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Abstract

The efficacy of text embedding models in repre-001
senting and retrieving information is crucial for002
many NLP applications, with performance sig-003
nificantly advanced by Large Language Mod-004
els (LLMs). Despite this progress, exist-005
ing benchmarks predominantly use general-006
purpose datasets, inadequately addressing the007
nuanced requirements of specialized domains008
like finance. To bridge this gap, we intro-009
duce the Finance Massive Text Embedding010
Benchmark (FinMTEB), a comprehensive eval-011
uation suite specifically designed for the fi-012
nancial domain. FinMTEB encompasses 64013
datasets across 7 task types, including classifi-014
cation, clustering, retrieval, pair classification,015
reranking, summarization, and semantic tex-016
tual similarity (STS) in English and Chinese.017
Alongside this benchmark, we introduce Fin-018
E5, a state-of-the-art finance-adapted embed-019
ding model, ranking first on FinMTEB. Fin-020
E5 is developed by fine-tuning e5-Mistral-7B-021
Instruct on a novel persona-based synthetic022
dataset tailored for diverse financial embed-023
ding tasks. Evaluating 15 prominent embed-024
ding models on FinMTEB, we derive three025
key findings: (1) domain-specific models, in-026
cluding our Fin-E5, significantly outperform027
general-purpose models; (2) performance on028
general benchmarks is a poor predictor of suc-029
cess on financial tasks; and (3) surprisingly,030
traditional Bag-of-Words (BoW) models sur-031
pass dense embedding models on financial STS032
tasks. This work provides a robust benchmark033
for financial NLP and offers actionable insights034
for developing future domain-adapted embed-035
ding solutions. Both FinMTEB and Fin-E5 will036
be open-sourced for the research community.037

1 Introduction038

Embedding models, transforming text into dense039

vector representations, are foundational to many040

natural language processing (NLP) tasks (Mikolov041

et al., 2013; Pennington et al., 2014; Peters et al.,042

2018). Their quality significantly impacts down- 043

stream applications like information retrieval and 044

semantic understanding. While recent Large Lan- 045

guage Model (LLM)-based embeddings (Wang 046

et al., 2023; Li et al., 2023; Meng et al., 2024) 047

demonstrate remarkable performance on general 048

benchmarks, their efficacy in specialized domains, 049

particularly finance, remains under-explored. Fi- 050

nancial text analysis presents unique challenges, in- 051

cluding domain-specific terminology, temporal sen- 052

sitivity, and complex numerical relationships (Li 053

et al., 2024; Anderson et al., 2024), raising critical 054

questions: How effectively do modern embedding 055

models capture domain-specific financial informa- 056

tion? Can domain adaptation enhance LLM-based 057

embeddings for financial applications? 058

These questions are motivated by three key in- 059

sights. First, financial semantics often diverge from 060

general language usage. For instance, "liability" 061

inherently carries negative sentiment in financial 062

contexts due to its association with obligations and 063

risks, contrasting with its neutral denotation of le- 064

gal responsibility in general usage. Such semantic 065

divergence is critical for applications like Retrieval 066

Augmented Generation (RAG) systems, where ac- 067

curate document retrieval is important for effec- 068

tive knowledge augmentation. While recent work 069

adapts RAG for finance (Li et al., 2024; Malandri 070

et al., 2025), the fundamental role of embedding 071

quality in retrieval efficacy is often overlooked. 072

Second, empirical evidence highlights the neces- 073

sity of domain adaptation for optimal performance 074

in specialized fields (Ling et al., 2023; Gururangan 075

et al., 2020), even with advanced LLMs. This has 076

led to models like BiMedLM (Bolton et al., 2024) 077

for biomedical texts and BloombergGPT (Wu et al., 078

2023) for finance. This specialization extends to 079

embedding models, with examples like BioWord- 080

Vec (Zhang et al., 2019) and FinBERT (Yang et al., 081

2020). Notably, the financial industry itself con- 082

tributes to these advancements; for instance, BAM, 083
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Figure 1: An overview of tasks and datasets used in FinMTEB. All the dataset descriptions and examples are
provided in the Appendix A.

a RoBERTa-based model from Balyasny Asset084

Management (Anderson et al., 2024), has demon-085

strated improvements. Compared to the general do-086

main, a significant gap exists: despite commercial087

solutions like voyage-finance-2 (VoyageAI, 2025),088

there is a lack of open-source, LLM-based finan-089

cial embedding models accessible to the research090

community.091

Third, financial NLP lacks comprehensive evalu-092

ation frameworks specifically for embedding mod-093

els. Current benchmarks like FinanceBench (Is-094

lam et al., 2023) and FinQA (Chen et al., 2021)095

primarily assess text generation, while embedding-096

specific evaluations (FiQA, 2018; Liu et al., 2024a)097

are often narrow in scope, targeting single task098

types or limited text types. This gap is exacer-099

bated by unique characteristics of financial texts,100

such as the prevalence of boilerplate language (e.g.,101

"The company’s performance is subject to various102

risks..."). Such standardized disclaimers, frequent103

but low in informational content, complicate mod-104

els’ ability to distinguish meaningful business in-105

sights from routine compliance text. Thus, a critical106

need exists for comprehensive financial embedding107

benchmarks.108

To bridge this gap, we introduce the Finance109

Massive Text Embedding Benchmark (FinMTEB).110

This comprehensive benchmark comprises 64111

domain-specific datasets spanning English and Chi-112

nese and covering seven critical financial embed-113

ding tasks: classification, clustering, retrieval, pair 114

classification, reranking, summarization, and se- 115

mantic textual similarity (STS). Concurrently, we 116

develop and release Fin-E5, a finance-adapted em- 117

bedding model that achieves state-of-the-art perfor- 118

mance on FinMTEB. Fin-E5 is built by fine-tuning 119

e5-Mistral-7B-Instruct (Wang et al., 2023) on a 120

persona-based synthetic dataset designed to gener- 121

ate diverse training data relevant to various finan- 122

cial embedding tasks. Our extensive experiments, 123

evaluating 15 prominent embedding models on Fin- 124

MTEB, yield three crucial insights: (1) LLM-based 125

embeddings, particularly when domain-adapted 126

like Fin-E5, generally outperform traditional meth- 127

ods and their general-purpose LLM counterparts, 128

providing significant performance gains. (2) Perfor- 129

mance on general benchmarks is a poor predictor 130

of success on financial tasks; (3) Traditional Bag- 131

of-Words (BoW) models unexpectedly surpass all 132

tested dense embedding models on financial STS 133

tasks, highlighting persistent challenges for current 134

embeddings in capturing nuanced financial seman- 135

tics. 136

Apart from these insights, our practical contri- 137

butions are twofold: First, we propose FinMTEB, 138

the first comprehensive financial domain evaluation 139

benchmark encompassing 64 datasets across seven 140

distinct tasks in both Chinese and English. Second, 141

we develop and release Fin-E5, a finance-adapted 142

embedding model that achieves state-of-the-art per- 143
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formance on FinMTEB. To support future research,144

