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Abstract
It is by now well-established that modern over-
parameterized models seem to elude the bias-
variance tradeoff and generalize well despite over-
fitting noise. Many recent works attempt to ana-
lyze this phenomenon in the relatively tractable
setting of kernel regression. However, as we ar-
gue in detail, most past works on this topic either
make unrealistic assumptions, or focus on a nar-
row problem setup. This work aims to provide a
unified theory to upper bound the excess risk of
kernel regression for nearly all common and real-
istic settings. When applied to common kernels,
our results imply benign overfitting in high input
dimensions, nearly tempered overfitting in fixed
dimensions, and explicit convergence rates for
regularized regression. As a by-product, we ob-
tain time-dependent bounds for neural networks
trained in the kernel regime. Our results rely on
new relative perturbation bounds for the eigenval-
ues of kernel matrices, which may be of indepen-
dent interest. These reveal a self-regularization
phenomenon, whereby a heavy tail in the eigende-
composition of the kernel implicitly leads to good
generalization.

1. Introduction
It is by now well-established that various families of highly
over-parameterized models tend to generalize well, even
when perfectly fitting noisy data (Zhang et al., 2021; Belkin
et al., 2019). This phenomenon seemingly contradicts the
classical intuition of the bias-variance tradeoff, and moti-
vated a large literature attempting to explain it (Bartlett et al.,
2020; Hastie et al., 2022).

In particular, a long series of works attempted to understand
this phenomenon in the context of kernel methods (Liang &
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Rakhlin, 2020; Mei et al., 2022; Xiao & Pennington, 2022;
Mallinar et al., 2022). This is due both to their classical
importance and their relation to over-parameterized neural
networks via the Neural Tangent Kernel (NTK) and Gaus-
sian Process Kernel (GPK, also known as NNGP) (Lee et al.,
2017; Jacot et al., 2018). However, there is still a large gap
between empirical observations and current theoretical anal-
ysis. As we argue in detail in Sec. 2, past works tend to
either make unrealistic assumptions (often inspired by the
analysis of linear regression) that do not hold for common
kernels of interest, or are limited to a very narrow problem
setup. This is not just a technical limitation, but rather, as we
will show, may result in an inaccurate analysis for common
kernels in practice. In this paper, we provide simple, sharp,
and rigorous upper bounds for the generalization error of
kernel regression, which hold under realistic assumptions
and can be applied to a wide range of kernels and settings.

Specifically, we demonstrate that many kernels have a built-
in self-regularization property, meaning that the structure of
the kernel provides an implicit form of regularization. This
is characterized by novel relative deviation bounds on the
eigenvalues of kernel matrices, which may be of indepen-
dent interest and may be useful in many other settings.

We then apply these tools to analyze the generalization
performance of regularized and un-regularized kernel re-
gression. Self-regularization causes the kernel to learn a
function that generalizes well, even if it can interpolate the
data. As such, we provide upper bounds for the excess risk
(and its bias and variance components) regardless of the
amount of explicit regularization. Importantly, our mild
assumptions allow us to apply these bounds to common
kernels, including NTKs (and hence provide insights on
generalization in neural networks). Specifically, our main
results and insights include the following:

Relative concentration bounds for the eigenvalues of
kernel matrices (Thm. 3.1). We derive both upper and
lower bounds for the eigenvalues of kernel matrices under
very mild assumptions which hold for common kernels. In
particular, this highlights a self-regularization phenomenon
whereby the eigenvalues of the kernel matrix behave as if
one added an explicit regularization term to the training
objective.

A general-purpose upper bound for the excess risk in
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kernel regression (Thm. 4.1). The assumptions of this
bound are very mild, and it can thus be applied to common
kernels in a variety of settings. The bound is sharp without
further assumptions, and characterizes both the bias and
variance up to universal constants. In particular, no assump-
tion is made on the regularization strength, amount of noise,
input dimension, or number of samples.

Benign overfitting in high input dimensions (Thm. 5.1),
meaning that the excess risk goes to zero despite the pres-
ence of noise and lack of explicit regularization. In such a
high dimensional setting, the frequencies that can be learned
are limited, thus preventing any harmful overfitting. In par-
ticular, our results apply to the NTK, showing benign over-
fitting (and the corresponding convergence rates) for neural
networks in the kernel regime when the input dimension is
large.

Nearly Tempered overfitting in fixed input dimensions
(Thm. 5.2), meaning that the bias goes to zero, and the
variance cannot diverge too quickly. As such, when the
amount of noise is relatively small, this implies a good
excess risk despite a possibly harmful overfitting of noise.
As far as we know, this is the first rigorous upper bound for
unregularized kernel regression (i.e., min-norm interpolator)
in the fixed dimensional setting for generic kernels.

Learning rates for regularized kernel regression
(Thm. 5.3), where we bound the bias and variance as a func-
tion of the regularization strength. In particular, through a
connection with gradient flow, this gives convergence rates
for neural networks trained in the kernel regime.

Overall, we hope that our paper will contribute to the devel-
opment of a rigorous general theory analyzing overfitting in
kernel regression and, more generally, in over-parameterized
models, under minimal and realistic assumptions.

2. Preliminaries
Let X be some input space, µ an associated measure and
K : X × X → R a Mercer kernel, meaning that it admits a
spectral decomposition of the form

K(x,x′) =

∞∑
i=1

λiψi(x)ψi(x
′), (1)

where λi ≥ 0 are the non-negative eigenvalues (not nec-
essarily ordered), and the eigenfunctions ψi form an or-
thonormal basis in L2

µ(X ). Let p ∈ N ∪ {∞} denote the
number of non-zero eigenvalues, and w.l.o.g let ϕ(x) :=(√
λiψi(x)

)p
i=1

be the non-zero features (with λi > 0)
and ψ(x) := (ψi(x))

p
i=1. Since Ex[ψ(x)ψ(x)⊤] = I ,

the features admit a diagonal and invertible (uncentered)
covariance operator given by Σ := Ex

[
ϕ(x)ϕ(x)⊤

]
=

diag(λ1, λ2, . . .). The features are related to the eigen-
functions by ϕ(x) = Σ1/2ψ(x), and to the kernel by

K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ where the inner product is the
standard one.

We will always work in the over-parameterized setting,
meaning that throughout the paper, we assume that p ≥ n.
Since oftentimes p = ∞, our bounds will not explicitly
depend on p (only implicitly through the eigenvalues of Σ).

Let X = {x1, ...,xn} ⊆ X be a set of n training points
drawn i.i.d from µ, f∗ ∈ L2

µ(X ) some target function, and
yi = f∗(xi) + ϵi be the labels, where ϵi is any i.i.d noise
with mean 0 and variance σ2

ϵ . Given some regularization
parameter γn > 0, Kernel Ridge Regression (KRR) corre-
sponds to minimizing the objective

min
f∈H

1

n

n∑
i=1

(f(xi)− yi)
2
+ γn ∥f∥2H , (2)

where H is the RKHS of K, consisting of functions of
the form f(x) = ⟨θ, ϕ(x)⟩ with ∥θ∥2 < ∞. The mini-
mizer of the KRR problem in Eq. (2) is given by f̂(x) :=
⟨θ̂(y), ϕ(x)⟩ where

θ̂(y) := ϕ(X)⊤(K+ nγnI)
−1y, (3)

Kij := K(xi,xj) is the kernel matrix, and using infinite
matrix notation ϕ(X) := [ϕ(x1), . . . , ϕ(xn)]

⊤ ∈ Rn×p are
the training features. As γn → 0, θ̂ tends to the min-norm
interpolator:

θ̂(y) = argmin
θ

∥θ∥H s.t. y = ϕ(X)θ. (4)

We can decompose the target function as f∗(x) =
⟨θ∗, ϕ(x)⟩ + P⊥f∗ where θ∗ ∈ Rp and P⊥ is the orthog-
onal projection onto the space spanned by the eigenfunc-
tions with 0 eigenvalues (from Eq. (1)). In particular, if
K has no zero eigenvalues in Eq. (1), then P⊥f∗ = 0.
By the orthonormality of ψi, it holds that ∥f∗∥L2

µ(X ) =

∥Σ1/2θ∗∥2 + ∥P⊥f∗∥L2
µ(X ). We do not require f∗ to be in

the RKHS. We will define the excess risk of KRR as:

R
(
θ̂(y)

)
:=Ex,ϵ

[(
⟨θ̂(y), ϕ(x)⟩ − f∗(x)

)2]
(5)

=Ex,ϵ

[〈
θ̂(y)− θ∗, ϕ(x)

〉2]
+
∥∥P⊥f∗

∥∥2
L2

µ(X )
.

By linearity, the predictor can be decomposed as θ̂(y) =

θ̂(ϕ(X)θ∗)+θ̂(ϵ) . Using this, the fact that the noise is inde-
pendent of x and letting ∥x∥Σ :=

√
x⊤Σx, the excess risk

from Eq. (5) can be decomposed in terms of bias, variance,
and an approximation error as:

B :=
∥∥∥θ̂(ϕ(X)θ∗)− θ∗

∥∥∥2
Σ
, V := Eϵ

[∥∥∥θ̂(ϵ)∥∥∥2
Σ

]
R
(
θ̂(y)

)
= B + V +

∥∥P⊥f∗
∥∥2
L2

µ(X )
. (6)
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2.1. Issues With Past Works

There is a vast literature on KRR and linear regression,
with many interesting results under various assumptions
and settings. However, perhaps surprisingly, there does
not appear to be a unified theory that can provide upper
bounds for the excess risk of kernel regression for common
kernels and for any amount of regularization, noise, any
input dimension, and any number of samples. We now
detail a few aspects of how current bounds are insufficient.

Assumptions That Do Not Hold: Many works rely on
assumptions that are common or reasonable for analyzing
linear regression. However, as we argue below, they are
generally inapplicable for kernel regression. These assump-
tions include that the features ϕi(x) are Gaussians (Spigler
et al., 2020; Jacot et al., 2020; Cui et al., 2021), and that
the eigenfunctions ψi(x) (sometimes called covariates) are
sub-Gaussian, i.i.d finite dimensional and/or have mean 0
(Bartlett et al., 2020; Hastie et al., 2022; Cheng & Montanari,
2022; Tsigler & Bartlett, 2023; Bach, 2023; Cheng et al.,
2023). There are also works that make various non-rigorous
assumptions common in the statistical physics literature
(Bordelon et al., 2020; Gerace et al., 2020; Canatar et al.,
2021; Simon et al., 2021; Mallinar et al., 2022), which, de-
spite being observed to be empirically accurate in some
settings, do not provide rigorous results.

Unfortunately, none of the assumptions mentioned in the
previous paragraph hold for common kernels, making such
works incapable of providing rigorous results in common
settings. As a simple example, suppose our inputs are
one-dimensional standard Gaussians x ∼ N (0, 1) and let
K(x, y) = exp

(
−γ(x− y)2

)
be a Gaussian (RBF) kernel.

We show in Appendix F that if we pick for simplicity γ = 3
8 ,

then for any p ≥ 3, the moments of ψi diverge as

(E [|ψi(x)|p])
1/p ≥ Ωi

(
exp

(
p− 2

4
· i
))

−→
i→∞

∞, (7)

implying that for the classical RBF kernel, not only is ψ(x)
not sub-Gaussian, but all moments ≥ 3 diverge. Another
simple example is given with inputs distributed uniformly on
the unit sphere Sd−1, and dot product kernels such as RBF,
Laplace and NTK. Under this setting, ψi(x) are given by
spherical harmonics, for which even in the case of d = 3 the
third moments diverge as i→ ∞ (Han, 2016). Additionally,
for dot product kernels, ψi are definitely not i.i.d across i,
ψ1 is generally constant and not mean 0, and p may be ∞
(see Appendix G for more details).

A major issue with overly strong assumptions is that they
may lead to inaccurate predictions. Specifically, they induce
concentration inequalities (e.g bounding the eigenvalues of
the empirical covariance matrix) which are tighter than one
can typically expect, resulting in risk bounds that may be
over-optimistic (see Fig. 2). By contrast, we work under

very mild and realistic assumptions, and we do not know of
any interesting kernel for which our analysis is not applica-
ble.

Limitation to a Specific Setting: The literature seems to
be split into several categories, with different works focusing
on incompatible settings. These include:

“High-Dimensional” vs. “Fixed-Dimensional”: Many
works assume that the input dimension d and the number of
samples n both tend towards infinity at a fixed ratio n = dτ

for some τ > 0 (Dobriban & Wager, 2018; Liang & Rakhlin,
2020; Wu & Xu, 2020; Richards et al., 2021; Ghorbani et al.,
2021; Li et al., 2021; Hu & Lu, 2022; Montanari & Zhong,
2022; Mei et al., 2022; Misiakiewicz, 2022; Xiao & Penning-
ton, 2022). By contrast, other lines of work assume a fixed d
and n→ ∞ (Caponnetto & De Vito, 2007; Steinwart et al.,
2009; Li et al., 2023a; Cui et al., 2021; Li et al., 2023b).
The techniques and assumptions used by these two lines of
work are inherently different, and make the results from the
high-dimensional works inapplicable for fixed d and vice
versa. We further elaborate on the limitations of differences
between these lines of work in Appendix J. Nevertheless,
we obtain bounds that are relevant for any d, n, regardless of
the ratio between them, and in particular, capture interesting
phenomena in these two regimes.

Regularized vs. Unregularized: Several works are limited
to either the regularized case (Caponnetto & De Vito, 2007;
Steinwart et al., 2009; Fischer & Steinwart, 2020; Lin et al.,
2020) or the unregularized case (a.k.a min-norm interpola-
tion) (Bartlett et al., 2020; Liang & Rakhlin, 2020; Hastie
et al., 2022). This distinction is of course unwanted, and our
results provide bounds that can handle both and make the
role of the regularization explicit.

Noisy vs. Noiseless: Cui et al. (2021) noted a discrepancy
between rates obtained in a noisy setting (when σϵ > 0)
(Caponnetto & Vito, 2005; Steinwart et al., 2009) vs. a
noiseless setting (when σϵ = 0) (Spigler et al., 2020). Fur-
thermore, quantifying the effect of the noise is important
since even when σϵ > 0, one may still obtain a small excess
risk if the noise is small. Recent works in the fixed dimen-
sional setting still only manage to provide upper bounds
in the noiseless case (Li et al., 2023b). Our analysis han-
dles both cases, separating the bias and variance, and upper
bounding both of these separately.

There are also many prior works that bound the eigenvalues
of kernel matrices similarly to what we do here (e.g Rosasco
et al. (2010); Valdivia (2018)). We provide a detailed discus-
sion in Appendix J, but briefly mention here that these do
not yield sufficiently strong bounds for the smallest eigen-
value of the kernel matrix for our needs. As we shall see,
this will be crucial for our analysis.
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2.2. Additional Notations and Definitions

We use the subscripts ≤ k and > k to denote the first
1, . . . , k and k + 1, k + 2, . . . coordinates of a vector (e.g
ϕ≤k(X) is an n × k matrix). Similarly, let K≤k :=
ϕ≤k(X)ϕ≤k(X)T and K>k := ϕ>k(X)ϕ>k(X)T . For
an operator T , we use µi(T ) to denote its i’th largest eigen-
value (allowing repeated eigenvalues). We use this notation
to avoid confusion with the eigenvalues λi of Σ. Unless
stated otherwise, ∥·∥ is the standard ℓ2 norm for vectors
and operator norm for operators. We use the standard big-O
notation and the Õ(·) notation to hide additional logarithmic
factors. We may make the problem parameters explicit, e.g
On,d, to mean up to constants that do not depend on n or d.

As in Bartlett et al. (2020), for any k ∈ N, we define two
highly related notions of the effective rank of Σ>k as:

rk := rk(Σ) :=
tr(Σ>k)
∥Σ>k∥

, Rk := Rk(Σ) =
tr(Σ>k)2

tr
(
Σ2
>k

) .
(8)

rk is the common definition of effective rank, and is related
to Rk via rk ≤ Rk ≤ r2k (Bartlett et al., 2020)[Lemma 5].

2.3. Assumptions

Typically, one must assume something on ψ(x) to obtain
various concentration inequalities, meaning that the ker-
nel matrix and empirical covariance matrix will behave
as they are “supposed to”. Perhaps the most common as-
sumption in previous works is that ψ(x) is sub-Gaussian,
requiring the moments of ψi(x) to be sufficiently well-
behaved for every i. Unfortunately, as discussed earlier,
this does not hold for many common kernels, even when
the input distribution is “nice.” In order to overcome
this issue, we present a framework for analyzing kernels
under only a mild heavy-tailed condition which can be
shown to hold for many common kernels. In particular,
we wish that quantities concerning the features will be
related to their expected values by a multiplicative con-
stant. By the orthonormality of ψi, for any k ∈ N one has
that E[∥ψ≤k(x)∥2] = k,E[∥ϕ>k(x)∥2] = tr (Σ>k) and

E
[∥∥∥Σ1/2

>kϕ>k(x)
∥∥∥2] = tr

(
Σ2
>k

)
. We quantify the distance

of the quantities from their expected values by the following
definitions:
Definition 2.1. Given k ∈ N, let βk ≥ αk ≥ 0 be defined
as follows:

αk := inf
x

{
∥ϕ>k(x)∥2

tr (Σ>k)

}
, (9)

βk := sup
x

{
∥ψ≤k(x)∥2

k
,
∥ϕ>k(x)∥2

tr (Σ>k)
,
∥Σ1/2

>kϕ>k(x)∥2

tr
(
Σ2
>k

) }
,

(10)
where the sup and inf are for a.s any x.

