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ABSTRACT

The recent surge in AI-generated songs presents exciting possibilities and chal-
lenges. These innovations necessitate the ability to distinguish between human-
composed and synthetic songs to safeguard artistic integrity and protect human
musical artistry. Existing research and datasets in fake song detection only focus
on singing voice deepfake detection (SVDD), where the vocals are AI-generated
but the instrumental music is sourced from real songs. However, these approaches
are inadequate for detecting contemporary end-to-end artificial songs where all
components (vocals, music, lyrics, and style) could be AI-generated. Additionally,
existing datasets lack music-lyrics diversity, long-duration songs, and open-access
fake songs. To address these gaps, we introduce SONICS1, a novel dataset for end-
to-end Synthetic Song Detection (SSD), comprising over 97k songs (4,751 hours)
with over 49k synthetic songs from popular platforms like Suno2 and Udio3. Fur-
thermore, we highlight the importance of modeling long-range temporal depen-
dencies in songs for effective authenticity detection, an aspect entirely overlooked
in existing methods. To utilize long-range patterns, we introduce SpecTTTra, a
novel architecture that significantly improves time and memory efficiency over
conventional CNN and Transformer-based models. In particular, for long audio
samples, our top-performing variant outperforms ViT by 8% F1 score while be-
ing 38% faster and using 26% less memory. Additionally, in comparison with
ConvNeXt, our model achieves 1% gain in F1 score with 20% boost in speed and
67% reduction in memory usage. Other variants of our model family provide even
better speed and memory efficiency with competitive performance.

1 INTRODUCTION

The rapid advancements in AI-generated music present a substantial threat to the music indus-
try, potentially reducing the demand for professional musicians and stifling new talent develop-
ment (McMahon, 2024; Derbyshire et al., 2023). To preserve the unique value of human creativity,
it is crucial to develop robust methods for detecting AI-generated music, ensuring a fair and vibrant
creative ecosystem.

Singing Voice Synthesis (SVS) (Liu et al., 2022a) and Singing Voice Conversion
(SVC) (Jayashankar et al., 2023) have recently achieved significant progress, enabling the
creation of synthetic singing voices that closely mimic real singers’ styles. When combined with in-
strumental music from real songs, these synthetic voices can produce convincing counterfeit songs.
Although related to synthetic speech detection, detecting fake songs is particularly challenging due
to the unique rhythmic patterns and artistic vocal traits of singing (Zang et al., 2024b). To address
this, researchers have turned their attention to Singing Voice Deepfake Detection (SVDD) (Xie
et al., 2024; Zang et al., 2024b;a). However, current methods relying on datasets composed of SVS
and SVC-generated songs face several limitations. These datasets are bound to use only instru-
mental music from real songs, leading to artifacts like the “Karaoke effect” (volume discrepancies
between music and vocals) and limited music-lyrics diversity. Moreover, existing methods overlook
the long-context temporal relationships inherent in songs, such as repeated verses, music, rhythm,
and emotional dynamics, which are critical for effective detection. Availability of only short

1Data will be released after decision.
2https:// suno.com, 2022. Accessed: 2024-06-27
3https://udio.com, 2023. Accessed: 2024-07-09
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Table 1: Comparison of Proposed and Existing Fake Song Datasets
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FSD (Xie et al., 2024) ✓ ✓ ✓ Chinese 216.00 5 60 200 450 650 26
SingFake (Zang et al., 2024b) Multi 13.75 - 40 634 671 1,305 58
CtrSVDD (Zang et al., 2024a) ✓ ✓ ✓ Multi (no English) 4.87 14 164 32,312 188,486 220,798 307
SONICS (ours) ✓ ✓ ✓ ✓ ✓ English 176.03 5 9,096+ 48,090 49,074 97,164 4,751

duration songs in current datasets further hampers the use of these patterns. Additionally, copyright
restrictions on some existing datasets limit the public availability of generated fake songs, hindering
broader usage. Furthermore, the SVDD task requires separate tools for voice identification and
separation during data processing (Xie et al., 2024; Zang et al., 2024b), increasing computational
overhead.

Recently, platforms like Suno and Udio have gained significant traction on social media. They can
synthesize not only vocals but also entire songs, including synthetic music, styles, and lyrics, further
complicating the situation. Due to their end-to-end nature, these fake songs differ significantly
from those generated by SVS and SVC methods, rendering existing SVDD methods and datasets
inadequate for detecting them. This necessitates an urgent need for a detection system specifically
designed for end-to-end synthetic song detection (SSD).

To address these shortcomings, we introduce SONICS, a large-scale dataset comprising 97,164
songs (4,751 hours), including 49,074 end-to-end synthetic songs (1,971 hours) generated by Suno
and Udio, alongside 48,090 real songs (2,780 hours) curated from YouTube. With an average du-
ration of 176 second (sec.), the SONICS dataset supports the use of long-context relationships in
songs for accurate fake song detection. Furthermore, SONICS addresses the issue of music-lyrics
diversity by including a wide range of music styles and both real and synthetic lyrics. Additionally,
the fake songs in our dataset are free from copyright issues, as they are generated through paid sub-
scriptions that provide a license to use and share the content legally. A unique feature of SONICS is
that it includes the text lyrics of songs, which can aid future research.

Despite the availability of long songs in our dataset, utilizing long-context relationships presents
additional challenges. For instance, CNN-based models struggle to capture long-range dependencies
due to their inherently local receptive fields. While Transformer-based models can capture these
dependencies with global attention, they are computationally expensive with longer audio inputs. To
mitigate this trade-off, we introduce Spectro-Temporal Tokens Transformer (SpecTTTra), which
uses a Spectro-Temporal Tokenizer to significantly reduce computational costs while employing
global attention. Our contributions are summarized as follows:

• We introduce SONICS, a large-scale dataset for synthetic song detection that addresses the
limitations of existing datasets, including the absence of end-to-end fake songs, limited
music-lyrics diversity, short-duration songs, and open fake songs.

• We highlight the importance of modeling long-context temporal relationships in songs, an
aspect entirely overlooked in existing approaches.

• We propose a faster and memory efficient model, SpecTTTra, which effectively captures
long-context temporal relationships in songs while outperforming popular methods.

• We offer a human benchmark for fake song detection, a feature missing in previous works.

• We establish a traditional AI benchmark for popular CNN and Transformer-based models.

2 RELATED WORKS

Synthetic Speech Detection: The domain of synthetic speech detection, closely tied to synthetic
song detection through their shared audio modality, has been extensively explored due to advance-
ments in voice conversion (Zhao et al., 2020) and synthesis techniques (Wang et al., 2021). These
advancements have spurred the development of audio spoofing attacks on speaker verification sys-
tems and deepfake audio targeting human listeners (Kawa et al., 2023). Synthetic speech detection
methods include Light CNN (LCNN) with Max-Feature-Map activations (Lavrentyeva et al., 2019),
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Table 2: Performance of SingFake-trained models on SingFake vs SONICS dataset

Model SingFake SONICS
EER ↓ F1 ↑ Sens. ↑ Spec. ↑ EER ↓ F1 ↑ Sens. ↑ Spec. ↑

ConvNeXt 0.20 0.86 0.90 0.65 0.38 0.33 0.22 0.88
ViT 0.29 0.84 0.97 0.35 0.49 0.64 0.87 0.16

EfficientViT 0.19 0.88 0.93 0.64 0.50 0.35 0.28 0.71

Transformer encoders with ResNet architectures (Zhang et al., 2021b), RawNet2 with sinc lay-
ers and GRU blocks (Tak et al., 2021), and heterogeneous graph attention networks (Jung et al.,
2022). However, the unique complexities of songs—such as rhythm, melody, and emotional nu-
ance—present challenges that traditional speech detection methods are not equipped to handle, as
shown by Xie et al. (2024) and Zang et al. (2024b). Thus, following CtrSVDD (Zang et al., 2024a),
we opted not to conduct similar experiments in our study.

Synthetic Song Detection: Synthetic song detection, a relatively newer and more complex chal-
lenge, has gained attention recently. In early 2024, SingFake (Zang et al., 2024b) introduced a
dataset of counterfeit songs using Singing Voice Conversion (SVC), along with the task of Singing
Voice Deepfake Detection (SVDD) and associated model benchmarks. Subsequent work (Xie et al.,
2024; Zang et al., 2024a) combined Singing Voice Synthesis (SVS) with SVC to create phoneme-
based songs, leading to specialized detection datasets. Methods in this area include convolutional
networks for feature extraction followed by classification using graph neural network (Jung et al.,
2022), wav2vec2-based extraction coupled with graph neural networks (Tak et al., 2022), Linear-
Frequency Cepstral Coefficients (LFCC) used with ResNet18 models (Zhang et al., 2021a) and
combination of music-specific models (MERT) & linguistic models (wav2vec2.0) with targeted
augmentations (Chen et al., 2024). However, SVC and SVS-based datasets retain original back-
ground music, leading to a detectable “Karaoke effect” artifact. Recent end-to-end fake songs by
Suno and Udio, can produce divergent fake songs where all musical components (e.g., background
music, styles, and lyrics) can be synthetic, presenting a severe detection challenge. As shown in
Table 2, models trained on SingFake dataset, perform poorly when tested on the end-to-end fake
songs (SONICS dataset), with a significant drop in detection performance (F1 score) ranging from
20% to 64%.