we will make both the FinMTEB benchmark and145

our Fin-E5 model available as open source.146

2 Related Work147

Recent advances in embedding models have shown148

remarkable success in general domain tasks, yet149

their effectiveness in specialized domains remains150

a critical challenge.151

2.1 General-purpose Embedding Models152

The evolution of embedding models marks signifi-153

cant progress in natural language processing. Start-154

ing with static word representations like Word2Vec155

(Mikolov et al., 2013) and GloVe (Pennington et al.,156

2014), the field advanced to contextualized em-157

beddings through transformer-based architectures158

such as BERT (Devlin et al., 2019) and RoBERTa159

(Liu, 2019). A notable advancement came with160

Sentence-BERT (Reimers and Gurevych, 2019),161

which introduced Siamese and triplet network ar-162

chitectures to generate meaningful sentence-level163

representations. Recent developments in large lan-164

guage models have further pushed the boundaries,165

with models such as e5-mistral-7b-instruct (Wang166

et al., 2023) and gte-Qwen2-1.5B-instruct (Yang167

et al., 2024) achieving better performance in var-168

ious embedding tasks. However, these general-169

purpose models may not adequately capture the170

nuanced semantics of specialized domains.171

2.2 Current Embedding Evaluation172

Landscape173

To assess embedding quality, several evaluation174

frameworks have been developed. General-purpose175

embedding benchmarks, such as the Massive Text176

Embedding Benchmark (MTEB) (Muennighoff177

et al., 2022), provide broad coverage across multi-178

ple tasks and languages. Specialized benchmarks179

like BEIR (Thakur et al., 2021) focus on specific as-180

pects, such as information retrieval. Although they181

incorporate some domain-specific datasets, such as182

FiQA (FiQA, 2018), the size of the data and the183

coverage of the task are limited.184

2.3 Domain Adaptation Approaches185

Recognizing the limitations of general-purpose186

models in specialized domains, researchers have187

pursued two main adaptation strategies. The first188

approach develops domain-specific models from189

scratch, exemplified by BioMedLM (Bolton et al.,190

2024) for biomedicine, SaulLM-7B (Colombo191

et al., 2024) for legal texts, and BloombergGPT 192

(Wu et al., 2023) for finance. The second strat- 193

egy fine-tunes existing models for domain-specific 194

tasks, as demonstrated by InvestLM (Yang et al., 195

2023b) and FinGPT (Yang et al., 2023a). This 196

trend extends to embedding models, with special- 197

ized versions such as BioWordVec (Zhang et al., 198

2019), BioSentVec (Chen et al., 2019), and Fin- 199

BERT (Yang et al., 2020) showing superior domain- 200

specific performance. However, evaluating these 201

specialized embedding models remains challenging 202

due to the lack of comprehensive domain-specific 203

benchmarks. 204

2.4 The Gap in Domain-specific Evaluation 205

While domain-specific language models have stim- 206

ulated the development of specialized evaluation 207

frameworks across various fields, these bench- 208

marks primarily emphasize generative and reason- 209

ing capabilities instead of embedding quality. The 210

financial sector has seen the emergence of frame- 211

works like CFLUE (Zhu et al., 2024), FinEval 212

(Zhang et al., 2023), and FinanceBench (Islam 213

et al., 2023), whereas the legal and medical do- 214

mains have introduced LawBench (Fei et al., 2023), 215

MedBench (Liu et al., 2024b), and DrBenchmark 216

(Labrak et al., 2024). These benchmarks consis- 217

tently illustrate that general-purpose models often 218

fall short in specialized areas (Zhu et al., 2024; Fei 219

et al., 2023), highlighting the necessity of domain 220

adaptation (Ling et al., 2023). Despite this acknowl- 221

edgment, there is still a critical lack of compre- 222

hensive evaluation frameworks for domain-specific 223

embeddings that assess performance across essen- 224

tial tasks such as semantic similarity, classification, 225

and retrieval. Even recent financial embedding de- 226

velopments, such as BAM embedding (Anderson 227

et al., 2024), rely on narrow evaluation frameworks, 228

typically focusing on single-task performance met- 229

rics (e.g., FinanceBench (Islam et al., 2023) for 230

retrieval tasks). This limited evaluation may not 231

fully reflect how the models perform in real-world 232

financial applications. 233

3 The FinMTEB Benchmark 234

In this section, we introduce the Finance MTEB 235

(FinMTEB) benchmark. As illustrated in Figure 1, 236

FinMTEB encompasses seven embedding tasks, 237

following a structure similar to MTEB (Muen- 238

nighoff et al., 2022) but with datasets specifically 239

curated for the finance domain. 240
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3.1 FinMTEB Tasks241

Semantic Textual Similarity (STS) evaluates the242

semantic similarity between pairs of financial text.243

This task is crucial for automated financial analy-244

sis and risk management; for example, detecting245

subtle semantic differences between quarterly earn-246

ings statements could reveal important shifts in247

a company’s financial strategy that impact invest-248

ment decisions. To ensure comprehensive eval-249

uation, we incorporate diverse financial datasets,250

including FinSTS (Liu et al., 2024a) and FINAL251

(Ju et al., 2023) from company annual reports,252

and BQ-Corpus (Chen et al., 2018) from banking253

documents. Model performance is quantified us-254

ing Spearman’s rank correlation, which measures255

the alignment between predicted cosine similarity256

scores and human-annotated similarity ratings.257

Retrieval evaluates a model’s capability to258

identify and extract relevant financial information259

in response to specific queries. Unlike general260

domain retrieval, financial information retrieval261

presents unique challenges, requiring precise han-262

dling of complex numerical data, temporal depen-263

dencies, and regulatory context. For comprehen-264

sive evaluation, we leverage established finance265

QA datasets including FinanceBench (Islam et al.,266

2023), FiQA2018 (FiQA, 2018), and HPC3 (Guo267

et al., 2023). To further assess models’ understand-268

ing of professional financial terminology, we intro-269

duce TheGoldman dataset, constructed from the270

Goldman Sachs Financial Dictionary. Performance271

is measured using NDCG@10, a metric that eval-272

uates both the relevance of retrieved information273

and its ranking position, reflecting the real-world274

requirement for highly precise top results in finan-275

cial applications.276

Clustering evaluates a model’s ability to auto-277

matically group similar financial texts based on278

their semantic content. To ensure comprehen-279

sive evaluation, we developed multiple special-280

ized datasets that capture different aspects of fi-281

nancial text clustering: (1) FinanceArxiv-s2s and282

FinanceArxiv-p2p, constructed from titles and ab-283

stracts of finance-related papers on arXiv, provid-284

ing rich academic financial content; (2) Compa-285

nyWiki2Industry dataset, derived from Wikipedia286

company descriptions, offering diverse industry287

categorization scenarios; and (3) complementary288

resources including consumer complaints from289

CFPB1, financial intent detection data (Gerz et al.,290

1https://huggingface.co/datasets/CFPB/consumer-

2021a; Watson et al., 2024), and other established 291

datasets. Model performance is quantified using 292

the V-measure (Rosenberg and Hirschberg, 2007), 293

a comprehensive metric that evaluates cluster qual- 294

ity through both completeness (all members of a 295

class are assigned to the same cluster) and homo- 296

geneity (each cluster contains only members of a 297

single class). 298

Classification evaluates a model’s ability to cate- 299

gorize financial texts into predefined classes based 300

on their semantic content. This capability is es- 301

sential for automated financial decision-making; 302

for example, in algorithmic trading, accurately 303

classifying sentiment in earnings calls or news 304

articles can directly influence trading strategies 305

and portfolio adjustments. The classification task 306

encompasses diverse financial scenarios through 307

multiple specialized datasets, including: finan- 308

cial sentiment analysis (Malo et al., 2014; FiQA, 309

2018; Cortis et al., 2017; Lu et al., 2023), Fed- 310

eral Reserve monetary policy classification (Shah 311

et al., 2023), organization’s strategy classification, 312

and forward-looking statement identification (Yang 313

et al., 2023b). Performance is measured using 314

Mean Average Precision (MAP), which provides 315

a comprehensive assessment of classification ac- 316

curacy while accounting for ranking quality and 317

confidence scores. 318

Reranking evaluates the model’s ability to 319

order retrieved documents based on their rele- 320

vance to financial queries. We utilize financial 321

question-answering datasets such as Fin-Fact and 322

FinQA(Rangapur et al., 2023; Chen et al., 2021) to 323

construct the reranking tasks. Specifically, for each 324

query in these datasets, we retrieve top-k relevant 325

documents along with the ground truth answers 326

to construct the reranking training and evaluation 327

pairs. The main evaluation metric for reranking in 328

Finance MTEB is Mean Average Precision (MAP). 329

Pair-Classification evaluates a model’s ability 330

to determine semantic relationships between finan- 331

cial text pairs. This task includes two datasets: (1) 332

the AFQMC dataset2 for customer intention, and 333

(2) three financial news headline datasets (Sinha 334

and Khandait, 2021). We use Average Precision 335

(AP) as the evaluation metric to assess model per- 336

formance across different decision thresholds. 337

Summarization is evaluated based on how well 338

the semantic similarity between an original text 339

finance-complaints
2https://tianchi.aliyun.com/dataset/106411
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and its summary, as captured by embeddings, cor-340

