresponds to the length scale of large motifs.
In this way, the genome was partitioned into 187M bins of an average length of 15 base pairs (which
corresponds to the average motif length). Note that the exact positioning of the bin boundaries is
not of big importance given how each bin is encoded into a token (explained next). Also, note that
beyond using only the motif annotations that had a minimum score of 800 (max p-value of 10−8),
we did not utilize the match scores in our tokenization. We think incorporating these match scores
into our tokenization is a promising direction for further exploration.

Continuous tokens Although tokens are discrete in their traditional sense, we sought to produce
a continuous representation of the genome: each bin was encoded into a continuous valued vector
(i.e. token) of size 1684 (2 strands, 842 motifs), where each element corresponds to the proportion
of a given strand’s motif that falls in that bin. The reason whythe exact bin boundary is irrelevant is
that, for a given motif, the values of the consecutive bins that span that motif will always sum to 1.
This gave us a continuous representation of the genome of size 187Mx1682 (figure 1b)

Clustering Since many motifs are highly correlated, we can reduce the number of features that are
used to represent the genome by grouping similar motifs together. To this end, we used a metric called
InterDependence Score (IDS) introduced in [19], which measures nonlinear relationships in large scales
(e.g. whole genome) in a computatinally efficient manner. We computed the genome-wide IDS between
the 1682 motif-strand features, and used hierarchical clustering to group similar motifs together. This
gave us 871 motif clusters (i.e. features). This is analogous to using the JASPAR motif clusters (which
are given by taking the pairwise correlation of the motif PFMs and putting pairs of motifs above a
certain correlation threshold into the same cluster), but we decided to use our own correlation which
takes into account the different strands and is using our own motif scores as opposed to the PFMs.
Figure 4 illustrates the IDS matrix and how similar motif features are clustered into the same group.

A.2 UMAP visualization

In order to obtain the UMAP in figure 2 a, we started with the continuously embedded tokens, each
represented by an 871-dimensional vector of motif-derived IDS features. Then, in order to filter out
‘noisy’ tokens, we first discretized the continuous tokens using a threshold of 0.5, and then retained
only the tokens whose discrete chromosome-wide frequency was between 500 and 1M.

We then applied PCA (K=180) followed by standard scaling. UMAP was then applied to these
180-dimensional subsampled continuous tokens using the cosine distance to produce an initial
two-dimensional embedding of the data. The UMAP coordinates were then refined via t-SNE,
implemented with FFT-accelerated optimization, as suggested by [28]. Louvain community detection
was then performed in two steps: first with a nearest neighbors parameter (K1= 320) to identify
“megaclusters” of similar tokens, followed by a more granular clustering (K2=80) to find smaller
“subclusters” within those megaclusters. Figure 2 b shows the prominent motifs in some of the
illustrated sublclusters of the largest megaculster in chromosome 1.
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Figure 4: Genome-wide InterDependence Score (IDS) matrix

A.3 Sequence-to-Function modeling

To evaluate the utility of our tokenization method for sequence-to-function modeling, we focused on
predicting ATAC-seq signal tracks from genomic sequence data in K562 cell lines. We benchmarked
our tokenization approach against the standard one-hot encoding, which remains the predominant
strategy in most sequence-to-function models. We evaluated performance using both a fully
convolutional architecture and a transformer-based architecture, with detailed schematics provided
in figure 3 a. We only report the performance results of the transformer models because they
outperformed the fully convolutional models (average test set correlations were 0.69 and 0.65 for
onehot and our encoding respectively). However, the convolutional model is still useful since we can
use them for interpretability methods such as DeepLift (which cannot be readily applied to transformer
architectures). To ensure a fair comparison, the architecture of the one-hot encoding model was
carefully designed so that the output resolutions of both approaches were approximately matched.
Specifically, the one-hot encoded model incorporated four average pooling layers, each with a window
size of 2. Consequently, each value in the resulting ATAC-seq output track corresponded to 24=16
base pairs, aligning closely with the average bin size employed in our tokenization scheme.

