
Under review as a conference paper at ICLR 2023

HSVC: TRANSFORMER-BASED HIERARCHICAL DIS-
TILLATION FOR SOFTWARE VULNERABILITY CLASSI-
FICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Software vulnerabilities have diverse characteristics, attacks, and impacts on soft-
ware systems, stakeholders, and organizations. Such diverse characteristics of
vulnerabilities (i.e., CWE-IDs) often lead to more difficulty in handling the la-
bel distributions for a Deep Learning model (e.g., addressing a highly imbalanced
multi-class classification problem). However, existing vulnerability detection ap-
proaches often treat vulnerabilities equally—which does not reflect reality. In this
paper, we present a new approach to solving the highly imbalanced software vul-
nerability classification (SVC) problem by leveraging the hierarchical structure of
CWE-IDs and knowledge distillation. Specifically, we split a complex label dis-
tribution into sub-distributions based on CWE abstract types (i.e., categorizations
that group similar CWE-IDs), so similar CWE-IDs can be grouped and each group
will have a more balanced label distribution. We learn TextCNN teachers on each
of the simplified distributions respectively, however, they only perform well in
their group. Thus, we build a transformer student model to generalize the per-
formance of TextCNN teachers through our hierarchical knowledge distillation
framework. We compare our approach with source code transformer models as
well as long-tailed learning approaches proposed in the vision domain. Through
an extensive evaluation using the real-world 8,636 vulnerabilities, our approach
outperforms all of the baselines by 1.97%-13.89%. Our framework can be ap-
plied to any transformer-based SVC such as CodeBERT, GraphCodeBERT, and
CodeGPT, with slight modifications. Training code and pre-trained models are
available at https://github.com/HSVC-TEAM/HSVC.

1 INTRODUCTION

As the number of discovered software vulnerabilities hit an all-time high of 20k in 2021 reported
by NVD (2000), large software companies are spending more and more funds mitigating the security
threats by granting bug bounties (Google, 2022; MSRC, 2021; Gurfinkel, 2021). Software vulner-
abilities are system weaknesses and glitches that can be further exploited by attackers to steal sen-
sitive data or spread ransomware. Back in 2000, the National Vulnerability Database (NVD, 2000)
has been created by the U.S. government to analyze and track new vulnerabilities to mitigate soft-
ware security breaches. Another community-developed Common Weakness Enumeration (CWE,
2006) list consists of multiple CWE-IDs representing various categories of vulnerability, where
some CWE-IDs are easier to be exploited than others, hence requiring higher priority to be resolved.
For instance, the widespread Log4j flaw inside an open-source Java library provided by the Apache
Software Foundation was found at the end of 2021. Such flaw includes different CWE-IDs such
as CWE-20 (i.e., improper input validation) and CWE-89 (i.e., improper neutralization of special
elements used in an SQL command) with a high likelihood of exploitation (Özkan, 2021). Thus, it
is important to recognize the type of vulnerability for a vulnerable program that enables the security
engineer to prioritize accordingly to focus on the more severe ones.

Recently, several automated software vulnerability classifications (SVC) approaches have been pro-
posed to identify the CWE-IDs given a vulnerable program or a vulnerability description using
Machine Learning/Deep Learning models. In particular, Transformer-based models were leveraged
to achieve superior performance through the self-attention mechanism (Das et al., 2021; Wang et al.,

1

https://github.com/HSVC-TEAM/HSVC

Under review as a conference paper at ICLR 2023

2021). However, due to the complexity and the nature of the process to collect and label software
vulnerabilities wherein some popular vulnerabilities are highly reported while other unpopular ones
are rarely reported, the distribution of different software vulnerabilities is highly imbalanced with
some highly and rarely occurring CWE-IDs in real-world datasets. For instance, CWE-119 is a com-
mon buffer overflow vulnerability that has 2,127 samples in our dataset, while CWE-94 is a more
specific vulnerability about Code Injection that only has 11 samples. Such an imbalanced nature of
CWE-IDs leads to a long-tailed label distribution that hinders the learning process of deep learning
and transformer-based models, where models could learn too well on the specific CWE-IDs while
performing poorly on other CWE-IDs.

Learning from a long-tailed label distribution has been widely studied in computer vision (Lin et al.,
2017; Cui et al., 2019; Cao et al., 2019; Menon et al., 2020), notably Focal Loss (Lin et al., 2017)
and Logit Adjustment (Menon et al., 2020) methods. Although those methods have been demon-
strated to couple well with CNNs and vision data, their direct application to transformer-based SVC
does not perform satisfactorily. As shown in Table 4, focal loss and logit adjustment do not improve
transformer-based SVC. Additionally, some recent works have proposed to group data by label fre-
quencies and use a balanced group softmax (Li et al., 2020) or distillation (Xiang et al., 2020) to learn
a better model inspired by knowledge distillation Hinton et al. (2015) that enables transferring the
knowledge from one or more teacher models to a student model. Again, although these approaches
work to some extent for vision data and CNNs, they cannot improve transformer-based long-tailed
SVC as shown in Table 2 (see the results for BAG and LFME). We conjecture that grouping by label
frequencies helps to mitigate the imbalance in each group. This operation in return creates groups
of less similar CWE-IDs, hence making it harder to train a good teacher model for each group.