relates with human judgments of summary quality.341

The evaluation corpus encompasses a comprehen-342

sive range of financial texts, including earnings343

call transcripts (Mukherjee et al., 2022), financial344

news articles (Lu et al., 2023), and SEC Form 10-K345

filings (El-Haj et al., 2022), ensuring robust assess-346

ment across diverse financial contexts and writing347

styles.348

3.2 Characteristics of FinMTEB349

FinMTEB is constructed to provide a comprehen-350

sive evaluation platform for financial text embed-351

ding models. It encompasses a total of 64 datasets,352

specifically 35 datasets in English and 29 datasets353

in Chinese. Beyond the number of datasets, Fin-354

MTEB exhibits distinct linguistic and semantic355

properties crucial for domain-specific benchmark-356

ing. A comprehensive list and descriptions of these357

individual datasets are available in Appendix A.358

4 Fin-E5: Finance-Adapted Text359

Embedding Model360

Data is vital for domain adaptation (Ling et al.,361

2023). However, existing public financial retrieval362

datasets exhibit a narrow scope, which creates a363

gap in training an LLM-based embedding model.364

For example, FiQA (FiQA, 2018), a widely used365

financial retrieval dataset, primarily focuses on366

opinion-based content from online platforms, ne-367

glecting crucial aspects such as fundamental finan-368

cial knowledge, technical terminology, and essen-369

tial investment data. Thus, we start by curating a370

finance training dataset for adaptation.371

4.1 Data Formation372

We aim to construct each training instance as a373

triplet structure (q, d+, D−), where q represents a374

financial query, d+ denotes a relevant document375

that provides substantive information addressing376

the query, and D− comprises carefully selected377

negative examples that share the financial domain378

but differ in semantic intent.379

4.2 Training Data Construction380

To create a comprehensive dataset tailored for finan-381

cial embedding training, we employ a systematic382

approach that combines expert-curated seed data383

with persona-based synthetic data generation.384

Seed Data. Our seed data comes from the385

finance-specific QA dataset provided by InvestLM386

(Yang et al., 2023b), which offers expert-validated387

financial content across various domains, such as 388

market analysis, investment strategies, and corpo- 389

rate finance. To ensure evaluation integrity, we con- 390

duct rigorous overlap checks between our training 391

data and the FinMTEB benchmark, guaranteeing 392

no overlap. 393

Persona-based Data Augmentation. To en- 394

hance the diversity of financial task representations 395

and generate varied (query, positive context, hard 396

negative context) triplets for contrastive training, 397

we develop a persona-based data augmentation 398

framework derived from QA data generation (Ge 399

et al., 2024). Our framework employs a three- 400

stage process that specifically targets the expansion 401

of task coverage while preserving domain consis- 402

tency: 403

• Persona and Associated Task Identification: 404

We begin by analyzing each question-answer 405

pair from our seed data. Using Qwen2.5-14B- 406

Instruct (Team, 2024) with the prompt "Who 407

is likely to use this text?", the model generates 408

a detailed persona description. This descrip- 409

tion inherently captures the persona (e.g., ven- 410

ture capitalist, financial advisor) and their typ- 411

ical job-related tasks (e.g., evaluating startup 412

investments and managing client portfolios). 413

For example, a generated description might 414

be: 415

Example Persona&Task Description

A compliance officer at a financial insti-
tution (Persona), responsible for track-
ing major economic indicators and their
potential regulatory implications (Task),
with a focus on market stability and ac-
curate risk assessment.

416

• Contextual Query Generation: Based on 417

the rich persona description obtained in the 418

previous step, we then prompt Qwen2.5-72B- 419

Instruct (Team, 2024) to generate new queries 420

q that this persona might ask. The prompt 421

used is: "Guess a prompt (i.e., instructions) 422

that the following persona may ask you to do:" 423

The term "contextual" in this stage refers to 424

our filtering process: we select queries that 425

inherently require external documents or in- 426

formation for a comprehensive answer. This 427

is crucial for forming the (query q, positive 428

document d+) pairs needed for training. For 429

example, deriving from the compliance of- 430
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ficer persona, the following example query431

would be considered contextual as it necessi-432

tates specific external analyses or regulatory433

interpretations:434

Example Contextual Query q

What is the latest analysis on how the
recent G7 central bank interest rate hikes
might affect liquidity risk reporting for
commercial banks?

435

• Synthetic Positive Document (d+) Genera-436

tion: For each selected contextual query q, we437

synthesize a relevant positive financial docu-438

ment d+. This document is generated using439

an LLM (e.g., Qwen2.5-72B-Instruct (Team,440

2024)) with the prompt: "Synthesize context441

information related to this question: [Insert442

query q here]". The aim is for d+ to provide443

substantive, focused information that directly444

addresses the query q, aligning with the infor-445

mation needs implied by the persona’s role446

and their associated tasks. For the example447

query about EPS growth, the synthesized doc-448

ument would contain plausible (though syn-449

thetic) data, analyses, or relevant financial dis-450

cussions.451

• Synthetic Positive Document (d+) Genera-452

tion: For each selected contextual query q, we453

synthesize a relevant positive financial docu-454

ment d+. This document is generated using455

an LLM (e.g., Qwen2.5-72B-Instruct (Team,456

2024)) with the prompt: "Synthesize context457

information related to this question: [Insert458

query q here]". The aim is for d+ to provide459

substantive, focused information that directly460

addresses the query q, aligning with the infor-461

mation needs implied by the persona’s role462

and their associated tasks. For the example463

query about the impact of interest rate hikes on464

liquidity risk reporting, the synthesized doc-465

ument d+ would contain plausible (though466

synthetic) expert analysis or excerpts from467

regulatory guidance, as illustrated below:468

Example Synthesized Positive Document
(d+)

A recent analysis by the Financial Mon-
itoring Group, dated May 15, 2025, in-
dicates that the coordinated interest rate

469

increases by G7 central banks are antici-
pated to impact short-term funding mar-
kets significantly...

470

4.3 Training Pipeline 471

Our primary objective in this training phase 472

is to further adapt the e5-mistral-7b-instruct 473

model (Wang et al., 2023) to the financial domain’s 474

specific linguistic nuances and informational struc- 475

tures. This adaptation directly leverages the diverse 476

financial query (q) and corresponding synthetic pos- 477

itive document (d+) pairs generated through the 478

persona-based data construction process detailed 479

previously. 480

The foundation of our training methodology is 481

a contrastive learning approach utilizing (query, 482

positive context, hard negative context) triplets. 483

Each training instance is structured as (q, d+, D−), 484

where: 485

• q represents the financial query, which serves 486

as the anchor point for learning. 487

• d+ is the synthetic document, specifically gen- 488

erated in our data construction phase to be a 489

highly relevant positive contextual passage for 490

the query q. 491

• D− denotes a set of hard negative contexts. 492

These are documents also from the financial 493

domain that, while potentially semantically 494

similar to the query q (making them challeng- 495

ing examples), are not the correct or directly 496

relevant positive context d+. To identify these 497

hard negatives, we employ an auxiliary em- 498

bedding model, all-MiniLM-L12-v2 (Reimers 499

and Gurevych, 2019), to mine for documents 500

that are close to q in its embedding space but 501

are distinct from d+. 502

In line with the training recipe for e5-mistral- 503

7b-instruct (Wang et al., 2023), we utilize the last 504

token pooling method to derive fixed-size embed- 505

dings for both queries and documents. The e5- 506

mistral-7b-instruct model is then fine-tuned using 507

these (q, d+, D−) triplets. The training process 508

is guided by the InfoNCE (Noise Contrastive Es- 509

timation) loss function (Oord et al., 2018). This 510

loss function incentivizes the model to learn rep- 511

resentations where the embedding of the query q 512

is closer to the embedding of its positive context 513

d+ compared to its distance from the embeddings 514
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of all hard negative contexts D− within the same515

