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Abstract001

Understanding user intents from UI interac-002
tion trajectories remains a challenging, yet003
crucial, frontier in intelligent agent devel-004
opment. While massive, datacenter-based,005
multi-modal large language models (MLLMs)006
possess greater capacity to handle the com-007
plexities of such sequences, smaller models008
which can run on-device to provide a privacy-009
preserving, low-cost, and low-latency user ex-010
perience, struggle with accurate intent infer-011
ence. We address these limitations by intro-012
ducing a novel decomposed approach: first,013
we perform structured interaction summariza-014
tion, capturing key information from each user015
action. Second, we perform intent extraction016
using a fine-tuned model operating on the ag-017
gregated summaries. This method improves018
intent understanding in resource-constrained019
models, even surpassing the base performance020
of large MLLMs.021

1 Introduction022

Advancements in the capabilities of multi-modal023

large language models (MLLMs) has led to re-024

cent interest in modeling sequences of user inter-025

actions with phone and web graphical interfaces,026

both for the purposes of automation (Wang et al.,027

2024b; Jiménez-Ramírez, 2024), and understand-028

ing (Berkovitch et al., 2024; Zhang et al., 2025).029

In this work, we focus on the user intent extrac-030

tion task, which consists of producing a free-form031

description of the inferred intent of a user from a032

sequence of interactions with a device.033

Large MLLMs are naturally fairly good at this034

task, however, it is more challenging for smaller035

models (E.g., Gemini 1.5 Flash 8B (Gemini Team036

et al., 2024) or Qwen2 VL 7B (Wang et al., 2024a)).037

The performance of smaller models is important for038

user interaction tasks due to their ability to operate039

within private, on-device environment like a phone040

or browser, with reduced cost, energy usage, and041

latency (Xu et al., 2024).042

In this paper, we introduce a two-stage approach 043

for extracting user intent with small models. In 044

the first stage, each atomic interaction is summa- 045

rized. In the second stage, the full sequence of 046

summaries is fed to a second model which out- 047

puts an intent. The overall flow is illustrated in 048

Figure 1. Using semantic equivalence metrics on 049

public UI automation data, our two-stage approach 050

demonstrates superior performance compared to 051

both smaller models and a state-of-the-art large 052

MLLM, independent of dataset and model type. 053

Our approach also naturally handles scenarios with 054

noisy data that traditional supervised fine-tuning 055

methods struggle with. The modular nature of the 056

architecture is helpful from an engineering perspec- 057

tive, allowing us to evaluate the approach in detail 058

and identify key areas to improve. 059

Our contributions can be summarized as follows: 060

1) We describe an effective decomposition of intent- 061

extraction that unlocks the potential of small mod- 062

els; 2) We present non-trivial design components 063

related to each stage of the decomposition; 3) We 064

extensively evaluate our approach and demonstrate 065

the effectiveness of our method across a range of 066

data sets, base models and metrics. 067

2 Background 068

2.1 Intent Extraction from UI Interactions 069

We formalize the intent extraction task, sometimes 070

called goal understanding, similarly to prior works 071

Berkovitch et al. (2024) and Zhang et al. (2025). 072

Consider a user journey T within a mobile or web 073

application, represented as a sequence of interac- 074

tions: T = (I1, I2, ..., In), where each interaction 075

Ii = (Oi, Ai) consists of an observation Oi, and 076

the action Ai the user performed at that step. This 077

description is general and different modeling ap- 078

proaches have used different representations for 079

observations and actions (e.g., textual descriptions, 080

screenshot images, DOM hierarchies, etc.) (Rawles 081
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Screen shows Amtrak 
homepage…
User chose “Destinations”

Screen shows Amtrak routes and 
Destinations…
User clicked “View Details” 
button for Adirondack route. 

Screen shows Amtrak 
Browse by region…
User clicked “See all 
Routes”

“User would like to see details about the Adirondack Amtrak route.”

Stage 1
Summary

Stage 2
Intent extraction

Trajectory
(Action, Screen) 

[Destinations] Click [See all routes] Click [View details] Click 

Figure 1: Proposed intent extraction flow (Described in detail in Section 4). Individual interactions (input as action
strings and screenshots) are summarized and then sequence of summaries are combined to output a short inferred
intent for the trajectory. The summarization step uses both action strings and visual screen information to output a
structured summary with two fields corresponding to screen summary (top, blue) and user action (bottom, red).

et al., 2023; Burns et al., 2022). The objective of082

the intent-extraction task is to generate a free-form083

sentence describing the user’s intent. Effectively,084

this setting can be thought of as the inverse problem085

of the UI automation task, with inputs and outputs086

swapped. Rather than producing a sequence of ac-087

tions from an instruction, we ask “what was the088

user trying to accomplish with this trajectory?”. In-089

tent extraction has been identified as an important090

building block for UI automation tasks, proactive091

assistance, and personalized memory (Berkovitch092

et al., 2024; Zhang et al., 2025).093

Very recently, a few works have begun ad-094

dressing intent extraction from UI interactions.095

Berkovitch et al. (2024) proposed this novel task,096

and seemingly were the first to point out that it can097

be viewed as the inverse task of UI Automation.098

They evaluated MLLM intent-extraction perfor-099

mance over UI automation datasets (swapping in-100

put/output roles). As input, they considered screen-101

shot images and textual descriptions of user actions,102

as we do in our work, and assessed the performance103

of standard MLLMs using a fairly simple prompt-104

ing approach. In our work, we follow this evalua-105

tion approach, while testing an improved version of106

their prompt as a baseline. Zhang et al. (2025) also107

evaluated their SummAct model over UI automa-108

tion datasets, but took as input only short textual109

descriptions of the specific UI elements with which110

the user interacted and the respective user actions,111

without considering the global screen context, as112

we do. Loosely similarly to our method, they de-113

composed intent generation into two consecutive114

stages, though these are substantially different than115

ours and required intervening with the LLM’s at-116

tention mechanism for fine-tuning (see Appendix 117

G for detailed comparison of the two methods). Fi- 118

nally, the UI-JEPA model (Fu et al., 2025) takes as 119

input videos of the entire UI session. Their method 120

adapts a specialized video-embedding method to 121

work with videos of UI sessions, and then finetunes 122

an LLM decoder that generates intent descriptions 123

based on these embeddings. Overall, SummAct, 124

our work, and UI-JEPA consider different types of 125

inputs, providing increasingly richer contexts with 126

increasing complexity: “local” text descriptions of 127

the user action and its respective UI element, ac- 128

counting for the full screen image, and processing a 129

complete video of the entire session (respectively). 130

It is left for future work to thoroughly explore the 131

pros and cons of these alternative inputs under dif- 132

ferent scenarios.1 133

With respect to evaluating model-predicted in- 134

tents, a good intent is faithful: only describes things 135

that actually occur in the trajectory; comprehensive: 136

provides all of the information about the user intent 137

required to re-enact the trajectory; and relevant: 138

does not contain extraneous information beyond 139

what is needed for comprehensiveness. However, 140

even with a well-defined ground truth intent, ac- 141

curately evaluating a model’s extracted intent is 142

challenging. User intents often contain many de- 143

tails, such as trip planning specifics or transaction 144

data, which require metrics that can handle partial 145

matches. Such metrics fall into two categories: se- 146

mantic, which analyze underlying meaning, and 147

1An empirical comparison with SummAct on equal
grounds was not possible, since their code was released with-
out full prompts close to the submission deadline. Similarly,
the UI-JEPA inference code hasn’t been released yet while the
license on the dataset restricts our labs’ usage.
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lexical, which assess surface-level word overlap.148