Our proposed hierarchical distillation is based on a common characteristic of software data. Specif-
ically, the CWE community has developed a hierarchical CWE abstract types 1 to organize complex
and diverse CWE-IDs by grouping similar CWE-IDs based on their characteristics. In practice, such
categorization is more readable and understandable for security analysts. Moreover, each CWE ab-
stract type becomes a more balanced distribution consisting of similar CWE-IDs, which enables
us to learn a better model. Based on this observation, we propose a novel hierarchical distillation
approach that is based on the hierarchical grouping of CWE-IDs to overcome the highly imbal-
anced problem. Particularly, we split a long-tailed label distribution Y into multiple distributions
where each distribution corresponds to a specific CWE abstract type (i.e., YBase, YCategory, YClass,
YV ariant, or YDeprecated) as depicted in Figure 1. Our grouping strategy leads to multiple more bal-
anced label distributions that consist of CWE-IDs with similar characteristics in each group, hence
they are simpler for a DL model to learn from. Therefore, for each group corresponding to a CWE
abstract type, we train a TextCNN teacher (Kim, 2014) to predict the CWE-IDs in this CWE abstract
type. Additionally, to save up the computation and enable training of the teachers simultaneously,
we tie the backbone of the teachers, hence the teachers are only different in the classification heads
for predicting the CWE-IDs belonging to their CWE abstract type. Finally, we invoke a transformer-
based student to distil from multiple teachers, allowing it to generalize to the entire label distribution.
Note that the idea of distilling a transformer from a different CNN teacher has been realized in the
DeIT approach (Touvron et al., 2021) for vision data. However, in our approach, we hierarchically
distil from multiple TextCNN teachers based on the hierarchy of source code data.

In summary, our main contributions are: (i) a novel data division approach to split a label distribution
into multiple more balanced sub-distributions consisting of more similar CWE-IDs based on the
hierarchical nature of CWE-IDs; (ii) a distillation approach based on the self-attention mechanism
of Transformer models to hierarchically distil knowledge from multiple TextCNN teachers based on
the hierarchy of source code data; and (iii) a comprehensive performance evaluation of our proposed
method on a large-scale standard benchmark data set including vulnerabilities from the real world.

2 RELATED WORK

Vulnerability classification is a task to classify vulnerability labels given source code input. RNN-
based models are proposed to learn the representation of source code sequentially (Russell et al.,
2018; Dam et al., 2017; Li et al., 2018; Nguyen et al., 2019). GNN-based models are proposed
to learn from the graph properties (e.g., AST, CFG, and DFG) constructed using static code anal-

1https://cwe.mitre.org/documents/glossary/

2

Under review as a conference paper at ICLR 2023

ysis (Zhou et al., 2019; Chakraborty et al., 2021). Recently, a graph construction based only on
code tokens in source code is proposed without using an analyzer, which can also be learned from
GNN models (Nguyen et al., 2022). Transformer-based pre-trained language models are commonly
adopted to learn the representation through self-attention for both binary (Fu & Tantithamthavorn,
2022; Thapa et al., 2022) and multi-class (Das et al., 2021; Wang et al., 2021) vulnerability classi-
fication. While most proposed techniques focus on binary vulnerability classification, we explore
multi-class vulnerability classification that aims to classify the vulnerability type (i.e., CWE-ID) of
vulnerable functions.

Long-tailed learning is used to learn a model on a highly imbalanced label distribution. Recently,
Menon et al. (2020) proposed a logit adjustment-based approach to adjust the model’s output logit
based on the label frequencies. Focal Loss (Lin et al., 2017) adjusts the standard cross-entropy
loss to reduce the relative loss for well-classified samples and focus more on rare samples that are
misclassified during model training. In addition, class-balanced loss (Cui et al., 2019) and label-
distribution-aware margin loss (Cao et al., 2019) also tackle long-tailed distribution via loss adjust-
ment.

On the other hand, ensemble-based methods have been proposed to mitigate the long-tailed label dis-
tribution. For instance, Zhou et al. (2020) proposed to train two neural branches, one learning from
original label distribution while the other learning from frequency-reversed label distribution. Li
et al. (2020) proposed a BAGS approach to split long-tailed distribution into multiple more balanced
sub-distributions. BAGS then learns multiple classification heads under a shared feature extractor,
where each head is only trained on a specific sub-distribution. Xiang et al. (2020) proposed an
LFME approach that also splits data into multiple sub-groups to get a smaller class longtailness
on each subset. LFME then learns an expert model on each subset and distils knowledge from all
experts to build a unified student model.

While previous approaches proposed to divide a label distribution based on label frequencies (Li
et al., 2020; Xiang et al., 2020), these data division methods are not optimal for the vulnerability
classification task since similar vulnerabilities can appear in different groups. In contrast, we pro-
pose a data division strategy based on CWE abstract types that result in more balanced distributions
while keeping CWE-IDs with similar characteristics in the same group. Furthermore, we explore
knowledge distillation via self-attention of Transformer models using a distillation token.

3 OUR PROPOSED FRAMEWORK

3.1 PROBLEM STATEMENT

Assuming we have a source code data set consisting of vulnerable source code functions and the
corresponding ground-truth labels representing the vulnerability types (i.e., CWE-ID) of the cor-
responding vulnerable function. We denote the data set as D =

{
(F1, g1, y1), ..., (FN , gN , yN)

}
,

where Fi is a source code representation, gi is its CWE abstract type, and yi is its CWE-ID. More-
over, our source code data has a hierarchical organization in which the vulnerability label (i.e.,
CWE-ID) and group label (i.e., CWE abstract type) are completed by software security experts
based on the user’s reports.

Each vulnerable function can be considered as a sequence of code statements or a sequence of
code tokens. In this paper, we consider a vulnerable function F as a sequence of code tokens and
denote it as F = [t1, ..., tn] where each function consist of n number of code tokens split by BPE
algorithm (Sennrich et al., 2016). Each code token will be embedded into a vector as detailed in
Section 3.2. There are some typical characteristics of this dataset. First, the number of classes is
large, e.g., we have 44 different CWE-IDs in our experimental dataset. Second, the CWE-ID labels
are hierarchically grouped in the CWE abstract types. Moreover, the CWE-IDs in the same group
(i.e., CWE abstract type) are more similar and have the same nature of vulnerabilities. Third, it is a
long-tailed dataset for which due to the nature of vulnerabilities, some are more convenient to collect
(i.e., frequent CWE-IDs) while some are much harder to collect (i.e., rare CWE-IDs). Fortunately,
for the CWE-IDs in the same group, because they share a common nature, their frequencies are
more balanced as shown in Table 3.