training batch (referred to as in-batch negatives).516

Full details regarding the fine-tuning process, in-517

cluding specific hyperparameters (such as batch518

sizes and learning rates), any input formatting tem-519

plates utilized, and optimization settings for adapt-520

ing e5-mistral-7b-instruct, are comprehensively521

documented in Appendix B.522

5 Experimental Evaluation523

In this section, we conduct a comprehensive evalu-524

ation of various embedding models on FinMTEB.525

Our primary goals are to benchmark their perfor-526

mance in the financial domain, analyze the impact527

of different model characteristics (such as domain528

adaptation and architecture), and investigate the529

necessity of domain-specific benchmarks like Fin-530

MTEB. Since most of the evaluated pre-trained531

models are predominantly trained on English cor-532

pora, our main evaluation focuses on the English533

datasets within FinMTEB; the evaluation results534

based on Chinese datasets are illustrated in Ap-535

pendix C. The benchmark time is reported in Ap-536

pendix D.537

538

5.1 Experimental Setup539

Evaluated Models In addition to Fin-E5, our pro-540

posed finance-adapted model, we evaluate four541

broad categories of existing embedding models on542

the FinMTEB benchmark. These include:543

• Bag-of-Words (BOW): A traditional baseline544

representing text as sparse vectors based on545

word frequencies.546

• Encoder-based Models: This category in-547

cludes various transformer encoder architec-548

tures: (1) classical models like BERT (CLS549

pooling) (Devlin et al., 2019) and the domain-550

specific FinBERT (Yang et al., 2020); (2)551

models optimized for semantic search such as552

msmarco-bert-base-dot-v5 and all-MiniLM-553

L12-v2 (Reimers and Gurevych, 2019); and554

(3) advanced architectures including bge-555

large-en-v1.5 (Xiao et al., 2023), AnglE-556

BERT (Li and Li, 2023), and instructor-557

base (Su et al., 2022).558

• LLM-based Models: We investigate559

several state-of-the-art decoder-based or560

LLM-enhanced embedding models: (1)561

Mistral-7B-based models including bge- 562

en-icl (Mistral-7B backbone with further 563

instruction tuning) (Xiao et al., 2023), e5- 564

mistral-7b-instruct (Wang et al., 2023), and 565

Echo (Springer et al., 2024); (2) NV-Embed 566

v2 (Lee et al., 2024); and (3) gte-Qwen1.5- 567

7B-instruct (Li et al., 2023), built on the 568

Qwen (Yang et al., 2024) architecture. 569

• Commercial Models: For a compre- 570

hensive comparison, we include leading 571

closed-source commercial solutions, specif- 572

ically OpenAI’s text-embedding-3-large, text- 573

embedding-3-small (OpenAI, 2024), and 574

voyage-3-large (VoyageAI, 2025)3. 575

5.2 Overall Performance on FinMTEB 576

The comprehensive performance of all evaluated 577

models across the various tasks in the FinMTEB 578

benchmark is presented in Table 1. This table 579

serves as the primary basis for the subsequent anal- 580

yses. 581

5.2.1 Impact of Domain Adaptation 582

Domain specialization considerably boosts per- 583

formance on financial tasks, as illustrated in Ta- 584

ble 1. For instance, the finance-specific FinBERT 585

outperforms the general BERT by 15.6% in the 586

average score (0.6721 vs. 0.5812 on relevant 587

FinMTEB tasks). Similarly, our finance-adapted 588

Fin-E5 model exceeds its general-domain counter- 589

part, e5-mistral-7b-instruct, by 4.5% in the average 590

score. This overall improvement is supported by 591

statistically significant gains in several key task cat- 592

egories, as detailed in Table 14. Specifically, Fin- 593

E5 demonstrates a significant advantage in Clas- 594

sification, achieving a score of 0.7565 compared 595

to the baseline’s 0.6449 (p = 0.0206), and also 596

in Retrieval, scoring 0.7105 against the baseline’s 597

0.6749 (p = 0.0489). Fin-E5’s slight underperfor- 598

mance on Clustering and Summarization compared 599

with e5-mistral-7b-instruct is not statistically sig- 600

nificant (p > 0.05). Fin-E5 also achieves state-of- 601

the-art performance (0.6767 average scores) on Fin- 602

MTEB, surpassing general-purpose, open-source, 603

and leading commercial models. This increased 604

performance comes from an efficient adaptation 605

process requiring only 100 training steps. 606

3We thank Voyage AI for providing API credits that sup-
ported us in conducting the evaluation with their model.
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Model Size
Tasks

Avg.STS Retrieval Class. Cluster. Rerank. PairClass. Summ.

(N=2, p=0.10) (N=10, p<0.05*) (N=8, p<0.05*) (N=6, p=0.12) (N=3, p<0.05*) (N=3, p<0.05*) (N=3, p=0.45)

BOW - 0.4845 0.2084 0.4696 0.2547 0.7628 0.7143 0.2584 0.4504
Encoder based Models
BERT 110M 0.3789 0.0207 0.5496 0.1744 0.3930 0.7111 0.1686 0.3423
FinBERT 110M 0.4198 0.1102 0.5923 0.2833 0.6404 0.6967 0.2010 0.4205
instructor-base 110M 0.3732 0.5772 0.6208 0.5300 0.9734 0.6138 0.4315 0.5886
bge-large-en-v1.5 335M 0.3396 0.6463 0.6436 0.5725 0.9825 0.7400 0.4857 0.6301
AnglE-BERT 335M 0.3080 0.5730 0.6439 0.5774 0.9650 0.6891 0.5049 0.6088
LLM-based Models
gte-Qwen1.5-7B-instruct 7B 0.3758 0.6697 0.6438 0.5854 0.9890 0.6998 0.5354 0.6427
Echo 7B 0.4380 0.6443 0.6525 0.5776 0.9765 0.6261 0.4722 0.6267
bge-en-icl 7B 0.3233 0.6789 0.6569 0.5742 0.9898 0.6738 0.5197 0.6309
NV-Embed v2 7B 0.3739 0.7061 0.6393 0.6096 0.9822 0.6043 0.5103 0.6322
e5-mistral-7b-instruct 7B 0.3800 0.6749 0.6449 0.5783 0.9875 0.7394 0.5275 0.6475
Commercial Models
text-embedding-3-small - 0.3254 0.6641 0.6387 0.5802 0.9825 0.5957 0.5085 0.6136
text-embedding-3-large - 0.3615 0.7112 0.6596 0.6081 0.9910 0.7309 0.5671 0.6613
voyage-3-large - 0.4145 0.7463 0.6861 0.5944 0.9938 0.6519 0.6484 0.6765
Finance Adapted LLM-based Models
Fin-E5 7B 0.4342 0.7105 0.7565 0.5650 0.9896 0.8014 0.4797 0.6767

Table 1: Performance comparison across different embedding models on FinMTEB benchmark. The evaluated tasks
include semantic textual similarity (STS), retrieval, classification (Class.), clustering (Cluster.), reranking (Rerank.),
pair classification (PairClass.), and summarization (Summ.). For each task, ’N’ indicates the number of datasets,
and ’p’ is the p-value from a one-way ANOVA testing for significant differences across model performances within
that task; an asterisk (*) denotes p < 0.05. Best results are in bold. The underline represents the second-best
performance.

5.2.2 Limitations of Current Models in607

Financial STS Tasks608

The Semantic Textual Similarity (STS) task results609

reveal a counterintuitive finding: the simple BOW610

model (achieving a score of 0.4845) outperforms all611

evaluated dense embedding architectures on STS.612

The observation highlights fundamental limitations613

in dense embedding strategies for specialized fi-614

nancial documents. The STS datasets (Liu et al.,615

2024a; Ju et al., 2023) are sourced from the Com-616

pany Annual Reports. Thus, this reversal of typi-617

cal performance hierarchies likely arises from the618

specialized financial corpus, which can decrease619

performance for models not finely tuned to this vo-620

cabulary, whereas BOW benefits from exact term621

matches in such standardized disclosures.622

6 The Necessity of Domain-Specific623

Benchmarks: An ANOVA Study624

This section addresses another research question.625

To what extent do general-purpose embedding eval-626

uations appropriately capture domain-specific per-627

formance? To investigate this, we conduct a quan-628

titative comparison between the general-purpose629

MTEB benchmark (Muennighoff et al., 2022) and630

our domain-specific FinMTEB. We employ Analy-631

sis of Variance to examine the main effects of two632

key factors, the embedding model (Model Factor) 633

and the benchmark domain (Domain Factor: Gen- 634

eral vs. Finance), on model performance. Detailed 635

experimental settings are provided in Appendix E. 636

The results reveal that the Domain Factor demon- 637

strates statistical significance across all tasks (p 638

< 0.001), with large F statistics in classification, 639

clustering, and STS. These findings indicate that 640

domain-specific characteristics significantly influ- 641

ence embedding model evaluation. 642

7 Conclusion 643

This paper introduces FinMTEB, the first compre- 644

hensive benchmark for evaluating embedding mod- 645

els in the financial domain. Our main contribu- 646

tions include establishing a large-scale evaluation 647

framework with 64 datasets across seven tasks in 648

Chinese and English, and developing Fin-E5, a 649

finance-adapted embedding model demonstrating 650

competitive performance through persona-based 651

data augmentation. Our empirical results highlight 652

the importance of domain-specific adaptation and 653

reveal current limitations in financial text embed- 654

dings. We believe FinMTEB will serve as a valu- 655

able resource for both researchers and practitioners 656

in advancing financial language models. 657
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8 Limitation658