As (Caduri et al., 2025) show, lexical metrics (e.g.,149

BLEU and ROUGE) correlate poorly with human150

judgments of intent similarity, as they merely com-151

pare words. In contrast, semantic metrics, such152

as NLI (Natural Language Inference) and BI-Fact153

(a bi-directional variant of FActScore (Min et al.,154

2023)), strive to capture the intended meaning.155

Further, intent extraction is inherently subjec-156

tive, as a single trajectory could have been driven157

by multiple underlying motivations (e.g., a user158

may have selected a flight based on its price versus159

its departure time). This subjectivity is evident in160

prior work, such as Berkovitch et al. (2024) where161

human-composed intentions matched each other in162

only 80% and 76% of web and phone trajectories,163

respectively. This level of human agreement may164

be considered a practical upper bound for perfor-165

mance on this task.166

2.2 UI Interaction Datasets167

Recently, a number of datasets have been devel-168

oped for evaluating UI interaction agents, (sur-169

veyed in Wang et al. (2024b)). We use two that170

are representative and suitable for measuring the in-171

tent extraction task. We confirmed that our usage of172

the data adhered to all ethical and legal standards.173

Mind2Web (CC BY 4.0 license) (Deng et al.,174

2024): Has 2,350 human demonstrations on web-175

sites. Each user trajectory is on average 7.3 steps176

long and contains screenshots and actions for each177

step, as well as a high level description of the task178

the human was asked to perform.179

AndroidControl (Apache 2.0 license) (Li et al.,180

2024): Has 15,283 examples of humans performing181

tasks on Android apps. Each user trajectory is on182

average 5.5 steps long, and contains screenshots183

and actions for each step, as well as a high level184

description of the goal.185

Mind2Web’s data collection included a valida-186

tion step where annotators verified the alignment187

between the completed trajectory steps and the in-188

tent, making this dataset highly suitable for the189

intent extraction task as well. This crucial step was190

absent from the AndroidControl collection proto-191

col, resulting in noisier labels. For example con-192

sider the following task “Delete all emails from193

sender X” in a scenario where there were no emails194

from that sender. Based on the execution of task it195

is impossible to identify that the original goal was196

to delete emails. We preprocess labels to remove197

clearly irrelevant statements (Section 5.2) and ana-198

lyze the effect of remaining discrepancies between 199

the labels and trajectories in Section 6.2. 200

2.3 Related Research Lines 201

User interaction understanding for HCI Sin- 202

gle screen summarization as a special case of im- 203

age description has been extensively studied for 204

the purposes of e.g., accessibility, automation, and 205

question answering (e.g., Li et al., 2021b; Bai et al., 206

2021; Li and Li, 2022; Wang et al., 2021; Yang 207

et al., 2024). Our setting of identifying and sum- 208

marizing intents from trajectories has been recently 209

proposed in Berkovitch et al. (2024); Zhang et al. 210

(2025); Jiménez-Ramírez (2024). 211

Multi-stage summarizations Decomposing a 212

complex task into smaller simpler stages is a well- 213

known approach for problem solving. Hierarchi- 214

cal models are common in summarization tasks 215

of many modalities, e.g., text (Christensen et al., 216

2014), audio (Li et al., 2021a), video (Zhao et al., 217

2022; Cheng et al., 2024). Chain of Thought (CoT) 218

reasoning (Wei et al., 2022) is a popular general- 219

purpose prompting method to decompose a prob- 220

lem into smaller parts. Khot et al. (2022) propose 221

an automated decomposition step that delegates dif- 222

ferent parts of the problem to distinct model calls. 223

3 Baseline Modeling Approaches 224

In this section, we first present natural baseline ap- 225

proaches for addressing our task, whose lessons 226

led us to develop our decomposed two-stage ap- 227

proach which will be described in Section 4. Our 228

task is a text generation task, where intent descrip- 229

tions are generated from the multi-modal input of 230

UI trajectories. As such, it is most natural to ad- 231

dress it through multi-modal LMs, applying either 232

prompt-based or fine-tuned methods. The focus 233

of our work is to explore the use of small LMs, 234

for eventual utilization on-device. The particular 235

models used are specified in Section 5.1, including 236

a top-tier large model as a reference point. 237

Prompt-based methods Such methods are ad- 238

vantageous in that they do not require training data, 239

instructing a generic LM via its prompt. We found 240

that a CoT prompt worked best. Specifically, our 241

CoT prompt (see H1) instructs the model to first 242

generate a sequence of individual descriptions of 243

the user intents within each UI interaction, and 244

then to consolidate these interaction-level descrip- 245

tion into the final description of the accumulated 246

user intent along the trajectory. 247
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Fine-tuned models Since performance of248