For each term in these definitions, the denominator is the
expected value of the numerator, so αk and βk quantify
how much the features behave as they are “supposed to”.
Since inf ≤ E ≤ sup, one always has 0 ≤ αk ≤ 1 ≤ βk.
Upper bounding βk is often easy, and common examples
for kernels with βk = Ok(1) include dot product kernels
such as NTK and polynomial kernels, shift-invariant kernels,
and kernels with bounded eigenfunctions ∥ψ(x)∥∞ < ∞.
αk can also be lower bounded as Ωk(1) for many kernels
(e.g dot product kernels); however, a lower bound on αk
may sometimes be more difficult, and as such, many of
our bounds will not require any control of αk. Neverthe-
less, when αk > 0, in some cases, stronger bounds will be
available. We defer a more complete discussion of these
definitions, their relation to common kernels, and our claims
in this paragraph to Appendix H. Overall, for sufficiently
“nice” kernels, one should think of αk and βk as generally
being Θk(1). For the bounds in this paper, we will not need
to control αk and βk for every value of k, but rather k can
be arbitrarily chosen.
Remark 2.2. Def. (9) and Def. (10) are stated for a.s
any x. However, one can weaken the definition for
αk to the training set, so that w.p at least 1 − δk,
minxi∈X

{
∥ϕ>k(x)∥2

tr(Σ>k)
,
}
≥ αk. In such a case, all bounds

that depend on αk would still hold with probability 1− δk.

In some cases, we will need to make the control of βk
explicit via the following regularity assumption.
Assumption 2.3. Either the feature dimension p is finite, or
there exists some sequence of natural numbers (ki)∞i=1 ⊆ N
with ki −→

i→∞
∞ s.t. βki tr(Σ>ki) −→

i→∞
0.

Because Mercer kernels are trace class, one always has
tr(Σ>ki) −→

i→∞
0. As such, Assumption 2.3 simply states

that for infinitely many choices of k ∈ N, βk does not in-
crease too quickly. This is of course satisfied by the previous
examples of kernels with βk = Ok(1).

3. Eigenvalues of Kernel Matrices
Since the KRR solution can be written as in Eq. (3), un-
derstanding it requires understanding the structure of the
kernel matrix K. In particular, we will need tight bounds
on its eigenvalues. For a fixed k ∈ N, it is known that
µk
(
1
nK
)

should tend to λk as n→ ∞, with known bounds
of the form

∣∣µk ( 1nK)− λk
∣∣ = O

( tr(Σ)√
n

)
(Rosasco et al.,

2010). Unfortunately, these bounds are the same for all
k ≤ n. Since usually λk = o

(
1
k

)
, for most eigenvalues

the O
( tr(Σ)√

n

)
approximation error is much larger than the

eigenvalues themselves, leading to the very weak bound of
0 ≤ µk

(
1
nK
)
≤ O

( tr(Σ)√
n

)
. This is insufficient for multiple

reasons. First, the expected decay of eigenvalues in the
kernel matrix is not captured. Second, tighter lower bounds
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are often necessary to ensure the kernel matrix is positive
definite and well-conditioned. Control of the smallest eigen-
value is a common working assumption in the NTK litera-
ture (Du et al., 2019; Arora et al., 2019; Hu & Lu, 2022) and
determines the convergence rate of gradient descent with
the corresponding network (Geifman et al., 2023).

We address these issues by providing relative perturbation
bounds. The general approach is, given some k ∈ N, to
decompose the kernel matrix as K = K≤k +K>k where
the eigenvalues of the “low-dimensional” part K≤k should
concentrate well, and the “high-dimensional” part K>k

should approximately be γ̃I for some γ̃ > 0.
Theorem 3.1. Suppose Assumption 2.3 holds, and that the
eigenvalues of Σ are given in non-increasing order λ1 ≥
λ2 ≥ . . .. There exist some absolute constants c, C, c1, c2 >
0 s.t for any k ≤ k′ ∈ [n] and δ > 0, w.p at least 1 − δ −
4 rkk4 exp

(
− c
βk

n
rk

)
− 2 exp

(
− c
βk

max
(
n
k , log(k)

))
,

1

c2βk
µk

(
1

n
K

)
≤
(
1 +

k log(k)

n

)
λk+log(k+1)

tr(Σ>k)
n

,

and

µk

(
1

n
K

)
≥ c1Ik,nλk + αk

1− 1

δ

√
n2

Rk′

 tr (Σ>k′)
n

,

where Ik,n =

{
1, if Cβkk log(k) ≤ n

0, otherwise
.

Informally, the theorem shows that one can decompose the
kernel matrix into a “low-dimensional” part whose eigenval-
ues are well-behaved and a “high-dimensional” part which is
roughly proportional to the identity matrix and thus serves
in a similar role as the regularization in Eq. (3). More
specifically, when decomposing as K = K≤k +K>k, the
“low-dimensional” part K≤k satisfies µk

(
1
nK≤k

)
≈ λk for

k ≤ On

(
n

log(n)

)
. The main tools we use to show this are

a variant of Ostrowski’s theorem for non-square matrices
(Lemma C.1) combined with some concentration of mea-
sure arguments (Lemma B.2). By contrast, for the smaller
eigenvalues of the kernel matrix where k = ωn

(
n

log(n)

)
, one

instead has to turn towards the self-regularization induced
by the > k features. One should pick k′ so that Rk′ > n2

δ2

(see the next paragraph for an example). This implies that
the smaller eigenvalues of the kernel matrix can be bounded

as µk
(
1
nK
)
≳

tr(Σ>k′)
n . If the eigenvalues decay suffi-

ciently slowly, k′ can be picked not too large, and this self-
regularization becomes significant. Similar behavior has
been observed in the asymptotic high-dimensional regime
using random matrix theory arguments (Xiao & Pennington,
2022).

As an example, suppose λk = Θ
(

1
k log1+a(k)

)
for some

a > 0 and αk, βk = Θ(1) (a condition satisfied by

many common kernels, see Appendix H). Then taking
k′ := k′(n) := n2, one can easily calculate that Rk′ ≥
Ω(n2 log(n)) and tr(Σ>k′ )

n = Θ
(

1
n loga(n)

)
. As a re-

sult, letting γ̃n := 1
n loga(n) , Thm. 3.1 implies that for

any k ∈ [n], µk
(
1
nK
)

≥ Ω (Ik,nλk + γ̃n). In partic-
ular, the smallest eigenvalues can be lower bounded as
µn
(
1
nK
)
≥ Ω

(
1

n loga(n)

)
≫ λn. This result is at first

surprising, as the classical intuition arising from works dis-
cussed earlier which bound

∣∣µk ( 1nK)− λk
∣∣ would suggest

that µn
(
1
nK
)
≈ λn. One can analogously obtain a match-

ing upper bound up to a log(k) factor.

The parameter γ̃ in the above example plays an identical
role in KRR as the actual regularization term γn. As such,
the kernel actually provides its own regularization, arising
from the high dimensionality of the features and the flatness
of the eigenvalues. We call this self-induced regularization,
and it has two significant implications. First, it can be used
to derive good bounds on the smallest eigenvalue of a kernel
matrix, which as already mentioned, is critical for many
applications, and will be used extensively to derive new
KRR bounds in the following sections. Second, it can (quite
surprisingly) cause the eigenvalues of the kernel matrix to
decay at a significantly different rate than λk. In particular,
when the self-regularization is large enough, the eigenvalues
µk
(
1
nK
)

concentrate around λk + γ̃ up to a multiplicative
constant.

4. Excess Risk of Kernel Regression
We now return to bounding the bias and variance of KRR as
given by Eq. (6). The strategy will be to pick some k ≤ n,
and treat the ≤ k and > k components separately. By the
previous section, we expect that K>k ≈ γ̃I and this will
serve as a regularization term for KRR. We quantify this by
what we call the concentration coefficient,

ρk,n :=
∥Σ>k∥+ µ1

(
1
nK>k

)
+ γn

µn
(
1
nK>k

)
+ γn

. (11)

Because µ1

(
1
nK>k

)
= ∥Σ̂>k∥ where Σ̂>k is the (uncen-

tered) empirical covariance matrix and E[Σ̂>k] = Σ>k, one
should expect that any upper bound on µ1

(
1
nK>k

)
should

be larger than ∥Σ>k∥. As such, the ∥Σ>k∥ term practically
affects ρk,n by at most a factor of 2, and we include it only
for technical simplicity within the proofs. Now, if for some
k, one shows that µ1

(
1
nK>k

)
≈ µn

(
1
nK>k

)
then ρk,n can

be bounded as Θ(1). As we shall soon show, in such a case,
it will follow that the bias and variance can be well bounded.
Although our theory from the previous section provides a
bound for ρk,n, we make its role explicit in the bias and vari-
ance bounds, since tighter bounds on ρk,n may be available
when there is additional information on the structure of the
kernel.
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Theorem 4.1. Let k ∈ N and let ρk,n be as de-
fined in Eq. (11). There exists some absolute constants
c, c′, C1, C2 > 0 s.t if cβkk log(k) ≤ n, then for every

δ > 0, it holds w.p at least 1 − δ − 16 exp
(
− c′

β2
k

n
k

)
that

both the variance and bias can be upper bounded as:

V ≤ C1ρ
2
k,nσ

2
ϵ

(
k

n
+min

(
rk
(
Σ2
)

n
,

n

α2
kRk(Σ)

))
,

(12)

B ≤C2ρ
3
k,n

(
1

δ
∥θ∗>k∥

2
Σ>k

+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
γn +

βktr (Σ>k)
n

)2
)
. (13)

Several comments are in order. First, the optimal choice of k
should depend on the concentration coefficient ρk,n and the
eigenvalues λi of the kernel. Given these, one can determine
an asymptotically optimal k as a function of n. One would
typically want to take k to be as small as possible, while
still ensuring ρk,n ≈ 1. Second, we do not assume here that
the eigenvalues λi are ordered. This is important because
for certain kernels, ordering the eigenvalues is actually quite
difficult, for example with NTKs corresponding to popular
convolutional architectures (Barzilai et al., 2022). This flexi-
bility will be critical for our analysis in the following section
involving dot product kernels. Finally, a control of αk is not
required to obtain bounds for the bias and variance, and is

present only in Eq. (12) via the term min
( rk(Σ2)

n , n
α2

kRk(Σ)

)
.

Under a slight abuse of notation, even when α = 0, this

term is at most
rk(Σ2)
n . As we shall later show in Thm. 5.3,

under sufficient regularization, our bounds on the excess
risk will not depend on αk.

We also note that in the simple case of finite-dimensional
linear regression (where ϕ(x) = x) with zero mean and sub-
Gaussian ψ(x) = Σ−1/2x, our bounds provide a significant
generalization of those of Tsigler & Bartlett (2023)[The-
orem 1]. Specifically, they derived similar bounds for a
specific k which is hard to determine, under the explicit
assumption that the condition number of 1

nK>k+γnI (sim-
ilar to ρk,n) is bounded by some constant. Their results
only hold for 0-mean, sub-Gaussian, and finite-dimensional
ψi, and hence are not applicable for many common kernels.
The explicit dependence on ρk,n, as well as the ability to
choose k freely, will play an important role in the proofs of
Thm. 5.1 and Thm. 5.2 in the next sections. Nevertheless,
when all of their assumptions are satisfied, including that the
condition number of 1

nK>k + γnI is constant, our bound
precisely recovers theirs. Because they showed that their
bounds are sharp up to a multiplicative constant, we also
obtain that under sufficient conditions, the upper bounds in
Thm. 4.1 are also sharp.

5. Applications
5.1. Benign Overfitting in High Dimensions

In order to capture high-dimensional phenomena that likely
play a major role in the success of neural networks, it is
common to analyze KRR in a high-dimensional setting.
Specifically, where n, d both tend towards infinity, with the
ratio n

dτ = Θ(1) fixed for some τ > 0. In this chapter, we
consider an important class of kernels known as dot product
kernels of the form K(x,x′) = h(x⊤x′) for some function
h. One typically has to impose restriction on h forK to be a
valid kernel, and as such, we follow the standard assumption
that h has a Taylor expansion of the form h(t) =

∑∞
i=0 ait

i

with ai ≥ 0 (Azevedo & Menegatto, 2015; Scetbon & Har-
chaoui, 2021). We will currently restrict ourselves to Sd−1

(and thus h : [−1, 1] → R) under the uniform distribution.
Examples of dot product kernels on Sd−1 include NTKs
and GPKs of fully-connected networks and fully-connected-
ResNets, Laplace kernels, Gaussian (RBF) kernels, and
polynomial kernels (Smola et al., 2000; Minh et al., 2006;
Bietti & Bach, 2020; Chen & Xu, 2020). For any d ≥ 3, dot
product kernels with inputs uniformly distributed on Sd−1

have known Mercer decompositions given by

K(x,x′) =

∞∑
ℓ=0

σ̂ℓ
N(d, ℓ)

N(d,ℓ)∑
m=1

Yℓ,m(x)Yℓ,m(x′), (14)

where the eigenfunctions Yℓ,m are the m’th spheri-
cal harmonic of degree (or frequency) ℓ, N(d, ℓ) =
2ℓ+d−2

ℓ

(
ℓ+d−3
d−2

)
is the number of harmonics of each degree,

and σℓ := σ̂ℓ

N(d,ℓ) are the eigenvalues (Smola et al., 2000).
We defer a background on dot product kernels and more
involved explanations to Appendix G. We now show that
in the high-dimensional regime, any dot product kernel is
capable of benign overfitting, i.e achieving an excess risk
that approaches zero as n→ ∞, without regularization and
despite the presence of noise.

Theorem 5.1. Suppose that as n, d → ∞, d
τ

n = Θn,d (1)
for some τ ∈ (0,∞) \ N. Let µ be the uniform distribution
over Sd−1 and K be a dot product kernel given by Eq. (14)
s.t σ̂⌊τ⌋ > 0 and ∃ℓ > ⌊2τ⌋ with σ̂ℓ ≥ 0 (e.g NTK, Laplace,
or RBF). Then for the min norm solution defined in Eq. (4)
(given when γn → 0), for any δ > 0 it holds w.p at least
1− δ − od

(
1
d

)
that

V ≤σ2
ϵ · On,d

(
1

dτ−⌊τ⌋ +
1

d⌊τ⌋+1−τ

)
,

B ≤1

δ
On,d

(∥∥θ∗>Nd

∥∥2
Σ>Nd

)
+
∥∥θ∗≤Nd

∥∥2
∞

(
max

ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

1

σ̂ℓ

)
· On,d

(
1

d2(τ−⌊τ⌋)

)
.

Where Nd = Θn,d
(
d⌊τ⌋

)
denotes the number of spherical

6
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harmonics of degree at most ⌊τ⌋ with non-zero eigenvalues,
and On,d

(
∥θ∗>Nd

∥2Σ>Nd

)
≤ On,d

(
∥θ∗>Nd

∥2∞
)
.

Simply put, the variance decays to 0, and the bias ap-
proaches On,d

(
∥θ∗>Nd

∥2∞
)

for Nd ≈ d⌊τ⌋. More specif-
ically, the rate of decay for the variance depends on τ , with
the fastest decay occurring when τ = z + 1

2 for some
z ∈ N, and slowest when τ ≈ z. This highlights the mul-
tiple descent behavior of KRR as discussed in Liang &
Rakhlin (2020); Xiao & Pennington (2022). For the bias,
∥θ∗>Nd

∥2Σ>Nd
is theL2

µ norm of the projection of f∗ onto the
spherical harmonics of degree at least ⌈τ⌉, and ∥θ∗>Nd∥2∞
is the maximal projection. The max

ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

1
σ̂ℓ

term will

typically be On,d(1) because often times σ̂ℓ = Ωn,d(1). For
example, for the NTK, one has an even stronger statement,

max
ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

1
σ̂ℓ

= On,d(
1
d ) (Cao et al., 2019)[Theorem

4.3]. Thus, whether KRR achieves benign overfitting or
not depends on the spectral decomposition of the target
function. If θ∗ consists of frequencies of at most ⌊τ⌋, then
∥θ∗>Nd

∥2∞ = 0 and thus both the bias and variance tend
towards zero, implying benign overfitting. The variance for
high-dimensional regression is demonstrated in Fig. 1 for
the NTK and polynomial kernel.