This work has two primary limitations. First, it re-659

lies on several existing financial datasets that could660

potentially overlap with the training data of con-661

temporary embedding models. This overlap may662

introduce contamination, making it difficult to en-663

sure completely fair comparisons between different664

models. Second, our adapted model and evalua-665

tion methods are currently limited to the English666

language, which restricts their applicability to non-667

English financial texts.668
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,781
and Noah A. Smith. 2020. Don’t stop pretraining:782
Adapt language models to domains and tasks. In783
Proceedings of the 58th Annual Meeting of the784
Association for Computational Linguistics, pages785
8342–8360, Online. Association for Computational786
Linguistics.787

Pranab Islam, Anand Kannappan, Douwe Kiela, Re-788
becca Qian, Nino Scherrer, and Bertie Vidgen. 2023.789
Financebench: A new benchmark for financial ques-790
tion answering. arXiv preprint arXiv:2311.11944.791

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-792
sch, Chris Bamford, Devendra Singh Chaplot, Diego793
de las Casas, Florian Bressand, Gianna Lengyel, Guil-794
laume Lample, Lucile Saulnier, et al. 2023. Mistral795
7b. arXiv preprint arXiv:2310.06825.796

Jia-Huei Ju, Yu-Shiang Huang, Cheng-Wei Lin, Che Lin,797
and Chuan-Ju Wang. 2023. A compare-and-contrast798
multistage pipeline for uncovering financial signals799
in financial reports. In Proceedings of the 61st An-800
nual Meeting of the Association for Computational801
Linguistics (Volume 1: Long Papers), pages 14307–802
14321, Toronto, Canada. Association for Computa-803
tional Linguistics.804

Yanis Labrak, Adrien Bazoge, Oumaima El Khettari,805
Mickaël Rouvier, Natalia Grabar, Beatrice Daille,806
Solen Quiniou, Emmanuel Morin, Pierre-Antoine807
Gourraud, Richard Dufour, et al. 2024. Drbench-808
mark: A large language understanding evaluation809
benchmark for french biomedical domain. arXiv810
preprint arXiv:2402.13432.811

Yinyu Lan, Yanru Wu, Wang Xu, Weiqiang Feng, and812
Youhao Zhang. 2023. Chinese fine-grained financial813
sentiment analysis with large language models. arXiv814
preprint arXiv:2306.14096.815

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan816
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and817
Wei Ping. 2024. Nv-embed: Improved techniques for818
training llms as generalist embedding models. arXiv819
preprint arXiv:2405.17428.820

Xiang Li, Zhenyu Li, Chen Shi, Yong Xu, Qing 821
Du, Mingkui Tan, Jun Huang, and Wei Lin. 2024. 822
Alphafin: Benchmarking financial analysis with 823
retrieval-augmented stock-chain framework. arXiv 824
preprint arXiv:2403.12582. 825

Xianming Li and Jing Li. 2023. Angle-optimized text 826
embeddings. arXiv preprint arXiv:2309.12871. 827

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 828
Pengjun Xie, and Meishan Zhang. 2023. Towards 829
general text embeddings with multi-stage contrastive 830
learning. arXiv preprint arXiv:2308.03281. 831

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, 832
Can Zheng, Junxiang Wang, Tanmoy Chowdhury, 833
Yun Li, Hejie Cui, Xuchao Zhang, et al. 2023. Do- 834
main specialization as the key to make large language 835
models disruptive: A comprehensive survey. arXiv 836
preprint arXiv:2305.18703. 837

Jiaxin Liu, Yi Yang, and Kar Yan Tam. 2024a. Beyond 838
surface similarity: Detecting subtle semantic shifts 839
in financial narratives. In Findings of the Association 840
for Computational Linguistics: NAACL 2024, pages 841
2641–2652, Mexico City, Mexico. Association for 842
Computational Linguistics. 843

Mianxin Liu, Jinru Ding, Jie Xu, Weiguo Hu, Xiaoyang 844
Li, Lifeng Zhu, Zhian Bai, Xiaoming Shi, Benyou 845
Wang, Haitao Song, et al. 2024b. Medbench: A com- 846
prehensive, standardized, and reliable benchmarking 847
system for evaluating chinese medical large language 848
models. arXiv preprint arXiv:2407.10990. 849

Shuaiqi Liu, Jiannong Cao, Ruosong Yang, and Zhiyuan 850
Wen. 2022. Long text and multi-table summarization: 851
Dataset and method. In Findings of the Association 852
for Computational Linguistics: EMNLP 2022, pages 853
1995–2010, Abu Dhabi, United Arab Emirates. Asso- 854
ciation for Computational Linguistics. 855

Yinhan Liu. 2019. Roberta: A robustly opti- 856
mized bert pretraining approach. arXiv preprint 857
arXiv:1907.11692. 858

Dakuan Lu, Hengkui Wu, Jiaqing Liang, Yipei Xu, 859
Qianyu He, Yipeng Geng, Mengkun Han, Yingsi 860
Xin, and Yanghua Xiao. 2023. Bbt-fin: Compre- 861
hensive construction of chinese financial domain 862
pre-trained language model, corpus and benchmark. 863
arXiv preprint arXiv:2302.09432. 864

Lorenzo Malandri, Fabio Mercorio, Mario Mezzan- 865
zanica, and Filippo Pallucchini. 2025. RE-FIN: 866
Retrieval-based enrichment for financial data. In 867
Proceedings of the 31st International Conference on 868
Computational Linguistics: Industry Track, pages 869
751–759, Abu Dhabi, UAE. Association for Compu- 870
tational Linguistics. 871

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wal- 872
lenius, and Pyry Takala. 2014. Good debt or bad 873
debt: Detecting semantic orientations in economic 874
texts. Journal of the Association for Information 875
Science and Technology, 65(4):782–796. 876

10

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2023.acl-long.800
https://doi.org/10.18653/v1/2023.acl-long.800
https://doi.org/10.18653/v1/2023.acl-long.800
https://doi.org/10.18653/v1/2023.acl-long.800
https://doi.org/10.18653/v1/2023.acl-long.800
https://doi.org/10.18653/v1/2024.findings-naacl.168
https://doi.org/10.18653/v1/2024.findings-naacl.168
https://doi.org/10.18653/v1/2024.findings-naacl.168
https://doi.org/10.18653/v1/2024.findings-naacl.168
https://doi.org/10.18653/v1/2024.findings-naacl.168
https://doi.org/10.18653/v1/2022.findings-emnlp.145
https://doi.org/10.18653/v1/2022.findings-emnlp.145
https://doi.org/10.18653/v1/2022.findings-emnlp.145
https://aclanthology.org/2025.coling-industry.62/
https://aclanthology.org/2025.coling-industry.62/
https://aclanthology.org/2025.coling-industry.62/


Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming877
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. Sfr-878
embedding-2: Advanced text embedding with multi-879
stage training.880

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-881
frey Dean. 2013. Efficient estimation of word882
representations in vector space. arXiv preprint883
arXiv:1301.3781.884

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and885
Nils Reimers. 2022. Mteb: Massive text embedding886
benchmark. arXiv preprint arXiv:2210.07316.887

Rajdeep Mukherjee, Abhinav Bohra, Akash Banerjee,888
Soumya Sharma, Manjunath Hegde, Afreen Shaikh,889
Shivani Shrivastava, Koustuv Dasgupta, Niloy Gan-890
guly, Saptarshi Ghosh, et al. 2022. Ectsum: A new891
benchmark dataset for bullet point summarization892
of long earnings call transcripts. arXiv preprint893
arXiv:2210.12467.894