prompting a generic model may not be fully249

aligned with the intended task output and prompt-250

based performance of small LMs might generally251

be limited, we also explore baseline fine-tuning252

methods. To that end, we fine-tuned small models253

using available training datasets, specifically254

those developed for the inverse problem of UI255

automation, while swapping their input/output256

roles (see Section 2.2).257

Both prompt-based and fine-tuned baselines re-258

quire large context window to contain the entire259

user trajectory including images. As described in260

Section 5.1, practically this required some filtering261

over the input to fit the available context size.262

4 A Decomposed Two-stage Model263

While CoT prompting works well with large lan-264

guage models (LLMs), we observe limitations in265

both CoT and fine-tuned small LMs when pre-266

sented with the full trajectory. When applying CoT267

reasoning, small models struggle to generate high-268

quality thoughts that cover the full trajectory. Fine-269

tuned small models also have trouble generating270

comprehensive intents from the full trajectory.271

These observations led us to develop a decom-272

posed, two-stage approach that emulates the CoT273

process, illustrated in Figure 1. First, we use274

prompting to generate a summary for each interac-275

tion (consisting of a visual screenshot and textual276

action representation) in a trajectory. This stage is277

prompt-based as there is currently no training data278

available with summary labels for individual inter-279

actions. Second, we feed all of the interaction-level280

summaries into a second stage model to generate281

an overall intent description. We apply fine-tuning282

in the second stage and we describe that process283

in more detail below (Section 4.2). The following284

subsections provide a detailed description of each285

stage in our proposed method.286

4.1 Interaction Summarization287

In the first stage, we summarize each individual288

user interaction Ii = {Oi, Ai} of the length-n tra-289

jectory T = (I1, . . . , In). The summarization uses290

visual and textual information to extract relevant291

information regarding the user’s goals and actions292

within that interaction. The output of this stage is293

a summary of the screen context and user action294

(see Figure 1). This key information, which de-295

scribes this particular user interaction, will be used296

in the subsequent fusion stage. This summarization 297

process is entirely prompt-based (see H3). 298

We add the two following improvements to the 299

design of this stage, which improves overall perfor- 300

mance, as shown in ablation studies in Section 6.3. 301

Context window While the primary task is to 302

understand Ii in isolation, we recognize that often 303

context can be crucial for eliminating ambiguity 304

and/or uncertainty. Therefore, in addition to Ii 305

the model also receives as input the preceding and 306

successive interactions, Ii−1 and Ii+1, respectively. 307

This allows the model to use e.g., the visual cues 308

from both the current the next screenshot to under- 309

stand the user action at step i. 310

Structured summaries We request that the sum- 311

mary be structured in two distinct components: (a) 312

the relevant screen context – a short list of salient 313

details on the current screen Oi, and (b) the user 314

action: a list of mid-level actions that the user took 315

in the current interaction (example in Figure 1). De- 316

spite being structured in two fields, the visual cues 317

from the screenshot are also used to understand the 318

action (e.g., in Figure 1, the visual cues are helpful 319

to extract that the click relates to the “Adirondack” 320

section of the page.) As a practical measure for 321

dealing with cases where the model outputs its (un- 322

warranted) interpretations of the user’s underlying 323

intent, we also instructed it to output those in a 324

third field (labelled “speculative intent”) that we 325

discard before proceeding to the next stage. 326

This structured format was selected to address 327

challenges encountered with alternative prompting 328

strategies. Simply asking the model to be concise 329

resulted in summaries that lacked crucial details. 330

Conversely, prompting for comprehensive informa- 331

tion, including user intent, led to excessive specu- 332

lation that could hinder the subsequent summary 333

fusion stage. Our structured format aims to cap- 334

ture a broader range of information while enabling 335

the removal of speculative elements prior to the 336

second stage. This balanced approach mitigates 337

the risk of contradictions and improves the overall 338

summarization process. 339

4.2 Generating Session-Level Intent 340

In the second stage, we aggregate the information 341

extracted during the first stage. A second-stage 342

model takes as input the summaries of all inter- 343

actions in the trajectory to infer the user’s overall 344

intent. This aggregation stage is implemented by 345
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fine-tuning a model to specialize in the aforemen-346

tioned aggregation. For fine-tuning, the training347

data consists of: a) input summaries representing348

all interactions in the trajectory, and b) a corre-349

sponding ground truth target that describes the350

user’s overall intent in the given trajectory. For351

comparison, a variation with no fine-tuning, which352

is fully prompt-based, is also available as part of353

our ablation study in Subsection 6.3).354

We noted in early explorations that naively ap-355

plying fine-tuning yields a model that embellishes356

or hallucinates by introducing details that were not357

present in the screen summary inputs. On further358

examination, we found that the training procedure359

encourages the model to act this way since the in-360

puts are potentially incomplete summaries and the361

targets are the complete intent statements. Thus,362

when looking at (input, target) pairs, the model363

learns that it needs to sometimes add additional364

information in order to produce the target intent.365

Following this insight we refine our target intents366

at training time to remove details not reflected in367

the corresponding input (using a large language368

model, see Figure H5 for details on the prompt369

used in this stage). This ensures that the model will370

learn to infer intents based solely on the provided371

interaction summaries. We discuss the effects of372

this cleanup stage in Subsection 6.3.373

5 Experimental Setting374

5.1 Models375

We focus on smaller, multi-modal models, that can376

be fine-tuned. In particular, we use Gemini2 1.5377

Flash 8B (Gemini Team et al., 2024) and Qwen2378

VL 7B (Apache 2.0 license) (Wang et al., 2024a).379

For comparisons with a MLLM, we use Gemini 1.5380

Pro (Gemini Team et al., 2024).381

When using Qwen2 VL 7B for baseline models,382

we dropped frames randomly from the trajectory383

if they exceeded the context window length. We384

found that limiting trajectories to 15 steps was suf-385

ficient to run our experiments. We also downsized386

AndroidControl images by a factor of 4 in each387

dimension when inputting them to Qwen models.388

Details of fine-tuning can be found in Appendix B.389

5.2 Datasets and Preprocessing390

We use the Mind2Web (Deng et al., 2024) and391

AndroidControl (Li et al., 2024) datasets as repre-392

sentative user interaction datasets. We follow the393

2Terms of service: https://ai.google.dev/gemini-api/terms

standard train/test split of each dataset, fine-tuning 394

with train, and reporting results on test data. 395

In Mind2Web, we represent the action from the 396

dataset textually: (e.g., “[element name] click” or 397

“[element name] hover”.). In AndroidControl, we 398

use the accessibility tree to convert the screen coor- 399

dinates of the interacted item to an element name 400

and format the action in the same way. In both 401

datasets, we use screenshots as observations. We 402

highlight the interacted element in the screenshot 403

with with a red box (Zheng et al.; Yang et al., 2023). 404

To improve the evaluation of user intent interpre- 405

tation, goal labels from the datasets were cleaned 406

and restructured to separate platform-specific infor- 407

mation from the core intent, see A for more details. 408

5.3 Evaluation Metrics 409

We measure quality of extracted goals using two 410

different semantic equivalence metrics. 411

T5 NLI (Honovich et al., 2022): A T5-XXL 412

model3 trained for NLI (Natural Language Infer- 413

ence). We compute the entailment probability of 414

the produced summary from the gold standard and 415

vice versa, and then average the two values to get a 416

single bidirectional score. 417

BiFact (Caduri et al., 2025): A bi-directional 418

variation of FActScore (Min et al., 2023) devel- 419

oped for assessing the equivalence of intents in UI 420

interactions, demonstrating the highest correlation 421

with human judgments compared to existing meth- 422

ods. This metric deconstructs both the ground-truth 423

and predicted intents into their fundamental factual 424

components using an LLM (we use Gemini 1.5 Pro 425

for this). These components are then compared to 426

measure the extent of coverage. We use the BiFact 427

measures of precision (the proportion of facts in the 428

predicted intent that are present in the true intent - 429

i.e., relevance), recall (the proportion of facts in the 430

true intent that are captured by the predicted intent, 431

i.e., comprehensiveness) and F1. 432

We believe that BiFact, which uses a fine- 433

grained, fact-level comparison, is ideally suited 434

for our task since intents can be composed of many 435

parts (e.g., book a flight, flight is to LAX, flight 436

is on Friday). NLI, which holistically evaluates 437

logical entailment of the full sentences is less ideal, 438

but provides an extra signal. 439

3Available at: https://huggingface.co/google/t5_
xxl_true_nli_mixture
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6 Experiments440