The key to this result is that the repeated eigenvalues lead
to large effective ranks rk and Rk, allowing one to take
k = Nd (where Nd

n = 1
dτ−⌊τ⌋ ) with concentration coeffi-

cient ρk,n = Θ(1). Notably, there is nothing specific to
dot product kernels, and using Thm. 4.1, a similar result
can be derived for any kernel with ρk,n = Θ(1) for k ≪ n.
The assumptions on σ̂ are made only for simplicity to avoid
degeneracies via convoluted examples involving 0 eigenval-
ues. We make the role of this assumption clear within the
proof, as it can easily be modified. For example, one can
obtain similar results when the 0 eigenvalues are the odd
frequencies as in an NTK without bias (Basri et al., 2019;
Bietti & Bach, 2020)

Our results can naturally be extended to other domains
and distributions. Li et al. (2023a) show that the eigenval-
ues only change by multiplicative constants under suitable
changes of measures or diffeomorphisms. One can also
exploit the specific structure of certain kernels. For exam-
ple, NTK kernels and homogeneous polynomial kernels are
zonal, meaning that K(x,x′) = ∥x∥ ∥x′∥K

(
x

∥x∥ ,
x′

∥x′∥
)
,

so results from Sd−1 can easily generalize to Rd.

Perhaps the works that provide the results most similar
to Thm. 5.1 are the excellent papers of Liang & Rakhlin
(2020); Mei et al. (2022); Xiao & Pennington (2022). By
comparison, Xiao & Pennington (2022)[Corollary 2] do not
provide convergence rates, but rather show that the excess
risk approaches

∥∥θ∗>Nd

∥∥2
Σ>Nd

+ od(1) as n, d→ ∞. They

assumed that σ̂ℓ are Θd(1) independent of d, a condition

which is typically not satisfied, e.g. in an NTK. Mei et al.
(2022)[Theorem 4] when combined with a “spectral gap
condition” (which would also require that σ̂ℓ are Θd(1))
also implies a bound of the form ∥θ∗>Nd

∥2Σ>Nd
+ od(1). It

is unclear what their bound implies without this problematic
spectral gap assumption. They also impose other strict
assumptions, which do not hold for broader domains. For

example, they assume that for any xi,
∥ϕ>Nd

(xi)∥2

tr(Σ>Nd)
= 1 ±

od(1). For zonal kernels such as the NTK, this typically will
not hold unless all inputs have roughly the same norm. By
contrast, our mild assumptions imply that the same results
hold in Rd as discussed above. The results of Liang &
Rakhlin (2020)[Theorem 3] are limited to target functions
in the RKHS, with a bound that is the same for all θ∗. This
is critical since the structure of θ∗ is precisely what allows
us to characterize when benign overfitting occurs.

Overall, our results are the first to clearly characterize be-
nign overfitting for common kernels, such as NTK.

5.2. Nearly Tempered Overfitting in Fixed Dimensions

We now shift our attention to the fixed dimensional regime.
We focus on polynomially decaying eigenvalues, encom-
passing NTKs and GPKs of common fully-connected archi-
tectures (Bietti & Bach, 2020), convolutional and residual
architectures (Geifman et al., 2022; Barzilai et al., 2022) as
well as the Laplace kernel (Chen & Xu, 2020). For such ker-
nels, various works show lower bounds of the form Ω(1) for
the excess risk for min-norm interpolation (Rakhlin & Zhai,
2019; Haas et al., 2023). Recently Mallinar et al. (2022) dis-
tinguished between the regimes where the risk explodes to
∞ (called catastrophic overfitting) vs when the risk remains
bounded (called tempered overfitting). The two regimes are
significantly different since when the noise is small, kernel
regression can still achieve a low risk despite tempered over-
fitting. Using our tools, we show that when λi ≈ i−1−a for
small a > 0, such kernels are nearly tempered, meaning
that the bias goes to 0, and the variance cannot diverge too
quickly.

Theorem 5.2. Let K be a kernel with polynomially decay-
ing eigenvalues λi = Θi,n(i

−1−a) for some a > 0, and
assume that αk, βk = Θk(1). Then for the min norm solu-
tion defined in Eq. (4) (given when γn → 0), for any δ > 0
it holds w.p at least 1− δ −On

(
1

log(n)

)
that

V ≤ σ2
ϵ Õn

(
n2a
)
.

Moreover, if θ∗i = Oi

(
1
ir

)
where r > a then under the same

probability it also holds that

B ≤ 1

δ
Õn

(
1

nmin(2(r−a),2−a)

)
.
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Figure 1. Variance of unregularized Kernel Regression, measured by the MSE for learning a constant 0 function with noise ϵi ∼ N (0, 1)
and inputs uniformly in Sd−1 (log-log scale). Left: Polynomial kernel K(x,x′) = (1 + 1

d
⟨x,x′⟩)3; Right: NTK corresponding to

a 3-layer fully-connected network (see Appendix I). As the input dimension grows, the multiple descent phenomenon becomes more
pronounced, and the MSE at the “valleys” decreases. The shaded region denotes 95% confidence over 50 runs with 2500 test samples.

Figure 2. Apparently diverging variance in low dimensions, for
a GPK corresponding to a 3-layer fully-connected network (see
Appendix I) with inputs distributed uniformly on the unit disk
{x ∈ R2 : ∥x∥ ≤ 1} and noise ϵ ∼ N (0, 1). The solid line
denotes the median variance (and not mean, due to extreme values),
and the shaded region denotes 95% confidence over 100 trials
with 5000 test samples each. This suggests that previous works
that inferred V ≤ O(1) for kernels with polynomially decaying
eigenvalues may be overly optimistic.

When a→ 0, the bound for the variance approaches Õ(1),
and the bound for the bias is nearly Õ

(
1
n2r

)
. For either the

NTK of a fully-connected network or the Laplace kernel,
a = 1

d−1 (Chen & Xu, 2020), so the variance bound be-

comes Õ
(
n

2
d−1
)
. In fact, when d ≳ log(n) it holds that

n
2

d−1 ≲ polylog(n). So when the noise is small, one can
expect the excess risk to also be relatively small. The condi-
tion on the decay of θ∗ is fairly mild, as for any realizable
f∗ (i.e f∗ ∈ H) it holds that ∥θ∗∥2 < ∞ and thus, under
the conditions of the theorem, r > 1 and B < Õ( 1

n2−2a ).

As far as we know, this is the first rigorous upper bound
for the excess risk of the min-norm interpolator in the

fixed dimensional setting. Previous bounds were either
based on a Gaussian feature assumption or non-rigorous
analysis (Cui et al., 2021; Mallinar et al., 2022) and gave
O
(
n−min(2r+a,2(1+a))

)
and σ2

ϵ · O(1) bounds for the bias
and variance respectively. In Fig. 2, we provide a simple ex-
ample of a common kernel (GPK) that does not appear to ad-
here to their bounds. The difference between our bounds and
theirs is not a limitation of our work but rather due to their
strong assumptions and can be quantified by the concentra-
tion coefficient ρk,n. Without any special assumptions, we
showed that for k ≈ n

log(n) , ρk,n = O (napolylog(n)). If
one is willing to make stronger assumptions on the features
which may not hold in practice (such as Gaussianity) so
that ρk,n = Θ(1), our bias and variance bounds would im-
prove to Õ

(
n−min(2r+a,2(1+a))

)
and σ2

ϵ Õ(1) respectively,
matching their bound up to a polylog factor. When a→ 0,
the difference is of course very small, implying that one
obtains nearly tempered overfitting in the fixed dimensional
regime. Unfortunately, common kernels do not have Gaus-
sian features and may suffer from poor concentration in the
fixed d regime. Thus, a polylog factor in the bounds is likely
inevitable. This explains the observation in Fig. 2, showing
that upper bounds that assume Gaussian features may be
over-optimistic for common kernels.

5.3. Regularized Regression

A major benefit to our approach is that we can provide
bounds for both the regularized and unregularized cases with
the same tools. We can thus derive bounds for the classical
setup where the regularization γn is relatively large.

Theorem 5.3. Let K be a kernel with polynomially de-
caying eigenvalues λi = Θi,n(i

−1−a) for some a > 0,
and assume that βk = Ok(1). Further, suppose that the
regularization parameter satisfies γn = Θn(n

−1−b) for

8
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b ∈ (−1, a). Then for any δ > 0, it holds w.p at least
1− δ − on(

1
n ) that

V ≤ σ2
ϵ · On

(
1

n
a−b
1+a

)
,

and if θ∗i = Θi,n (i
−r) for some r ∈ R s.t

∥∥Σ1/2θ∗
∥∥
2
<∞

(necessary for f∗ ∈ L2
µ(X )), then under the same probabil-

ity it also holds that

B ≤ 1

δ
· On

(
1

n(1+b)min( (2r+a)
1+a ,2)

)
,

where the O is weakened to Õ if r = 1 + a
2 .

The conditions of Thm. 5.3 are very mild, and do not require
any control of αk. Particularly, the kernels mentioned in
the previous chapter all satisfy the assumptions here. One
can observe a bias-variance tradeoff, where the variance
bound improves with increased regularization (smaller b),
and the bias bound worsens. Regardless, the excess risk
always tends to 0 as n → ∞. The choice of polynomial
decay was arbitrary, and bounds for other decays can easily
be obtained by modifying the proof.

The result recovers those of Cui et al. (2021) who worked
under the heavy Gaussian feature assumption, and Li et al.
(2023b) who worked under a Hölder continuity assumption
on the kernel as well as an assumption relating to what they
called an embedding index. Caponnetto & De Vito (2007)
only provide upper bounds for the optimal γn, and do not
decompose into bias and variance.

5.4. Implications for Neural Networks

At a high level, under suitable initialization and learning rate,
training a sufficiently wide neural network for time t with
gradient flow is roughly equivalent to kernel regression with
the NTK and regularization γn = 1

t (see Appendix K for
more details). So by Thm. 5.3, if the eigenvalues of the NTK
decay as λi = Θi,n(

1
i−1−a ) and the target function satisfies

θ∗i = Θi,n (i
−r), then as the width of the corresponding

network tends towards infinity, the bias and variance after
training for time t := Θn (n

s) for s ∈ (0, 1 + a) approach

V ≤ σ2
ϵ · On

(
1

n1−
s

1+a

)
, B ≤ On

(
1

nsmin( 2r+a
1+a ,2)

)
.

(15)
Neural networks of various architectures exhibit polynomi-
ally decaying eigenvalues in the fixed dimensional regime,
including fully-connected networks, CNNs, and ResNets
(Bietti & Bach, 2020; Geifman et al., 2022; Barzilai et al.,
2022). Interestingly, skip connections do not affect the
asymptotic rate of decay of the NTK eigenvalues (Barzilai
et al., 2022; Belfer et al., 2021) and as a result, ResNets
obtain the same rates in Eq. (15) as their non-residual coun-
terparts (i.e if one removes the skip connection).

Similarly, the applications of Thm. 5.2 and Thm. 5.1 to
networks that are instead trained to completion (i.e in the
t → ∞ limit) are immediate. In particular, one has nearly
tempered overfitting in the fixed dimensional regime, and in
the high dimensional regime of d

τ

n = Θ(1), if f∗ consists
of frequencies of at most ⌈τ⌉, then overfitting is benign.

6. Discussion
We studied the eigenvalues of kernel matrices and the gen-
eralization properties of KRR under general assumptions
and applied these to several common settings. In relation
to the rich line of prior works, our main hope is that our
work can provide general-purpose tools that could be used
in a wide range of future works. In particular, Thm. 3.1
and Thm. 4.1 are stated in a way that can provide bounds in
various settings, as demonstrated in Sec. 5.

One direction that we did not fully explore in Sec. 5 is anal-
ysis for more general input distributions, beyond a uniform
distribution on the sphere. This is because understanding the
spectral decomposition of common kernels under general
distributions is still an ongoing research direction. Neverthe-
less, our main theorems (Thm. 3.1, Thm. 4.1) are stated in a
general way so that they could be applied to more general
distributions in the future.

Another interesting direction for future work is proving cor-
responding lower bounds, particularly when the eigenvalues
decay quickly and the self-induced regularization in the ker-
nel is very small. Such analysis would aid in understanding
whether, in some kernels, the variance term increases very
slowly, as seen in Fig. 2.
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thesis, Universitäts-und Landesbibliothek Bonn, 2005.

Canatar, A., Bordelon, B., and Pehlevan, C. Spectral bias
and task-model alignment explain generalization in kernel
regression and infinitely wide neural networks. Nature
communications, 12(1):2914, 2021.

Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., and Gu, Q. Towards
understanding the spectral bias of deep learning. arXiv
preprint arXiv:1912.01198, 2019.

Caponnetto, A. and De Vito, E. Optimal rates for the regu-
larized least-squares algorithm. Foundations of Computa-
tional Mathematics, 7:331–368, 2007.

Caponnetto, A. and Vito, E. D. Fast rates for regularized
least-squares algorithm. 2005.

Chen, L. and Xu, S. Deep neural tangent kernel and
laplace kernel have the same rkhs. arXiv preprint
arXiv:2009.10683, 2020.

Cheng, C. and Montanari, A. Dimension free ridge regres-
sion. arXiv preprint arXiv:2210.08571, 2022.

Cheng, T. S., Lucchi, A., Dokmanić, I., Kratsios, A.,
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A. More Notations
We introduce a few more notations for the appendix, which are not needed in the main text. We let Ak := K>k + nγnI
and A := K + nγnI . Additionally, for any k ≤ k′ ∈ N we denote by k : k′ the k, . . . , k′ indices, so that, for example,
ϕk:k′(X) = (ϕk(X), . . . , ϕk′(X)) ∈ Rn×(k′−k+1).

B. Concentration Bounds
Lemma B.1. Let k ∈ [n], then each of the following holds w.p at least 1− 2 exp

(
− 1

2β2
k
n
)

:

1. 1
2n
∑
i>k λ

2
i ≤ tr

(
ϕ>k(X)Σ>kϕ>k(X)⊤

)
≤ 3

2n
∑
i>k λ

2
i

2. 1
2kn ≤ tr

(
ψ≤k(X)ψ≤k(X)⊤

)
≤ 3

2kn.

Proof. For (1), first observe that

tr
(
ϕ>k(X)Σ>kϕ>k(X)⊤

)
=

n∑
j=1

[
ϕ>k(X)Σ>kϕ>k(X)⊤

]
jj

=

n∑
j=1

ϕ>k(xj)
⊤Σ>kϕ>k(xj)

=

n∑
j=1

∑
i>k

λ2iψi(xj)
2.

We will now show that the conditions for Hoeffding’s inequality hold. Let vj =
∑
i>k λ

2
iψi(xj)

2 and M := βk
∑
i>k λ

2
i .

By the definition of βk Eq. (10), we have that for every j, 0 ≤ vj ≤ M . Furthermore, E[
∑n
j=1 vj ] = n

∑
i>k λ

2
i and so

Hoeffding’s inequality yields:

P

(∣∣∣∣∣tr (ϕ>k(X)Σ>kϕ>k(X)⊤
)
− n

∑
i>k

λ2i

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

nM2

)
.

Substituting t = n
2

∑
i>k λ

2
i , it holds that w.p at least 1− 2 exp

(
− 1

2β2
k
n
)

,

1

2
n
∑
i>k

λ2i ≤ tr
(
ϕ>k(X)Σ>kϕ>k(X)⊤

)
≤ 3

2
n
∑
i>k

λ2i .

For (2), the proof is analogous:

tr
(
ψ≤k(X)ψ≤k(X)⊤

)
=

n∑
j=1

[
ψ≤k(X)ψ≤k(X)⊤

]
jj

=

n∑
j=1

ψ≤k(xj)
⊤ψ≤k(xj)

=

n∑
j=1

k∑
i=1

ψi(xj)
2 ≤ βkkn

Now letting M ′ = βkk using Hoeffding as before yields

P
(∣∣tr (ψ≤k(X)ψ≤k(X)⊤

)
− kn

∣∣ ≥ t′
)
≤ 2 exp

(
− 2t′2

nM ′2

)
.

So picking t′ = nk
2 we get that w.p at least 1− 2 exp

(
−n · 1

2β2
k

)
1

2
kn ≤ tr

(
ψ≤k(X)ψ≤k(X)⊤

)
≤ 3

2
kn.
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Lemma B.2. For any k ∈ [n] there exist some absolute constants c′, c2 > 0, s.t the following hold simultaneously w.p at

least 1− 2 exp
(
− c′

βk
max

(
n
k , log(k)

))
1. µk

(
ψ≤k(X)⊤ψ≤k(X)

)
≥ max

(√
n−

√
1
2 max

(
n, βk

(
1 + 1

c′

)
k log(k)

)
, 0
)2

,

2. µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ c2 max (n, βkk log(k)).

Moreover, there exists some c > 0 s.t if cβkk log(k) ≤ n then w.p at least 1− 2 exp
(
− c′

βk

n
k

)
and some absolute constant

c1 > 0, it holds that
c1n ≤ µk

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ c2n.

Proof. We will bound the singular values σi (ψ≤k(X)) since

σi(ψ≤k(X))2 = µi
(
ψ≤k(X)⊤ψ≤k(X)

)
.