3

Under review as a conference paper at ICLR 2023

Our aim is to take advantage of these characteristics to propose a transformer-based hierarchical
distillation framework to tackle the long-tailed distribution issue efficiently and benefit from the
ability to expose dark knowledge from knowledge distillation.

3.2 PROPOSED FRAMEWORK

We now present our main contribution of a novel framework that can effectively assist a transformer
model to learn better vulnerability classification. Our framework consists of three sub-steps: (i)
grouping source codes into the groups with the same CWE abstract types, (ii) training multiple
TextCNN teachers, each of which is to predict the CWE-IDs in the same group, and (iii) hierarchi-
cally distil a transformer-based student from multiple diverse teachers. We term this whole process
as Transformer-based Hierarchical Distillation for Software Vulnerability Classification (HSVC),
which is overall summarized in Figure 1.

Class
token

Distillation
token

SEP
token

Code
tokens

Self-Attention

Feed-Forward Neural Network x 12

Student Model
Text
CNN

Base
Cls Head

Variant
Cls Head

Hierarchical Grouping of CWE-IDs

Base
(Common)

CWE-787 …

Class
(Common)

Category
(Common)

Deprecated
(Rare)

Variant
(Rare)

CWE-119 … CWE-399 … CWE-17 … CWE-415 …

Similar CWE-IDs
More Balanced

Class
Cls Head

Category
Cls Head

Deprecated
Cls Head

CWE-IDs
belonging

to
Category

CWE-IDs
belonging

to
Deprecated

CWE-IDs
belonging

to
Base

CWE-IDs
belonging

to
Class

CWE-IDs
belonging

to
Variant

Text
CNN

Text
CNN

Text
CNN

Text
CNN

tie tie tie tie

()

Figure 1: The overview architecture of our HSVC during knowledge distillation. The left part de-
scribes the inference process of TextCNN teachers. The CWE-IDs are grouped hierarchically based
on the CWE abstract types gi. A tied TextCNN backbone is connected with multiple classification
heads, where each head predicts CWE-IDs belonging to their own CWE abstract type. The right part
illustrates the training process of the student model. A distillation token [dis] and a [cls] token are
added to the input Fi to learn from the knowledge of teachers and ground-truth labels respectively.
The representation of Fi forwards through a 12-layer GraphCodeBERT. Finally, the student relies on
a KL loss to learn the representation of [dis] by distilling knowledge from predictions of the teacher
models, and a CE loss to learn the representation of [cls] token from ground-truth labels.

3.2.1 GROUPING SOURCE CODES INTO THE GROUPS WITH THE SAME CWE ABSTRACT
TYPES

We first split a CWE-ID label distribution Y into multiple sub-distributions based on CWE abstract
type to group similar CWE-IDs. Specifically, given a label distribution Y consisting of 44 different
CWE-IDs, we first split them into 5 groups based on the CWE abstract types (i.e., YBase, YCategory,
YClass, YV ariant, and YDeprecated) where each of the sub-distribution consists of multiple CWE-
IDs belong to the same CWE abstract type. For instance, Ybase is a distribution that consists of
all CWE-IDs in our dataset that belongs to the base type. We provide the mapping between CWE
abstract types and CWE-IDs in Appendix 9. In Table 3, we provide statistics of imbalance measure
of each grouped label distribution mentioned above and the ungrouped label distribution Y .

4

Under review as a conference paper at ICLR 2023

3.2.2 TRAINING MULTIPLE TEXTCNN TEACHERS

We learn multiple TextCNN teacher models, each of which predicts CWE-IDs in the same CWE
abstract type. By grouping by the CWE abstract types, we achieve the groups consisting of many
similar and more balancing CWE-IDs, hence allowing us to train more accurate and better teachers.

Additionally, to encourage training multiple teachers simultaneously and save up the computation
overhead, we share the backbone of the TextCNN teachers. On top of this backbone, we build up
the classification heads for predicting the CWE-IDs belonging to the same CWE abstract types. For
instance, for our dataset, we have 5 classification heads corresponding to YBase, YCategory, YClass,
YV ariant, and YDeprecated, each of which aims to predict the CWE-IDs in the corresponding CWE
abstract type.

So far, we can train good teachers, but they only perform well on the local distribution of an abstract
type. In what follows, we present how to employ hierarchical distillation to distil knowledge from
multiple teachers for achieving a transformer-based approach that can generalize to predict well
entire label distributions.

3.2.3 HIERARCHICAL TRANSFORMER-BASED DISTILLATION

At this outset, we impress upon that our hierarchical distillation framework can be applied to any
transformer-based SVC with slight modifications. To simplify the context, in the sequel, we present
the technicality for GraphCodeBERT (Guo et al., 2020).

We leverage GraphCodeBERT which considers the Data Flow Graph (DFG) of source codes. We use
the Treesitter 2 package to construct a DFG for each vulnerable function and the GraphCodeBERT
implementation (Guo et al., 2020) to integrate DFG information into a sequence of tokens along
with a graph-guided attention mask. We refer interested readers to GraphCodeBERT paper (Guo
et al., 2020) for detailed operations of the graph-guided attention mask.