Long Audio Classification: Songs exhibit long-range temporal patterns, such as repeated verses,
rhythms, etc. setting them apart from speech (Albouy et al., 2024). Despite their potential to enhance
detection performance, these patterns have been largely overlooked in existing methods (Xie et al.,
2024; Zang et al., 2024b;a). Meanwhile, long audio classification remains a relatively less explored
area in audio research. Although automatic speech recognition handles long audio data (Koluguri
et al., 2024), it struggles with end-to-end processing of extended audio due to its high computational
cost, thus often uses sliding window techniques (Gulati et al., 2020; Radford et al., 2023) to man-
age costs. This further complicates the task of leveraging long-context features for synthetic song
detection.

3 METHODOLOGY

3.1 SONICS DATASET

The development of a modern synthetic song detection system necessitates a dataset that meets sev-
eral stringent criteria, which are conspicuously absent in existing music datasets. These criteria
include: 1) songs where all components—not just vocals—can be AI-generated; 2) song lengths
sufficient to capture long-term contextual relationships; 3) a diverse spectrum of music-lyrics com-
binations; and 4) a quantity of data substantial enough to serve as a generative model benchmark.
Addressing these needs, we introduce the SONICS dataset, a comprehensive collection of end-to-
end AI-generated songs produced using the latest audio generative models, spanning lengths from
32 to 240 sec and encompassing an extensive array of music-lyrics styles. A detailed comparison
of SONICS with existing datasets is presented in Table 1. It clearly illustrates that datasets such as
FSD (Xie et al., 2024), SingFake (Zang et al., 2024b), and CtrSVDD (Zang et al., 2024a) fall short
of fulfilling all the outlined criteria when juxtaposed with SONICS. Additionally, a comprehensive
distribution summary of the SONICS dataset is provided in Table 3.
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Table 3: Summary of or proposed SONICS dataset
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# Train 774 656 0 0 0 4558 0 0 11863 16172 0 0 0 32686 66709
# Test 77 53 206 100 203 396 634 309 1117 1566 2797 1350 3970 13237 26015
# Valid 9 12 37 16 30 67 117 51 196 286 494 258 700 2167 4440

3.1.1 REAL SONGS

The dataset’s Real songs segment comprises original compositions by human artists. This portion
of the dataset was initially compiled by random sampling from the Genius Lyrics Dataset (J., 2023),
which provides metadata including lyrics, titles, and artist information. Subsequently, leveraging
this metadata, a search was conducted dynamically on YouTube to retrieve the corresponding audio
files. This process yielded 48,090 songs performed by 9,096 artists.

3.1.2 FAKE SONGS

For generating end-to-end fake songs, we utilized the only two currently available audio genera-
tive model families: Suno and Udio. Specifically, we used three variants from Suno—Suno v2,
v3, and v3.5. Suno v2, the earliest iteration, generates songs up to 80 seconds (sec.) in length.
Suno v3 extends this capability to 120 sec. The latest iteration, Suno v3.5, produces songs up to
240 sec. From the Udio family, we used Udio 32 and Udio 130, capable of generating songs of
32 and 130 sec, respectively. For generating and downloading songs from Suno, we utilized the
community API (gcui art, 2024). In contrast, for Udio, we manually generated the songs from the
website and then downloaded them using community API (Riera, 2024). Subsequently, we used
PyAnnote (Bredin & Laurent, 2021) to filter out audio files lacking vocal components, which were
predominantly found among the Udio-generated song.

Figure 1: End-to-end pipeline of Full Fake song generation process. Here a random combination of
topic, genre, and mood is utilized to create fake lyrics and fake song styles by prompt engineering
LLM GPT-4o. The generated lyrics and styles are utilized to create synthetic songs through audio-
generative models from Suno and Udio.

The Fake songs are generated with Suno and Udio models by two primary text inputs: 1) lyrics
and 2) song-style (e.g., instruments, genre, vocal type) where for each combination of (lyrics, style)
input, two songs are generated. Based on the nature of these inputs, the Fake songs are categorized
into three distinct groups: i) Full Fake (FF)—featuring both AI-generated lyrics and song-style; ii)
Mostly Fake (MF)—where lyrics are AI-generated based on real lyrics features and song-style is
derived from real songs; and iii) Half Fake (HF)—where the lyrics are directly sourced from real
songs, with song-style also extracted from real songs. To generate FF songs, we curated a rich set
of metadata, including 57 broad topics (e.g., friendship, betrayal), 292 specific topics (e.g., star trek,
pokemon), 49 music genres (e.g., rock, metal), and 72 moods (e.g., calm, angry). The full list can be
found in the Appendix. Random combinations of these elements were used to generate final lyrics
and styles via a Large Language Model (LLM). The complete pipeline for FF song generation is
illustrated in Fig. 1. Here the prompt generator generates a prompt for later stages by filling in the
variable values into the placeholders of a predefined prompt template (details in Appendix A.7). In
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Figure 2: End-to-end pipeline of Mostly Fake song generation process. Firstly, lyrics features are
extracted using an LLM from real song lyrics, which in turn is utilized to create fake lyrics through
a second call to the LLM GPT-4o. Secondly, style information is extracted from real songs using
multimodal Generative model Gemini 1.5 Flash. Finally, the generated lyrics and styles are utilized
to create synthetic songs through audio-generative models from Suno and Udio.

contrast, the creation of MF and HF songs involved extracting song-styles from real songs using
the multimodal LLM Gemini 1.5 Flash, which uniquely supports audio input. Additionally, for
MF songs, lyrics were generated using the GPT-4o LLM, which extracts features from existing real
song lyrics to produce new lyrics with a similar distribution, avoiding direct replication of existing
content. The pipeline for generating MF songs is detailed in Fig. 2. The HF songs, differing only
in the use of real lyrics directly sourced from existing songs, follow a similar process as MF songs.
It is noteworthy that, Udio models cannot generate songs for lyrics from real songs; thus, HF songs
contain only Suno models. In total, we generated 6,132 HF songs, 40,769 MF songs, and 2,173 FF
songs using Suno and Udio models. The prompt templates used in the LLM to extract lyrics features
and song styles, as well as to generate lyrics and styles, can be found in the Appendix.

3.2 MODEL

The architecture of an audio classification model depends on how the input audio is processed for
feature extraction. In our benchmark, we use Mel-spectrogram due to its versatile usage and effective
performance across various audio processing tasks (Gong et al., 2021; Radford et al., 2023; Rouard
et al., 2023; Niizumi et al., 2024; Shul & Choi, 2024). Spectrograms, resembling 2D shape of an
image, allow the usage of image classification models for audio classification. Since image clas-
sification models are generally categorized into CNN-based and Transformer-based architectures,
we use popular models from both categories in our study, such as ConvNeXt (Liu et al., 2022b)
and ViT (Dosovitskiy et al., 2020), for benchmarking. Additionally, we employ EfficientViT (Cai
et al., 2023), a hybrid model that integrates both Transformer and CNN components. However, these
models encounter challenges when dealing with the inherent long-range temporal dependencies in
songs. Specifically, ConvNeXt struggles to capture long-range dependencies due to its local recep-
tive field, a characteristic inherited from CNNs. On the other hand, while ViT is capable of capturing
long-range dependencies, it incurs significant computational costs as the number of patches/tokens
rapidly increases with longer audio inputs. Similarly, EfficientViT, despite its linear global attention,
becomes computationally expensive for long audio due to the large number of tokens combined with
its multi-scale operations. To address this issue, we introduce SpecTTTra, which utilizes global at-
tention similar to ViT but employs a Spectro-Temporal Tokenizer to reduce the number of tokens
considerably, thereby lowering computational costs and enhancing efficiency significantly.

3.2.1 SPECTRO-TEMPORAL TOKENS TRANSFORMER (SPECTTTRA)

As illustrated in Fig. 3, the proposed SpecTTTra model begins by applying temporal and spectral
slicing to copies of the input spectrogram, generating distinct temporal and spectral clips/patches
indicated by |ti| and |fi| respectively where i denotes the position of each clip. These clips are
then processed by the Spectro-Temporal Tokenizer, where temporal clips are embedded as temporal
tokens ⟨ti⟩ and spectral clips as spectral tokens ⟨fi⟩, using separate tokenizers, where each token is
represented as a vector of shape (1, embed dim). Subsequently, separate positional embeddings (pti
for temporal and pfi for spectral) are added to the respective tokens. Separate embeddings are used
because there is no positional relationship between temporal and spectral tokens.

The positionally aware tokens are then fed into a ViT-like Transformer encoder, where they are
contextualized with one another through global attention. This process enables the temporal tokens
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Figure 3: Proposed Spectro-Temporal Tokens Transformer (SpecTTTra) model. First, the input mel-
spectrogram undergoes separate temporal and spectral slicing to generate corresponding clips, which
are tokenized into temporal and spectral tokens using separate tokenizers. Next, separate positional
embeddings are added to these tokens, which are then passed through a Transformer encoder. The
resulting globally contextualized features are then average pooled and finally passed to the classifier.

to become aware of both other temporal tokens and spectral tokens, and vice versa for spectral
tokens. These globally aware features, now of shape (n tokens, embed dim), are average-pooled
across the n tokens dimension to aggregate the temporal and spectral information. Finally, the
accumulated features are passed to a classifier, where they are classified as either real or fake songs.