ψ≤k(X) is an n× k matrix, whose rows ψ≤k(xj) are independent isotropic random vectors in Rk (where the randomness is
over the choice of xj). Furthermore, by the definition of βk Eq. (10), for a.s every xi, ∥ψ≤k(xi)∥ ≤

√
βkk. As such, from

Vershynin (2010)[Theorem 5.41], there is some absolute constant c′ > 0 s.t for every t ≥ 0, one has that with probability at
least 1− 2k exp(−2c′t2),

√
n− t

√
βkk ≤ σk(ψ≤k(X)) ≤ σ1(ψ≤k(X)) ≤

√
n+ t

√
βkk.

Now for t =
√

1
2βk

max
(
n
k , log(k)

)
+ log(k)

2c′ we get that with probability at least 1 − 2 exp
(
− c′

βk
max

(
n
k , log(k)

))
it

holds that

σ1(ψ≤k(X))2 ≤

(
√
n+

√
1

2
max (n, k log(k)) + k log(k)

βk
2c′

)2

≤

(
√
n+

1√
2

√
n+

(
1 +

βk
c′

)
k log(k)

)2

≤3n+

(
1 +

βk
c′

)
k log(k),

where the last equality followed from the fact that (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. Because, βk ≥ 1 Eq. (54),
we obtain σ1(ψ≤k(X))2 ≤ c2 max (n, βkk log(k)) for a suitable c2 > 0, proving point Eq. (2). For the lower bound, we
simultaneously have

σk(ψ≤k(X)) ≥
√
n− 1√

2

√
1

2
max (n, k log(k)) + k log(k)

βk
2c′

≥
√
n−

√
1

2
max

(
n, βk

(
1 +

1

c′

)
k log(k)

)
,

Since the singular values are non-negative, the above implies

σk(ψ≤k(X))2 ≥ max

(
√
n−

√
1

2
max

(
n, βk

(
1 +

1

c′

)
k log(k)

)
, 0

)2

.

proving point Eq. (1).

For the moreover part, taking c =
(
1 + 1

c′

)
, we now have by assumption that nk ≥ cβk log(k) ≥ log(k) (where we used the

facts that c ≥ 1 and βk ≥ 1), the probability that Eq. (1) and Eq. (2) hold is in fact 1− 2 exp
(
− c′

βk

n
k

)
.
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Furthermore, plugging cβkk log(k) ≤ n into the lower bound Eq. (1) yields

µk
(
ψ≤k(X)⊤ψ≤k(X)

)
≥max

(
√
n−

√
1

2
max (n, cβkk log(k)) , 0

)2

.

≥
(√

n−
√
n

2

)2

=

(
1− 1√

2

)2

n.

Similarly, since βkk log(k) ≤ n the upper bound Eq. (2) becomes

µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ c2n

Lemma B.3. For any k ∈ [n] and δ > 0, it holds w.p at least 1− δ that

∥ϕ>k(X)θ∗>k∥
2 ≤ 1

δ
n ∥θ∗>k∥

2
Σ>k

Proof. Let vj = ⟨ϕ>k(xj), θ∗>k⟩2 so that
∥∥ϕ>k(X)θ∗>k

∥∥2 =
∑n
j=1 vj . Since xj are independent, it holds that vj are

independent random variables with mean:

E[vj ] =E

(∑
i>k

√
λiψi(xj)θ

∗
i

)2


=
∑
i>k

∑
>l

√
λi
√
λlθ

∗
i θ

∗
l Exj

[ψi(xj)ψl(xj)]︸ ︷︷ ︸
δil

=
∑
i>k

λi(θ
∗
i )

2 = ∥θ∗∥2Σ>k
.

So by Markov’s inequality:

P

 n∑
j=1

vj ≥
1

δ
n ∥θ∗>k∥

2
Σ>k

 ≤ δ.

Lemma B.4. There exists some absolute constants c, c′, c1, c2 > 0 s.t for any k ∈ N with cβkk log(k) ≤ n, it holds w.p at

least 1− 8 exp
(
− c′

β2
k

n
k

)
that all of the following hold simultaneously:

1. c1n
∑
i>k λ

2
i ≤ tr

(
ϕ>k(X)Σ>kϕ>k(X)⊤

)
≤ c2n

∑
i>k λ

2
i

2. c1kn ≤ tr
(
ψ≤k(X)ψ≤k(X)⊤

)
≤ c2kn

3. µk
(
ψ≤k(X)⊤ψ≤k(X)

)
≥ c1n

4. µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ c2n

Proof. By Lemma B.1, points (1) and (2) each hold w.p at least 1 − 2 exp
(
− 1

2β2
k
n
)

so they both hold w.p at least(
1− 2 exp

(
− 1

2β2
k
n
))2

.

Furthermore, the “moreover” part of Lemma B.2 states that points (3) and (4) hold simultaneously w.p at least 1 −
2 exp

(
− c′

βk

n
k

)
.
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Now the probability for which (1)-(4) all hold simultaneously is at least(
1− 2 exp

(
− 1

2β2
k

n

))2(
1− 2 exp

(
− c′

βk

n

k

))
≥1− 8 exp

(
−min

(
1

2β2
k

n,
c′

βk

n

k

))
≥ 1− 8 exp

(
−min

(
1

2β2
k

,
c′

βk

)
n

k

)

Since βk ≥ 1 Eq. (54) replacing c′ with min( 12 , c
′) results in the desired bounds holding w.p at least 1− 8 exp

(
− c′

β2
k

n
k

)
.

C. Bounds on the Eigenvalues of Kernel Matrices - Proofs of Results in Sec. 3
C.1. Proof of Thm. 3.1

Theorem 3.1. Suppose Assumption 2.3 holds, and that the eigenvalues of Σ are given in non-increasing order λ1 ≥
λ2 ≥ . . .. There exist some absolute constants c, C, c1, c2 > 0 s.t for any k ≤ k′ ∈ [n] and δ > 0, w.p at least

1− δ − 4 rkk4 exp
(
− c
βk

n
rk

)
− 2 exp

(
− c
βk

max
(
n
k , log(k)

))
,

1

c2βk
µk

(
1

n
K

)
≤
(
1 +

k log(k)

n

)
λk + log(k + 1)

tr(Σ>k)
n

,

and

µk

(
1

n
K

)
≥ c1Ik,nλk + αk

1− 1

δ

√
n2

Rk′

 tr (Σ>k′)
n

,

where Ik,n =

{
1, if Cβkk log(k) ≤ n

0, otherwise
.

Proof. From Lemma C.2, we have that

λkµk (Dk) + µn

(
1

n
K>k

)
≤ µk

(
1

n
K

)
≤ λkµ1 (Dk) + µ1

(
1

n
K>k

)
, (16)

where Di is as in the formulation of the lemma.

We bound each of the summands in the upper bound separately. From Corollary C.5, it holds w.p at least 1 −
4 rkk4 exp

(
− c′

βk

n
rk

)
that for some absolute constants c′, c′2 > 0,

µ1

(
1

n
K>k

)
≤ c′2

(
λk+1 + βk log(k + 1)

tr (Σ>k)
n

)
.

For the other summand, since Di =
1
nψ≤k(X)⊤ψ≤k(X) Lemma B.2 states that there exists some absolute constants

c′′, c′′2 > 0, s.t w.p at least 1− 2 exp
(
− c′′

βk
max

(
n
k , log(k)

))
λkµ1 (Di) ≤ c′′2

1

n
max (n, βkk log(k))λk ≤ c′′2βk

(
1 +

k log(k)

n

)
λk,

where in the last inequality we used the fact that βk ≥ 1. So taking c = max(c′, c′′), both events hold w.p at least
1− 4 rkk4 exp

(
− c
βk

n
rk

)
− 2 exp(− c

βk
max

(
n
k , log(k)

)
) and the upper bound from Eq. (16) yields

µk

(
1

n
K

)
≤ c2βk

((
1 +

k log(k)

n

)
λk + log(k + 1)

tr(Σ>k)
n

)
,

for some suitable absolute constant c2 > 0. The “moreover” part of this proof analogously follows from the “moreover”
part of Lemma B.2, which states that µk(Dk) ≥ c1 if Cβkk log(k) ≤ n, and from the lower bound of Corollary C.5, which
holds w.p at least 1− δ.
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C.2. Lemmas and Alternative Results for Eigenvalue Bounds

We now provide an extension of Ostrowski’s theorem to non-square matrices. Note that the case of k ≤ n is relatively easy.
However, we also prove the case of k > n.

Lemma C.1 (Extension of Ostrowski’s Theorem). Let i, k ∈ N satisfy 1 ≤ i ≤ min(k, n) and Dk :=
1
nψ≤k(X)ψ≤k(X)⊤ ∈ Rn×n. Suppose that the eigenvalues of Σ are given in non-increasing order λ1 ≥ λ2 ≥ . . .
then

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi

(
1

n
K≤k

)
≤ λiµ1(Dk).

Proof. Let π1 denote the number of positive eigenvalues of 1
nK≤k (where in particular π1 ≤ min(n, k)). Because the kernel

can be decomposed as K≤k = ψ≤k(X)Σ≤kψ≤k(X)⊤, it follows from Dancis (1986)[Theorem 1.5] that for 1 ≤ i ≤ π1,

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi

(
1

n
K≤k

)
≤ λiµ1(Dk).

It remains to handle the case where π1 < i (where in particular this means π1 < min(n, k)). By definition of π1 there are
some orthonormal eigenvectors of K≤k, vπ1+1, . . . , vn with eigenvalues 0. Since Σ ≻ 0, for each such 0 eigenvector v,

0 =
(
ψ⊤
≤k(X)v

)⊤
Σ
(
ψ⊤
≤k(X)v

)
=⇒ ψ⊤

≤k(X)v = 0.

In particular, Dk has vπ1+1, . . . , vn as 0 eigenvectors and since Dk ⪰ 0, we obtain that µπ1+1(Dk), . . . , µn(Dk) = 0. So
for i > π1 we have

λi+k−min(n,k)µmin(n,k)(Dk) = 0 = µi

(
1

n
K≤k

)
≤ λiµ1(Dk).

Lemma C.2. Let i, k ∈ N satisfy 1 ≤ i ≤ n and i ≤ k, let Dk := 1
nψ≤k(X)ψ≤k(X)⊤ ∈ Rn×n. that the eigenvalues of Σ

are given in non-increasing order λ1 ≥ λ2 ≥ . . . then

λi+k−min(n,k)µmin(n,k)(Dk) + µn

(
1

n
K>k

)
≤ µi

(
1

n
K

)
≤ λiµ1 (Dk) + µ1

(
1

n
K>k

)
.

In particular,

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi

(
1

n
K

)
≤ λiµ1 (Dk) + µ1

(
1

n
K>k

)
.

Proof. We can decompose K into the sum of two hermitian matrices by K = K≤k +K>k. By Weyl’s theorem (Horn &
Johnson, 2012)[Corollary 4.3.15] we can use this decomposition to bound the eigenvalues of K as:

µi (K≤k) + µn (K>k) ≤ µi(K) ≤ µi (K≤k) + µ1 (K>k) . (17)

Further, since K≤k = ψ≤k(X)Σ≤kψ≤k(X)⊤, we use an extension of Ostrowski’s theorem, Lemma C.1, to obtain the
bound:

λi+k−min(n,k)µmin(n,k)(Dk) ≤ µi

(
1

n
K≤k

)
≤ λiµ1(Dk). (18)

So combining the two results yields the bounds:

λi+k−min(n,k)µmin(n,k)(Dk) + µn

(
1

n
K>k

)
≤ µi

(
1

n
K

)
≤ λiµ1(Dk) + µ1

(
1

n
ϕ>k(X)ϕ>k(X)⊤

)
.

The “in particular part” now follows from µn
(
1
nK>k

)
≥ 0.
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Lemma C.3. Suppose Assumption 2.3 holds, and that the eigenvalues of Σ are given in non-increasing order λ1 ≥
λ2 ≥ . . .. Let k ∈ N and let rk be as defined in Def. (8). There exist absolute constant c, c′ > 0 s.t it holds w.p at least
1− 4 rkk4 exp

(
− c′

βk

n
rk

)
that

µ1

(
1

n
K>k

)
≤ c

(
λk+1 + βk log(k + 1)

tr (Σ>k)
n

)
.

Proof. Let Ek = µ1

(
1
nK>k

)
, Σ̂>k := 1

nϕ>k(X)⊤ϕ>k(X) and observe that Ek =
∥∥∥Σ̂>k∥∥∥. We would ideally like to

bound
∥∥∥Σ̂>k∥∥∥ using the matrix Chernoff inequality with intrinsic dimension (Tropp et al., 2015)[Theorem 7.2.1]. However,

as this inequality was proved for finite matrices, if the dimension of the features is p = ∞ we first approximate
∥∥∥Σ̂>k∥∥∥,

letting ϕk+1:p′(X) := (ϕk+1(X), . . . , ϕ′p(X)) for some p′ ∈ N and Σ̂k+1:p′ :=
1
nϕk+1:p′(X)⊤ϕk+1:p′(X), then Ek can

be bounded as:

Ek =

∥∥∥∥ 1nKk+1:p′ +
1

n
K≥p′

∥∥∥∥ ≤
∥∥∥∥ 1nKk+1:p′

∥∥∥∥+ ∥∥∥∥ 1nK≥p′

∥∥∥∥ =
∥∥∥Σ̂k+1:p′

∥∥∥+ Ep′ . (19)

Furthermore, Ep′ can be bounded as

Ep′ ≤
1

n
tr (K>p′) =

1

n

n∑
j=1

∑
i>p′

λiψi(xj)
2 ≤ βp′

∑
i>p′+1

λi = βp′ tr(Σ>p′). (20)

So, to summarize, either p is finite, in which case we can take p′ = p and Ep′ = 0, or p is infinite, in which case
Ep′ ≤ βp′ tr(Σ>p′). However, by Assumption 2.3 this implies:

∀u > 0,∃p′ ∈ N s.t. Ep′ ≤ u. (21)

Let Zp
′

j = 1
nϕk+1:p′(xj)ϕk+1:p′(xj)

⊤ (where (Zp
′

j ) ⪰ 0) so that we can decompose the empirical covariance as a sum

Σ̂k+1:p′ =
∑n
j=1 Z

p′

j . We will need a bound on both µ1(Z
p′

j ) and µ1(EΣ̂k+1:p′). For the first, we have

µ1(Z
p′

j ) =
1

n

p′∑
i=k+1

λiψi(xj)
2 ≤ 1

n

∞∑
i=k+1

λiψi(xj)
2 ≤ βk

n
tr(Σ>k)︸ ︷︷ ︸
:=L

,

where we denote by L the right-hand side. For the bound on µ1(EΣ̂k+1:p′), it holds that EΣ̂k+1:p′ = Σk+1:p′ =

diag(λk+1 + 1, . . . , λ′p) and thus µ1(EΣ̂k+1:p′) = λk+1.

We have shown that the conditions of Tropp et al. (2015)[Theorem 7.2.1] are satisfied. As such, for rk:p′ :=
tr(Σk+1:p′ )

λk+1
and

any t ≥ 1 + L/λk+1 = 1 + βkrk
n ,

P
(∥∥∥Σ̂k+1:p′

∥∥∥ ≥ tλk+1

)
≤ 2rk:p′

(
et−1

tt

)λk+1/L

.

By Eq. (19) it holds that
∥∥∥Σ̂k+1:p′

∥∥∥ ≥ Ek − Ep′ . Using this, the fact that λk+1

L = n
βkrk

, and upper bounding et−1 ≤ et,
rk:p′ ≤ rk yields

P (Ek − Ep′ ≥ tλk+1) ≤ P
(∥∥∥Σ̂k+1:p′

∥∥∥ ≥ tλk+1

)
≤ 2rk

(e
t

)tn/βkrk

.

Now we pick t = e3 + 2βkrk
n log(k + 1), (which satisfies the requirement of t ≥ 1 + βkrk

n ). In particular et ≤
1
e2 , and we

obtain that:

P (Ek ≥ tλk+1 + Ep′) ≤2rk

(
1

e2

) e3

βk

n
rk

+2 log(k+1)

≤2
rk

(k + 1)4
exp

(
−2

e3

βk

n

rk

)
.
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Furthermore, Ep′ can be bounded via Eq. (20)As a result, we obtain that for c′ = 2e3, c = e3, it holds w.p at least

1− 4 rkk4 exp
(
− c′

βk

n
rk

)
that

Ek ≤ c

(
λk+1 + βk log(k + 1)

tr (Σ>k)
n

+ Ep′

)
.

Notice that the bound on Ek depends on p′ only via Ep′ . So by Eq. (21) we are done.

Lemma C.4. Let Rk be as defined in Def. (8). For any δ > 0 it holds w.p at least 1− δ that for all 1 ≤ i ≤ n

αk
1

n
tr (Σ>k)

1− 1

δ

√
n2

Rk

 ≤ µi

(
1

n
K>k

)
≤ βk

1

n
tr (Σ>k)

1 +
1

δ

√
n2

Rk

 .