In particular, given a raw input function F , we tokenize F into a set of subword tokens and em-
bed each token into ti ∈ Rd=768 to obtain a representation as t1:n = t1 ⊕ ... ⊕ tn (i.e., ⊕ is the
concatenation operator) using the pre-trained BPE tokenizer and the embedding layer of Graph-
CodeBERT (Guo et al., 2020). We truncate and do padding to let n = 512 tokens.

Two special tokens, [cls] and [sep], are added during tokenization where the classification embed-
ding (i.e., [cls]) is used to learn the representation of input functions, which will be used by a
classification head to classify the CWE-ID. In addition, a [dis] token is added before the [sep] token
to distil knowledge from the teachers. Such distillation embedding (i.e., [dis]) allows GraphCode-
BERT to learn from the output of the TextCNN teachers, as in a regular distillation, while remaining
complementary to the class embedding.

We denote H0 as the hidden vector output by GraphCodeBERT’s embedding layer. The embedding
vectors H0 go through 12 layers of BERT encoder with bidirectional self-attention to learn the
representation of source code: Hn = En(Hn−1), n ∈ {1, ..., 12}. As proposed by Vaswani et al.
(2017), each encoder En consists of a multi-head self-attention operation followed by 2 layers of
feed-forward neural networks. En takes theHn−1 as input to the self-attention operation to generate
self-attention hidden vectors An where LN is a layer normalization and Attn is the multi-head self-
attention mechanism (Vaswani et al., 2017):

An = LN(Attn(Hn−1)) +Hn−1 (1)

An then goes through 2 layers of feed-forward layers to result in Hn, the final hidden vector gener-
ated by En:

Hn = LN(FFN(An) +An) (2)

At the last hidden layer, we possess the token embeddings H12 consisting of the class token embed-
dingHcls and the distillation token embeddingHdis. We then feed them to two linear layers to work
out the class token logits Zs

cls and the distil token logits Zs
dis. Similar to (Touvron et al., 2021), we

consider both soft-label and hard-label distillations.

2https://github.com/tree-sitter/tree-sitter

5

Under review as a conference paper at ICLR 2023

Soft-label distillation (Hinton et al., 2015; Wei et al., 2020) minimizes the Kullback-Leibler diver-
gence between the softmax of the teacher and the student models. The output of softmax activation
is mapped into log space to prevent the underflow issue when computing the KL loss. Let Zt be
the logits of the teacher model for a given source code F with the ground-truth label y. We denote
λ ∈ [0, 1] the tunable coefficient balancing the Kullback–Leibler divergence loss (LKL) and the
cross-entropy (LCE) on ground truth labels y, and ψ the softmax function. The soft distillation
objective is as follows:

Lsoft = (1− λ)LCE

(
ψ(Zs

cls), y
)
+λLKL

(
ψ(Zs

dis), ψ(Z
t)
)

(3)

Hard-label distillation (Touvron et al., 2021) leverages the one-hot hard decision of the teacher yt
for a given source code as a true label. The hard-label distillation objective is as follows:

Lhard = (1− λ)LCE

(
ψ(Zs

cls), y
)
+λLCE

(
ψ(Zs

dis), yt
)

(4)

Inference with dual representation. Given a source code, our HSVC relies on representations
of both [cls] and [dis] tokens (i.e., Zcls and Zdis) to make the final prediction. To this end, we
introduce a tunable hyperparameter η ∈ [0, 1] to tradeoff between the Hcls and Hdis as described in
Equation 5 where ψ is a softmax function.

p̂ = ηψ(Zcls) + (1− η)ψ(Zdis)

ŷ = argmax
k

p̂k
(5)

4 EXPERIMENTS

4.1 BASELINE APPROACHES

We compare our method with large pre-trained Transformer-based models for source code, i.e.,
CodeBERT (Feng et al., 2020), GraphCodeBERT Guo et al. (2020), and CodeGPT (Lu et al., 2021).
We also include Devign (Zhou et al., 2019) and ReGVD (Nguyen et al., 2022), GNN-based mod-
els that were designed for software vulnerability detection tasks and achieved competitive results.
Furthermore, we include BAGS (Li et al., 2020) and LFME (Xiang et al., 2020) that mitigate the
imbalance of label distribution by splitting the data into subsets based on label frequencies. We refer
interested readers to Appendix A.3 for more details on each baseline method.

4.2 EXPERIMENTAL DATASET

We use Big-Vul dataset (Fan et al., 2020) in our experiments, which is widely used to evaluate DL
models for vulnerability detection (Li et al., 2021; Hin et al., 2022; Fu & Tantithamthavorn, 2022).
Big-Vul is created by crawling from 348 open-source Github projects which are the public Common
Vulnerabilities and Exposures (CVE) database and CVE-related source code repositories. Big-Vul
consists of both vulnerable and non-vulnerable C/C++ functions with 3,754 code vulnerabilities and
a total number of 188k functions. To satisfy the vulnerability classification setting, we drop the non-
vulnerable functions and obtain 8,636 vulnerable functions with 44 different kinds of CWE-IDs.

4.3 PARAMETER SETTING

We split the data into 80% for training, 10% for validation, and 10% for testing. For hyperparameters
of baseline approaches, we follow the best setting as specified by the original authors. For our
TextCNN teacher model, we use 3 hidden layers, the window size of W = [3, 4, 5] respectively, 100
channels, and a dropout rate of 0.1. For our student model, we use the default model architecture
for the GraphCodeBERT model which consists of 12 Transformer encoders with a dropout rate set
to 0.1 and a hidden dimension of 768. The training scheme of our teacher and student models is
reported in Table 1. We train each model through specific epochs as reported and select the best
model based on the highest accuracy on the validation set. We run our experiments on a server with
an AMD Ryzen 9 5950X with 16C/32T, 64 GB of RAM, and an NVIDIA RTX3090 GPU with
24GB of RAM.