It is important to note that while previous work has attempted to utilize both spectral and temporal
information, these approaches come with significant limitations. For instance, Yadav et al. (2023);
Gong et al. (2021) focuses solely on temporal tokens, neglecting the rich spectral information. On
the other hand, methods like Zadeh et al. (2019); Shul & Choi (2024) employ separate attentions
for spectral and temporal information but with ViT-like tokens, which, as discussed in the follow-
ing section, become highly inefficient and computationally expensive as they rapidly increase with
longer audio inputs. In contrast, our approach disentangles spectral and temporal information at the
tokenization level and later contextualizes them with attention, leading to greater efficiency.

3.2.2 SPECTRO-TEMPORAL TOKENIZATION

The ViT model creates grids of small square patches by simultaneously dividing a 2D spectrogram
along both temporal and spectral dimensions, resulting in each patch having access to only limited
spectral and temporal information. More critically, as indicated in Eq. 1, the number of patches/-
tokens (Nν) increases rapidly with the temporal dimension T . For example, for a spectrogram of
size F = 128 (spectral dimension) with a short audio duration of 5 sec (T = 128) , ViT (patch size,
p = 16) generates tokens Nν = 64. However, for longer audio with 120 sec (T = 3744), the number
of tokens surges to Nν = 1872, nearly 30x more than for the shorter audio. Since the computational
cost for global attention in ViT scales quadratically with the number of tokens, this makes it less
practical for long audio classification. Similarly, EfficientViT, despite having linear global attention,
multi-scale operations coupled with numerous tokens still result in high complexity.

In contrast, SpecTTTra performs slicing independently for temporal and spectral dimensions, as
shown in Fig. 3. This approach ensures that each temporal patch has access to the full spectral infor-
mation, and each spectral patch contains the complete temporal information. This design leverages
the observation that meaningful correlations can exist between distant temporal clips (e.g., between
|t0| and |t4|, capturing repeated song verses) or between distinct spectral clips (e.g., between |f0|
and |f2|, capturing harmonics). Importantly, as demonstrated in Eq. 2, due to the additive nature of
token generation in SpecTTTra, the number of tokens grows more slowly compared to ViTs, signif-
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Equation for ViT Token Count
If T and F denote the temporal and spec-
tral dimensions of the spectrogram, respec-
tively, and p is the patch size, then the num-
ber of patches (or tokens) generated by a
ViT (Nν) can be expressed as:

Nν =

(
F

p

)
×
(
T

p

)
(1)

Equation for SpecTTTra Token Count
If t and f represent the sizes of the tempo-
ral and spectral clips, respectively, then the
number of patches (or tokens) generated by
SpecTTTra, denoted as Nψ , is given by:

Nψ = Nspectral +Ntemporal

=

(
F

f

)
+

(
T

t

)
(2)

Figure 4: Comparison of the number of to-
kens generated by the ViT model and the three
SpecTTTra variants (α, β, and γ) as a function
of the number of time frames.

icantly reducing computational costs. For instance, using the same parameters as before and setting
the temporal and spectral clip sizes to t = 7 and f = 5, the number of tokens in SpecTTTra for short
audio is Nψ = 43, and for long audio, it increases to Nψ = 560, which is approximately 3.4x fewer
than in the ViT model. This substantial reduction in token count makes SpecTTTra significantly
more computationally efficient. We further explore three variants of SpecTTTra, differentiated by
the sizes of their temporal (t) and spectral (f ) patches: SpecTTTra-α (f = 1, t = 3), SpecTTTra-β
(f = 3, t = 5), and SpecTTTra-γ (f = 5, t = 7). Fig. 4 illustrates the rate at which the number of
tokens increases for different SpecTTTra variants and ViT as the audio length grows.

The resulting spectral and temporal clips are processed by the Spectro-Temporal Tokenizer (STT)
to create spectral and temporal tokens, respectively. The proposed STT block consists of separate
Spectral and Temporal Tokenizers, which share identical architecture but differ in their objectives
based on their input. These tokenizers use a Linear layer to map the spectral/temporal clips to
spectral/temporal tokens, followed by GELU activation, addition of learnable positional embeddings
similar to ViT, and finally, layer normalization. For efficiency, during implementation, the slicing
and tokenization operations are merged using 1D CNN layer. Given an input spectrogram x ∈
RF×T , the mathematical expression for tokenization is as follows:

xt = Conv1D (x, ci = F, co = D, k = t, s = t)

⟨t⟩ = LayerNorm
(
GELU

(
x⊤
t

)
+ p̂t

)
xf = Conv1D

(
x⊤, ci = T, co = D, k = f, s = f

)
⟨f⟩ = LayerNorm

(
GELU

(
x⊤
f

)
+ p̂f

) (3)

Here, ⟨t⟩ ∈ RT
t ×D and ⟨f⟩ ∈ R

F
f ×D denote the temporal and spectral tokens, where D is the token

embedding dimension. The parameters ci, co, k, and s represent the input channels, output channels,
kernel size, and stride size of the CNN layers. Additionally, p̂ and ⊤ denote the learnable positional
embeddings and Transpose operation. Further implementation details can be found in the Appendix.

4 EXPERIMENTS AND RESULTS

4.1 DATASET

We conduct all experiments using the proposed SONICS dataset, which is divided into train, valid,
and test sets. To ensure comprehensive evaluation, the valid and test sets include cases with unseen
algorithms (e.g., Suno v2, Suno v3, Udio 32) and unseen singers. We also prevent data leakage by
ensuring that song pairs from the same (lyrics, style) inputs are exclusively in either the training or
valid-test sets, not in both. The distribution of the train, test, and valid sets is shown in Table 3.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.2 IMPLEMENTATION DETAILS

Generating the SONICS dataset costs $1,055, allocated across GPT-4o ($405), Gemini 1.5 Flash
($80), Suno ($390), and Udio ($180). To train models, we resampled both real and fake songs to
16kHz and generated spectrograms with n fft = win length = 2048, hop length = 512, and n mels =
128, yielding a 128×128 spectrogram for 5 sec and 128×3744 for 120 sec audio. Any song shorter
than input length is zero-padded randomly, while for longer songs, a random crop is used. We also
apply MixUp (Zhang, 2017) and SpecAugment (Park et al., 2019) augmentations during training to
improve generalization. However, during the test, to maintain determinism, padding is done on the
right side and cropped segments are taken from the middle. We conduct our training on an NVIDIA
A6000 GPU with 48GB RAM, using WandB for tracking. We use ViT-small (patch size = 16) and
ConvNeXt-tiny along with EfficientViT-B2 from the timm (Wightman, 2019) library. In SpecTTTra,
we use the same model configuration as ViT-small. We train all models for 50 epochs from scratch
using Binary Cross-Entropy loss with 0.02 label smoothing (Szegedy et al., 2016). Optimization
is performed with AdamW (Loshchilov, 2017) and a cosine learning rate scheduler from timm,
including a 5-epoch warm-up. While existing methods (Zang et al., 2024b;a; Xie et al., 2024) use
Equal Error Rate (EER) as a metric, we prioritize the F1 score (binary average, threshold = 0.5)
as our primary metric due to EER’s susceptibility to class imbalance. We also evaluate Sensitivity
(Sens.) and Specificity (Spec.) to assess performance across fake and real classes.

4.3 BENCHMARKS

4.3.1 AI BENCHMARK

The comparative analysis of the proposed SpecTTTra models against other existing models is pre-
sented in Table 4. The results reveal a significant performance gain (6% for ConvNeXt, 8% for
EfficientViT, 10% for ViT, and 17% for SpecTTTra-α) in the overall F1 score when using long
songs. This finding substantiates our claim that leveraging long-context information is crucial for
enhancing fake song detection. Additionally, the advantage of longer audio duration is more preva-
lent in transformer-based models such as ViT and SpecTTTra, as well as in the hybrid EfficientViT
model, compared to the CNN-based ConvNeXt. Notably, the proposed SpecTTTra-α, while trail-
ing ConvNeXt by 10% in the F1 score for short audio, outperforms it in long audio. This can be
attributed to the global attention mechanism in transformer models, which effectively captures long-
range dependencies within the input data. In contrast, models with CNN components tend to perform
better on shorter audio. Specifically, ConvNeXt and EfficientViT achieve overall F1 scores of 90%
and 87%, respectively, outperforming all transformer-based models on short audio. However, de-
spite the absence of global attention, ConvNeXt demonstrates competitive performance compared
to SpecTTTra-α on long audio and outperforms ViT, EfficientViT, and other SpecTTTra variants in
both short and long audio scenarios. We hypothesize that this is due to the inherent inductive biases
present in CNNs, which are lacking in transformers, leading the latter to require larger datasets to
reach their true potential (Liu et al., 2021; Dosovitskiy et al., 2020). Another intriguing observation
is the performance of ViT, which, despite its large number of tokens (or patches), is outperformed
by the α and β variants of SpecTTTra and is only on par with the γ variant in terms of overall F1
score for long audio, reinforcing SpecTTTra’s effectiveness. We hypothesize that this is due to an
overload of redundant information from ViT’s numerous patches, which may not contribute effec-
tively to the detection task. Moreover, it can also be observed across all models that real songs are
more easily identified than fake ones, as indicated by higher specificity and lower sensitivity scores.