Proof. Let Λ>k := diag( 1nK>k) ∈ Rn×n be equal to 1
nK>k on the diagonal and 0 elsewhere, and ∆>k := 1

nK>k − Λ>k
be the remainder. Λ>k is a diagonal matrix with the i’th value on the diagonal given by [Λ>k]ii =

1
n

∑
ℓ>k λℓψℓ(xi)

2. By
Def. (9) of αk and Def. (10) of βk it holds that

αk
1

n
tr (Σ>k) ≤ [Λ>k]ii ≤ βk

1

n
tr (Σ>k) ,

which together with the fact that Λ>k is diagonal implies

αk
1

n
tr (Σ>k) I ⪯ Λ>k ⪯ βk

1

n
tr (Σ>k) I. (22)

As such, by Weyl’s theorem (Horn & Johnson, 2012)[Corollary 4.3.15], we can bound the eigenvalues of 1
nK>k as

αk
1

n
tr (Σ>k) + µn (∆>k) ≤ µi

(
1

n
K>k

)
≤ βk

1

n
tr (Σ>k) + µ1 (∆>k) . (23)

So in order to bound the eigenvalues of 1
nK>k, it remains to bound the eigenvalues of ∆>k. We first bound the expectation

using

E[∥∆>k∥] ≤E[∥∆>k∥2F ]
1
2 =

√√√√ n∑
i,j=1

E

[(
1

n
⟨ϕ>k(xi), ϕ>k(xj)⟩

)2
]

=

√
n(n− 1)

n2
tr
(
Σ2
>k

)
≤
√

tr
(
Σ2
>k

)
=

1

n
tr (Σ>k)

√
n2

Rk
.

By Markov’s inequality, it holds that

P
(
∥∆>k∥ ≥ 1

δ
E[∥∆>k∥]

)
≤ δ.

Implying that with probability at least 1− δ it holds that

∥∆>k∥ ≤ 1

δ
E[∥∆>k∥] ≤

1

nδ
tr (Σ>k)

√
n2

Rk
.

Finally, plugging this back into Eq. (23) completes the proof.

Corollary C.5. Suppose Assumption 2.3 holds, and that the eigenvalues of Σ are given in non-increasing order λ1 ≥
λ2 ≥ . . .. Let k ∈ N and let rk be as defined in Def. (8). There exist absolute constant c, c′ > 0 s.t it holds w.p at least
1− 4 rkk4 exp

(
− c′

βk

n
rk

)
that

µ1

(
1

n
K>k

)
≤ c

(
λk+1 + βk log(k + 1)

tr (Σ>k)
n

)
.
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And for any k′ ∈ N with k′ > k, and any δ > 0 it holds w.p at least 1− δ that

αk

1− 1

δ

√
n2

Rk′

 tr (Σ>k′)
n

≤ µn

(
1

n
K>k′

)
,

so that both statements hold w.p at least 1− δ − 4 rkk4 exp
(
− c′

βk

n
rk

)
.

Proof. By Weyl’s theorem (Horn & Johnson, 2012)[Corollary 4.3.15], for any k′ ≥ k, µn(K≥k) ≥ µn(K≥k′) +
µn(Kk:k′) ≥ µn(K≥k′). So the lower bound comes from Lemma C.4 (with k′) and the upper bound comes from
Lemma C.3.

D. Upper bounds for the Risk - Proofs of Results in Sec. 4
D.1. Proof of Thm. 4.1.

The majority of the work was done in lemmas B.4, B.3, D.5 and D.6. Here we essentially combine these results to obtain the
desired bounds. Throughout the section, the notations of Ak := K>k + nγnI and A := K+ nγnI as defined in Sec. A
will be very common.

Theorem 4.1. Let k ∈ N and let ρk,n be as defined in Eq. (11). There exists some absolute constants c, c′, C1, C2 > 0 s.t if

cβkk log(k) ≤ n, then for every δ > 0, it holds w.p at least 1− δ− 16 exp
(
− c′

β2
k

n
k

)
that both the variance and bias can be

upper bounded as:

V ≤ C1ρ
2
k,nσ

2
ϵ

(
k

n
+min

(
rk
(
Σ2
)

n
,

n

α2
kRk(Σ)

))
, (12)

B ≤C2ρ
3
k,n

(
1

δ
∥θ∗>k∥

2
Σ>k

+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
γn +

βktr (Σ>k)
n

)2
)
. (13)

Proof. The majority of the work is given by lemmas D.1 and D.2. We note a few properties which are immediate, from
which the claim will follow:

µ1

(
1
nAk

)2
µn
(
1
nAk

)2 =

(
µ1

(
1
nK>k

)
+ γn

µn
(
1
nK>k

)
+ γn

)2

≤ ρ2k,n. (24)

∥Σ>k∥
µn
(
1
nAk

) ≤ ρk,n. (25)

1

nµn
(
1
nAk

)2 ∑
i>k

λ2i =
∥Σ>k∥2

µn
(
1
nAk

)2 · rk(Σ
2)

n
≤ ρ2k,n

rk(Σ
2)

n
. (26)

Furthermore, because the trace of a matrix is the sum of its eigenvalues, we obtain

µ1

(
1

n
Ak

)2

=
µ1

(
1
nAk

)2
µn
(
1
nAk

)2µn( 1

n
Ak

)2

≤ ρ2k,n

(
1

n
tr
(
1

n
Ak

))2

≤ρ2k,n

γn +
1

n2

n∑
j=1

∑
i>k

λiψi(xj)
2

2

≤ ρ2k,n

(
γn +

βktr (Σ>k)
n

)2

. (27)
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and similarly

µn

(
1

n
Ak

)2

≥
µn
(
1
nAk

)2
µ1

(
1
nAk

)2 µ1

(
1

n
Ak

)2

≥ 1

ρ2k,n

(
1

n
tr
(
1

n
Ak

))2

≥ 1

ρ2k,n

γn +
1

n2

n∑
j=1

∑
i>k

λiψi(xj)
2

2

≥ 1

ρ2k,n

(
γn +

αktr (Σ>k)
n

)2

. (28)

We thus also obtain an alternative bound for Eq. (26) via Eq. (28) as

1

nµn
(
1
nAk

)2 ∑
i>k

λ2i ≤ρ2k,n
n
∑
i>k λ

2
i

(nγn + αktr (Σ>k))
2 ≤

ρ2k,n
α2
k

n

Rk(Σ)
. (29)

Now for the variance part of the claim, by combining Lemma D.1 with Eq. (24), Eq. (26) and Eq. (29), we obtain that w.p at
least 1− δ − 8 exp

(
− c′

β2
k

n
k

)
it holds that

V ≤C1ρ
2
k,nσ

2
ϵ

(
k

n
+min

(
rk
(
Σ2
)

n
,

n

α2
kRk(Σ)

))
. (30)

For the bias part of the claim, by similarly combining Lemma D.2 with Eq. (24), Eq. (25) and Eq. (27), and using the fact
that ρk,n > 1, we obtain that w.p at least 1− δ − 8 exp

(
− c′

β2
k

n
k

)
B ≤C2

(
∥θ∗>k∥

2
Σ>k

(
1 +

1

δ

(
ρ2k,n + ρk,n

))

+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
ρ2k,n

(
γn +

βktr (Σ>k)
n

)2

(1 + ρk,n)

))

≤C2 · 3ρ3k,n

(
1

δ
∥θ∗>k∥

2
Σ>k

+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
γn +

βktr (Σ>k)
n

)2
)
. (31)

So everything holds w.p at least 1− δ − 16 exp
(
− c′

β2
k

n
k

)
Lemma D.1. There exists some absolute constants c, c′, C1 > 0, s.t for any k ∈ N with cβkk log(k) ≤ n, it holds w.p at

least 1− 8 exp
(
− c′

β2
k

n
k

)
the variance can be upper bounded as:

V ≤C1σ
2
ϵ

(
µ1

(
1
nAk

)2
k

µn
(
1
nAk

)2
n
+

1

nµn
(
1
nAk

)2 ∑
i>k

λ2i

)
. (32)

Proof. Ak is positive definite for any γn > 0 and thus, by lemma Eq. (D.5) we have that:

V ≤ σ2
ϵ

(
µ1(A

−1
k )2tr(ψ≤k(X)ψ≤k(X)⊤)

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2 + µ1(A
−1
k )2tr(ϕ>k(X)Σ>kϕ>k(X)⊤)

)
.

Plugging in the bounds from Lemma B.4, there are some absolute constants c, c′, c1, c2 > 0 s.t for any k ∈ N with
cβkk log(k) ≤ n, it holds w.p at least 1− 8 exp

(
− c′

β2
k

n
k

)
that

V ≤σ2
ϵ

(
µ1(A

−1
k )2c2kn

µn(A
−1
k )2c21n

2
+ µ1(A

−1
k )2c2n

∑
i>k

λ2i

)

≤c2
(

1

c21
+ 1

)
σ2
ϵ

(
µ1(A

−1
k )2k

µn(A
−1
k )2n

+ µ1(A
−1
k )2n

∑
i>k

λ2i

)
.
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Now taking C1 accordingly, and the facts that µ1(A
−1
k ) = 1

nµn(
1
nAk)

and µn(A−1
k ) = 1

nµ1(
1
nAk)

complete the proof.

Lemma D.2. There exists some absolute constants c, c′, C2 > 0 (where c and c′ are the same as in Lemma D.1), s.t for any
k ∈ N with cβkk log(k) ≤ n, and δ > 0, it holds w.p at least 1− δ − 8 exp

(
− c′

β2
k

n
k

)
the bias can be upper bounded as:

B ≤C2

(
∥θ∗>k∥

2
Σ>k

(
1 +

1

δ

(
µ1(A

−1
k )2

µn(A
−1
k )2

+
∥Σ>k∥

µn
(
1
nAk

)))

+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
µ1

(
1

n
Ak

)2
(
1 +

∥Σ>k∥
µn
(
1
nAk

)))). (33)

Proof. Similarly, to the variance term, by lemma Eq. (D.6) we have that

∥θ∗ − θ̂(ϕ(X)θ∗)∥2Σ

≤ ∥θ∗>k∥2Σ>k
+
µ1(A

−1
k )2

µn(A
−1
k )2

µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
µk (ψ≤k(X)⊤ψ≤k(X))

2 ∥ϕ>k(X)θ∗>k∥2

+
∥θ∗≤k∥2Σ−1

≤k

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2

+ ∥Σ>k∥µ1(A
−1
k )∥ϕ>k(X)θ∗>k∥2

+ ∥Σ>k∥
µ1(A

−1
k )

µn(A
−1
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤ψ≤k(X))2
∥Σ−1/2

≤k θ∗≤k∥2.

Plugging in the bounds from lemmas Eq. (B.4) and Eq. (B.3), there are some absolute constants c, c′, c1, c2 > 0 s.t for any
k ∈ N with cβkk log(k) ≤ n, it holds w.p at least 1− 8 exp

(
− c′

β2
k

n
k

)
that

∥θ∗ − θ̂(ϕ(X)θ∗)∥2Σ

≤ ∥θ∗>k∥
2
Σ>k

+
µ1(A

−1
k )2

µn(A
−1
k )2

c2n

c21n
2
· 1
δ
n ∥θ∗>k∥

2
Σ>k

+
∥θ∗≤k∥2Σ−1

≤k

µn(A
−1
k )2c21n

2

+ ∥Σ>k∥µ1(A
−1
k ) · 1

δ
n ∥θ∗>k∥

2
Σ>k

+ ∥Σ>k∥
µ1(A

−1
k )

µn(A
−1
k )2

c2n

c21n
2
∥Σ−1/2

≤k θ∗≤k∥2

≤ C2

(
∥θ∗>k∥

2
Σ>k

(
1 +

1

δ

(
µ1(A

−1
k )2

µn(A
−1
k )2

+ n ∥Σ>k∥µ1(A
−1)

))
+
∥∥θ∗≤k∥∥2Σ−1

≤k

(
1

n2µn(A
−1
k )2

+ ∥Σ>k∥
µ1(A

−1
k )

nµn(A
−1
k )2

))
,

where C2 > 0 can be chosen to depend only on c1 and c2 (which are absolute constants). Now we can use the facts that
µ1(A

−1
k ) = 1

nµn(
1
nAk)

and µn(A−1
k ) = 1

nµ1(
1
nAk)

to complete the proof, since µ1(A
−1) ≤ µ1(A

−1
k ) = 1

nµn(
1
nAk)

and

1
n2µn(A

−1
k )2

= µ1(A
−1
k )2, and finally µ1(A

−1
k )

nµn(A
−1
k )2

= 1
µn(A

−1
k )

.
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D.2. Lemmas for Risk bounds

In Tsigler & Bartlett (2023)[Appendices F,G,H], several inequalities which will be highly useful to us were derived.
Unfortunately, they assumed throughout their paper that the features are finite-dimensional, mean zero, and follow some
sub-Gaussianity constraint. The proofs from their paper that we need technically do not depend on these constraints.
However, for completeness and rigor, we rewrite their proofs here, adjusted where necessary to match our settings. Again,
we remind the reader of the notations Ak := K>k + nγnI and A := K+ nγnI as defined in Sec. A.

Lemma D.3. For any k ∈ N it holds that

θ̂(y)≤k + ϕ≤k(X)⊤A−1
k ϕ≤k(X)θ̂(y)≤k = ϕ≤k(X)⊤A−1

k y.

Proof. We start with the ridgeless case, where θ̂(y) is the minimum norm interpolating solution. Note that θ̂(y)>k is also
the minimum norm solution to the equation ϕ>k(X)θ>k = y − ϕ≤k(X)θ̂(y)≤k, where θ>k is the variable. Thus, we can
write

θ̂(y)>k = ϕ>k(X)⊤
(
ϕ>k(X)ϕ>k(X)⊤

)−1
(
y − ϕ≤k(X)θ̂(y)≤k

)
.

As such, we obtain that the min norm interpolator is the minimizer of the following:

θ̂(y) = argmin
θ≤k

v(θ≤k) :=
[
θ⊤≤k, (y − ϕ≤k(X)θ≤k)

⊤ (
ϕ>k(X)ϕ>k(X)⊤

)−1
ϕ>k(X)

]

As θ≤k varies, this vector sweeps an affine subspace of our Hilbert space. The vector θ̂(y)≤k gives the minimum norm if
and only if for any additional vector η≤k we have v(θ̂(y)≤k) ⊥ v(θ̂(y)≤k + η≤k)− v(θ̂(y)≤k). Let’s write out the second
vector: ∀η≤k ∈ Rk

v(θ̂(y)≤k + η≤k)− v(θ̂(y)≤k) =
[
η⊤≤k,−η⊤≤kϕ≤k(X)⊤

(
ϕ>k(X)ϕ>k(X)⊤

)−1
ϕ>k(X)

]
We see that the above mentioned orthogonality for any η≤k is equivalent to the following:

θ̂(y)⊤≤k −
(
y − ϕ≤k(X)θ̂(y)≤k

)⊤ (
ϕ>k(X)ϕ>k(X)⊤

)−1
ϕ≤k(X) = 0,

θ̂(y)≤k + ϕ≤k(X)⊤A−1
k ϕ≤k(X)θ̂(y)≤k = ϕ≤k(X)⊤A−1

k y,

where we replaced ϕ>k(X)ϕ>k(X)⊤ =: Ak.

This completes the ridgeless case, and we now move on to the case of γn > 0. We have that

θ̂(y)≤k = ϕ≤k(X)⊤(K+ nγnI)
−1y = ϕ≤k(X)⊤(Ak + ϕ≤k(X)ϕ≤k(X)⊤)−1y.

Which yields

θ̂(y)≤k + ϕ≤k(X)⊤A−1
k ϕ≤k(X)θ̂(y)≤k

=ϕ≤k(X)⊤(Ak + ϕ≤k(X)ϕ≤k(X)⊤)−1y

+ ϕ≤k(X)⊤A−1
k ϕ≤k(X)ϕ≤k(X)⊤(Ak + ϕ≤k(X)ϕ≤k(X)⊤)−1y

=ϕ≤k(X)⊤A−1
k (Ak + ϕ≤k(X)ϕ≤k(X)⊤)(Ak + ϕ≤k(X)ϕ≤k(X)⊤)−1y

=ϕ≤k(X)⊤A−1
k y.

We now prove a very simple lemma that will help us formalized the intuition that we can split the error into the ≤ k and > k
components
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Lemma D.4. For any k ∈ N, and v ∈ RN,

∥v∥2Σ = ∥v≤k∥2Σ≤k
+ ∥v>k∥2Σ>k

Proof. We can write v =

[
v≤k
v>k

]
and since Σ is diagonal Σ =

[
Σ≤k 0
0 Σ>k

]
and thus:

∥v∥2Σ =
[
v≤k v>k

] [Σ≤k 0
0 Σ>k

] [
v≤k
v>k

]
= ∥v≤k∥2Σ≤k

+ ∥v>k∥2Σ>k
.

The next lemma provides a useful upper bound for the variance.

Lemma D.5 (Variance term). If for some k ∈ N the matrix Ak is PD, then

V ≤ σ2
ϵ

(
µ1(A

−1
k )2tr(ψ≤k(X)ψ≤k(X)⊤)

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2 + µ1(A
−1
k )2tr(ϕ>k(X)Σ>kϕ>k(X)⊤)

)
.