6.1 Evaluating Extracted Intents441

To show that our decomposed approach is gener-442

ally helpful compared to baselines across models443

and data modalities, we evaluate the metrics in444

Section 5.3 on two different datasets using two dif-445

ferent models. The results are displayed in Table 1.446

In this table, CoT (Chain of Thought) and E2E-447

FT (End-to-End fine-tuned) represent the natural448

baselines described in Section 3. Of these two base-449

lines, neither is uniformly more effective across450

all settings. On the Mind2Web dataset, which451

has cleaner labels (described in 2.2), Gemini, as452

a stronger base model, has higher BiFact F1 and453

Bi-NLI scores with CoT, whereas Qwen2 VL 7B454

benefits from fine-tuning. Gemini 1.5 Pro CoT455

is presented as a comparison to a top-tier large456

MLLM. We find that on Mind2Web, the fine-tuned457

decomposed approach allows the Gemini Flash458

8B to even exceed the performance of the Gem-459

ini 1.5 Pro model using CoT. On AndroidControl,460

the scores are comparable.461

The BiFact score is non-deterministic as it uses462

an LLM to compute the score. We observe a 0.016463

standard deviation on repetition. A more detailed464

breakdown of performances on the test sets by held-465

out data type can be found in Appendix E.466

Manual verification - Human preference: To467

further verify, a human rater compared 20468

Mind2Web trajectories with intent predictions from469

Gemini Flash 8B, choosing between CoT and470

Decomposed-FT responses (details in Appendix D).471

Overall, Decomposed-FT was preferred in 12 in-472

stances, CoT in 4, and 4 were rated equally.473

6.2 Label Quality and Comparison with474

Expert-Written Intents475

To understand the quality of the labels after prepro-476

cessing (described in Section 5.2 and Appendix A),477

we elicited expert-written intent statements for 100478

examples in the AndroidControl dataset following479

the annotation protocol in (Berkovitch et al., 2024).480

In Table 2 we compare the BiFact F1 metric for481

proposed intents against dataset labels and against482

expert written intents (more detailed metrics in Ap-483

pendix Table 4).484

Overall, the performance of each model im-485

proves when compared to expert annotations, ex-486

cept for the E2E-FT model, which was trained on487

the noisy labels. The fine-tuned decomposed ap-488

proach also uses fine-tuning, and could have been489

expected to similarly suffer from training on noisy 490

labels, but instead it significantly improves when 491

evaluated using expert intents. We believe this is 492

due to our approach to constructing fine-tuning 493

labels (Section 4.2) which removes information 494

present in the gold labels but absent from sum- 495

maries. Interesting to notice that after cleaning 496

the AndroidControl data, the performance of Gem- 497

ini 1.5 Pro CoT is similar to the performance on 498

Mind2Web suggesting the gap in performance be- 499

tween datasets is mainly the result of data noise. 500

6.3 Ablation Study 501

We consider four variants of our method to estimate 502

the impact of each design choice. The performance 503

of each of these ablations can be found in Table 3. 504

No Context In this variant, Stage 1 is provided 505

with only a single interaction, without previous or 506

next interactions. Our analysis reveals that incor- 507

porating information from the previous and next 508

interactions significantly helps the model to infer 509

the user action in the current screen, thereby lead- 510

ing to a noticeable increase in Stage 1 recall. 511

Unstructured Interaction-level Summaries 512

Our method instructs the model to output inter- 513

action summaries that are structurally broken 514

down into context, user actions, and a speculative 515

intent list (which is removed prior to proceeding 516

to the next stage). Instead, we permit free-form 517

summaries, and the concatenation of those are 518

provided to the goal extraction. Instructing 519

the model to output these particular structured 520

responses allows the Stage 2 model to focus on 521

user actions on the one hand, while mitigating 522

Stage 1 hallucinations as much possible. We notice 523

a slight decrease in both precision and recall, as a 524

result of eliminating this part in our method. 525

No Fine Tuning In this ablation, the second 526

stage of our model was not subjected to fine-tuning 527

and operated solely on a prompt-based approach. 528

Our findings indicate that this configuration led 529

to a marked decrease in precision. Without fine- 530

tuning, the model tended to be more verbose, re- 531

sulting in a higher proportion of irrelevant or in- 532

correct information being generated. Conversely, 533

this same verbosity contributed to an increase in 534

recall, as a broader range of potential information 535

was captured. However, when considering the F1 536

score, which balances precision and recall, the fine- 537

tuned version of Stage 2 demonstrated superior 538
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Mind2Web AndroidControl

BiFact Bi-NLI BiFact Bi-NLI
Method F1 Precision Recall F1 Precision Recall

Gemini Flash 8B

CoT 0.660 0.751 0.656 0.326 0.594 0.628 0.660 0.302
E2E-FT 0.652 0.676 0.676 0.311 0.611 0.655 0.656 0.343
Decomposed-FT 0.753 0.807 0.756 0.391 0.630 0.664 0.688 0.350

Qwen2 VL 7B

CoT 0.563 0.694 0.551 0.272 0.538 0.589 0.603 0.280
E2E-FT 0.610 0.670 0.621 0.233 0.506 0.594 0.546 0.343
Decomposed-FT 0.623 0.736 0.609 0.300 0.608 0.661 0.646 0.333

Gemini-1.5-Pro

CoT 0.721 0.761 0.740 0.331 0.634 0.612 0.767 0.347

Table 1: BiFact and Bi-NLI results on the Mind2Web (N=1,005) and AndroidControl (N=1,543) datasets using
Gemini 1.5 Flash 8B, Qwen2 VL 7B, and Gemini 1.5 Pro. Best scoring method for each model is bolded. F1,
precision, recall are micro-averaged over the dataset.

Method
(Gemini-1.5 Flash 8B)

Expert
Labels

Dataset
Labels

CoT 0.652 0.580
E2E-FT 0.590 0.565
Decomposed-FT 0.701 0.596

Gemini-1.5-Pro CoT 0.724 0.635

Table 2: A comparison of BiFact F1 scores for intent
prediction on the AndroidControl dataset, using expert
annotations and dataset labels as ground truth. A more
detailed table appears in C.

performance, underscoring the benefits of the fine-539

tuning process. For completeness, an analysis of540

this prompt-based approach on larger models is541

provided in Appendix F.542

No Label Refinement Recall that label refine-543

ment was added to address Stage 2 hallucinations.544

In this variant, we exclude the label refinement step,545

during the data preparation for the fine-tuning of546

the Stage 2 model, as described in Subsection 4.2.547

As expected, after removing this step, we notice a548

significant decrease in precision. However, we also549

see a slight increase in recall, suggesting potential550

areas for improvement in the refinement process.551

6.4 Manual Error Analysis552

To gain a deeper understanding of the errors pro-553

duced by the decomposed-FT model, we manually554

analyzed 20 examples. Counts are indicated in555

parentheses after each error type. Some examples556

exhibited multiple error types, so the counts do not557

necessarily add up to the total number of examples.558

Method F1 Precision Recall

Decomposed-FT 0.753 0.807 0.756
- No context 0.710 0.787 0.709
- Unstructured 0.733 0.787 0.741
- No fine-tuning 0.712 0.699 0.809
- No label refine 0.728 0.740 0.776

Table 3: Ablation study on Mind2Web using BiFact
scores. The Decomposed-FT model is the full model
and then each subsequent line shows the effect of re-
moving a single design component.