Diving deeper into different partitions of test data, we observe that all detection models achieve
better performance on seen algorithms (Suno v3.5 and Udio 130) compared to unseen ones (Suno
v2, Suno v3, and Udio 32). Particularly, they struggle more with the Udio algorithms, with the most
pronounced difficulty observed for Udio 32. However, ConvNeXt and SpecTTTra-α perform rela-
tively well in detecting the Udio 32 algorithm, achieving a sensitivity of 96% and 95% respectively.
Interestingly, despite being an unseen algorithm, the detectors perform comparably well on Suno v3
as they do on the seen Suno v3.5 algorithm, suggesting a possible algorithmic similarity between the
two. Conversely, for short audio samples, the detectors perform slightly better on songs with seen
speakers than those with unseen speakers, a gap that diminishes when longer audio is used. Finally,
in Fake Type partitions, all detectors excel in identifying HF songs, likely due to the exclusive pres-
ence of Suno algorithms, where detectors generally perform better compared to Udio algorithms.
Among MF and FF songs, the models exhibit a slightly lower performance pattern on FF songs.
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Table 4: Performance comparison of SpecTTTra and conventional AI models on varying audio
lengths, with F1 score as the primary evaluation metric. Here Real/Human and Fake/AI songs
denoting Negative and Positive classes, respectively. † indicates unseen algorithms during training.

Len.
(sec) Model

Algorithm
(Sens.)

Singer
(Spec.)

Fake Type
(Sens.) Overall

Suno†

v2
Suno†

v3
Suno
v3.5

Udio†
32

Udio
130 Seen Unseen Half

Fake
Mostly
Fake

Full
Fake F1 Sens. Spec.

5

ConvNeXt 0.62 0.99 0.99 0.62 0.99 0.99 0.99 0.90 0.82 0.80 0.90 0.82 0.98
ViT 0.79 0.95 0.98 0.57 0.86 0.79 0.79 0.92 0.78 0.76 0.79 0.80 0.79

EfficientViT 0.66 0.98 0.99 0.49 0.97 0.99 0.98 0.90 0.76 0.74 0.87 0.78 0.98
SpecTTTra-γ 0.51 0.98 0.99 0.10 0.99 0.98 0.97 0.87 0.61 0.62 0.76 0.63 0.98
SpecTTTra-β 0.61 0.98 0.99 0.18 0.99 0.95 0.94 0.89 0.66 0.66 0.78 0.69 0.94
SpecTTTra-α 0.68 0.99 0.99 0.26 0.99 0.93 0.92 0.91 0.69 0.70 0.80 0.71 0.92

120

ConvNeXt 0.77 0.99 0.99 0.95 1.00 0.98 0.98 0.94 0.95 0.93 0.96 0.95 0.98
ViT 0.82 0.99 1.00 0.53 0.99 0.99 0.98 0.95 0.80 0.80 0.89 0.82 0.98

EfficientViT 0.73 0.98 1.00 0.95 1.00 0.97 0.97 0.92 0.92 0.94 0.95 0.94 0.97
SpecTTTra-γ 0.98 0.99 1.00 0.37 1.00 0.99 0.99 0.99 0.77 0.76 0.88 0.79 0.99
SpecTTTra-β 0.87 0.99 1.00 0.62 0.99 0.99 0.99 0.96 0.84 0.82 0.92 0.86 0.99
SpecTTTra-α 0.78 0.99 1.00 0.96 1.00 0.99 0.99 0.98 0.89 0.87 0.97 0.96 0.99

Table 5: Comparison of conventional models and
SpecTTTra against human evaluators.

Partition C
on

vN
eX

t

V
iT

E
ffi

ci
en
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iT

Sp
ec

T
T

Tr
a-
γ

Sp
ec

T
T

Tr
a-
β

Sp
ec

T
T

Tr
a-
α

H
um

an

Algorithm
(Sens.)

Suno v2 0.65 0.80 0.65 0.54 0.64 0.72 0.69
Suno v3 0.99 0.96 0.96 0.98 0.98 0.99 0.75
Suno v3.5 0.99 0.98 0.98 0.99 0.99 0.99 0.82
Udio 32 0.67 0.56 0.58 0.18 0.23 0.33 0.23
Udio 130 0.99 0.87 0.98 0.99 0.99 0.99 0.55

Fake Type
(Sens.)

Half Fake 0.91 0.93 0.90 0.88 0.90 0.92 0.71
Mostly Fake 0.84 0.79 0.81 0.64 0.69 0.72 0.66
Full Fake 0.83 0.77 0.78 0.64 0.68 0.72 0.63

Real (Spec.) 0.98 0.80 0.98 0.97 0.95 0.94 0.78
Fake (Sens.) 0.85 0.82 0.82 0.66 0.72 0.75 0.66
Overall (F1) 0.92 0.82 0.87 0.78 0.80 0.83 0.71

Table 6: Comparison of SpecTTTra against con-
ventional models on efficiency related metrics.

Len.
(sec) Model Speed

(A/S) ↑
FLOPs
(G) ↓

Mem.
(GB) ↓

# Act.
(M) ↓

# Param.
(M) ↓

5

ConvNeXt 137 1.5 0.4 4 28
ViT 156 1.1 0.2 2 17

EfficientViT 55 0.6 0.5 5 22
SpecTTTra-γ 154 0.7 0.1 2 17
SpecTTTra-β 152 1.1 0.2 2 17
SpecTTTra-α 148 2.9 0.5 6 17

120

ConvNeXt 39 43.1 11.7 129 28
ViT 34 31.7 5.3 67 17

EfficientViT 43 15.9 14.8 138 22
SpecTTTra-γ 97 10.1 1.6 20 24
SpecTTTra-β 80 14.0 2.3 29 21
SpecTTTra-α 47 23.7 3.9 50 19

4.3.2 HUMAN-AI BENCHMARK

To evaluate Human performance in comparison to AI-based models, we selected a subset of 520
samples from our large test data. This evaluation employed a dynamic scoring system, similar to
LMSYS (Chiang et al., 2024), allowing public participation and live leaderboard updates, which
will be made publicly available after decision of this paper. Three human participants were involved
in this benchmark, with their performance summarized in Table 5. In contrast to the AI benchmark
using short (5 sec) or long (120 sec) audio samples, this human benchmark employed 25 sec clips.
This choice stems from the observation that short clips hinder human identification due to subtle
inaudible artifacts easily detected by AI, while longer clips do not necessarily improve human per-
formance due to how difficult it is to notice long-range temporal dependencies.

As shown in Table 5, AI-based methods consistently outperform human participants across all test
partitions. However, both humans and AI models struggle most with Udio algorithms, particularly
Udio 32, where human sensitivity dropped to 23%. Conversely, Suno algorithms, especially Suno
v3.5, are easier to detect, with a human sensitivity of 82%. This mirrors the findings in the AI
benchmark, where models demonstrated higher specificity than sensitivity, indicating greater ease
in identifying real songs compared to fake ones. Further analysis revealed distinct patterns within
real and fake songs. For instance, Suno algorithms often produced synthetic or mechanical-sounding
vocals, while Udio 32 algorithm occasionally created the “Karaoke effect.” Furthermore, Udio al-
gorithms demonstrated the ability to create songs with multiple voices and higher notes, a feature
absent in Suno algorithms. On the other hand, real songs exhibit unique features such as a wide note
range, diverse timbre, complex rhythms, clear vocals, and unique sounds like flutes and finger snaps.

4.3.3 EFFICIENCY BENCHMARK

To comprehensively evaluate the efficiency of the proposed SpecTTTra model alongside other meth-
ods, we measure various metrics across different song lengths using a P100 16GB GPU. The metrics
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Table 7: Ablation analysis of temporal and spectral tokens on model performance.

5 sec 120 sec
Temp. Clip

Size (t)
# Temp.

Tok. (T/t)
Spec. Clip

Size (f)
# Spec.

Tok. (F/f) F1 Temp. Clip
Size (t)

# Temp.
Tok. (T/t)

Spec. Clip
Size (f)

# Spec.
Tok. (F/f) F1

3 128 - 0 0.76 3 1248 - 0 0.91
3 128 5 25 0.78 3 1248 5 25 0.94
3 128 3 42 0.79 3 1248 3 42 0.96
3 128 1 128 0.80 3 1248 1 128 0.97
- 0 1 128 0.75 - 0 1 128 0.92

considered include Speed (A/S → Audio per Second), Floating Point Operations (FLOPs), GPU
Memory Consumption (Mem.) during the forward pass with a batch size of 12, activation count
(# Act.), and parameter count (# Param.). The results are summarized in Table 6. Our analy-
sis reveals that while ViT is the fastest model for 5 sec songs, it becomes the slowest for 120 sec
songs (SpecTTTra-α is 38% faster) and exhibits significant memory consumption (SpecTTTra-α
uses 26% less memory), rendering it less practical for longer sequences. However, ViT remains the
most efficient in terms of parameter count across both short and long songs. On the other hand,
ConvNeXt, despite its strong detection performance, becomes very resource-intensive for longer se-
quences. It consumes a large amount of memory and has the highest FLOPs and parameter count in
that category. EfficientViT shows decent performance but with a surprisingly slow speed for short
songs, which is over 2x slower than other models. However, in long songs, it shows better speed
and lesser FLOPs than ViT and ConvNeXt but has the largest memory requirement and activation
count. In contrast, the SpecTTTra model variants excel in their efficiency without compromising
competitive performance in longer sequences. For example, in 120 sec songs, the SpecTTTra-γ
variant emerges as the fastest and most memory-efficient model, being nearly 3x faster and compu-
tationally more economical than ViT while showing competitive performance to it. Similarly, the
SpecTTTra-β variant is more than 2x faster than ViT and uses 2x less memory, all while achiev-
ing 3% higher performance. Performance increase culminates in the SpecTTTra-α variant, which
outperforms ConvNeXt and EfficinetViT by 1% and 2% respectively, and achieves the highest F1
score of 97%. It achieves this by being 20% and 9% faster while using nearly 67% and 74% less
memory, respectively. Therefore, SpecTTTra has the overall best performance while also being the
most efficient model in the detection benchmark.