6

Under review as a conference paper at ICLR 2023

Table 1: The training schemes of teacher and student models in our HSVC approach.
Models Optimizer Scheduler LR Grad Clip Batch Seq Len Epoch λ η
Teacher AdamW Linear 5e-3 1.0 128 512 50 - -
Student AdamW Linear 2e-5 1.0 16 512 50 0.7 0.9

4.4 EXPERIMENTAL RESULTS

4.4.1 MAIN RESULTS

We conduct experiments on the Big-Vul dataset to compare our methods with other baselines. In
addition, we also apply our method on top of the CodeGPT (Lu et al., 2021) and CodeBERT (Feng
et al., 2020). The experimental results are shown in Table 2. It can be seen that our method out-
performs all of the baseline approaches. In particular, our hierarchical soft distillation approach
further improves the performance of GraphCodeBERT (62.27% → 64.58%), CodeBERT (58.22%
→ 63.43%), and CodeGPT (63.08% → 65.05%). These results confirm the effectiveness of our
proposed method to learn accurate teachers on each CWE abstract type and build a generalized
Transformer student through soft distillation.

Table 2: (Main results) The multi-class accuracy on each subset of the testing data for our proposed
method and each baseline approach. Measure using multi-class accuracy shown in percentage. De-
scription of each CWE abstract type is provided in Appendix 10.

Method Group By CWE Abstract Types
Subsets Yclass Ybase Ycategory Yvariant Ydeprecated Overall
Devign 58.11 44.05 45.1 31.71 38.46 51.16
ReGVD 60.42 55.95 56.21 36.59 57.69 57.52

CodeBERT 64 49.4 57.52 31.71 53.85 58.22
CodeGPT 65.26 60.12 64.05 51.22 53.85 63.08

GraphCodeBERT 63.16 63.69 64.05 41.46 61.54 62.27
BAGS 63.58 54.17 54.9 51.22 42.31 58.91
LFME 65.47 58.33 61.44 39.02 50 61.57

GraphCodeBERTSoft−HSV C (ours) 66.53 64.29 62.75 56.1 57.69 64.58
CodeBERTSoft−HSV C (ours) 65.26 65.48 58.82 56.1 57.69 63.43
CodeGPTSoft−HSV C (ours) 68.63 62.5 60.78 56.1 57.69 65.05

Additionally, we present statistics in Table 3 of the imbalance measure for each grouped label dis-
tribution (i.e., Yclass, Ybase, Ycategory, Yvariant, Ydeprecated) and the ungrouped label distribution
(i.e., Y). Almost all of the grouped label distributions have a lower imbalance ratio than Y , where
the imbalance ratio is computed as Nmax/Nmin and N represents the number of samples in each
class (Hong et al., 2021). Furthermore, all of the grouped label distributions have lower entropy,
indicating that the grouped label distributions contain less uncertainty which is simpler for a DL
model to learn the classification of labels. Such statistics confirm that our grouping strategy can
mitigate the imbalance of data while grouping similar CWE-IDs.

Table 3: Statistics that measure the imbalance of grouped and ungrouped data distributions.
Measure / Distribution Y Yclass Ybase Ycategory Yvariant Ydeprecated

Imbalance Ratio (Nmax

Nmin
) 2127

10 =213 2127
10 =213 625

11 =57 736
10 =74 330

81 =4 177
34 =5

Entropy 2.78 1.66 1.98 1.25 0.5 0.85

4.4.2 ABLATION STUDY

(1) In Comparison With Recent Advanced Methods For The Data Imbalance Issue.

7

Under review as a conference paper at ICLR 2023

Previous studies on the CWE-ID classification task have revealed the data imbalance problem
that vulnerable programs concentrate on specific CWE-IDs while other CWE-IDs are rare in the
dataset (Das et al., 2021; Aghaei et al., 2020). Such a problem can be determined as a long-tailed
learning problem which is well-known in the image classification domain where the model has trou-
ble learning to recognize those rare images in the dataset. In particular, the imbalance ratio can
be computed as Nmax/Nmin where N represents the number of samples in each class (Hong et al.,
2021). Our experiment dataset has an imbalance ratio of 213 where the samples per class range from
2127 to 10 samples, which can be considered as an imbalance dataset when compared with previous
long-tailed learning studies (Hong et al., 2021; Kang et al., 2019). Thus, it is important to compare
our proposed approach with other methods that help the model learn better about the imbalanced
label distribution. Recently, Menon et al. (2020) proposed a softmax with logit translation method
which is inspired by the classic logit adjustment based on label frequencies (Provost, 2000; Zhou &
Liu, 2005; Collell et al., 2016). On the other hand, focal loss (Lin et al., 2017) is a well-known ex-
tension of the cross-entropy loss function which is commonly applied to overcome imbalance label
distribution. It down-weights frequent classes and focuses training on rare classes. We compare our
HSVC with both logit adjustment (LA) and focal loss (FL) approaches. We set the hyperparameter
τ = 1 for LA and hyperparameter α = 0.25, γ = 2 for FL as those values yielded the best results
reported by the authors (Menon et al., 2020; Lin et al., 2017).

The experimental results are shown in Table 4. Our approach outperforms FL and LA methods
by 2.54% and 2.31% respectively. When comparing with the original performance of GraphCode-
BERT, both FL and LA approaches do not further improve the performance of GraphCodeBERT. In
contrast, our HSVC improves the performance of GraphCodeBERT by 2.31%.

The focal loss reduces the loss contribution of frequent samples and the logit adjustment encourages
a large relative margin between logits of rare versus dominant labels. Such an approach may benefit
the rare labels, but the performance on the frequent labels may not benefit as much as the rare ones.
On the other hand, our method builds a TextCNN teacher with multiple classification heads to focus
on different subsets of data and transfer knowledge to the student model via distillation without
adjusting loss weights for rare samples.