Qiong Nan, Juan Cao, Yongchun Zhu, Yanyan Wang,895
and Jintao Li. 2021. Mdfend: Multi-domain fake896
news detection. In Proceedings of the 30th ACM In-897
ternational Conference on Information & Knowledge898
Management, pages 3343–3347.899

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.900
Representation learning with contrastive predictive901
coding. arXiv preprint arXiv:1807.03748.902

OpenAI. 2024. Openai (august 24 version). https:903
//api.openai.com/v1/embeddings.904

Masanori Oya. 2011. Syntactic dependency distance905
as sentence complexity measure. In Proceedings906
of the 16th International Conference of Pan-Pacific907
Association of Applied Linguistics, volume 1.908

Jeffrey Pennington, Richard Socher, and Christopher909
Manning. 2014. GloVe: Global vectors for word910
representation. In Proceedings of the 2014 Confer-911
ence on Empirical Methods in Natural Language Pro-912
cessing (EMNLP), pages 1532–1543, Doha, Qatar.913
Association for Computational Linguistics.914

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt915
Gardner, Christopher Clark, Kenton Lee, and Luke916
Zettlemoyer. 2018. Deep contextualized word repre-917
sentations. In Proceedings of the 2018 Conference of918
the North American Chapter of the Association for919
Computational Linguistics: Human Language Tech-920
nologies, Volume 1 (Long Papers), pages 2227–2237,921
New Orleans, Louisiana. Association for Computa-922
tional Linguistics.923

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine924
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,925
Wei Li, and Peter J Liu. 2020. Exploring the lim-926
its of transfer learning with a unified text-to-text927
transformer. Journal of machine learning research,928
21(140):1–67.929

Aman Rangapur, Haoran Wang, Ling Jian, and Kai Shu. 930
2023. Fin-fact: A benchmark dataset for multimodal 931
financial fact checking and explanation generation. 932
arXiv preprint arXiv:2309.08793. 933

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 934
Sentence embeddings using siamese bert-networks. 935
In Proceedings of the 2019 Conference on Empirical 936
Methods in Natural Language Processing. Associa- 937
tion for Computational Linguistics. 938

Andrew Rosenberg and Julia Hirschberg. 2007. V- 939
measure: A conditional entropy-based external clus- 940
ter evaluation measure. In Proceedings of the 2007 941
Joint Conference on Empirical Methods in Natural 942
Language Processing and Computational Natural 943
Language Learning (EMNLP-CoNLL), pages 410– 944
420, Prague, Czech Republic. Association for Com- 945
putational Linguistics. 946

Agam Shah, Suvan Paturi, and Sudheer Chava. 2023. 947
Trillion dollar words: A new financial dataset, task & 948
market analysis. In Proceedings of the 61st Annual 949
Meeting of the Association for Computational Lin- 950
guistics (Volume 1: Long Papers), pages 6664–6679, 951
Toronto, Canada. Association for Computational Lin- 952
guistics. 953

Ankur Sinha and Tanmay Khandait. 2021. Impact of 954
news on the commodity market: Dataset and results. 955
In Advances in Information and Communication: 956
Proceedings of the 2021 Future of Information and 957
Communication Conference (FICC), Volume 2, pages 958
589–601. Springer. 959

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried, 960
Graham Neubig, and Aditi Raghunathan. 2024. Rep- 961
etition improves language model embeddings. arXiv 962
preprint arXiv:2402.15449. 963

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, 964
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A 965
Smith, Luke Zettlemoyer, and Tao Yu. 2022. One 966
embedder, any task: Instruction-finetuned text em- 967
beddings. arXiv preprint arXiv:2212.09741. 968

Maosong Sun, Jingyang Li, Zhipeng Guo, Yu Zhao, 969
Yabin Zheng, Xiance Si, and Zhiyuan Liu. 2016. 970
Thuctc: An efficient chinese text classifier. http: 971
//thuctc.thunlp.org/. 972

Qwen Team. 2024. Qwen2.5: A party of foundation 973
models. 974

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 975
hishek Srivastava, and Iryna Gurevych. 2021. BEIR: 976
A heterogeneous benchmark for zero-shot evaluation 977
of information retrieval models. In Thirty-fifth Con- 978
ference on Neural Information Processing Systems 979
Datasets and Benchmarks Track (Round 2). 980

VoyageAI. 2025. Voyageai (jan 25 version). https: 981
//api.voyageai.com/v1/embeddings. 982

11

https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://api.openai.com/v1/embeddings
https://api.openai.com/v1/embeddings
https://api.openai.com/v1/embeddings
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
http://thuctc.thunlp.org/
http://thuctc.thunlp.org/
http://thuctc.thunlp.org/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://api.voyageai.com/v1/embeddings
https://api.voyageai.com/v1/embeddings
https://api.voyageai.com/v1/embeddings


Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,983
Rangan Majumder, and Furu Wei. 2023. Improving984
text embeddings with large language models. arXiv985
preprint arXiv:2401.00368.986

Alex Watson, Yev Meyer, Maarten Van Segbroeck,987
Matthew Grossman, Sami Torbey, Piotr Mlocek,988
and Johnny Greco. 2024. Synthetic-PII-Financial-989
Documents-North-America: A synthetic dataset for990
training language models to label and detect pii in991
domain specific formats.992

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,993
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-994
badur, David Rosenberg, and Gideon Mann. 2023.995
Bloomberggpt: A large language model for finance.996
arXiv preprint arXiv:2303.17564.997

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas998
Muennighoff. 2023. C-pack: Packaged resources to999
advance general chinese embedding. arXiv preprint1000
arXiv:2309.07597.1001

Ziyue Xu, Peilin Zhou, Xinyu Shi, Jiageng Wu, Yikang1002
Jiang, Bin Ke, and Jie Yang. 2024. Fintruthqa:1003
A benchmark dataset for evaluating the quality of1004
financial information disclosure. arXiv preprint1005
arXiv:2406.12009.1006

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,1007
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan1008
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen21009
technical report. arXiv preprint arXiv:2407.10671.1010

Hongyang Yang, Xiao-Yang Liu, and Christina Dan1011
Wang. 2023a. Fingpt: Open-source financial large1012
language models. arXiv preprint arXiv:2306.06031.1013

Yi Yang, Yixuan Tang, and Kar Yan Tam. 2023b. In-1014
vestlm: A large language model for investment using1015
financial domain instruction tuning. arXiv preprint1016
arXiv:2309.13064.1017

Yi Yang, Mark Christopher Siy Uy, and Allen Huang.1018
2020. Finbert: A pretrained language model1019
for financial communications. arXiv preprint1020
arXiv:2006.08097.1021

Liwen Zhang, Weige Cai, Zhaowei Liu, Zhi Yang,1022
Wei Dai, Yujie Liao, Qianru Qin, Yifei Li, Xingyu1023
Liu, Zhiqiang Liu, et al. 2023. Fineval: A chi-1024
nese financial domain knowledge evaluation bench-1025
mark for large language models. arXiv preprint1026
arXiv:2308.09975.1027

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,1028
and Zhiyong Lu. 2019. Biowordvec, improving1029
biomedical word embeddings with subword infor-1030
mation and mesh. Scientific data, 6(1):52.1031

Zhihan Zhou, Liqian Ma, and Han Liu. 2021. Trade1032
the event: Corporate events detection for news-based1033
event-driven trading. In Findings of the Association1034
for Computational Linguistics: ACL-IJCNLP 2021,1035
pages 2114–2124, Online. Association for Computa-1036
tional Linguistics.1037

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao 1038
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and 1039
Tat-Seng Chua. 2021. Tat-qa: A question answering 1040
benchmark on a hybrid of tabular and textual content 1041
in finance. arXiv preprint arXiv:2105.07624. 1042

Jie Zhu, Junhui Li, Yalong Wen, and Lifan Guo. 2024. 1043
Benchmarking large language models on cflue–a 1044
chinese financial language understanding evaluation 1045
dataset. arXiv preprint arXiv:2405.10542. 1046