4.4 ABLATION STUDY

We conduct an ablation study to highlight the importance of both temporal and spectral tokens,
with the findings summarized in Table 7. Additionally, we vary the number of spectral tokens
independently of temporal tokens to evaluate their impact on performance. Specifically, we change
the clip size (t, f ) relative to our best-performing model, SpecTTTra-α (t = 3, f = 1), to derive
further insights. Notably, while it is possible to classify real and fake songs using only temporal
tokens (F/f = 0) or only spectral tokens (T/t = 0), the combination of both clearly yields the best
performance, underscoring their complementary nature. Furthermore, increasing the song duration
consistently enhance performance for both spectral and temporal tokens, reinforcing our assertion
about the significance of long-context information.

5 CONCLUSION

In this paper, we introduced SONICS, a comprehensive dataset for end-to-end synthetic song de-
tection, addressing limitations in existing datasets, such as lack of music diversity, short duration,
and most importantly, the absence of end-to-end AI-generated songs. Moreover, we proposed the
SpecTTTra model, which efficiently captures long-range temporal relationships in songs, achiev-
ing comparable performance to existing popular models while reducing computational costs sig-
nificantly. Through extensive experiments, we established both AI-based and human benchmarks,
demonstrating the dataset’s effectiveness in advancing synthetic song detection research. This work
paves the way for future research to more effectively distinguish AI-generated music, thereby aiding
in the preservation of human musical artistry.
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6 ETHICS STATEMENT

This study utilizes copyrighted song data from YouTube. To comply with legal standards, we pro-
vide only YouTube links to the original songs and will publicly release only the AI-generated songs.
Additionally, we acknowledge issues related to bias and fairness, as the dataset is currently limited
to English-language songs, affecting its global applicability. Future work will address this by ex-
panding the dataset to include more languages. Notably, a gender bias is evident, with male singers
dominating the song styles, a trend that may stem from either the real songs or the Gemini 1.5 Flash
model that was used to extract song styles (Half Fake and Mostly Fake songs), or GPT-4 that was
used to generate song styles (Full Fake Songs). Addressing this gender bias is beyond the scope of
our study, and we leave it to the community to tackle in future research.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made extensive efforts to document and share all necessary de-
tails. First, we provide the complete dataset generation process, including the end-to-end pipelines.
The Appendix offers additional information, such as dataset statistics, to help better understand
the data. Second, the pseudo-code for the Spectro-Temporal Tokenizer of the SpecTTTra model
is presented in the Appendix. All hyperparameters, training setups, and augmentation methods are
detailed in the “Implementation Details” section of both the main paper and the Appendix. Third,
we include all assumptions and configurations for the benchmarks, which are available in both the
main paper and the Appendix. Finally, the source code is provided in the supplementary materials,
which contains detailed configurations for training, model parameters, and profiling.
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A APPENDIX

A.1 COMPARISON WITH RELATED WORKS

To comprehensively evaluate our proposed method, we compared our SpecTTTra models with var-
ious related works in fake song detection and provided our findings in Table 8. Specifically, we
benchmarked our method against all the approaches mentioned in SingFake Zang et al. (2024b),
including AASIST Jung et al. (2022), Wav2Vec Baevski et al. (2020), and ResNet He et al. (2016)
variants. Our analysis demonstrates that the SpecTTTra models outperform the compared methods
in terms of effectiveness while maintaining efficiency. For example, although the AASIST models
deliver promising results for short songs, they are computationally intensive, as reflected by their
high time and memory consumption. Additionally, AASIST models fail to process long songs of
120 seconds, resulting in out-of-memory (OOM) errors due to its extreme computational complex-
ity. On the other hand, while ResNet variants exhibit high efficiency, they lack the capacity to
detect fake songs as effectively as SpecTTTra, particularly with long-duration songs. In contrast,
the SpecTTTra models strike a balance between efficiency and effectiveness. As shown in the Ta-
ble 8, SpecTTTra-α achieves the highest F1 score of 0.97 for long-duration songs while maintaining
manageable computational requirements. These results establish the superiority of our method in
both detecting fake songs and handling longer audio inputs compared to other existing methods.

Table 8: Performance and efficiency comparison with related works in fake song detection.

Len.
(sec) Model Speed

(A/S) ↑
FLOPs
(G) ↓

Mem.
(GB) ↓

# Act.
(M) ↓

# Param.
(M) ↓ F1 ↑

5

AASIST 55 12 6 96 0.3 0.91
ResNet + Spec. 354 0.6 0.1 0.8 11 0.86
ResNet + LFCC 331 0.6 0.1 0.8 11 0.88

Wav2Vec2 + AASIST 42 * 1.3 * 95 0.90
SpecTTTra-γ 154 0.7 0.1 2 17 0.76
SpecTTTra-β 152 1.1 0.2 2 17 0.78
SpecTTTra-α 148 2.9 0.5 6 17 0.80

120

AASIST 2 295 OOM 2393 0.3 -
ResNet + Spec. 146 17.2 2.3 24 11 0.90
ResNet + LFCC 144 17.2 2.3 25 11 0.91

Wav2Vec2 + AASIST 2 * OOM * 95 -
SpecTTTra-γ 97 10.1 1.6 20 24 0.88
SpecTTTra-β 80 14.0 2.3 29 21 0.92
SpecTTTra-α 47 23.7 3.9 50 19 0.97

A.2 RESULT ANALYSIS

Our analysis of the SpecTTTra-α model’s results reveals audible and perceptible artifacts in both
successful and failed cases of real and fake songs. In True Negative cases, we find distinct patterns
in correctly classified real songs. These include characteristics such as unpredictability, dynamic
variation, and unexpected changes that is often absent in fake songs. Examples include non-standard
pitch variations, intricate rhythmic complexity, and expressive techniques like melismatic phrasing,
sudden tempo changes, or improvisational segments, all of which showcase the nuanced artistry
of human performance. Conversely, in True Positive cases, we detect specific audible artifacts in
correctly classified fake songs. These artifacts include mechanical or robotic vocal qualities, unclear
vocal articulation, predictable rhythmic structures, and limited pitch variability. Such fake songs
also lack the emotive expressiveness and complexity we consistently find in real music, making
them notably distinct. In False Negative cases, we observe that fake songs not detected as such
lack the typical artifacts seen in true positive fake songs. Instead, these cases often incorporate
features that mimic the unpredictability and nuanced variation of real songs. For instance, some
include spoken interludes or conversational segments before the singing starts, creating a deceptive
resemblance to genuine music. In False Positive cases, we find that real songs misclassified as
fake share characteristics with AI-generated music. These include unclear vocals, less rhythmic
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complexity, and a noticeable absence of the unexpected changes that typically distinguishes human-
created performances. Finally, we encounter instances where we are unable to detect any audible
artifacts. This suggests the presence of subtle, imperceptible, or inaudible artifacts (Barrington et al.,
2023) akin to invisible artifacts (Chhabra et al., 2023) in synthetic images.

A.3 LIMITATIONS AND FUTURE WORK

The proposed SONICS dataset contains real songs dynamically queried from YouTube using their
titles and artist names, which can sometimes result in incorrect audio retrieval. A manual analysis of
600 random samples suggests that this issue affects approximately 0.5% of the dataset. To address
this minor noise, we utilized label smoothing (Szegedy et al., 2016) during training. Another limi-
tation is that the fake songs generated by the Udio platform cannot include lyrics from real songs,
limiting the comprehensive evaluation in the Half Fake songs category to only those generated by the
Suno platform. Our current benchmarks are based solely on Mel Spectrogram inputs; hence, we aim
to incorporate raw audio and explore other feature extraction methods, such as LFCC and MFCC,
to enhance the robustness of our evaluations. Due to resource constraints, we trained and compared
only smaller versions of all models. In the future, we plan to compare larger versions of all models.
Furthermore, we trained all models from scratch to ensure a fair comparison, because the proposed
SpecTTTra model is designed specifically for audio, while other models like ConvNeXt and ViT
only have pretrained weights available for images (ImageNet). In the future, we plan to pretrain all
models on an large-scale audio dataset from scratch before training them on our proposed dataset
for maximizing the performance.

A.4 DATASET

Long Form Correlations: An example of the long context correlation can be observed on Fig. 5,
where a real song would stay consistent throughout the repetition of the phrases, refrains, rythms,
etc. In comparison, synthetic generation methods can have difficulty generating consistent refrains,
due to the long form context that might be required to model this information. Therefore, a synthetic
song detection model that can capture the nuances of long context correlations present in songs
would be able to better differentiate real and synthetic songs utilizing this property.

Figure 5: Long Context Correlation. The red highlighted regions in the spectrogram and raw au-
dio indicate repetition of the same verse ("Near, far, wherever you are, I believe
that the heart does go on"), rhythms, and music. Such consistency is a characteristic of
real songs and can be challenging for synthetic generation methods to replicate.