Data preparation and model training To prepare the training data, we utilized all autosomal
chromosomes, designating chromosome 15 as the validation set, chromosome 10 as the held-out
test set, and the remaining chromosomes for training. For each chromosome, we extracted genomic
fragments of 1,250 bins in length (approximately 20 Kb) using a stride of 500 bins, resulting in
approximately 344,000 training samples. Both input and output tracks were normalized to have zero
mean and unit variance to facilitate stable training dynamics. For optimization, we employed a linear
combination of a Poisson negative log-likelihood loss and a multinomial loss, similar to the approach
used in the Borzoi model [5]. Models were trained for 15 epochs, with early stopping based on the
Pearson correlation of the predicted and ground truth tracks in the validation set. Adam optimizer was
used with a warm-up learning rate period of 5 epochs and linear decay after reaching the target learning
rate of 1e−4. The models were trained on a GPU cluster with four NVIDIA L40S GPUs. The code for
tokenization and model training will be made publicly available upon acceptance. While the one-hot
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Figure 5: Binary peak detection metrics and pearson correlation on the test set

encoded model achieved higher overall performance in terms of correlation (average test set correlation
= 0.73) compared to our tokenization method (average test set correlation = 0.68), qualitative evaluation
of the predicted tracks indicates that our model effectively captures peak structures (Figure 3 a).

Binary metrics for peak detection Since Pearson correlation is highly susceptible to noise—and
ATAC-seq tracks often exhibit substantial background noise—we aimed to assess which method more
effectively captures peaks (i.e., open chromatin regions), as this represents a biologically meaningful
objective. To this end, we binarized the ATAC-seq signals and employed binary classification metrics
to evaluate the models’ peak detection performance. Given that our predicted ATAC tracks have a
resolution of 16 basepairs, standard peak calling algorithms such as MACS2, which require base-pair
resolution inputs, cannot be directly applied. Consequently, we developed a custom peak calling ap-
proach utilizing the scipy package [29]. To determine optimal peak calling parameters, we performed a
hyperparameter sweep on the ground truth ATAC-seq signal binned at 16 bp resolution, selecting the pa-
rameter set that maximized overlap with the default thresholded peak annotations provided by ENCODE
(accession ENCFF948AFM). Using these optimized parameters, we applied our peak calling algorithm
to the model predictions, annotating peak regions as 1 and non-peak regions as 0. This procedure yielded
two binary vectors, enabling computation of various binary metrics for evaluating peak detection ac-
curacy. Moreover, recognizing that traditional binary metrics may be sensitive to the size and precise
boundaries of the called peaks—potentially introducing bias—we introduced two additional, more
robust metrics: peak-level recall and peak-level precision. Peak-level recall quantifies the proportion of
ground truth peaks overlapping with at least one predicted peak, whereas peak-level precision quantifies
the proportion of predicted peaks that overlap with at least one ground truth peak. The results of our
peak detection are reported in figure 4d. We can see that while our model slightly underperforms the
onehot model, in terms of peak detection, the models have comparable performance. Figure 5 illustrates
the test set performance for both the Pearson correlation metric and the peak detection binary metrics.

A.4 Interpretability analysis

In genomic language models, Input × Gradient and DeepLIFT are two common interpretability
methods used to assign importance scores to individual bases in a DNA sequence, helping to reveal
which sequence positions most influence a model’s prediction [deeplift]. Input × Gradient computes
the gradient of the output with respect to each input feature and multiplies it by the actual input
value, making it straightforward to apply to one-hot encoded DNA but potentially sensitive to noisy
gradients and unable to handle cases where gradients vanish due to activation saturation. DeepLIFT
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Figure 6: DeepLift visualization for a sample region of the genome

Figure 7: Input x Gradient benchmarking analysis

instead compares the model’s activations for a real input versus a reference baseline sequence, then
backpropagates these activation differences to the input, which can better capture importance when
gradients are near zero. While Input x Gradient can be applied to any deep learning architecture,
DeepLift is (at the time of this writing) not yet adapted for transformer architectures and can only
be used with convolutional models. Figure 6 shows that for an open region chromating region that
intersects with a CTCF peak, DeepLift applied to our model is able to correctly identify CTCF as the
motif that’s contributing the most to the model’s prediction while the base level importance scores
highlight only some of the basepairs that are present in a CTCF motif.

The TF benchmarking analysis using input x gradients is shown in figure 7.

12


	Introduction
	Methodolgy
	Genomics Language Modeling
	Conclusion and future work
	Technical Appendices and Supplementary Material
	Tokenization Methodology
	UMAP visualization
	Sequence-to-Function modeling
	Interpretability analysis