Table 4: (Data imbalance results) The experimental results when comparing our proposed approach
with other methods focusing on the data imbalance problem. Measure using multi-class accuracy
shown in percentage. (FL - Focal Loss, LA - Logit Adjustment).

Methods Group By CWE Abstract Types
Subsets Yclass Ybase Ycategory Yvariant Ydeprecated Overall

GraphCodeBERT 63.16 63.69 64.05 41.46 61.54 62.27
GraphCodeBERTFL 64.21 62.5 58.17 53.66 57.69 62.04
GraphCodeBERTLA 63.58 64.29 60.78 43.9 65.38 62.27

GraphCodeBERTHSVC (ours) 66.53 64.29 62.75 56.1 57.69 64.58

(2) Study Each Step Proposed In Our HSVC.

In general, our HSVC consists of three steps, (i) split data into multiple subsets based on the CWE
abstract types, (ii) train a TextCNN teacher model with multiple classification heads, and (iii) distil
via soft distillation to build the final student model. Thus, we conduct an ablation study for each
step by comparing our HSVC with other variants as follows:

Table 5: (Ablation results) The comparison be-
tween grouping by label frequency and grouping
by CWE abstract types.

Methods Accuracy (%)
Label Frequency Grouping 62.27
CWE Grouping (ours) 64.58

(i) Data Splitting.

To study the effect of our grouping strategy by
the hierarchical nature of CWE-IDs, we com-
pare our strategy with the strategy used by the
LFME framework that focuses on label fre-
quencies to balance the label distribution. We
keep the same model architecture and teacher-
student learning process and only change the
data grouping strategy (i.e., Label Frequency
Grouping + Shared TextCNN Teachers + Soft
Distillation). The experimental results are shown in Table 5. The LFME grouping strategy focuses
only on label frequencies and some irrelevant CWE-IDs may appear in the same group. Our hierar-

8

Under review as a conference paper at ICLR 2023

chical grouping based on CWE abstract types mitigates the data imbalance while grouping similar
CWE-IDs. The result confirms that our grouping strategy is more effective than the strategy focusing
on label frequencies for the software vulnerability classification task.

(ii) Teacher Model.

We aim to study the effect of leveraging different teacher models. Thus, we compare HSVC which
builds teachers sharing one TextCNN backbone with a variant that builds a separate TextCNN for
each group (i.e., CWE Grouping + Non-shared TextCNN Teachers + Soft Distillation). In addition,
it is feasible to use GraphCodeBERT models as teachers, hence we also compare a variant that uses
GraphCodeBERT teachers (i.e., CWE Grouping + GraphCodeBERT Teachers + Soft Distillation) to
study the effect of having an identical architecture for teachers and the student.

Table 6: (Ablation results) The comparison be-
tween the TextCNN teachers and the Transformer
teachers of our proposed method.

Teacher Models Accuracy (%) Params
GraphCodeBERT 75.81 125M

TextCNN 75.81 40M

The experimental results are shown in Table 7.
Our shared TextCNN teachers are more effi-
cient in terms of computation due to fewer pa-
rameters required. Furthermore, these results
confirm that distilling from shared TextCNN
teachers outperforms distilling knowledge from
non-shared TextCNN teachers when learning
our student model. It has been shown that us-
ing different architectures for teacher and stu-
dent models yields better distillation in the im-
age domain (Touvron et al., 2021). Our experimental results also reveal that using different architec-
tures for teacher and student models achieves better accuracy. More importantly, training TextCNN
teachers is efficient in terms of time and parameters required. It is worth to note that TextCNN
teachers reduce the parameters of GraphCodeBERT teachers from 125M to 40M but still achieve
the same performance as shown in Table 6. Thus, we decided to leverage TextCNN teachers which
achieve better performance and are more efficient to train.

Table 7: (Ablation result) The comparison
between teachers sharing one TextCNN ba-
ckbone and non-sharing teachers.

Methods Accuracy (%)
Non-shared TextCNNs 62.73
GraphCodeBERT 64.35
Shared TextCNN (ours) 64.58

Table 8: (Ablation result) The comparison be-
tween the soft distillation 3 and the hard distil-
lation 4 of our HSVC approach. Measure using
multi-class accuracy shown in percentage.

Methods Accuracy (%)
Hard Distillation 62.27
Soft Distillation (ours) 64.58

(iii) Distillation Method. We compare the soft distillation 3 with the hard distillation 4 (i.e., CWE
Grouping + Shared TextCNN + Hard Distillation) during the training of the student model. The
experimental results are shown in Table 8. Touvron et al. (2021) have shown that hard distillation
achieves more advanced results than soft distillation for the image classification task. However, our
experimental results show that soft distillation is better than hard distillation in the SVC task.

5 CONCLUSION

In this paper, we have introduced a new data grouping approach based on CWE abstract types and
a teacher-student learning framework to overcome the data imbalance issue of the software vulner-
ability classification task. By hierarchically grouping an imbalanced label distribution into multiple
sub-distributions based on CWE abstract types, the sub-distributions become more balanced and
similar CWE-IDs are distributed in the same group. Thus, we can learn more accurate TextCNN
teachers. However, they only perform well in each group respectively. We learn a transformer stu-
dent model through our hierarchical knowledge distillation framework to generalize the knowledge
of teachers to predict all CWE-IDs accurately. Through an extensive evaluation of 8,636 real-world
vulnerabilities, our approach outperforms all of the baselines including source code transformer
models and long-tailed learning approaches proposed in the vision domain. Last but not least, our
approach can be applied to any transformer-based SVC with slight modifications.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ehsan Aghaei, Waseem Shadid, and Ehab Al-Shaer. Threatzoom: Hierarchical neural network for
cves to cwes classification. In International Conference on Security and Privacy in Communica-
tion Systems, pp. 23–41. Springer, 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet. IEEE Transactions on Software Engineering, 2021.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Guillem Collell, Drazen Prelec, and Kaustubh Patil. Reviving threshold-moving: a simple plug-in
bagging ensemble for binary and multiclass imbalanced data. arXiv preprint arXiv:1606.08698,
2016.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268–9277, 2019.