A Datasets in FinMTEB 1047

The detailed description of each dataset used in this 1048

work is listed in the Table tables 2 to 8. 1049

A.1 Detailed Characteristics of FinMTEB 1050

Linguistic Pattern. Table 9 presents a com- 1051

parative analysis of linguistic features between 1052

MTEB (Muennighoff et al., 2022) and FinMTEB 1053

benchmarks, examining aspects such as average 1054

sentence length, token length, syllables per token, 1055

and dependency distance (Oya, 2011). The results 1056

indicate that texts in FinMTEB consistently exhibit 1057

longer and more complex sentences than those in 1058

MTEB, with an average sentence length of 26.37 1059

tokens compared to MTEB’s 18.2 tokens. This 1060

highlights the linguistic differences between finan- 1061

cial and general domain texts. 1062

Semantic Diversity. We examine the inter- 1063

dataset semantic similarity within FinMTEB. Us- 1064

ing the all-MiniLM-L6-v2 model12, we embed 1065

1,000 randomly sampled texts from each dataset, 1066

compute their mean embeddings to represent each 1067

dataset, and measure inter-dataset similarities us- 1068

ing cosine similarity. As shown in Figure 2, most 1069

datasets in FinMTEB display inter-dataset similar- 1070

ity scores below 0.6, with a mean cosine similarity 1071

of 0.4, indicating semantic distinctions among vari- 1072

ous types of financial texts. 1073

1074

1075

B Training Details For Fin-E5 1076

The training dataset size is 19,467. The model is 1077

trained for 100 steps using the augmented dataset 1078

with a batch size of 128. For optimization, we use 1079

the AdamW optimizer with a learning rate of 1e-5 1080

and implement a linear warmup schedule. For a 1081

given data (q, d+, D−), we adopt an instruction- 1082

based methodology for embedding training. The 1083

instruction template is as follows: 1084

12https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Dataset Name Language Description
FINAL (Ju et al., 2023) English A dataset designed for discovering financial signals in nar-

rative financial reports.
FinSTS (Liu et al., 2024a) English A dataset focused on detecting subtle semantic shifts in

financial narratives.
AFQMC 4 Chinese A Chinese dataset for customer service question matching

in the financial domain.
BQ-Corpus (Chen et al., 2018) Chinese A large-scale Chinese corpus for sentence semantic equiva-

lence identification (SSEI) in the banking domain.

Table 2: Summary of STS Datasets

qinst = Instruct: {task_definition}\n{q} (1)1085

where {task_definition} represents a concise1086

single-sentence description of the embedding task.1087

C Chinese Dataset Evaluation in1088

FinMTEB1089

Table 10 presents the different performances of the1090

model in Chinese evaluation datasets.1091

D Benchmarking Time Reporting.1092

The benchmarking was conducted on the NVIDIA1093

H800 GPU using a batch size of 512. Echo Embed-1094

ding (Springer et al., 2024) required the longest pro-1095

cessing time at 12 hours, followed by BeLLM (Li1096

and Li, 2023) at 11.98 hours. AnglE-BERT (Li1097

and Li, 2023) completed the evaluation in 8 hours,1098

while NV-Embed v2 (Lee et al., 2024) demon-1099

strated the highest efficiency, completing all tasks1100

in just 5.6 hours.1101

E Domain-specific Embedding1102

Benchmark is needed1103

This section addresses another research question.1104

To what extent do general-purpose embedding eval-1105

uations appropriately capture domain-specific per-1106

formance? To solve this question, we run a quanti-1107

tative comparison between MTEB (Muennighoff1108

et al., 2022) and FinMTEB.1109

Models. We evaluate seven state-of-the-art1110

general-purpose embedding model. Specifically,1111

we consider the following models: bge-en-icl (Xiao1112

et al., 2023) and e5-mistral-7b-instruct (Wang et al.,1113

2023), which are developed from Mistral-7B-v0.11114

(Jiang et al., 2023); gte-Qwen2-1.5B-instruct (Li1115

et al., 2023), developed from Qwen2 (Yang et al.,1116

2024); bge-large-en-v1.5 (Xiao et al., 2023) and all- 1117

MiniLM-L12-v2 (Reimers and Gurevych, 2019), 1118

both developed from BERT (Devlin et al., 2019); 1119

instructor-base (Su et al., 2022) from T5Encoder 1120

(Raffel et al., 2020); and OpenAI’s text-embedding- 1121

3-small (OpenAI, 2024). The overall score for 1122

these models in MTEB (Muennighoff et al., 2022) 1123

and FinMTEB is shown in Table 11. 1124

Method. To ensure robust statistical analysis, 1125

we use bootstrapping methods to generate a large 1126

sample dataset. For each task in both MTEB and 1127

FinMTEB, we aggregate the datasets associated 1128

with the task into a task pool. From each task 1129

pool, we randomly select 50 examples to create 1130

a bootstrap sample and evaluate the embedding 1131

model’s performance on this bootstrap. We repeat 1132

this process 500 times, resulting in 500 bootstraps 1133

for each combination. Thus, we have 14 unique 1134

combinations (model and domain), each with 500 1135

bootstraps and their corresponding performance 1136

scores. 1137

Analysis of Variance. We conduct an Analysis 1138

of Variance (ANOVA) that examines the effects 1139

of both the model and the domain. The results 1140

reveal that the Domain Factor demonstrates sta- 1141

tistical significance across all tasks (p < 0.001), 1142

with notably large F statistics in classification (F = 1143

2086.30), clustering (F = 32161.37), and STS (F = 1144

25761.71). Furthermore, the Domain Factor gen- 1145

erally accounts for a greater share of the variance 1146

than the Model Factor, as indicated by the Sum of 1147

Squares (e.g., in Classification: Domain = 56.82 vs. 1148

Model = 4.17). These findings suggest that domain- 1149

specific characteristics significantly impact model 1150

performance, reinforcing the importance of special- 1151

ized evaluation frameworks such as FinMTEB for 1152

financial applications. 1153
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Dataset Name Language Description
FiQA2018 (FiQA, 2018) English Financial opinion mining and question answering

dataset.
FinanceBench (Islam et al.,
2023)

English Open book financial question answering dataset.

HC3(Finance) (Guo et al., 2023) English A human-ChatGPT comparison corpus in the finance
domain.

Apple-10K-2022 5 English A retrieval-augmented generation (RAG) benchmark
for finance applications.

FinQA (Chen et al., 2021) English Financial numerical reasoning dataset with structured
and unstructured evidence.

TAT-QA (Zhu et al., 2021) English Question answering benchmark combining tabular
and textual content in finance.

US Financial News 6 English Finance news articles paired with headlines and stock
ticker symbols.

TradeTheEvent (Trading Bench-
mark) (Zhou et al., 2021)

English Finance news articles paired with headlines and stock
ticker symbols.

TradeTheEvent (Domain Adap-
tion) (Zhou et al., 2021)

English Financial terms and explanations dataset.

TheGoldman-en English English version of the Goldman Sachs Financial Dic-
tionary.

FinTruthQA (Xu et al., 2024) Chinese Dataset for evaluating the quality of financial infor-
mation disclosure.

Fin-Eva (Retrieval task) 7 Chinese Financial scenario QA dataset focusing on retrieval
tasks.

AlphaFin (Li et al., 2024) Chinese Comprehensive financial dataset including NLI, QA,
and stock trend predictions.

DISC-FinLLM (Retrieval Part
Data) (Chen et al., 2023)

Chinese Financial scenario QA dataset.

FinQA (from DuEE-fin) (Lu
et al., 2023)

Chinese Financial news bulletin event quiz dataset.

DISC-FinLLM (Computing)
(Chen et al., 2023)

Chinese Financial scenario QA dataset focusing on numerical
tasks.

SmoothNLP 8 Chinese Chinese finance news dataset.
THUCNews (Sun et al., 2016) Chinese Chinese finance news dataset.
Fin-Eva (Terminology) 9 Chinese Financial terminology dataset used in the industry.
TheGoldman-cn Chinese Chinese version of the Goldman Sachs Financial Dic-

tionary.

Table 3: Summary of Retrieval Datasets
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Dataset Name Language Description
FinancialPhrasebank (Malo et al., 2014) English Polar sentiment dataset of sentences from financial news,

categorized by sentiment into positive, negative, or neutral.
FinSent (Yang et al., 2023b) English Polar sentiment dataset of sentences from the financial do-

main, categorized by sentiment into positive, negative, or
neutral.

FiQA_ABSA (FiQA, 2018) English Polar sentiment dataset of sentences from the financial do-
main, categorized by sentiment into positive, negative, or
neutral.