Song Duration: The distribution of the song duration across training and test sets is shown on Fig.
6. From the figure, it can be observed that aside from a few minor outliers, the distribution of fake
and real song duration across both training and test sets are similar.

Embedding Space: The t-SNE plots presented in Fig. 7 illustrate the data distributions within the
embedding space, generated using an EfficientNetB0 (Tan & Le, 2019) encoder with Mel Spectro-
gram audio inputs.

• Subfigure (a) shows a significant overlap between the training (Green) and testing (Orange)
datasets. However, distinct clusters along the edges, predominantly composed of training
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Figure 6: Duration distribution between Training and Testing sets.

data, suggest that the training set is more diverse than the test set. This diversity is observed
despite the test set containing previously unseen algorithms and speaker scenarios.

• Subfigure (b) indicates a substantial overlap between real (Red) and fake (Blue) songs,
with a few regions exclusively occupied by fake data or outliers. This highlights the inher-
ent challenge of synthetic song detection within this dataset.

• Subfigure (c) shows that the embedding space is primarily occupied by Suno v3.5 (Green)
and Udio 133 (Orange), which are seen algorithms. Despite Suno v2 (Blue), Suno v3
(Red), and Udio 32 (Violet) being unseen algorithms, their embeddings fall within regions
covered by seen algorithms, demonstrating underlying similarities. A noteworthy obser-
vation is the considerable overlap between Suno v3 (Red) and Suno v3.5 (Green), which
likely contributes to the similar detection performance in these algorithms, as indicated by
Table 4.

• Subfigure (d) depicts the distribution of fake types. Although Half Fake (Orange) songs
form discernible clusters, Full Fake (Red) songs exhibit a more scattered distribution, in-
dicating a lack of common features. Conversely, Mostly Fake (Green) songs are spread
broadly across the embedding space, reflecting their diverse characteristics.

Figure 7: Data distributions in the embedding space. This plot illustrates the clustering of different
data categories such as target, algorithms, fake types, and data split.

Song Style: In order to imitate the song style observed in real songs, we had LLMs perform a
stylistic analysis of the real song lyrics (prompt shown in Table 11). The wide variety of styles
extracted from real songs are utilized to generate the synthetic songs. It is important to have the
distribution of synthetic song style as close to the real song styles in the dataset, since it would
be a better indicator of real life cases. A wide diversity of synthetic song style in training data is
also required so that the models trained on this dataset do not rely on the distinct characteristics of
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any particular song style as a feature to detect synthetic songs. Additionally, it is also important to
evaluate performance of the trained model on a testing set across a wide variety of song style as
well, so that the generalization capability of the detection model across multiple styles is evaluated.
A word cloud representation of the song styles that have been extracted from real songs and utilized
to generate songs is show on Fig. 8. The figure indicates that there are diverse song styles across
both training and testing sets.

Figure 8: Data distributions of song-style between train and test split in the word cloud.

A.5 IMPLEMENTATION DETAILS

SingFake Training: To demonstrate the limitations of SVDD (Singing Voice Deepfake Detection)
models in detecting end-to-end fake songs, we first trained the models on the SingFake dataset,
which consists of 597 training songs and 480 testing/validation songs. We then evaluated the per-
formance of these models on our SONICS-test dataset, with the results summarized in Table 2. It is
important to note that due to some inactive links in the SingFake dataset, we were able to download
only 1077 songs, as opposed to the 1305 songs originally reported in the paper. For training, we
maintained the same model configuration as in other experiments, with one exception: we resized
the 128× 128 (5 sec) Mel spectrograms to 224× 224 to leverage the pretrained ImageNet weights,
compensating for the smaller size of the SingFake dataset.

Augmentation: To enhance the robustness of our models, we apply MixUp (Zhang, 2017) augmen-
tation with α = 2.5 and a 50% probability. Additionally, we utilize SpecAugment (Park et al., 2019),
applying two time masks of size 8 and one frequency mask of size 8, each with a 50% probability.

Benchmark: For the efficiency benchmark, we utilized a single P100 GPU for all experiments. To
measure the inference time of each model, we performed 5 warm-up runs followed by 100 test runs
with a batch size of 1 to record the processing time. The results were averaged and then inverted to
determine the inference speed of each model. To compute GPU memory consumption, we used a
batch size of 14 across all models, measuring the peak memory usage during a single forward pass.
For calculating FLOPs, we employed the fvcore (FAIR, 2023) library.

Model: For the proposed SpecTTTra model, we use the vit small patch16 configuration from
timm (Wightman, 2019) library with an embedding dimension of 384, 6 attention heads, 12 Trans-
former layers, and an MLP ratio of 2.67.

To clarify the core components of the SpecTTTra model, we provide PyTorch-like code for the
Spectro-Temporal Tokenizer (sttokenizer) below. Note that while the code is presented in a func-
tional format for clarity, the actual implementation follows an object-oriented approach.

import torch
import torch.nn as nn

def st_tokenizer(x, t_clip, f_clip, embed_dim):
B, F, T = x.size()

# Temporal tokens
t_tokens = tokenizer(x, F, embed_dim, t_clip, T // t_clip)

# Spectral tokens
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f_tokens = tokenizer(
x.transpose(1, 2),
T,
embed_dim,
f_clip,
F // f_clip,

)

# Spectro-Temporal tokens
st_tokens = torch.cat((t_tokens, f_tokens), dim=1)
return st_tokens

def tokenizer(x, input_dim, token_dim, clip_size, n_clips):
# Slicing and Tokenization
conv1d = nn.Conv1d(

in_channels=input_dim,
out_channels=token_dim,
kernel_size=clip_size,
stride=clip_size,
bias=False,

)
x = conv1d(x).gelu().transpose(1, 2)

# Positional Embedding
pos_embeds = nn.Parameter(torch.randn(1, n_clips, token_dim) * 0.02)
x = x + pos_embeds

# Layer Normalization
x = nn.LayerNorm(token_dim, eps=1e-6)(x)
return x

In this code, the tokenizer function represents the spectral or temporal tokenizer used to embed
spectral or temporal clips (patches) into tokens. Here, f clip and t clip denote the sizes of the
spectral and temporal clips, respectively, while embed dim signifies the feature dimension of each
token. The dimensions T and F correspond to the temporal and spectral dimensions of the input
spectrogram.

A.6 HUMAN-AI BENCHMARK

To assess human performance in synthetic song detection, we developed a Huggingface space called
“Song Arena” as illustrated in Fig. 9. In this space, users can evaluate whether a randomly selected
song from a subset of the proposed dataset (comprising 520 samples) is synthetic or not. The space
also features a leaderboard (shown in Fig. 10) that records human detection performance for songs
generated by different algorithms and generation methods. The evaluation metrics used to assess the
detectability of synthetic songs include the F1 score, Sensitivity (True Positive Rate), and Specificity
(True Negative Rate). These metrics provide a comprehensive measure of the difficulty humans face
in detecting synthetic songs generated by various algorithms.

A.7 PROMPT ENGINEERING

Selection of LLMs: For lyrics and song-style generation, as well as lyrics feature extraction, we
evaluated several proprietary LLMs, including GPT-4o, Claude 3, and Gemini 1.5, along with open-
source models like LLama 3, Gemma 2, and Mistral Large. Among these models, GPT-4o demon-
strated superior performance, particularly in maintaining rhythm and coherence and accurately fol-
lowing the content of prompts. Based on these qualities, we selected GPT-4o for both lyrics and
song-style generation tasks.

For song-style analysis, only the proprietary models Gemini 1.5 Pro and Gemini 1.5 Flash, as well
as the open-source model Qwen-Audio (Chu et al., 2023), are equipped to process audio inputs.
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Figure 9: Song Arena on Huggingface.
Figure 10: Song Arena Leaderboard on Hugging-
face.

Our evaluations indicated that both Gemini 1.5 Pro and Gemini 1.5 Flash models deliver similarly
accurate performance. In contrast, Qwen-Audio frequently struggled to follow instructions correctly.
Considering that the Gemini 1.5 Flash model is ten times more cost-effective than the Gemini 1.5
Pro, we selected the Gemini 1.5 Flash model for song-style analysis.

Half Fake: These songs are generated using lyrics and song style extracted from real songs. To
extract the song style, the prompt template mentioned in Table 11 is used. This template extracts
song style information such as vocal type, musical instruments, mood, etc.

Mostly Fake: These songs are generated similarly to Half Fake songs, except that the lyrics are AI-
generated. The lyrics are created using an LLM (Large Language Model) with the prompt template
shown in Table 10, where lyrics features are used as input. These lyrics features are also extracted
from real song lyrics using the prompt template shown in Table 9. The use of lyrics features instead
of direct lyrics prevents the LLM from copying the original content, encouraging it to generate lyrics
with a similar distribution rather than duplicating them.

Full Fake: These songs are generated using AI-generated lyrics and song style, created using the
prompt template provided in Table 12. In this process, the genre, topic, and mood were selected
randomly from the lists provided below:

• List of Genres: alternative, baroque, blues, bollywood, c-pop, celtic,
christian rock, classical, country, crunk, dance, dancehall, disco,
doom metal, electronic, folk, funk, fusion, gospel, gothic, grime,
grunge, hard rock, heavy metal, hip hop, indie rock, j-pop, jazz,
k-pop, lo-fi, lounge, metal, metalcore, new age, opera, orchestral,
pop, pop rock, progressive metal, progressive rock, punk, r&b, rap,
reggae, salsa, smooth jazz, soul, sufi, world music.