Proof. Recall that

V = Eϵ
[∥∥∥θ̂(ϵ)∥∥∥2

Σ

]
= Eϵ

[∥∥ϕ(X)⊤(K+ nγnI)
−1ϵ
∥∥2
Σ

]
By Lemma Eq. (D.4) we can split the variance into

∥∥∥θ̂(ϵ≤k)∥∥∥2
Σ≤k

and
∥∥∥θ̂(ϵ>k)∥∥∥2

Σ>k
and bound these separately.

Lemma Eq. (D.3) states that

ϕ≤k(X)⊤A−1
k ϵ = θ̂(ϵ≤k) + ϕ≤k(X)⊤A−1

k ϕ≤k(X)θ̂(ϵ≤k).

Multiplying the identity by θ̂(ϵ≤k)⊤ from the left, and using that θ̂(ϵ≤k)⊤θ̂(ϵ≤k) ≥ 0 we get

θ̂(ϵ≤k)
⊤ϕ≤k(X)⊤A−1

k ϵ ≥ θ̂(ϵ≤k)
⊤ϕ≤k(X)⊤A−1

k ϕ≤k(X)θ̂(ϵ≤k). (34)

The leftmost expression is linear in θ̂(ϵ≤k), and the rightmost is quadratic. We use these expressions to bound ∥θ̂(ϵ≤k)∥Σ≤k
.

First, we extract that norm from the quadratic part

θ̂(ϵ≤k)
⊤ϕ≤k(X)⊤A−1

k ϕ≤k(X)θ̂(ϵ≤k) ≥µn(A−1
k )θ̂(ϵ≤k)

⊤ϕ≤k(X)⊤ϕ≤k(X)θ̂(ϵ≤k)

≥µn(A−1
k )∥θ̂(ϵ≤k)∥2Σ≤k

µk
(
ψ≤k(X)⊤ψ≤k(X)

)
.

Then we can substitute Eq. (34) and apply Cauchy-Schwarz to obtain

∥θ̂(ϵ≤k)∥2Σ≤k
µn(A

−1
k )µk

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ θ̂(ϵ≤k)

⊤ϕ≤k(X)⊤A−1
k ϕ≤k(X)θ̂(ϵ≤k)

≤ θ̂(ϵ≤k)
⊤ϕ≤k(X)⊤A−1

k ϵ

≤ ∥θ̂(ϵ≤k)∥Σ≤k

∥∥ψ≤k(X)⊤A−1
k ϵ
∥∥ ,

and so

∥θ̂(ϵ≤k)∥2Σ≤k
≤

ϵ⊤A−1
k ψ≤k(X)ψ≤k(X)⊤A−1

k ϵ

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2 .

Since ϵ is independent of X , taking expectation in ϵ only leaves the trace in the numerator:

Eϵ∥θ̂(ϵ≤k)∥2Σ≤k
≤σ2

ϵ

tr(A−1
k ψ≤k(X)ψ≤k(X)⊤A−1

k )

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2

≤σ2
ϵ

µ1(A
−1
k )2tr(ψ≤k(X)ψ≤k(X)⊤)

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2 ,
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where we transitioned to the second line by using the fact that tr(MM ′M) ≤ µ1(M)2tr(M ′) for PD matrices M,M ′.

This completes the bound for the first ≤ k components, and we now move on to the > k ones. The rest of the variance term
is ∥∥∥Σ1/2

>k ϕ>k(X)⊤A−1ϵ
∥∥∥2 = ϵ⊤A−1ϕ>k(X)Σ>kϕ>k(X)⊤A−1ϵ.

Since ϵ is independent of X , taking expectation in ϵ only leaves the trace of the matrix:

1

σ2
ϵ

Eϵ
∥∥∥Σ1/2

>k ϕ>k(X)⊤A−1ϵ
∥∥∥2 =tr(A−1ϕ>k(X)Σ>kϕ>k(X)⊤A−1)

≤µ1(A
−1)2tr(ϕ>k(X)Σ>kϕ>k(X)⊤)

≤µ1(A
−1
k )2tr(ϕ>k(X)Σ>kϕ>k(X)⊤).

Here we again used the fact that tr(MM ′M) ≤ µ1(M)2tr(M ′) for PD matrices M,M ′ to transition to the second line. We
then used A ⪰ Ak to infer µ1(A

−1) ≤ µ1(A
−1
k ).

We now move on to bounding the bias term.
Lemma D.6 (Bias term). Suppose that for some k < n the matrix Ak is PD. Then,

∥θ∗ − θ̂(ϕ(X)θ∗)∥2Σ

≤ ∥θ∗>k∥2Σ>k
+
µ1(A

−1
k )2

µn(A
−1
k )2

µ1

(
ψ≤k(X)⊤ψ≤k(X)

)
µk (ψ≤k(X)⊤ψ≤k(X))

2 ∥ϕ>k(X)θ∗>k∥2

+
∥θ∗≤k∥2Σ−1

≤k

µn(A
−1
k )2µk (ψ≤k(X)⊤ψ≤k(X))

2

+ ∥Σ>k∥µ1(A
−1
k )∥ϕ>k(X)θ∗>k∥2

+ ∥Σ>k∥
µ1(A

−1
k )

µn(A
−1
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤ψ≤k(X))2
∥Σ−1/2

≤k θ∗≤k∥2.

Proof. As before, by Lemma Eq. (D.4) we can bound the ≤ k components and the > k components separately. We start by
bounding ∥θ∗≤k − θ̂(y)≤k(ϕ(X)θ∗)∥2Σ≤k

. By Lemma Eq. (D.3), we have

θ̂(ϕ(X)θ∗)≤k + ϕ≤k(X)⊤A−1
k ϕ≤k(X)θ̂(ϕ(X)θ∗)≤k = ϕ≤k(X)⊤A−1

k ϕ(X)θ∗.

Denote the error vector as ζ := θ̂(ϕ(X)θ∗)− θ∗. We can rewrite the equation above as

ζ≤k + ϕ≤k(X)⊤A−1
k ϕ≤k(X)ζ≤k = ϕ≤k(X)⊤A−1

k ϕ>k(X)θ∗>k − θ∗≤k.

Multiplying both sides by ζ⊤≤k from the left and using that ζ⊤≤kζ≤k = ∥ζ≤k∥2 ≥ 0 we obtain

ζ⊤≤kϕ≤k(X)⊤A−1
k ϕ≤k(X)ζ≤k ≤ ζ⊤≤kϕ≤k(X)⊤A−1

k ϕ>k(X)θ∗>k − ζ⊤≤kθ
∗
≤k.

Next, divide and multiply by Σ
1/2
≤k in several places:

ζ⊤≤kΣ
1/2
≤k ψ≤k(X)⊤A−1

k ψ≤k(X)Σ
1/2
≤k ζ≤k ≤ζ⊤≤kΣ

1/2
≤k ψ≤k(X)⊤A−1

k ϕ>k(X)θ∗>k

− ζ⊤≤kΣ
1/2
≤kΣ

−1/2
≤k θ∗≤k.

Now we pull out the lowest singular values of the matrices in the LHS and largest singular values of the matrices in the RHS
to obtain lower and upper bounds respectively, yielding

∥ζ≤k∥2Σ≤k
µn(A

−1
k )µk

(
ψ≤k(X)⊤ψ≤k(X)

)
≤ ∥ζ≤k∥Σ≤k

µ1(A
−1
k )
√
µ1 (ψ≤k(X)⊤ψ≤k(X))∥ϕ>k(X)θ∗>k∥

+ ∥ζ≤k∥Σ≤k
∥θ∗≤k∥Σ−1

≤k
,
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and so

∥ζ≤k∥Σ≤k
≤
µ1(A

−1
k )

µn(A
−1
k )

µ1

(
ψ≤k(X)⊤ψ≤k(X)

)1/2
µk (ψ≤k(X)⊤ψ≤k(X))

∥ϕ>k(X)θ∗>k∥

+
∥θ∗≤k∥Σ−1

≤k

µn(A
−1
k )µk (ψ≤k(X)⊤ψ≤k(X))

.

This completes the bounds for the ≤ k components and we now move on to the> k ones. The contribution of the components
of ζ, starting from the k + 1st can be bounded as follows:

∥θ∗>k − ϕ>k(X)⊤A−1ϕ(X)θ∗∥2Σ>k

≤ 3
(
∥θ∗>k∥2Σ>k

+ ∥ϕ>k(X)⊤A−1ϕ>k(X)θ∗>k∥2Σ>k
+ ∥ϕ>k(X)⊤A−1ϕ≤k(X)θ∗≤k∥2Σ>k

)
.

First of all, let’s deal with the second term:

∥ϕ>k(X)⊤A−1ϕ>k(X)θ∗>k∥2Σ>k
=∥Σ1/2

>k ϕ>k(X)⊤A−1ϕ>k(X)θ∗>k∥2

≤∥Σ>k∥∥ϕ>k(X)⊤A−1ϕ>k(X)θ∗>k∥2

= ∥Σ>k∥ (θ∗>k)⊤ϕ>k(X)⊤A−1 ϕ>k(X)ϕ>k(X)⊤︸ ︷︷ ︸
=A−nγnI−ϕ≤k(X)ϕ≤k(X)⊤⪯A

A−1ϕ>k(X)θ∗>k

≤∥Σ>k∥ (θ∗>k)⊤ϕ>k(X)⊤A−1ϕ>k(X)θ∗>k

≤∥Σ>k∥µ1(A
−1
k )∥ϕ>k(X)θ∗>k∥2,

where we used that µ1(A
−1
k ) ≥ µ1(A

−1) in the last transition.

Now, let’s deal with the last term. Note that A = Ak + ϕ≤k(X)ϕ≤k(X)⊤. By the Sherman–Morrison–Woodbury formula,

A−1ϕ≤k(X) =(A−1
k + ϕ≤k(X)ϕ≤k(X)⊤)−1ϕ≤k(X)

=
(
A−1
k −A−1

k ϕ≤k(X)
(
Ik + ϕ≤k(X)⊤A−1

k ϕ≤k(X)
)−1

ϕ≤k(X)⊤A−1
k

)
ϕ≤k(X)

=A−1
k ϕ≤k(X)

(
In −

(
Ik + ϕ≤k(X)⊤A−1

k ϕ≤k(X)
)−1

ϕ≤k(X)⊤A−1
k ϕ≤k(X)

)
=A−1

k ϕ≤k(X)
(
In −

(
Ik + ϕ≤k(X)⊤A−1

k ϕ≤k(X)
)−1 (

Ik + ϕ≤k(X)⊤A−1
k ϕ≤k(X)− Ik

))
=A−1

k ϕ≤k(X)
(
Ik + ϕ≤k(X)⊤A−1

k ϕ≤k(X)
)−1

.

Thus,

∥ϕ>k(X)⊤A−1ϕ≤k(X)θ∗≤k∥2Σ>k

=∥ϕ>k(X)⊤A−1
k ϕ≤k(X)

(
Ik + ϕ≤k(X)⊤A−1

k ϕ≤k(X)
)−1

θ∗≤k∥2Σ>k

=∥Σ1/2
>k ϕ>k(X)⊤A−1

k ψ≤k(X)
(
Σ−1

≤k + ψ≤k(X)⊤A−1
k ψ≤k(X)

)−1

Σ
−1/2
≤k θ∗≤k∥2

≤∥A−1/2
k ϕ>k(X)Σ>kϕ>k(X)⊤A

−1/2
k ∥µ1(A

−1/2
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤A−1
k ψ≤k(X))2

∥Σ−1/2
≤k θ∗≤k∥2

≤∥Σ>k∥∥A−1/2
k ϕ>k(X)ϕ>k(X)⊤A

−1/2
k ∥

µ1(A
−1
k )

µn(A
−1
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤ψ≤k(X))2
∥Σ−1/2

≤k θ∗≤k∥2

= ∥Σ>k∥ ∥In − nγnA
−1
k ∥

µ1(A
−1
k )

µn(A
−1
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤ψ≤k(X))2
∥Σ−1/2

≤k θ∗≤k∥2

≤∥Σ>k∥
µ1(A

−1
k )

µn(A
−1
k )2

µ1(ψ≤k(X)⊤ψ≤k(X))

µk(ψ≤k(X)⊤ψ≤k(X))2
∥Σ−1/2

≤k θ∗≤k∥2,
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where in the last transition we used the fact that In − nγnA
−1
k is a PSD matrix with norm bounded by 1 for γn > 0.

Putting those bounds together yields the result.

E. Applications - Proofs of Results in Sec. 5
E.1. Regularized Case (Thm. 5.3)

Theorem 5.3. Let K be a kernel with polynomially decaying eigenvalues λi = Θi,n(i
−1−a) for some a > 0, and assume

that βk = Ok(1). Further, suppose that the regularization parameter satisfies γn = Θn(n
−1−b) for b ∈ (−1, a). Then for

any δ > 0, it holds w.p at least 1− δ − on(
1
n ) that

V ≤ σ2
ϵ · On

(
1

n
a−b
1+a

)
,

and if θ∗i = Θi,n (i
−r) for some r ∈ R s.t

∥∥Σ1/2θ∗
∥∥
2
<∞ (necessary for f∗ ∈ L2

µ(X )), then under the same probability it
also holds that

B ≤ 1

δ
· On

(
1

n(1+b)min( (2r+a)
1+a ,2)

)
,

where the O is weakened to Õ if r = 1 + a
2 .

Proof. We use Thm. 4.1, which states that there exist some absolute constants c, c′ > 0 s.t for any k ∈ N with cβkk log(k) ≤
n and any δ > 0, Eq. (12) and Eq. (13) hold w.p at least 1− δ − 16 exp

(
− c′

β2
k

n
k

)
.

In order to use the theorem, for any n we first have to pick some k ∈ N s.t cβkk log(k) ≤ n. As such, let k := k(n) :=⌈
n

1+b
1+a

⌉
. The condition b ∈ (−1, a) implies that 1+b

1+a < 1, and thus k(n) = on

(
n

log(n)

)
, meaning that for sufficiently large

n, Thm. 4.1 can be used with this chosen k. Since k is a function of n, the On notation in particular, implies constants w.r.t
k.

We now proceed to bounding ρk,n (as defined in Thm. 4.1). By Lemma E.2 it holds w.p at least 1−On

(
1
k3

)
exp

(
−Ωn(

n
k )
)

that

µ1

(
1

n
K>k

)
= On (λk+1) = On

((
n

1+b
1+a

)−(1+a)
)

= On

(
n−1−b) = On (γn) . (35)

We can bound the event that both Thm. 4.1 hold and Eq. (35) hold as

1− δ − 16 exp

(
− c′

β2
k

n

k

)
−On

(
1

k3

)
exp

(
−Ωn

(n
k

))
= 1− δ −On

(
1

n

)
,

Where we used the facts that c′

β2
k

n
k = ωn (log(n)). From now on, we assume that both Thm. 4.1 and Eq. (35) indeed hold.

Plugging Eq. (35) into the definition of the concentration coefficient Eq. (11) and using µn
(
1
nK>k

)
≥ 0, we obtain the

bound

ρk,n = On

(
λk+1 + γn

γn

)
= On

(
γn
γn

)
= On (1) . (36)

By Lemma E.1, it holds that rk(Σ), rk(Σ2) = Θn (k). So plugging this and Eq. (36) into Thm. 4.1 yields,

V/σ2
ϵ = On

(
k

n
+
rk(Σ

2)

n

)
= O

(
k

n

)
= On

(
n

1+b
1+a

n

)
= On

(
n

b−a
1+a

)
,
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and

B =
1

δ
On

∥θ∗>k∥
2
Σ>k︸ ︷︷ ︸

:=T1

+On

∥∥θ∗≤k∥∥2Σ−1
≤k︸ ︷︷ ︸

:=T2

(
γn +

tr (Σ>k)
n

)2

︸ ︷︷ ︸
:=T3

 .

Following Lemma E.1 it holds that tr(Σ>k) = On(k · λk) = On(k · γn) and so

T3 = On

((
γn +

k

n
γn

)2
)

= On

(
γ2n
)
= On

(
1

n2+2b

)
.

Combining this bound for T3 with the bounds for T1, T2 from Lemma E.4 yields

B ≤


On

(
1

k2r+a + 1
k2r−2−an2(1+b)

)
2r < 2 + a

On

(
1

k2(1+a) +
log(k)
n2(1+b)

)
2r = 2 + a

On

(
1

k2r+a + 1
n2(1+b)

)
2r > 2 + a

≤


On

(
1

n
(2r+a)(1+a)

1+b

)
2r < 2 + a

On

(
log(n)
n2(1+b)

)
2r = 2 + a

On

(
1

n2(1+b)

)
2r > 2 + a

.

E.2. Fixed Dimensional Interpolation Case (Thm. 5.2)

Theorem 5.2. Let K be a kernel with polynomially decaying eigenvalues λi = Θi,n(i
−1−a) for some a > 0, and assume

that αk, βk = Θk(1). Then for the min norm solution defined in Eq. (4) (given when γn → 0), for any δ > 0 it holds w.p at
least 1− δ −On

(
1

log(n)

)
that

V ≤ σ2
ϵ Õn

(
n2a
)
.