Incorrect screen understanding (6) Includes 559

instances where the model misinterpreted the UI 560

elements or incorrectly understood the user action. 561

Summary omissions (6) Includes instances 562

where the model failed to capture important on- 563

screen details, like omitting the destination on a 564

travel site. 565

Hallucinations (4) Includes instances involving 566

generating information not present on the screen, 567

such as claiming the user selected a specific item 568

when they did not. 569

Irrelevant details (0) Includes instances where 570

the model included correct but excessive informa- 571

tion. While this error was not present in our full 572

model, it was significant in the "no formatting" 573

models used in the ablation study (Section 6.3). 574

Intent extraction omissions (8) Includes in- 575

stances where the second stage failed to include im- 576

portant details present in the individual summaries. 577
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4280 (100%)

3600 (84%)680 (16%)

Ground Truth Facts
Recall Analysis

NO Yes
Is Fact In Summaries?

2937 (82%)663 (18%)

Is Fact In Predicted Goal?
NO Yes

Interaction summarization 
missed

Intent extraction missed

3191 (100%)

2938 (92%)253 (8%)

Predicted Facts
Precision Analysis

NO Yes
Is Fact In Summaries?

2362 (80%)576 (20%)

Is Fact In Ground Truth?
NO Yes

Intent extraction 
hallucinated

Interaction summary outputted incorrect / 
irrelevant information, extraction failted to filter it

Figure 2: Error propagation analysis of our method on the Mind2Web dataset, tested with Gemini Flash-8B,
tracking ground-truth and predicted facts to obtain stage-level recall and precision.

Evaluation Errors (1) These errors were infre-578

quent and typically involved situations where com-579

plex screen understanding was required to deter-580

mine the equivalence of intents.581

The majority of issues occur in the Interaction582

Summarization stage, suggesting potential benefits583

from distillation training of this stage. Initial exper-584

iments, showed no significant improvements from585

distillation. Further investigation is warranted.586

6.5 Error Propagation Analysis587

Obtaining a correct intent from the Decomposed-588

FT method requires the two stages in Section 4 to589

work together effectively. In this section, we in-590

vestigate error propagation through the two stages591

using the BiFact decomposition of intents and sum-592

maries into atomic facts.593

Missed facts, resulting in lowered recall, can594

occur when a fact is missing in the interaction sum-595

marization stage (interaction summarization miss)596

or the fact can be present in the first stage, but incor-597

rectly dropped in the intent extraction phase (intent598

extraction miss). An irrelevant or incorrect fact,599

resulting in lowered precision, can be introduced600

in the interaction summarization phase and prop-601

agated through intent extraction (summarization602

introduced), or it can be absent from the interaction603

summarization phase and introduced in the intent604

extraction phase (intent extraction hallucinated).605

Our analysis of the Mind2Web test set is given606

in Figure 2 using the Decomposed-FT model. The607

left-hand side, which focuses on recall, shows that608

the summarization process results in a 16% loss of609

ground truth facts. Subsequently, intent extraction610

further reduces the remaining facts by 18%. Effec-611

tively, each stage introduces a similar magnitude of612

error. The right-hand side describes the precision 613

analysis, showing that 8% of the facts predicted 614

by Decomposed-FT were, in fact, hallucinations. 615

This low hallucination rate is attributed to the label 616

processing techniques employed during training. 617

Following that, 20% of the remaining predicted 618

facts were present in the summary but absent from 619

the ground truth, indicating incorrect or irrelevant 620

information in the interaction summarization out- 621

put and a filtering issue of the intent extractor. We 622

propose this analysis framework to evaluate future 623

two-stage intent extraction methods, aiming to op- 624

timize future efforts and assess each stage’s impact 625

on overall performance. 626

7 Discussion 627

Our study utilized datasets designed for automa- 628

tion to tackle the challenge of user intent identi- 629

fication, despite their inherent limitations such as 630

noise and information gaps. We observe that fine- 631

tuning alone does not surpass Chain-of-Thought, 632

especially in noisy data scenarios. However, our 633

two stage decomposition exhibited superior per- 634

formance delivering significant improvements re- 635

gardless of data quality. This improvement can be 636

attributed to the cleaning process and the combina- 637

tion of prompts and fine-tuning, which effectively 638

mitigated the impact of data noise. 639

Furthermore, our approach significantly reduced 640

the storage footprint of individual screenshots by 641

summarizing each screen independently, thereby 642

minimizing the required tokens for representation. 643

This reduction in token usage is particularly ben- 644

eficial for on-device models with limited context 645

windows, enabling them to handle longer trajecto- 646

ries more effectively. 647
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8 Ethical Considerations & Risks648

Autonomous agents offer significant innovation,649

but their development necessitates careful ethical650

consideration, particularly regarding user privacy.651

Our research, which aims to interpret user intent652

from UI interactions, inherently involves sensitive653

data. We particularly study small models that can654

run on-device, thereby reducing some of the pri-655

vacy risks associated with transmitting data to exter-656

nal servers. Furthermore, accurately understanding657

user intents can greatly benefit users through en-658

hanced personalization, improved work efficiency,659

and facilitating future recall of past activities on660

their devices. While this work focuses on intent661

understanding, the development of agents capable662

of autonomously completing actions requires ex-663

treme care. The potential for for misalignment with664

user intentions and the need for robust safeguards665

must be thoroughly addressed to ensure responsible666

deployment.667

9 Limitations668

We acknowledge several discrepancies between669

our datasets and real-world user behavior. The670

datasets predominantly feature English-language,671

U.S.-centric web interactions, restricting our analy-672

sis to this specific demographic. In contrast, real-673

world users frequently navigate multiple applica-674

tions, adapt their goals on the fly, and exhibit vary-675

ing levels of digital literacy, resulting in more com-676

plex and unpredictable interaction patterns. The677

Mind2Web dataset’s single-website limitation fur-678

ther deviates from the multi-site nature of typical679

user tasks. Additionally, our study’s reliance on680

Android and web environments limits the general-681

izability of our findings to other platforms.682
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A Preprocessing Details 828