• List of Moods: adventurous, ambivalent, amused, angry,
anxious, apathetic, bittersweet, blissful, calm, carefree,
cautious, chaotic, confident, confused, curious, desperate,
determined, disenchanted, distracted, drained, dreamy,
empathetic, enchanted, energetic, exhilarated, focused,
forgiving, frustrated, gloomy, grateful, hateful, humble,
inspired, introspective, jealous, joyful, liberated,
lonely, loving, melancholic, mischievous, motivated,
mournful, mysterious, nostalgic, optimistic, passionate,
pensive, pessimistic, playful, powerless, proud, rebellious,
regretful, reluctant, restless, romantic, sarcastic,
satisfied, shocked, skeptical, submissive, sympathetic,
tense, timid, trapped, uninspired, vengeful, vulnerable,
whimsical, yearning, zealous.

• List of Broad Topics: alien invasion, ancient civilizations,
augmented reality, betrayal, childhood memories, climate
change, cyber crime, dimensional portals, dreams and
aspirations, dystopian future, empowerment, endangered
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species, extraterrestrial contact, family, fashion,
financial struggles, first kiss, forgiveness, friendship,
futuristic cities, generation gap, grief and loss,
heartbreak, social media anxiety, interstellar travel,
loneliness in a crowd, long-distance relationships, love,
love at first sight, lunar colonization, nanotechnology,
nature’s beauty, nostalgia, ocean exploration, overcoming
adversity, pandemic experiences, parallel universes,
political revolution, politics, quantum physics,
reincarnation, never give up, road trip adventures,
robotic emotions, save the planet, sibling rivalry, social
influencers, social justice, space exploration, space
tourism, survival in the wild, technology addiction, time
capsules, time paradoxes, time travel, unconditional love,
work-life balance.

• List of Specific Topics: elon musk vs yann lecun (AI), yann lecun vs
geoffrey hinton (AI), convolution vs transformer (AI), gan vs
diffusion models (AI), tensorflow vs pytorch (AI), pytorch vs
jax (AI), twilight zone (TV), star trek (TV), game of thrones
(TV), breaking bad (TV), stranger things (TV), big bang theory
(TV), friends (TV), simpsons (TV), house of cards (TV), how I
met your mother (TV), the office - US (TV), sherlock (TV),
avatar - the last airbender (TV), pokemon (anime), dragon
ball z (anime), naruto (anime), one piece (anime), attack on
titan (anime), my hero academia (anime), death note (anime),
jujustu kaisen (anime), fullmetal alchemist (anime), demon
slayer (anime), neanderthals (anthropology), pyramids of
giza (archaeology), machu picchu (archaeology), stonehenge
(archaeology), egyptian mummies (archaeology), giza sphinx
(archaeology), notre dame cathedral (architecture), london
bridge (architecture), big ben (architecture), eiffel tower
(architecture), versailles (architecture), arc de triomphe
(architecture), mona lisa (art), van gogh’s starry night
(art), sistine chapel (art), solar eclipses (astronomy), black
holes (astronomy), big bang theory (astronomy), supernovas
(astronomy), dark matter (astronomy), andromeda galaxy
(astronomy), elon musk vs bezos (business), taylor swift
(celebrity), tom cruise (celebrity), brad pitt (celebrity),
angelina jolie (celebrity), jennifer aniston (celebrity),
leonardo dicaprio (celebrity), meryl streep (celebrity),
robert de niro (celebrity), michael jackson (celebrity),
matt damon vs jimmy kimmel (celebrity), jimmy kimmel vs
jimmy fallon (celebrity), marvel vs dc (comics), batman
vs superman (comics), justice league vs avengers (comics),
thor vs hulk (comics), iron man vs captain america (comics),
batman vs joker (comics), john constantine (comics), marvel
universe (comics), dc comics (comics), big bang theory
(cosmology), russian ballet (culture), bollywood (culture),
hollywood (culture), alphago - the movie (documentary),
the great hack (documentary), walt disney (entertainment),
rose bowl parade (event), coachella (event), wimbledon
(event), kentucky derby (event), rio olympics (event),
tokyo olympics (event), beijing olympics (event), columbus
(exploration), marco polo (exploration), nike vs adidas
(fashion), world war III (fiction), pepsi vs coke (food),
messi vs ronaldo (football), pele vs maradona (football),
brazil vs argentina (football), monopoly (game), chess (game),
go (game), dungeons and dragons (game), minecraft (game),
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fortnite (game), call of duty (game), mario (game), pac-man
(game), sonic the hedgehog (game), fifa (game), cyberpunk
2077 (game), grand theft auto (game), the last of us (game),
assassin’s creed (game), resident evil (game), halo (game),
the witcher 3 (game), god of war (game), alphago vs lee
sedol (games), deep blue vs kasparov (games), playstation
vs xbox (gaming), mount everest (geography), grand canyon
(geography), dead sea (geography), ring of fire (geography),
venetian canals (geography), rocky mountains (geography),
volcanic eruptions (geology), ice age (geology), mariana
trench (geology), great depression (history), moon landing
(history), titanic (history), viking explorers (history),
stone age (history), aztec empire (history), mayan calendar
(history), vikings (history), cold war (history), space race
(history), moon landing (history), fall of the berlin wall
(history), industrial revolution (history), edison’s light
bulb (invention), the wright brothers (invention), tesla vs
edison (inventors), taj mahal (landmark), great wall of china
(landmark), central park (landmark), mount fuji (landmark),
fifa world cup (sports), empire state building (landmark),
statue of liberty (landmark), hollywood sign (landmark),
golden gate bridge (landmark), niagara falls (landmark), times
square (landmark), king arthur (legend), robin hood (legend),
loch ness monster (legend), yeti (legend), camelot (legend),
shakespearean sonnets (literature), harry potter (literature),
the hobbit (literature), lord of the rings (literature),
edgar allan poe (literature), charles dickens (literature),
dracula (literature), frankenstein (literature), the great
gatsby (literature), pride and prejudice (literature), alice
in wonderland (literature), romeo and juliet (literature),
moby dick (literature), war and peace (literature), little
women (literature), treasure island (literature), oliver twist
(literature), peter pan (literature), narnia (literature),
aesop’s fables (literature), sherlock holmes (literature), the
da vinci code (literature), CNN vs Fox News (media), godzilla
(movie), inception (movie), matrix (movie), interstellar
(movie), john wick (movie), jason bourne (movie), james bond
(movie), spiderman (movie), dark knight (movie), avengers
(movie), star wars (movie), indiana jones (movie), back to
the future (movie), jurassic park (movie), avatar (movie),
wizard of oz (movie), star wars vs star trek (movies), star
wars (movies), indiana jones (movies), titanic (movies),
fight club (movies), the dark knight (movies), the green
mile (movies), gladiator (movies), the departed (movies), the
lion king (movies), aladdin (movies), beauty and the beast
(movies), little mermaid (movies), frozen (movies), tangled
(movies), mulan (movies), sleeping beauty (movies), cinderella
(movies), snow white (movies), the social network (movies),
the beatles (music), bob dylan (music), bermuda triangle
(mystery), crop circles (mystery), atlantis (myth), hercules
(myth), perseus (myth), pandora’s box (myth), trojan war
(myth), achilles (myth), hades (myth), olympus (myth), zeus
(myth), hera (myth), apollo (myth), artemis (myth), athena
(myth), poseidon (myth), phoenix (mythical creature), medusa
(mythical creature), greek mythology (mythology), yellowstone
(national park), yosemite (national park), grand tetons
(national park), amazon rainforest (nature), sahara desert
(nature), great barrier reef (nature), victoria falls (nature),
niagara falls (nature), northern lights (nature), southern
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Instructions:
Analyze the provided song lyrics and extract the following elements:
1. Subject Matter: Write what the song is about by providing a summary of the story, narrative,
central topic, or events discussed in the song lyrics.
2. Theme: Identify the main theme or message (emotion, life experience, social commentary, or
philosophical concept).
3. Target Audience: Define the intended audience (age group, cultural background, or specific
interests).
4. Narrative: The story and point of view (e.g., first person or second person).
5. Character Analysis: Main characters (e.g., Protagonist, Antagonist) and their traits.
6. Song Structure: Outline the structure (number of verses, choruses, bridges, intros, outros) and
note any unique elements or deviations.
7. Mood: Describe the overall mood (upbeat, melancholic, introspective, etc.).
8. Reference: Identify any cultural, social, time, place, or contextual references.

How to respond:
You should provide your answer below after the “Answer” section. You are not allowed to use
any text formatting (bold, italic, etc.) and narrative (‘Here is the answer’, ‘Below is the response’,
etc.) in your answer. Only answer using the following format:
* subject matter: “.....”
* theme: “....”
* target audience: “....”
* narrative: “....”
* character analysis: “....”
* song structure: “....”
* mood: “....”
* reference: “....”