Moreover, if θ∗i = Oi

(
1
ir

)
where r > a then under the same probability it also holds that

B ≤ 1

δ
Õn

(
1

nmin(2(r−a),2−a)

)
.

Proof. We use Thm. 4.1, which states that there exist some absolute constants c, c′ > 0 s.t for any k ∈ N with cβkk log(k) ≤
n and any δ > 0, Eq. (12) and Eq. (13) hold w.p at least 1− δ − 16 exp

(
− c′

β2
k

n
k

)
.

In order to use the theorem, for any n we first have to pick some k ∈ N s.t cβkk log(k) ≤ n. Using the fact that βk ≤ C0 for
some C0 > 0, let k := k(n) := n

max(cC0,1) log(n)
and we also let k′ := k′(n) = n2 log4(n). The probability that Thm. 4.1

holds with k(n) now becomes 1− δ −On(
1
n ). Since k is a function of n, the On notation in particular, implies constants

w.r.t k.

In order to bound Eq. (12) and Eq. (13), we begin by bounding ρk,n, which requireds bounding µ1

(
1
nK>k

)
and µn

(
1
nK>k

)
.

First note that by Bartlett et al. (2020)[Lemma 5] Rk ≥ rk and thus by Lemma E.1 it holds that Rk′ = Ωn
(
n2 log4(n)

)
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and tr (Σ>k′) = Ωn
(
(n2 log4(n))−a

)
. By Corollary C.5 it holds w.p at least 1− 1

log(n) that,

µn

(
1

n
K>k

)
≥αk

1− 1

log(n)

√
n2

Rk′

 tr (Σ>k′)
n

=Ωn

((
1− log(n)

√
1

log4(n)

)
tr (Σ>k′)

n

)

=Ωn

(
(n2 log4(n))−a

n

)
= Ωn

(
n−1−2a log−4a(n)

)
. (37)

For µ1

(
1
nK
)
, by Lemma E.2 it holds w.p at least 1−On

(
1
k3

)
exp

(
−Ωn

(
n
k

))
that

µ1

(
1

n
K>k

)
= On (λk+1) = On

(
n−1−a log1+a(n)

)
. (38)

So Thm. 4.1, Eq. (37) and Eq. (38) all hold simultaneously with probability 1 − δ −On

(
1

log(n)

)
, and from now on we

assume that this is indeed the case.

By combining Eq. (38) and Eq. (37) we obtain the bound

ρk,n = On

(
n−1−a log1+a(n)

n−1−2a log−4a(n)

)
= Õn (n

a) (39)

And thus by combining Eq. (12), Eq. (39) and the fact that from Lemma E.1 rk(Σ2) ≲ k, we obtain the bound

V/σ2
ϵ = Õn

(
n2a

k

n

)
= Õn

(
n2a
)

and

B =
1

δ
Õn

n3a
∥θ∗>k∥

2
Σ>k︸ ︷︷ ︸

:=T1

+
∥∥θ∗≤k∥∥2Σ−1

≤k︸ ︷︷ ︸
:=T2

(
tr (Σ>k)

n

)2

︸ ︷︷ ︸
:=T3


 .

Following Lemma E.1 it holds that tr(Σ>k) = Õn(k · λk) = Õn(
1
na ) and so T3 = Õn

(
1

n2+2a

)
. Combining this bound for

T3 with the bounds for T1, T2 from Lemma E.4 yields

T1 + T2T3 ≤

Õn

(
1

n2r+a + 1
n2r−2−an2(1+a)

)
2r ≤ 2 + a

Õn

(
1

n2r+a + 1
n2(1+a)

)
2r > 2 + a

=Õn

(
1

nmin(2r+a,2(1+a))

)
.

Implying that

B ≤1

δ
Õn

(
n3a

1

nmin(2r+a,2(1+a))

)
=
1

δ
Õn

(
1

min
(
n2(r−a),2−a

)) .
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E.3. High Dimensional Interpolation Case (Thm. 5.1)

Theorem 5.1. Suppose that as n, d→ ∞, d
τ

n = Θn,d (1) for some τ ∈ (0,∞) \ N. Let µ be the uniform distribution over
Sd−1 and K be a dot product kernel given by Eq. (14) s.t σ̂⌊τ⌋ > 0 and ∃ℓ > ⌊2τ⌋ with σ̂ℓ ≥ 0 (e.g NTK, Laplace, or RBF).
Then for the min norm solution defined in Eq. (4) (given when γn → 0), for any δ > 0 it holds w.p at least 1− δ − od

(
1
d

)
that

V ≤σ2
ϵ · On,d

(
1

dτ−⌊τ⌋ +
1

d⌊τ⌋+1−τ

)
,

B ≤1

δ
On,d

(∥∥θ∗>Nd

∥∥2
Σ>Nd

)
+
∥∥θ∗≤Nd

∥∥2
∞

(
max

ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

1

σ̂ℓ

)
· On,d

(
1

d2(τ−⌊τ⌋)

)
.

Where Nd = Θn,d
(
d⌊τ⌋

)
denotes the number of spherical harmonics of degree at most ⌊τ⌋ with non-zero eigenvalues, and

On,d

(
∥θ∗>Nd

∥2Σ>Nd

)
≤ On,d

(
∥θ∗>Nd

∥2∞
)
.

Proof. Let σℓ := σ̂ℓ

N(d,ℓ) be the eigenvalues from Eq. (50). We order ϕ in the natural way, by first taking ϕ̃(x) =

(
√
σ0Y0,1,

√
σ1Y1,1, . . . ,

√
σ1Y1,N(d,1),

√
σ2Y2,1, . . .), and letting ϕ be the same as ϕ̃ with zero-valued indices removed

(where σℓ = 0). We let ψ be given accordingly.

For any s ∈ N, and d ∈ N let ks(d) =
∑s
ℓ=0N(d, ℓ) · Iσ̂ℓ

where Iσ̂ℓ
=

{
1 σ̂ℓ > 0

0 else
. Let ∆>ks(d) ∈ Rn×n be the matrix

given by [∆>ks(d)]ij =

{
1
n [K>ks(d)]ij i ̸= j

0 i = j
. By Eq. (23) we have that

αks(d)
1

n
tr
(
Σ>ks(d)

)
+ µn

(
∆>ks(d)

)
≤ µi

(
1

n
K>ks(d)

)
≤ βks(d)

1

n
tr
(
Σ>ks(d)

)
+ µ1

(
∆>ks(d)

)
. (40)

In order to bound the eigenvalues of ∆>ks(d) we will need to control the effective ranks. Let js := argmaxj≥s σj , then

rks(d)(Σ) =

∑∞
i=s+1N(d, i)σi

σjs+1

≥ N(d, js+1) ≥ N(d, s+ 1),

where our assumption that σ̂ℓ > 0 for some ℓ ≥ ⌊2τ⌋ ensures that σjs+1
> 0 for s ≤ ⌊2τ⌋. By Bartlett et al. (2020)[Lemma

5] we also have Rks(d)(Σ) ≥ rks(d)(Σ). Let k(d) := k⌊τ⌋(d) and v(d) := k⌊2τ⌋(d). Let t = min(⌊τ⌋ − τ + 1, ⌊2τ⌋ −
2τ + 1) > 0, then by what we just showed, and using the fact that for any i ∈ N, N(d, i) = Θd

(
di
)
, we have the following

identities:

Rv(d)(Σ) ≥Ωn,d

(
d⌊2τ⌋+1

)
≥ Ωn,d

(
n2+

t
τ

)
, (41)

rk(d)(Σ) ≥Ωn,d

(
d⌊τ⌋+1

)
≥ Ωn,d

(
n1+

t
τ

)
. (42)

We have shown that conditions (A2) and (A3) of Mei et al. (2022)[Proposition 4] hold. Furthermore, condition (A1) holds
applying Mei et al. (2022)[Lemma 19] to ψ≤v(d). As a result, Mei et al. (2022)[Proposition 4] states that for some t′ > 0,

∥∥∆≥k(d)
∥∥ ≤ On,d

(
d−t

′
)
· 1
n

tr
(
Σ>k(d)

)
.

Plugging this into Eq. (40) and using that by the addition theorem Eq. (51), αk(d) = βk(d) = 1, it holds that

µi

(
1

n
K>k(d)

)
= Θn,d

(
1

n
tr
(
Σ>k(d)

))
. (43)

30



Generalization in Kernel Regression Under Realistic Assumptions

As a result, we obtain that for ρk,n as defined in Thm. 4.1,

ρk(d),n =
∥Σ>k∥+ µ1

(
1
nK>k

)
+ γn

µn
(
1
nK>k

)
+ γn

= On,d


(

n
rk(d)

+ 1
)

1
n tr
(
Σ>k(d)

)
1
n tr
(
Σ>k(d)

)
 ≤ On,d (1) .

Combining this with Thm. 4.1, it holds that for every δ > 0, w.p at least 1− δ − 16 exp

(
− c′

β2
k(d)

n
k(d)

)
, both the variance

and bias can be upper bounded as

V ≤σ2
ϵOn,d

((
k(d)

n
+

n

Rk(Σ)

))
≤ σ2

ϵOn,d

(
1

dτ−⌊τ⌋ +
1

d⌊τ⌋+1−τ

)
. (44)

B ≤ 1

δ
On,d

(∥∥∥θ∗>k(d)∥∥∥2
Σ>k(d)

)
+On,d

∥∥∥θ∗≤k(d)∥∥∥2
Σ−1

≤k(d)

(
tr
(
Σ>k(d)

)
n

)2
 . (45)

Using the fact that c′

β2
k(d)

n
k(d) = ωd(log(d)) the probability becomes 1− δ − od

(
1
d

)
Now in order to further bound the bias, we first note that by the addition theorem Eq. (51) it holds that

tr (Σ) =
∞∑
ℓ=0

σℓN(d, ℓ) = h(1) = Θn,d(1). (46)

As in the statement of the lemma, let Nd := k(d). Because i ∈ N, N(d, i) = Θd
(
di
)

and by assumption, σ̂⌊τ⌋ ̸= 0, it holds
that k(d) = On,d

(
d⌊τ⌋

)
. Combining this with Eq. (46) and the fact that for all i ≤ k(d), λi ≥ min

ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0
σ̂ℓ ·Ωn,d

(
1

d⌊τ⌋

)
the right hand side of Eq. (45) can be bounded as

∥∥∥θ∗≤k(d)∥∥∥2
Σ−1

≤k(d)

(
tr
(
Σ>k(d)

)
n

)2

=
∑
i≤k(d)

(θ∗i )
2

λi

(
tr
(
Σ>k(d)

)
n

)2

≤ k(d)

mini≤k(d) λi

∥∥θ∗≤Nd

∥∥2
∞

(
tr (Σ)
n

)2

≤
∥∥θ∗≤Nd

∥∥2
∞

1

min
ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

σ̂ℓ
· On,d

(
1

d2(τ−⌊τ⌋)

)
.

The left hand side of Eq. (45) can be bounded as

1

δ

∥∥∥θ∗>k(d)∥∥∥2
Σ>k(d)

≤ 1

δ

∥∥∥θ∗>k(d)∥∥∥2∞ tr
(
Σ>k(d)

)
=

1

δ
On,d

(∥∥θ∗>Nd

∥∥2
∞

)
.

So Eq. (45) becomes

B ≤ 1

δ
On,d

(∥∥θ∗>Nd

∥∥2
∞

)
+
∥∥θ∗≤Nd

∥∥2
∞ max
ℓ≤⌊τ⌋ s.t. σ̂ℓ ̸=0

1

σ̂ℓ
· On,d

(
1

d2(τ−⌊τ⌋)

)
.

E.4. Lemmas for Applications

Lemma E.1. For any a > 0,

1. If c1 1
i log1+a(i)

≤ λi ≤ c2
1

i log1+a(i)
then c1

c2
1
a (k + 1) log(k + 1) ≤ rk ≤ 1 + c2

c1
1
a (k + 1) log(k + 1).
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2. If c1 1
i1+a ≤ λi ≤ c2

1
i1+a then c1

c2
1
a (k + 1) ≤ rk ≤ 1 + c2

c1
1
a (k + 1).

3. If c1 1
eai ≤ λi ≤ c2

1
eai then c1

c2
1
a ≤ rk ≤ 1 + c2

c1
1
a .

Proof. The famous integral test for convergence states that for a monotonic decreasing function f(n), it holds for any k ∈ N
that ∫ ∞

k+1

f(x)dx ≤
∑
i>k

f(i) ≤ f(k + 1) +

∫ ∞

k+1

f(x)dx,

We now split into separate cases of eigenvalue decay.

1. If c1 1
i loga(i) ≤ λi ≤ c2

1
i loga(i) then using the fact that

∫∞
k+1

1
x log1+a(x)

dx = 1
a loga(k+1) we obtain

rk ≤ 1 +
1

c1λk+1

∫ ∞

k+1

c2
1

x log1+a(x)
dx ≤ 1 +

c2
c1

1

a
(k + 1) log(k + 1),

and

rk ≥ 1

c2λk+1

∫ ∞

k+1

ca
1

x log1+a(x)
dx ≥ c1

c2

1

a
(k + 1) log(k + 1).

2. If c1 1
i1+a ≤ λi ≤ c2

1
i1+a then using the fact that

∫∞
k+1

1
x1+a(x)dx = 1

a(k+1)a we obtain that

rk ≤ 1 +
1

c1λk+1

∫ ∞

k+1

c2
1

x1+a(x)
dx ≤ 1 +

c2
c1

1

a
(k + 1),

and

rk ≥ 1

c2λk+1

∫ ∞

k+1

c1
1

x1+a(x)
dx ≥ c1

c2

1

a
(k + 1).

3. If c1 1
eai ≤ λi ≤ c2

1
eai then using the fact that

∫∞
k+1

exp(−ax)dx = 1
aea(k+1) we obtain that

rk ≤ 1 +
1

c1λk+1

∫ ∞

k+1

c2 exp(−ax)dx ≤ 1 +
c2
c1

1

a
,

and

rk ≥ 1

c2λk+1

∫ ∞

k+1

c1 exp(−ax)dx ≥ c1
c2

1

a
.

Lemma E.2. Let K be a kernel with polynomially decaying eigenvalues λi = Θi,n(i
−1−a) for some a > 0. Furthermore,

suppose that βkk log(k)
n = Ok,n(1) and that βk = Ok(1). Then it holds w.p at least 1−Ok,n

(
1
k3

)
exp

(
−Ωk,n(

n
k )
)

that

µ1

(
1

n
K>k

)
= Ok,n (λk+1)

Proof. By Lemma E.1, it holds that rk(Σ), rk(Σ2) = Θk,n (k). Now using Corollary C.5 (note that Assumption 2.3 holds

since βk = Ok(1)), there exist absolute constants c, c′ > 0 s.t it holds w.p at least 1− 4 rkk4 exp
(
− c′

βk

n
rk

)
that

µ1

(
1

n
K>k

)
≤c
(
λk+1 + βk log(k + 1)

tr (Σ>k)
n

)
=Ok,n

(
λk+1

(
1 + βk log(k + 1)

rk
n

))
=Ok,n

(
λk+1

(
1 +

βkk log(k)

n

))
= Ok,n (λk+1) .
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Now to bound the probability which this holds, we use the fact that rk = Θk,n(k) together with the fact that exp
(
− c′

βk

n
rk

)
<

1 to get the claim holds w.p at least 1− 4 rkk4 exp
(
− c′

βk

n
rk

)
= 1−Ok,n

(
1
k3

)
exp

(
−Ωk,n(

n
k )
)
.

Lemma E.3. Let a ∈ R, 1 < k ∈ N, then

∑
i≤k

i−a ≤


1 + k1−a a < 1

1 + log(k) a = 1
1

a−1 a > 1

Proof. If a < 0, then bounding the mean with the maximum yields
∑
i≤k i

−a ≤ k · k−a = k1−a. Next, if a ̸= 1, bounding
the sum with the integral yields

∑
i≤k

i−a ≤ 1 +

∫ k

1

1

xa
dx = 1 +

1

a− 1
− k1−a

a− 1
.

So if a < 1, we obtain a 1 + k1−a bound, and if a > 1, a 1 + 1
a−1 bound. Lastly, if a = 1 then we can similarly bound as

∑
i≤k

i−a ≤ 1 +

∫ k

1

1

x
dx = 1 + 1 + log(k).

Lemma E.4. Let 1 < k ∈ N and suppose that λi = Θi,n
(

1
i1+a

)
for some a > 0, and θ∗i = Θi,n (i

−r) for some r ∈ R s.t
f∗ ∈ L2

µ(X ). It holds that

∥θ∗>k∥
2
Σ>k

≤ Ok,n

(
1

k2r+a

)
,

∥∥θ∗≤k∥∥2Σ−1
≤k

≤


Ok,n

(
k−2r+2+a

)
2r < 2 + a

Ok,n (log(k)) 2r = 2 + a

Ok,n (1) 2r > 2 + a

.