CWE. Common weakness enumeration (cwe). https://cwe.mitre.org/index.html,
2006.

CWE. Cwe glossary. https://cwe.mitre.org/documents/glossary/#Variant%
20Weakness, 2021.

Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and Aditya Ghose.
Automatic feature learning for vulnerability prediction. arXiv preprint arXiv:1708.02368, 2017.

Siddhartha Shankar Das, Edoardo Serra, Mahantesh Halappanavar, Alex Pothen, and Ehab Al-Shaer.
V2w-bert: A framework for effective hierarchical multiclass classification of software vulnera-
bilities. In 2021 IEEE 8th International Conference on Data Science and Advanced Analytics
(DSAA), pp. 1–12. IEEE, 2021.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
code changes and cve summaries. In Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 508–512, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 1536–1547, 2020.

Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vulnerability
prediction. In 2022 IEEE/ACM 19th International Conference on Mining Software Repositories
(MSR). IEEE, 2022.

Google. Key statistics of the google bug bounty program. https://bughunters.google.
com/about/key-stats, 2022.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. In International Conference on Learning Representations, 2020.

Dan Gurfinkel. Charting the future of our bug bounty program. https://engineering.fb.
com/2021/12/15/security/bug-bounty-scraping/, 2021.

David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. Linevd: Statement-level vulnerability
detection using graph neural networks. arXiv preprint arXiv:2203.05181, 2022.

10

https://cwe.mitre.org/index.html
https://cwe.mitre.org/documents/glossary/#Variant%20Weakness
https://cwe.mitre.org/documents/glossary/#Variant%20Weakness
https://bughunters.google.com/about/key-stats
https://bughunters.google.com/about/key-stats
https://engineering.fb.com/2021/12/15/security/bug-bounty-scraping/
https://engineering.fb.com/2021/12/15/security/bug-bounty-scraping/

Under review as a conference paper at ICLR 2023

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6626–6636, 2021.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2019.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–
1751, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/
D14-1181. URL https://aclanthology.org/D14-1181.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2016.

Yi Li, Shaohua Wang, and Tien N Nguyen. Vulnerability detection with fine-grained interpretations.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 292–303, 2021.

Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng Wang, Jintao Li, and Jiashi Feng. Overcom-
ing classifier imbalance for long-tail object detection with balanced group softmax. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10991–11000,
2020.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural
networks. In Proceedings of ICLR’16, 2016.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv e-prints,
pp. arXiv–1801, 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2020.

MSRC. Microsoft bug bounty programs year in review: $13.6m in re-
wards. https://msrc-blog.microsoft.com/2021/07/08/
microsoft-bug-bounty-programs-year-in-review-13-6m-in-rewards/,
2021.

Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier DeVel, Paul Montague, Lizhen Qu, and
Dinh Phung. Deep domain adaptation for vulnerable code function identification. In International
Joint Conference on Neural Networks (IJCNN), 2019.

11

https://aclanthology.org/D14-1181
https://msrc-blog.microsoft.com/2021/07/08/microsoft-bug-bounty-programs-year-in-review-13-6m-in-rewards/
https://msrc-blog.microsoft.com/2021/07/08/microsoft-bug-bounty-programs-year-in-review-13-6m-in-rewards/

Under review as a conference paper at ICLR 2023

Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, Dinh Phung, et al.
Regvd: Revisiting graph neural networks for vulnerability detection. In 2022 IEEE/ACM 44th
International Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 178–182. IEEE, 2022.

NVD. National vulnerability database (nvd). https://nvd.nist.gov/, 2000.

Foster Provost. Machine learning from imbalanced data sets 101. In Proceedings of the AAAI’2000
workshop on imbalanced data sets, volume 68, pp. 1–3. AAAI Press, 2000.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul
Ellingwood, and Marc McConley. Automated vulnerability detection in source code using deep
representation learning. In 2018 17th IEEE international conference on machine learning and
applications (ICMLA), pp. 757–762. IEEE, 2018.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In 54th Annual Meeting of the Association for Computational Linguistics, pp.
1715–1725. Association for Computational Linguistics (ACL), 2016.

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk, and
Surya Nepal. Transformer-based language models for software vulnerability detection: Perfor-
mance, model’s security and platforms. arXiv preprint arXiv:2204.03214, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Tianyi Wang, Shengzhi Qin, and Kam Pui Chow. Towards vulnerability types classification using
pure self-attention: A common weakness enumeration based approach. In 2021 IEEE 24th In-
ternational Conference on Computational Science and Engineering (CSE), pp. 146–153. IEEE,
2021.

Longhui Wei, An Xiao, Lingxi Xie, Xiaopeng Zhang, Xin Chen, and Qi Tian. Circumventing out-
liers of autoaugment with knowledge distillation. In European Conference on Computer Vision,
pp. 608–625. Springer, 2020.

Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced knowl-
edge distillation for long-tailed classification. In European Conference on Computer Vision, pp.
247–263. Springer, 2020.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 9719–9728, 2020.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with methods addressing
the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1):
63–77, 2005.

Serkan Özkan. Log4j: Security vulnerabilities. https://www.cvedetails.com/
vulnerability-list/vendor_id-45/product_id-37215/Apache-Log4j.
html, 2021.