Lyrics:
{lyrics}

Answer:

Table 9: Prompt template for extracting lyrics features (e.g subject matter, theme, mood) from real
songs. Here, {lyrics} indicates placeholder for input lyrics.

lights (nature), bioluminescent bays (nature), blue holes
(nature), dinosaurs (paleontology), democrats vs republicans
(politics), scientist vs engineer (profession), python vs c++
(programming), java vs python (programming), javascript vs
java (programming), paper book vs e-book (reading), physics
(science), chemistry (science), biology (science), astronomy
(science), mathematics (science), albert einstein (scientist),
isaac newton (scientist), charles darwin (scientist), marie
curie (scientist), summer vs winter (season), twitter vs
facebook (social media), olympics (sports), world cup (sports),
super bowl (sports), tour de france (sports), wimbledon
(sports), nba finals (sports), nfl playoffs (sports), elon musk
vs mark zuckerberg (tech), ai vs human intelligence (tech),
nvidia vs amd (tech), intel vs amd (tech), nvidia vs intel
(tech), google vs openai (tech), iphone vs android (tech), mac
vs pc (tech), ai revolution (tech), rubik’s cube (toy), barbie
(toy), lego (toys), europe vs asia (travel), usa vs canada
(travel), australia vs new zealand (travel), usa vs europe
(travel), switzerland vs sweden (travel), beach vs mountains
(vacation), city vs countryside (vacation).
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Task:
You are a talented songwriter tasked with creating a song based on the following lyrics features.
The song must include all the features described below in the “Lyrics Features” section. The song
should not be long; rather, it should be medium-length.

Lyrics Features:
{lyrics feature}

Instructions:
You should write the song with metatags following the song structure from “Lyrics Features”. In
some very rare cases, you can also scarcely include ad libs, or non-lexical vocables.
* You can add metatags to your lyrics on top of a section in [square brackets] that will
create certain styles. Some examples of metatags are [Verse], [Chorus], [Bridge],
[Solo], [Outro], [Pre-Chorus], [Bridge], [Hook], [Opening], [Intro],
[Instrument], [Build], [Drop], [Breakdown], [Refrain], [Spoken],
[Interlude], [Prelude], [Sample], etc. Adding a blank newline between sec-
tions yields the best results.
* In some very rare cases, you can also scarcely use Ad libs (vocal embellishments) to your
prompts in (parentheses), only when necessary. Examples include (yeah), (alright),
(come on), (whoa), etc. Ad libs tend to work best at the end of a line but can also work
mid-line. Unlike metatags, ad libs are sung/verbalized.
* In some very rare cases, you can also scarcely use non-lexical vocables, only when necessary.
Examples include la la la, na na na, sha na na.

Example:
[Verse]
I’ve been tryna call
I’ve been on my own for long enough
Maybe you can show me how to love, maybe

[Chorus]
I said, ooh, I’m blinded by the lights
No, I can’t sleep until I feel your touch
I said, ooh, I’m drowning in the night
Oh, when I’m like this, you’re the one I trust
Hey, hey, hey

Write the lyrics below after the “Lyrics:” section. You are not allowed to add any narrative or text
before or after your response such as “Here’s your answer” or “Below is the response”.

Lyrics:

Table 10: Prompt template for generating song lyrics from lyrics features. Here, {lyrics feature}
indicates placeholder for input lyrics features.
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Task:
Given a song, you need to conduct a comprehensive stylistic analysis and extract all relevant
information about the song’s style. This includes identifying characteristics such as instruments
used (e.g., guitar, drums, piano, violin, synthesizers, bass, orchestral, solo, acoustic, trumpet,
saxophone, flute, cello, harmonica, banjo, accordion, etc.), vocals types (male or female), genres
(e.g., rock, pop, pop rock, indie rock, hard rock, metal, heavy metal, r&b, electronic, soul, jazz,
country, reggae, classical, hip hop, blues, folk, punk, funk, disco, alternative, grunge, etc.), tempo
(slow, moderate, fast), mood (e.g., melancholic, upbeat, aggressive, melodic, sad, happy, excited,
nostalgic, mellow, serene, joyful, dark, gothic, etc.), and any other stylistic elements (e.g., dance,
party, cinematic, dreamy, energetic, relaxing, anthemic, atmospheric, groovy, etc.) that contribute
to the overall vibe, environment, or atmosphere of the song.

Your response should be structured as follows:
Answer:
<start>
style1, style2, style3, ..., styleN
<end>

For example:
Answer:
<start>
male vocals, electronic, guitar, piano, energetic, pop rock,
violin, upbeat, dance, synth, sad, soul, trumpet, reggae
<end>

Please note that the list of style elements should be comprehensive and cover all relevant aspects
of the song’s style. Ensure that your response follows strictly to the specified formatting, includ-
ing the use of angle brackets, commas, and space separating each element written in lowercase.
There must not be any narrative or text in the answer (e.g., ’Here’s your answer’ or ’Below is the
response’), only the listed style elements.

{song}

Table 11: Prompt template for extracting song style (e.g. vocal type, instruments) from audio song.
Here, {song} indicates placeholder for input audio song.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Task:
You are a talented songwriter, music director, and composer. Your task is to compose a {genre} genre
song about {topic} with a {mood} mood. Provide the lyrics and style of the song after the “Answer”
section. Follow the step-by-step instructions provided in the “Instructions” section and respond using
the format given in the “How to Answer” section.

Instructions:
1. Before you write the song, you need to plan what you will write about the song, then synthesize the
features of the song lyrics mentioned below.
* Subject Matter: Write what the song is about by providing a summary of the story, narrative, central
topic, or events discussed in the song lyrics.
* Theme: Identify the main theme or message (emotion, life experience, social commentary, or philo-
sophical concept).
* Target Audience: Define the intended audience (age group, cultural background, or specific inter-
ests).
* Narrative: The story and point of view (e.g., first person or second person).
* Character Analysis: Main characters (e.g., Protagonist, Antagonist) and their traits.
* Song Structure: Outline the structure (number of verses, choruses, bridges, intros, and outros) and
note any unique elements or deviations.
* Mood: Describe the overall mood (upbeat, melancholic, introspective, etc.).
* Reference: Identify any cultural, social, time, place, or contextual references.
2. Then, you need to write song lyrics that include all the features described in the “Lyrics Features”
section. The song should not be long; rather, it should be medium-length. You should also write the
lyrics with metatags following the song structure from “Lyrics Features.” In some very rare cases, you
can also scarcely include ad libs, or non-lexical vocables. Here are the detailed instructions:
* You can add metatags to your lyrics on top of a section in [square brackets] that will cre-
ate certain styles. Some examples of metatags are [Verse], [Chorus], [Bridge], [Solo],
[Outro], [Pre-Chorus], [Bridge], [Hook], [Opening], [Intro], [Instrument],
[Build], [Drop], [Breakdown], [Refrain], [Spoken], [Interlude], [Prelude],
[Sample], etc. Adding a blank newline between sections yields the best results.
* In some very rare cases, you can also scarcely use Ad libs (vocal embellishments) to your prompts in
(parentheses), only when necessary. Examples include (yeah), (alright), (come on),
(whoa), etc. Ad libs tend to work best at the end of a line but can also work mid-line. Unlike
metatags, ad libs are sung/verbalized.
* In some very rare cases, you can also scarcely use non-lexical vocables, only when necessary. Ex-
amples include la la la, na na na, sha na na.
3. Finally, you need to compose the song by synthesizing all relevant and detailed information about
the song’s style. This includes identifying characteristics such as instruments used (e.g., guitar, drums,
piano, violin, synthesizers, bass, orchestral, solo, acoustic, trumpet, saxophone, flute, cello, harmonica,
banjo, accordion, etc.), vocals types (female or male), genres (e.g., rock, pop, pop rock, indie rock, hard
rock, metal, heavy metal, r&b, electronic, soul, jazz, country, reggae, classical, hip hop, blues, folk,
punk, funk, disco, alternative, grunge, etc.), tempo (slow, moderate, fast), mood (e.g., melancholic,
upbeat, aggressive, melodic, sad, happy, excited, nostalgic, mellow, serene, joyful, dark, gothic, etc.),
and any other stylistic elements (e.g., dance, party, cinematic, dreamy, energetic, relaxing, anthemic,
atmospheric, groovy, etc.) that contribute to the overall vibe, environment, or atmosphere of the song.
The name of the style must be written in lowercase and separated by commas.
4. Finally, choose a title for the song that best suits its lyrics and style.

Prompt continued on next page...
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

..continued from previous page
How to answer:
You need to provide your answer after the “Answer” section below, while strictly following the format
below. Also in your answer, you are not allowed to use any text formatting (bold face, italic, etc.)
or narrative (Here’s your answer, Answer is below, etc.). Just provide your answer using the below
format:

Lyrics Feature:
<feature>
* subject matter: “.....”
* theme: “....”
* target audience: “....”
* narrative: “....”
* character analysis: “....”
* song structure: “....”
* mood: “....”
* reference: “....”
</feature>

Song Lyrics:
<lyrics>
[Verse 1]
In a small town by the sea, where the waves kiss the shore,
Lives a dreamer with a heart, always yearning for more.
With a notebook in his hand, and a vision in his eyes,
He paints the world in colors, beneath the endless skies.

[Pre-Chorus]
Through the struggles and the trials, he keeps his head up high,
With a song within his soul, he knows he’ll touch the sky.

. . . .
</lyrics>

Song Style:
<style>
male vocals, electronic, guitar, piano, energetic, pop rock,
violin, upbeat, dance, synth, sad, soul, trumpet, reggae, ....
</style>

Song Title:
<title>
Chasing the Dream
</title>

Answer:

Table 12: Prompt template for generating song lyrics and style from genre, topic and mood. It
also generates lyrics feature and song title as by-product. Here, {genre}, {topic}, {mood} indicates
placeholders for input genre, topic and mood of the song.
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