The data preprocessing pipeline for the Mind2Web 829

and AndroidControl datasets involved several tai- 830

lored steps. For image preprocessing, we adopted 831

a holistic approach, where entire screenshots were 832

resized as necessary to conform to model input 833

specifications, deliberately avoiding patch-based 834

methods. For the Mind2Web dataset, full-webpage 835

screenshots were first processed by cropping them 836

to a uniform size of 1280×768. This crop was 837

specifically defined by the bounding box of the 838

user’s interaction, ensuring this critical area dic- 839

tating the action was captured within random mar- 840

gins before the image was resized. In contrast, the 841

AndroidControl dataset, with its uniformly sized 842

mobile screenshots 1080×2400, only necessitated 843

resizing and the subsequent visual overlaying of 844

a bounding box derived from the available user 845

action coordinates. The action extraction process 846

also varied: Mind2Web provided action details di- 847

rectly (which includes information like bounding 848

box coordinates of the target element), whereas for 849

AndroidControl, it was necessary to identify the 850

interacted UI element using its coordinates (which 851

define its bounding box) and then retrieve its name 852

via the accessibility tree. 853

For the gold standard extracted goal, we use the 854

high-level goal for each dataset. As mentioned in 855

Section 2.2, the annotation process of AndroidCon- 856

trol was less rigorous than that of Mind2Web, re- 857

sulting in noisier labels. Furthermore, AndroidCon- 858

trol labels, designed to simulate real user instruc- 859

tions, often contain irrelevant information that can- 860

not be inferred from the trajectory (e.g., “I’m hun- 861
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gry, order an olive pizza from DoorDash”). To mit-862

igate the impact of this noise, we cleaned the labels863

using Gemini 1.5 Pro (Prompt in H2). This clean-864

ing still doesn’t completely provide clean goals like865

Mind2Web’s validation process. We find that even866

after applying a prompt-based cleaning, manual867

validation on 100 examples (following the anno-868

tation protocol in (Berkovitch et al., 2024) makes869

changes to ∼ 30% of the label intents.870

Finally, a common preprocessing step was ap-871

plied to the goals from both Mind2Web and An-872

droidControl. We noted that the specific applica-873

tion or website name was often available with the874

interaction data. Yet, this platform-specific infor-875

mation is not directly or consistently inferable from876

the visual input of screenshots and the action se-877

quences alone. To address this, we programmat-878

ically isolated these platform identifiers from the879

core user intent, restructuring the label into an "app-880

name/website; intent" format. This approach serves881

a dual purpose: it retains platform information, use-882

ful for contextual fine-tuning, and also allows for883

the simple removal of this identifier prior to eval-884

uation. Such removal ensures that our assessment885

accurately reflects the model’s capability to inter-886

pret user intent, rather than its ability to identify887

the specific platform. As a result, any distorting888

effects from platform recognition on the evaluation889

metrics are prevented, which is important given890

that platform identification is not a primary focus891

of this study.892

B Fine-Tuning Details893

For the fine-tuning process, we adapted slightly dis-894

tinct approaches for the Gemini and Qwen models,895

largely adhering to established practices.896

The Gemini models were fine-tuned following897

procedures analogous to those described described898

at https://ai.google.dev/gemini-api/docs/899

model-tuning. A learning rate of 1e−6 was used900

without specific hyperparameter tuning, and a batch901

size of 16 was employed. Training proceeded for a902

maximum of two epochs, with checkpoints saved903

at intervals of 20 steps. The Gemini model cho-904

sen was the one that achieved the minimum nega-905

tive log-likelihood on its respective validation data,906

effectively employing an early stopping strategy907

based on this metric. Similarly, for the Qwen2-908

VL-7B model, we followed methodology outlined909

in the Hugging Face VL fine-tuning cookbook4.910

4https://huggingface.co/learn/cookbook/en/

This included adopting the author’s recommended 911

hyper-parameters, such as the default learning rate 912

of 2e − 4. Due to memory constraints, a batch 913

size of 1 was employed for Qwen. Training was 914

also conducted for a maximum of two epochs, and 915

checkpoints were saved every 20 steps, as sug- 916

gested in the tutorial. Consistent with the Gemini 917

models, the final Qwen model was selected to min- 918

imize negative log-likelihood on validation data. 919

For the AndroidControl dataset, we used 5,000 920

training examples and 137 validation examples ran- 921

domly sampled from the train set. For Mind2Web 922

we used 900 training examples and 90 validation 923

examples. 924

C Expert Annotation Labeling 925

Table 4 expands on the results shown in Table 2 of 926

the main text, providing the detailed BiFact preci- 927

sion and recall scores in addition to the F1 score for 928

the comparison against expert annotations and orig- 929

inal dataset labels on the AndroidControl dataset. 930

As is evident from these numbers, the increase 931

in recall when evaluating against expert labels is 932

particularly significant. This suggests that many 933

of the facts included in the original dataset labels 934

were not actually fulfilled (or were unfulfillable) 935

within the recorded user interaction trajectories. 936

Consequently, the higher recall achieved against 937

the expert-annotated labels more accurately reflects 938

the model’s performance on verifiable and achiev- 939

able intents. 940

D Human Preference Annotation 941

We presented the rater with a full trajectory of 942

screenshots and actions, and then asked the follow- 943

ing question: “After you have seen the trajectory, 944

which intent better describes the trajectory? A or 945

B.” The choices A and B contained either CoT or 946

Decomposed-FT. The order of the two options were 947

randomized in each question and the names of the 948

methods were not shown to the respondent. The 949

decoding of choices to model name was only done 950

after the rater had finished the task. 951

E Detailed Test Set Performance 952

Breakdown 953

The test-sets for Mind2Web (Deng et al., 2024) 954

and AndroidControl (Li et al., 2024) have multiple 955

types of unseen data. In this appendix, we provide 956

fine_tuning_vlm_trl
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Expert Labels Dataset Labels
F1 Precision Recall F1 Precision Recall

Gemini Flash 8B

CoT 0.652 0.674 0.714 0.580 0.600 0.663
E2E-FT 0.590 0.636 0.623 0.565 0.626 0.601
Decomposed-FT 0.701 0.714 0.762 0.596 0.639 0.655

Gemini-1.5-Pro

CoT 0.724 0.688 0.862 0.635 0.617 0.746

Table 4: A comparison of BiFact F1, precision and recall scores for intent prediction on the AndroidControl
dataset, using expert annotations and dataset labels as ground truth.

Mind2Web AndroidControl

BiFact Bi-NLI BiFact Bi-NLI
Method F1 Precision Recall F1 Precision Recall

Gemini Flash 8B

CoT 0.660 0.751 0.656 0.326 0.594 0.628 0.660 0.302
Decomposed-non-FT 0.718 0.717 0.792 0.221 0.528 0.488 0.719 0.185

Gemini-1.5-Pro

CoT 0.721 0.761 0.740 0.331 0.634 0.612 0.767 0.347
Decomposed-non-FT 0.732 0.700 0.859 0.213 0.512 0.441 0.791 0.228

Table 5: BiFact results on the Mind2Web (N=1,005) and AndroidControl (N=1,543) datasets using Gemini 1.5
Flash 8B and Gemini 1.5 Pro.