12

https://nvd.nist.gov/
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-37215/Apache-Log4j.html
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-37215/Apache-Log4j.html
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-37215/Apache-Log4j.html

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 CWE MAPPING

Table 9: The mapping between the CWE abstract types and the CWE-IDs in our benchmark data
set.

CWE Abstract Type CWE-IDs

Class
CWE-20, CWE-77, CWE-119, CWE-189, CWE-200, CWE-269,
CWE-285, CWE-287, CWE-311, CWE-362, CWE-400, CWE-404,
CWE-674, CWE-704, CWE-732, CWE-754, CWE-834

Base
CWE-22, CWE-59, CWE-78, CWE-79, CWE-94, CWE-125,
CWE-134, CWE-190, CWE-358, CWE-369, CWE-476, CWE-617,
CWE-772, CWE-787, CWE-835

Category CWE-19, CWE-254, CWE-264, CWE-310, CWE-388, CWE-399
Variant CWE-415, CWE-416
Deprecated CWE-17, CWE-18, CWE-284

A.2 DESCRIPTION OF CWE ABSTRACT TYPES

Table 10: The description of each CWE abstract type (CWE, 2021) used in our benchmark data set.
CWE Abstract Type Description

Class A weakness that is described in a very abstract fashion, typically
independent of any specific language or technology.

Base A weakness that is described in an abstract fashion, but with sufficient
details to infer specific methods for detection and prevention.

Category

A CWE entry contains a set of other entries that share a common
characteristic. A category is not a weakness, but rather a structural
item that helps users find weaknesses that share the stated common
characteristic.

Variant A weakness that is linked to a certain type of product, typically
involving a specific language or technology.

Deprecated A CWE entry that has been deprecated to simplify
the depth and complexity of the CWE structure.

A.3 BASELINE APPROACHES

• CodeBERT: The pre-trained model for programming languages is proposed in (Feng et al.,
2020). CodeBERT relies on the same architecture as the BERT model consisting of 12
identical Transformer encoders with bidirectional self-attention. CodeBERT is pre-trained
on bimodal data including both programming language and natural language to learn rep-
resentations for source code and documentation. Specifically, it is pre-trained on 6 pro-
gramming languages (Python, Java, JavaScript, PHP, Ruby, Go) using masked language
modelling (Kenton & Toutanova, 2019) and replaced token detection (Clark et al., 2020)
objectives.

• GraphCodeBERT: The pre-trained code representation with data flow using BERT archi-
tecture proposed in (Guo et al., 2020). This work is an extended version of CodeBERT
and proposed to embed graph structure (i.e., data flow graph) with a sequence of source
code tokens. To represent the relation between source code tokens and nodes of the data
flow, GraphCodeBERT relies on graph-guided masked attention to define the interaction
between code tokens and nodes.

• CodeGPT: The GPT-2 architecture pre-trained on programming languages corpus is pro-
posed in (Lu et al., 2021). CodeGPT has the same model architecture and training objec-
tive as GPT-2 (Radford et al., 2019). CodeGPT is one of the baseline approaches in the
CodeXGLUE benchmark dataset for code understanding and generation (Lu et al., 2021).

13

Under review as a conference paper at ICLR 2023

• Devign: The GNN-based approach for vulnerability detection is proposed in (Zhou et al.,
2019). This work builds a multi-edged graph from a source code function, then leverages
Gated GNNs (Li et al., 2016) to update node representations, and finally utilizes a 1-D
CNN-based pooling (“Conv”) to make predictions. Note that the authors of Devign (Zhou
et al., 2019) do not release the official implementation of Devign. Thus, we reuse the avail-
able re-implementation provided by Nguyen et al. (2022) with the same training protocols
as the original Devign.

• ReGVD: The GNN-based method with residual connections among GCN (Kipf & Welling,
2016) layers for vulnerability detection is proposed in (Nguyen et al., 2022). ReGVD
views each source code function as a flat sequence of tokens to build a graph, wherein node
features are initialized by only the token embedding layer of a pre-trained programming
language (PL) model. ReGVD then leverages GCN layers with pooling layers to return a
graph embedding for the source code function, which is utilized to predict final targets.

• LFME: Xiang et al. (2020) proposed to learn from multiple expert (LFME) models to
overcome an imbalanced image dataset. LFME first split the imbalance label distribution
into groups where each group is more balanced than the original distribution. It then learned
one expert model on each balanced distribution and distilled from all experts to build a
final student model. Note that the original LFME framework was designed for the image
domain, we followed the original LFME proposal but used a TextCNN to implement the
LFME approach. We split the imbalance label distribution into 3 balanced groups with a
cardinality threshold set to 100, 500 to fit our experimental dataset. Given that our problem
domain is source-code related, we use the pre-trained embeddings of the CodeBERT model
to map a code sequence into vector space before input to the TextCNN model.

• BAGS: A balanced training strategy based on group softmax for object detection, Li et al.
(2020) first split the imbalance dataset into more balanced groups and proposed to leverage
a shared CNN model to extract the representation of images and trained multiple classi-
fication heads where each head was trained on a specific group of data. Similar to the
implementation of LFME, we use TextCNN to implement the BAGS framework to adapt
to our domain. We follow the same split as LFME to split an imbalance label distribution
into balanced groups and use the pre-trained CodeBERT embeddings to build the BAGS
approach adapted for the source code domain.

14

	Introduction
	Related work
	Our proposed framework
	Problem statement
	Proposed framework
	Grouping source codes into the groups with the same CWE abstract types
	Training multiple TextCNN teachers
	Hierarchical transformer-based distillation

	Experiments
	Baseline approaches
	Experimental dataset
	Parameter Setting
	Experimental results
	Main Results
	Ablation Study

	Conclusion
	Appendix
	CWE Mapping
	Description of CWE abstract types
	Baseline Approaches