Proof. The condition that f∗ ∈ L2
µ(X ) implies

∑∞
i=1 θ

∗λ2i = ∥⟨θ∗ϕ(x)⟩∥ < ∞. The > k part can be bounded using
Lemma E.1 as

∥θ∗>k∥
2
Σ>k

=
∑
i>k

(θ∗i )
2λi = Ok,n

(∑
i>k

i−2r−1−a

)
≤ Ok,n

(
1

k2r+a

)
.

The ≤ k part can be bounded using lemma Lemma E.3 (with 2r − 1− a) as

∥∥θ∗≤k∥∥2Σ−1
≤k

=
∑
i≤k

(θ∗i )
2

λi
= Ok,n

∑
i≤k

i−2r+1+a

 ≤


Ok,n

(
k−2r+2+a

)
2r < 2 + a

Ok,n (log(k)) 2r = 2 + a

Ok,n (1) 2r > 2 + a

.

F. Lack of Sub Gaussianity
Suppose our inputs are one-dimensional standard Gaussians x ∼ N (0, σ2) and let K(x, y) = exp

(
−γ(x− y)2

)
be the

Gaussian (RBF) kernel. Such kernels have known Mercer decompositions (Fasshauer, 2011), and if we pick for simplicity

σ = 1 and γ = 3
8 (meaning that in their notation, α = 1√

2
and ϵ =

√
3
8 ) we obtain that ψ(x) = (ψi(x))

∞
i=0 is given by:

ψi(x) =
4
√
2√

2ii!
e−

x2

4 Hi(x), (47)
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where Hi(x) = (−1)iex
2 di

dxi e
−x2

is the i’th order (physicist’s) Hermite polynomial. Note that in this chapter, for ease of
notation, we start counting at i = 0.

Recall that a vector Y is said to be sub-Gaussian if

sup
u:∥u∥=1

sup
p≥1

1
√
p
(E [|⟨u, Y ⟩|p])

1/p
<∞.

In particular, taking Y = ψ and u = ei we get that:

E [|⟨u, Y ⟩|p] = 1√
2π

∫ ∞

−∞
|ψi(x)|p e−

x2

2 dx

=
2

p
4−

1
2

√
π (2ii!)

p/2

∫ ∞

−∞
|Hi(x)|p exp

(
−
(
p

4
+

1

2

)
x2
)
dx (48)

Thus, if for a fixed p, The value of Eq. (48) diverges to infinity with i, it would imply that ψ is not sub-Gaussian.

We will thus aim to lower bound this term. To do so, we begin by bounding the Hermite polynomials using Szeg
(1939)[Theorem 8.22.9], which states that for any δ > 0, and any x =

√
2i+ 1 cos(ϕ) where δ ≤ ϕ ≤ π − δ, we have the

uniform approximation:

e−
x2

2 Hi(x) =2
i
2+

1
4

√
i!(πi)−

1
4

× sin(ϕ)−
1
2︸ ︷︷ ︸

:=A

sin

(
3π

4
+

(
2i+ 1

4

)
(sin(2ϕ)− 2ϕ)

)
︸ ︷︷ ︸

:=B

+O(i−1)

 . (49)

We now wish to bound B. Since sin(ϕ) ≥ 0.5 for ϕ ∈ [ 16π,
5
6π] then we can lower bound B by 0.5 when

3π

4
+

(
2i+ 1

4

)
(sin(2ϕ)− 2ϕ) ∈

[
1

6
π,

5

6
π

]
.

This is equivalent to:

− 1

6(2i+ 1)
π ≤ ϕ− sin 2ϕ

2
≤ 7

6(2i+ 1)
π.

Since ϕ ≥ 0, we have (via the sin Taylor expansion) that ϕ− ϕ3

6 ≤ sin(ϕ) ≤ ϕ (meaning −ϕ ≤ − sin 2ϕ
ϕ ≤ −ϕ+ 8ϕ3

6 ) and

so the lower bound holds trivially and the upper bound holds when ϕ ≤ 3

√
7

8(2i+1)π.

We can also lower bound A trivially by 1. Furtheremore, for i sufficiently large the O(i−1) is at least − 1
4 . So overall we

obtain that for ϕ ∈
[
δ, 3

√
7

8(2i+1)π
]

and x =
√
2i+ 1 cos(ϕ), A(B +O(i−1)) ≥ 1

4 , and Eq. (49) can be lower bounded as:

Hi(x) ≥
1

4
2

i
2+

1
4

√
i!(πi)−

1
4 e

x2

2 =
1

4

(
2

π

) 1
4

2
i
2

√
i!i−

1
4 e

x2

2 .

So for any p ∈ N, we can lower bound the p’th power of Hi as

Hi(x)
p ≥ 1

4p

(
2

π

) p
4 (

2ii!
)p/2

i−
p
4 e

px2

2 .
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Denoting ai =
√
2i+ 1 cos

(
3

√
7

8(2i+1)π
)

and bi =
√
2i+ 1 cos(δ) we can bound our expected value in Eq. (48) by:

E [|⟨u, Y ⟩|p] = 2
p
4−

1
2

√
π (2ii!)

p/2

∫ ∞

−∞
|Hi(x)|p exp

(
−
(
p

4
+

1

2

)
x2
)
dx

≥
(
2

π

) p
4−

1
2 2

p
4

4pip/4

∫ bi

ai

exp

((
p

4
− 1

2

)
x2
)
dx

≥Ωi

(
i−

3
2

∫ bi

ai

exp

(
p− 2

4
x2
)
dx

)

≥Ωi

(
i−

3
2 (bi − ai) exp

(
p− 2

4
a2i )

))

By continuity in δ we can take bi =
√
2i+ 1 cos(0) =

√
2i+ 1 and by using the inequality (via the cos Maclaurin

expansion) cos(t) ≤ 1− t2

2 + o(t2) we get

bi − ai =
√
2i+ 1(1− cos

(
3

√
7

8(2i+ 1)
π

)

≥
√
2i+ 1

1

2
3

√
7

8(2i+ 1)
π

2

− o

 3

√
7

8(2i+ 1)
π

2


=Ωi(
√
ii−

2
3 ) = Ωi(i

− 1
6 ).

Finally, since for sufficiently large i, a2i >
3
2 i (since the cos part of ai tends to 1), for any p ≥ 3 we obtain

E [|⟨u, Y ⟩|p] = Ωi

(
i−

3
2 i−

1
6 exp

(
p− 2

4
· 3
2
i

))
= Ωi

(
exp

(
p− 2

4
· i
))

−→
i→∞

∞.

This implies that ψ is not sub-Gaussian.

G. Background on Dot Product and Zonal Kernels
A Kernel K is called a dot product kernel if K(x,x′) = h(x⊤x′) for some h : R → R which has a Taylor expansion of the
form h(t) =

∑∞
i=0 ait

i with ai ≥ 0. Importantly, K depends only on x⊤x′. With inputs uniformly distributed on Sd−1, this
family of kernels includes the NTK, Laplace kernel, Gaussian (RBF) kernel, and polynomial kernel (Minh et al., 2006; Bietti
& Bach, 2020; Chen & Xu, 2020). We emphasize that for an L layer fully connected network f(x; θ), KRR with respect to
the corresponding GPK K(x,x′) = Eθ[f(x; θ) · f(x′; θ)] (also called Conjugate Kernel or NNGP Kernel) is equivalent to
training the final layer while keeping the weights of the other layers at their initial values (Lee et al., 2017). Furthermore,

KRR with respect to the NTK Θ(x,x′) = Eθ
[〈

∂f(x;θ)
∂θ ,

∂f(x′;θ)
∂θ

〉]
is equivalent to training the entire network (Jacot

et al., 2018).

Under a uniform distribution on Sd−1, the domain of h is [−1, 1], and for any d ≥ 3 dot product kernels exhibit the Mercer
decomposition

K(x,x′) =

∞∑
ℓ=0

σ̂ℓ
N(d, ℓ)

N(d,ℓ)∑
m=1

Yℓ,m(x)Yℓ,m(x′), (50)

where the eigenfunctions Yℓ,m are the m’th spherical harmonic of degree (or frequency) ℓ, N(d, ℓ) = 2ℓ+d−2
ℓ

(
ℓ+d−3
d−2

)
is the number of harmonics of each degree, and σℓ := σ̂ℓ

N(d,ℓ) are the eigenvalues (Smola et al., 2000). Each spherical
harmonic can be defined via restrictions of homogeneous polynomials to the unit sphere, with the degree (or frequency)
of the spherical harmonic corresponding to the degree of said polynomials. When d ≫ ℓ, N(d, ℓ) = Θd(d

ℓ) and when
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ℓ≫ d,N(d, ℓ) = Θℓ(ℓ
d−2). Importantly, all spherical harmonics Yℓ,m of the same degree ℓ share the same eigenvalue σℓ,

and as a result, there are many repeated eigenvalues. For background on spherical harmonics, see Dai (2013); Atkinson &
Han (2012); Smola et al. (2000). In order to write the kernel as Eq. (1), we can order ϕ in the natural way, by first taking
ϕ̃(x) = (

√
σ0Y0,1,

√
σ1Y1,1, . . . ,

√
σ1Y1,N(d,1),

√
σ2Y2,1, . . .), and letting ϕ be the same as ϕ̃ with zero-valued indices

removed (where σℓ = 0). We let ψ be given accordingly. We note that ψ1 = Y0,1 is a constant function.

The famous addition theorem (Dai, 2013)[1.2.8 and 1.2.9] implies that for any d ≥ 3, x,x′ ∈ Sd−1 and ℓ ≥ 0,

N(d,ℓ)∑
m=1

Yℓ,m(x)Yℓ,m(x) = N(d, ℓ). (51)

For any ℓ ∈ N, let N(d,≤ ℓ) =
∑ℓ
j=1N(d, ℓ). The addition theorem Eq. (51) in particular implies that the eigenfunctions

ψi are highly correlated, and definitely not i.i.d. Importantly, Eq. (51) implies that

For any ℓ ∈ N, k := N(d,≤ ℓ), it holds that βk = αk = 1. (52)

Furthermore, for any k ∈ N, let ℓk = max{ℓ ∈ N ∪ {0} s.t. N(d,≤ ℓ) ≤ k}, so that N(d,≤ ℓk) ≤ k ≤ N(d,≤ ℓk + 1).
If momentarily we consider the case when σ̂ℓ ̸= 0 for all ℓ, then from Eq. (51), it holds that for any x ∈ Sd−1,

Θk(1) =
N(d,≤ ℓk)

N(d,≤ ℓk+1)
≤ ∥ψ≤k(x)∥2

k
≤ N(d,≤ ℓk+1)

N(d,≤ ℓk)
= Θk(1).

Implying that ∥ψ≤k(x)∥2

k = Θk(1). A similar argument yields

1− σ̂ℓk∑∞
ℓ=ℓk

σ̂ℓ
=

∑∞
ℓ=ℓk+1 σ̂ℓ∑∞
ℓ=ℓk

σ̂ℓ
≤ ∥ϕ>k(x)∥2

tr (Σ>k)
≤

∑∞
ℓ=ℓk

σ̂ℓ∑∞
ℓ=ℓk+1 σ̂ℓ

≤ 1 +
σ̂ℓk∑∞

ℓ=ℓk+1 σ̂ℓ
,

which analogously to Lemma E.1 will typically be Θk(1) if the decay of σ̂ is at most exponential (but may be slower). This
is the case for common kernels such as NTK, Laplace and RBF, and for such kernels we obtain:

αk, βk = Θk(1). (53)

H. Examples of Kernels That Fit Our Framework
Here, we provide some simple examples of kernels that fit our framework. Namely, that βk and possibly αk (as defined in
Def. (2.1)) can be bounded. First, note that for each of the terms in Def. (2.1), the denominator is the expected value of
the numerator, so αk and βk quantify how much the features behave as they are “supposed to”. Since inf ≤ E ≤ sup, one
always has

0 ≤ αk ≤ 1 ≤ βk. (54)

A control on βk is usually easier than one on αk. Nevertheless, bounding αk may be made easier by Remark 2.2. We also
mention that bounds on αk, βk in one domain can often be extended to others. See Sec. 5.1 for details.

• Dot Product Kernels on Sd−1: A complete treatment of such kernels is given in Appendix G.

• Kernels With Bounded Eigenfunctions: If ψ2
i (x) < M for any i,x the it trivially holds that βk ≤M for any k ∈ N.

Analogously, if ψ2
i ≥M ′ then αk ≥M ′. This may be weakened to a high probability lower bound (see Remark 2.2).

• RBF and shift-invariant kernels in X ⊆ Rd: The features ϕi for an RBF kernel on X ⊆ Rd with nonempty interior
(i.e X◦ ̸= ∅) are given by (Steinwart et al., 2006)[Theorem 3.7]. If for simplicity X ⊆ [−1, 1], then ϕi are bounded,
implying that ψi are also bounded. Hence, by the previous item, βk = Ok,n(1). A simple and easy-to-understand
construction of the Mercer Decomposition for general shift-invariant kernels on [0, 1] is provided in Mairal & Vert.

• Kernels on the Hypercube {−1, 1}d: With a uniform distribution, the hypercube has a Fourier decomposition given by

monomials (O’Donnell, 2014). As a result, for kernels of the form K(x,x′) = h

(
⟨x,x′⟩

∥x∥∥x′∥ ,
∥x∥2

d ,
∥x′∥2

d

)
for some

h : R3 → R, the eigenfunctions ψi are given by monomials (Yang & Salman, 2019). In particular, for any i, ψ2
i ≡ 1

and thus αk = βk = 1 for any k.
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I. Experiments
We plot the variance for a 3-layer fully connected NTK and polynomial kernel in Fig. 1 and 3-layer fully connected GPK in
Fig. 2. Background on the NTK and GPK is given in Appendix G; however, we note here that there is a closed form for the
expectations (Jacot et al., 2018; Lee et al., 2019; Bietti & Bach, 2020), which we used when computing the figures. First, let

κ0(u) :=
1

π
(π − arccos(u)), κ1(u) :=

1

π

(
u (π − arccos(u)) +

√
1− u2

)
.

The L layer GPK on Sd−1 is equal to

K
(L)
GPK(x,x

′) := κ1

(
K

(L−1)
GPK (x,x′)

)
, K

(0)
GPK(x,x

′) := x⊤x′,

and the L layer NTK on Sd−1 is

Θ(L)(x,x′) := Θ(L−1)(x,x′)κ0

(
K

(L−1)
GPK (x,x′)

)
+K

(L)
GPK(x,x

′), Θ
(0)
GPK(x,x

′) := K
(0)
GPK(x,x

′).

J. Further Details on Related Works
We now continue the discussion from Sec. 2.1.

Regarding the differences between the high-dimensional and low-dimensional settings, we note that the techniques and
assumptions used by these two lines of work are inherently different, and make the results from the high-dimensional works
inapplicable for fixed d and vice versa. For example, high-dimensional works typically rely on tools from random matrix
theory, which require d and n to be tied and are inapplicable for a fixed d. By contrast, low-dimensional works have bounds
that depend on the properties of the fixed RKHS, and often assume a fixed polynomial decay for the eigenvalues λi. This
not only excludes kernels with an exponential decay such as RBF (Minh et al., 2006) but is also problematic, for example,
for analyzing the NTK with high-dimensional inputs, since the polynomial decay only begins when the eigenvalue index is
i≫ poly(d) (Cao et al., 2019). By contrast, we obtain bounds that are relevant for any d, n, regardless of the ratio between
them, and in particular, capture interesting phenomena in these two regimes.

Regarding works that bound the eigenvalues of kernel matrices similarly to what we do here, Braun (2005); Rosasco et al.
(2010); Valdivia (2018) provide generic bounds; however, they are not sufficiently strong for many applications and, in
particular, often do not yield nontrivial bounds for the smallest eigenvalue of the kernel matrix. As we shall see, this will be
crucial for our analysis. Fan & Wang (2020); Montanari & Zhong (2022) provide lower bounds for the smallest eigenvalue
when the input dimension is linear in the number of samples and tends towards infinity. For fully-connected NTKs, Oymak
& Soltanolkotabi (2020); Wang & Zhu (2021) provide bounds for two-layer networks, and Nguyen et al. (2021) provide
bounds for deep networks for large input dimensions. Belkin (2018) gives bounds for radial kernels such as RBF.

K. NTK - Neural Network Correspondence
For many architectures, under suitable initialization and learning rate, gradient decent with sufficiently wide neural networks
is equivalent to kernel regression with the NTK (Jacot et al., 2018; Lee et al., 2019; Yang & Littwin, 2021). Specifically, for
a neural network f(x, θ), one can typically bound its distance from its first order Taylor approximation f lin(x, θ) at time t of
gradient flow as supt≥0

∣∣f(x, θt)− f lin(x, θt)
∣∣ ≤ O

(
1√

width

)
(Lee et al., 2019; Bowman & Montufar, 2022). Furthermore,

training f lin(x, θ) for time t is roughly equivalent to kernel regression with regularization γn = 1
t (Ali et al., 2019). By

combining the two, one can easily bound the difference in generalization errors between neural networks trained for time t
and kernel regression with the NTK and regularization γn = 1

t .
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