DOMAIN UNSEEN TASK UNSEEN WEBSITE UNSEEN
F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall

Gemini Flash 8B

CoT 0.660 0.757 0.656 0.651 0.719 0.657 0.670 0.761 0.652
E2E-FT 0.660 0.683 0.688 0.620 0.647 0.628 0.652 0.678 0.680
Decomposed-FT 0.752 0.793 0.766 0.741 0.831 0.718 0.771 0.843 0.756

Gemini-1.5-Pro

CoT 0.714 0.757 0.732 0.727 0.767 0.752 0.746 0.777 0.767

Table 6: Detailed BiFact-based performance breakdown on different subsets of the Mind2Web test set.
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a more detailed breakdown of the BiFact perfor-957

mance scores on each of the subsets of the test958

sets.959

The detailed performance breakdown on the960

Mind2Web test set, as presented in Table 6, of-961

fers several key insights into model generalization.962

As might be expected, the standard end-to-end fine-963

tuned (E2E-FT) model using Gemini Flash 8B per-964

forms worse than the COT approach on data from965

previously unseen tasks (TASK UNSEEN) and un-966

seen websites (WEBSITE UNSEEN). However,967

its performance is notably on par with the COT968

model in the DOMAIN UNSEEN category. This969

pattern suggests that while the E2E-FT model may970

be tuned somewhat towards specific tasks and char-971

acteristics of websites present in its training data,972

its ability to handle completely new types of tasks973

at a broader domain level is not further compro-974

mised compared to the prompt-based COT method.975

In stark contrast, the Decomposed-FT model (Gem-976

ini Flash 8B) demonstrates strong performance,977

consistently outperforming both the COT and E2E-978

FT methods across all three challenging unseen979

categories (DOMAIN, TASK, and WEBSITE UN-980

SEEN). Furthermore, its performance in these gen-981

eralization scenarios surpasses that of the larger982

Gemini 1.5 Pro (COT) model, particularly on un-983

seen domains and tasks. This robust performance984

can be attributed to the sophisticated fine-tuning985

scheme employed for the Decomposed-FT model.986

This comprehensive approach—which involves us-987

ing prompts for structured interaction summariza-988

tion, meticulous data cleaning through label re-989

finement, and then fine-tuning on these processed,990

higher-quality inputs—makes the model signifi-991

cantly less vulnerable to common problems as-992

sociated with regular fine-tuning, such as overfit-993

ting to training set specifics or sensitivity to label994

noise. The primary limitation highlighted by Table995

6, when comparing the Decomposed-FT model (us-996

ing Gemini Flash 8B) to the Gemini-1.5-Pro model,997

is its slightly lower recall in the TASK UNSEEN998

category (0.718 for Decomposed-FT vs. 0.752 for999

Pro). This specific gap suggests that while highly1000

effective, the training scheme could potentially ben-1001

efit from exposure to a more diverse range of task1002

examples to further enhance generalization for en-1003

tirely novel tasks, even when encountered within1004

familiar website or domain contexts.1005

F Detailed Analysis of the non-finetuned 1006

Decomposed ablation 1007

To provide a complete picture and address poten- 1008

tial inquiries regarding the performance of our ap- 1009

proach without the crucial fine-tuning of the intent 1010

extraction stage, this section offers a more in-depth 1011

analysis of the non-finetuned ablation of our decom- 1012

posed method. Table 5 presents a comparison of the 1013

non-finetuned decomposed ablation with the CoT 1014

baseline. Since neither method requires fine-tuning, 1015

we can demonstrate their performance across both 1016

small and large models. Notably, our full method, 1017

Decomposed-FT, surpasses both the non-finetuned 1018

decomposed variant, as evidenced in the ablation 1019

study in Table 3, and the CoT baseline, as shown 1020

in Table 1. The results in Table 5 indicate that the 1021

non-finetuned decomposed method demonstrates 1022

strong performance on the Mind2Web dataset, yet 1023

underperforms considerably compared to the CoT 1024

baseline on the Android Control dataset, a trend 1025

consistent across both small and large model sizes. 1026

This performance differential can be attributed to 1027

the inherent verbosity of the non-finetuned decom- 1028

posed method, which generates a higher average 1029

number of atomic facts per predicted intent com- 1030

pared to CoT. Specifically, for Android Control, 1031

the non-finetuned decomposed approach produced 1032

an average of 4.0 facts versus 2.5 for CoT, while 1033

gold has 3.0 facts. For Mind2Web, these figures 1034

were 4.4 for Decomposed versus 2.8 for CoT, while 1035

the gold has 4.4 facts. This increased verbosity 1036

correlates with the observed lower precision of 1037

the non-finetuned decomposed method across both 1038

datasets. Conversely, it also correlates with the 1039

superior fact-level performance (BiFact), of the de- 1040

composed method on Mind2Web, where the gold 1041

annotations are themselves more verbose than those 1042

for Android Control. As our main results show, 1043

subsequent fine-tuning of the second-stage model 1044

demonstrably improves precision by training the 1045

model to selectively include only the most relevant 1046

facts in the final intent formulation, leading to the 1047

significantly better performance of our proposed 1048

method. 1049

G Comparison with SummAct 1050

In SummAct (Zhang et al., 2025), each input inter- 1051

action is represented as a short textual description 1052

of the specific UI element with which the user inter- 1053

acted and the respective user action. Intent extrac- 1054

tion is then performed hierarchically, in two steps. 1055
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First, the sequence of interactions is summarized1056

into a shorter sequence of mid-level sub-goals, us-1057

ing few-shot prompting. Then, the sequence of1058

sub-goals is further summarized into the final high-1059

level intent description, using a model that is fine-1060

tuned to produce the gold intent given the output of1061

the first step. While this method seems somewhat1062

similar to ours in that it decomposes intent extrac-1063

tion into two subsequent steps, the two methods1064

differ substantially, in both their input and their1065

decomposed steps. SummAct considers only local-1066

ized textual input, describing just the UI element1067

with which the user interacted, while ignoring the1068

full screen and its visual layout. This restricts the1069

model from understanding the wider context, like1070

the elements the user didn’t choose to interact with,1071

or visual cues that may influence user behavior.1072

In contrast, our model, considers the full screen-1073

shot information. Thus, in our first step, the model1074

generates a textual summary for each interaction1075

step, which considers the broader screen context.1076

Subsequently, our second step directly summarizes1077

these interaction level descriptions into the final1078

high-level intent description, using a sophisticated1079

fine-tuning approach that synchronizes the inputs1080

for this step with the gold output. This method1081

does not require an intermediate step of generat-1082

ing sub-goal descriptions, like SummAct. Further,1083

while SummAct’s finetuned model required inter-1084

vention with the attention mechanism to perform1085

well, which may not be accessible or practical in1086

various settings, our finetuning approach allowed1087

us to finetune available models as is, without fur-1088

ther intervention. A potential advantage of Sum-1089

mAct’s text-only approach may be computational1090

efficiency as it consumes smaller inputs and uses1091

fewer model calls.1092

H Prompts1093

1094
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 You are analyzing a user's session on a mobile app. Each session consists of a sequence of 
 screenshots and actions that will appear at the end of this prompt. Your goal is to understand 
 the user's overall intent based on the series of interactions provided. 

 Instructions: 

 1. Analyze Each Step in the Sequence**: 
 - What is displayed in the screenshot? 
 - What action did the user take? 
 - Why might the user have taken this action? 
 - What specific details are relevant? (e.g., dates, items, locations, quantities) 

 2. Summarize the User’s Goal: 
 - After analyzing each screenshot-action pair, combine insights to determine the user’s 

 overall objective. 
 - Include all observed details to make the goal clear and specific. 

 Output: 

 1. **Reasoning**: 
 - Provide a step-by-step analysis of each screenshot and action pair. 
 - Focus on the user’s likely intentions and relevant details observed in the input sequence. 

 2. **Final Answer**: 
 - Summarize the user’s overall goal in one concise sentence. 
 - Start with an action verb. Phrase the action in the imperative form. 
 - Include all specific details observed in the input sequence. 
 - Avoid using any phrases or structures from the instructions or examples above. 
 - Your final answer should start with the appname, followed by a semicolon, and then the 

 inferred goal (example: "eBay; order a basket ball"). 

 Important Notes: 

 - Do not reuse or paraphrase any examples provided in the instructions. 
 - Base your response solely on the screenshots and actions in the input sequence. 
 - Each session is unique ensure your final answer reflects the specific details of this session 
 alone. 

 The format of the the output should json: 

 {{ 
 "reasoning": "your reasoning here", 
 "final_answer": "your final answer here" 

 }} 

 --- 

 The sequence of screenshots and actions for this session will now follow: 

Figure H1: CoT model prompt, used as the baseline as described in Section 3
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Your task is to rephrase instructions given by users to automated agents that execute tasks on 
the user's phone. 
Rephrase the instruction in the imperative mood, starting with a verb, and remove any text 
irrelevant to the user's objective. 
Add the app name before the instruction, in the following format: "App name; Instruction". 
If the app is now known, use "Unknown app; Instruction". 
Correct any spelling or punctuation errors as needed. 
 
Here are a few examples of rephrased instructions: 
Input: I am tired of the hustle and bustle of the world. I want to just have a peaceful mind. Play 
the classic song "Casta diva by Maria Callas" in the Dailymotion app 
Output: Dailymotion; Play the song "Casta diva by Maria Callas" 
 
Input: I want to write the review comment, Perfect! My favorite dessert for this recipe 
Output: Unknown app; Write the review comment: "Perfect! My favorite dessert for this recipe." 
 
Input: Open TickTick app and share the wedding plan task on dwbscratchid3@google.com 
through Gmail 
Output: TickTick; Share the wedding plan task on dwbscratchid3@google.com through Gmail 
 
Input: I'd like to forward Google Community team emails to Cerebra Research at 
dbwscratch.test.id4@gmail.com. 
Output: Gmail; Forward Google Community team emails to Cerebra Research at 
dbwscratch.test.id4@gmail.com. 
 
Input: I am looking for a rental place in St. John, USA, under $4,000, so search for rental 
properties for me in St. John on the Redfin app. 
Output: Redfin; Search for rental properties in St. John, USA under $4,000. 
 
Your test instruction: 
 

Figure H2: AndroidControl cleaning prompt, used to automatically clean the dataset as described in Section 5.2
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 You are evaluating user behavior within a mobile app.  Given a screenshot of the app interface 
 and a description of the user's action, your task is to provide a comprehensive summary of the 
 user's intent and the specifics of their interaction. 

 **Instructions:** 

 1. **Analyze the Input:** 
 - Carefully examine the provided screenshot. 
 - Interpret the user's action, including any additional information provided. 

 2. **Extract Key Information:** 
 - Identify all relevant elements on the screen (e.g., buttons, text fields, images). 
 - Pinpoint the user's specific action (e.g., tap, scroll, input text). 
 - Note important details like dates, times, locations, quantities, or text content. 

 3. **Format the Output:** 
 - **Output a newline-delimited list where each item represents a distinct piece of information. 
 - **Do not include any explanatory text or labels.** Just the newline-delimited list. 
 - Example: 

 User viewed product details for iPhone 14 Pro Max. 
 User added the product to their shopping cart. 
 User selected the '256GB' storage option. 

 **Input:** 

 - **Screenshot:** <img> 
 - **Action:** {{action}} 

 **Note:** 

 - The action description may include contextual information like text content, direction (e.g., 
 'swiped left'), app name, or UI element name. 
 - The screenshot may contain a red bounding box highlighting the interacted element. 

Figure H3: Interaction summarization prompt, used to summarize single screen interaction as explained Section 4.1
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 You are given a summarized user journey, consisting of screen summaries that describe what 
 the user saw on each screen and what they did. Your task is to analyze this journey and infer 
 the user's intent. 

 Your output should be a concise description of the user's intent that includes: 

 1. **The user's primary goal:** What were they ultimately trying to achieve? 
 2. **All apps involved:** List every app used in the journey. 
 3. **Key actions:**  Highlight specific actions within the summaries that reveal the intent (e.g., 
 search queries, filter selections,  options chosen). Avoid reporting purely navigational actions. 

 **Important Considerations:** 

 * **Complex Intents:** Longer journeys may involve evolving or multiple intents.  Strive to 
 identify the most plausible explanation for the user's actions, even if their initial goal shifted. 
 * **Conciseness:** Aim for 2-3 sentences that capture the essence of the intent. 
 * **Output Format:**  "AppName; Intent description" (e.g., "Amazon; User viewed the product 
 page for 'noise-canceling headphones',  added them to their cart, and proceeded to checkout.") 

 Your response should contain nothing but the output in the specified format. Do not add any 
 additional text or explanations. 

 **Important: ALL information should be extracted from the summaries. Do NOT introduce any 
 new information.** 

 **Output examples:** 

 Expedia; User launched the Expedia app, searched for flights from Paris (CDG) to London 
 (LHR) departing on January 7th, filtered results by "non-stop flights" and "lowest price", and 
 finally selected a British Airways flight departing at 10 PM. 

 Clock; User opened the Clock app, tapped on the "Alarm" tab, set a new alarm for 7:00 PM 
 tomorrow, toggled the "Snooze" option off, and saved the alarm. 

 Spotify; User opened Spotify, searched for "holiday music", tapped on the "Create Playlist" 
 button, named the playlist "Christmas 2024", and added songs like "Jingle Bells" and "Silent 
 Night" to the playlist. 

 Gmail; User opened the Gmail app, opened an email from "Bank of America" with the subject 
 "Your November Statement", tapped on the link to view the PDF statement, then navigated back 
 to their inbox and replied to an email from their boss with the subject "Project Update." 

Figure H4: Session-level intent prompt, used to fuse single interaction summarise to a single intent as explained in
Section 4.2
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 You are given a summary of a user trajectory and an inferred goals of the user. 

 Your task is to rewrite the inferred goal in a way that it only contains information that is 
 present in the summaries. 
 Any information that is not present in the summaries should be removed. 

 Summaries: {{  [combined summaries]  }} 
 Inferred goal: {{  [clean goal]  }} 

 The output format should be a json object with the following format: 
 {{{{ 

 "facts_in_summaries": ["fact1", "fact2", ...], 
 "facts_not_in_summaries": ["fact3", "fact4", ...], 
 "rewritten_goal": "the rewritten goal in plain text" 

 }}}} 

Figure H5: Label refinement prompt, used to refine the label prior to the fine-tunning step as explained in Sec-
tion 4.2
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