SemEva2017_Headline (Cortis et al., 2017) English Polar sentiment dataset of sentences from the financial do-
main, categorized by sentiment into positive, negative, or
neutral.

FLS (Yang et al., 2023b) English A finance dataset detects whether the sentence is a forward-
looking statement.

ESG (Yang et al., 2023b) English A finance dataset performs sentence classification under
the environmental, social, and corporate governance (ESG)
framework.

FOMC (Shah et al., 2023) English A task of hawkish-dovish classification in finance domain.
Financial-Fraud 10 English This dataset was used for research in detecting financial

fraud.
FinNSP (Lu et al., 2023) Chinese Financial negative news and its subject determination

dataset.
FinChina (Lan et al., 2023) Chinese Polar sentiment dataset of sentences from the financial do-

main, categorized by sentiment into positive, negative, or
neutral.

FinFE (Lu et al., 2023) Chinese Financial social media text sentiment categorization dataset.
OpenFinData 11 Chinese Financial scenario QA dataset including sentiment task.
MDFEND-Weibo2 (finance) (Nan et al., 2021) Chinese Fake news detection in the finance domain.

Table 4: Summary of Classification Datasets

Dataset Name Language Description
MInDS-14-en (Gerz et al., 2021b) English MINDS-14 is a dataset for intent detection in e-banking,

covering 14 intents across 14 languages.
Consumer Complaints (CFPB, 2024) English The Consumer Complaint Database is a collection of com-

plaints about consumer financial products and services that
sent to companies for response.

Synthetic PII finance (Watson et al., 2024) English Synthetic financial documents containing Personally Identi-
fiable Information (PII).

FinanceArxiv-s2s English Clustering of titles from arxiv (q-fin).
FinanceArxiv-p2p English Clustering of abstract from arxiv (q-fin).
WikiCompany2Industry-en English Clustering the related industry domain according to the

company description.
MInDS-14-zh (Gerz et al., 2021b) Chinese MINDS-14 is a dataset for intent detection in e-banking,

covering 14 intents across 14 languages.
FinNL (Lu et al., 2023) Chinese Financial news categorization dataset.
CCKS2022 (CCKS, 2022) Chinese Clustering of financial events.
CCKS2020 (CCKS, 2022) Chinese Clustering of financial events.
CCKS2019 (CCKS, 2022) Chinese Clustering of financial events.

Table 5: Summary of Clustering Datasets
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Dataset Name Language Description
Ectsum (Mukherjee et al., 2022) English A Dataset For Bullet Point Summarization of Long Earnings

Call Transcripts.
FINDSum (Liu et al., 2022) English A Large-Scale Dataset for Long Text and Multi-Table Sum-

marization.
FNS-2022 (El-Haj et al., 2022) English Financial Narrative Summarisation for 10K.
FiNNA (Lu et al., 2023) Chinese A financial news summarization dataset.
Fin-Eva (Headline) (Zhang et al., 2023) Chinese A financial summarization dataset.
Fin-Eva (Abstract) (Zhang et al., 2023) Chinese A financial summarization dataset.

Table 6: Summary of Summarization Datasets

Dataset Name Language Description
Fin-Fact (Rangapur et al., 2023) English A Benchmark Dataset for Financial Fact Checking and

Explanation Generation.
FiQA2018 (FiQA, 2018) English Financial opinion mining and question answering.
HC3(Finance) (Guo et al., 2023) English A human-ChatGPT comparison finance corpus.
Fin-Eva (Retrieval task) (Zhang et al., 2023) Chinese Financial scenario QA dataset including retrieval task.
DISC-FinLLM (Retrieval Part Data) (Chen et al., 2023) Chinese Financial scenario QA dataset.

Table 7: Summary of Reranking Datasets

F Spearman’s Correlation of Embedding1154

Models’ Performance1155

We evaluate the performance ranking of embedding1156

models on both the general MTEB and FinMTEB1157

datasets, calculating Spearman’s rank correlation1158

between the two. The results, shown in Table 12,1159

indicate that the ranking correlation is not statisti-1160

cally significant (p-values all greater than 0.05). In1161

other words, a general-purpose embedding model1162

performing well on MTEB does not necessarily1163

perform well on domain-specific tasks.1164

1165

G Analysis of Variance (ANOVA)1166

Table 13 illustrates the full results of ANOVA anal-1167

ysis.1168

H Performance Comparison for Fin-E51169

and Baseline1170

We analyzed the statistical significance of these1171

differences to investigate the reviewer’s question1172

about the cause. The table 14 compares Fin-1173

E5’s performance to the baseline (e5-mistral-7b-1174

instruct) across all task categories, including p-1175

values (Paired T-Test).1176
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Dataset Name Language Description
HeadlineAC-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
HeadlinePDD-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
HeadlinePDU-PairClassification (Sinha and Khandait, 2021) English Financial text sentiment categorization dataset.
AFQMC Chinese Ant Financial Question Matching Corpus.

Table 8: Summary of PairClassification Datasets

Benchmark Sentence Length Token Length Syllables Per Token Dependency Distance

MTEB 18.20 4.89 1.49 2.49
FinMTEB 26.37 5.12 1.52 2.85

Table 9: Comparison of Text Characteristics Between FinMTEB and MTEB. The numbers represent the average
scores across all samples from all datasets.

Figure 2: Semantic similarity across all the datasets in FinMTEB benchmark.

Model STS Retrieval Class. Cluster. Rerank. Pair-Class. Summ. Avg.

BOW 0.2030 0.3000 0.4694 0.4204 0.9089 0.3376 0.3433 0.4260
all-MiniLM-L12-v2 0.1454 0.1777 0.4398 0.2243 0.7943 0.3375 0.4731 0.3703
paraphrase-multilingual-MiniLM-L12-v2 0.2775 0.3795 0.5587 0.4612 0.9673 0.3882 0.3442 0.4824
bge-large-zh-v1.5 0.5806 0.6073 0.5996 0.6672 0.9931 0.5506 0.4413 0.6342
bge-m3 0.5083 0.6243 0.6209 0.7109 0.9902 0.5331 0.3582 0.6208
multilingual-e5-large-instruct 0.4799 0.6303 0.5908 0.6540 0.9876 0.4651 0.4456 0.6076
gte-Qwen1.5-7B-instruct 0.5714 0.6420 0.6200 0.6172 0.9921 0.5968 0.4934 0.6475
text-embedding-3-large 0.3848 0.6778 0.6041 0.7054 1.0000 0.4547 0.4203 0.6067
Fin-E5 0.4799 0.6893 0.6681 0.6737 0.9931 0.5303 0.4207 0.6364

Table 10: Performance comparison across Chinese datasets. This evaluation contains some multilingual models and
Fin-E5. The evaluation metrics include semantic textual similarity (STS), retrieval, classification (Class.), clustering
(Cluster.), reranking (Rerank.), pair classification (PairClass.), and summarization (Summ.). Best results are in bold.
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Embedding Model Base Model Dimensions MTEB Score FinMTEB Score

bge-en-icl Mistral 4096 71.67 63.09
gte-Qwen2-1.5B-instruct Qwen2 1536 67.16 59.98
e5-mistral-7b-instruct Mistral 4096 66.63 64.75
bge-large-en-v1.5 Bert 1024 64.23 58.95
text-embedding-3-small — 1536 62.26 61.36
instructor-base T5Encoder 768 59.54 54.79
all-MiniLM-L12-v2 Bert 384 56.53 54.31

Table 11: Comparison of Various Embedding Models: Performance on MTEB and FinMTEB Benchmarks

STS Class. Ret. Rerank. Clust. PairClass. Summ.

Correlation 0.30 -0.80 0.30 -0.10 -0.70 -0.30 0.60
p-value 0.62 0.10 0.62 0.87 0.18 0.62 0.28

Table 12: Spearman’s correlation of embedding models’ performance on MTEB and FinMTEB across different
tasks. The p-value indicates that all correlations are statistically insignificant, suggesting a lack of evidence for a
relationship between embedding model performance on the two benchmarks.

Task Factor Sum of Squares Degrees of Freedom F-Statistic p-value

Classification
Model Factor 4.17 6.00 25.55 3.41× 10−30

Domain Factor 56.82 1.00 2086.30 ≈ 0
Residual 190.42 6992.00 NA NA

Retrieval
Model Factor 104.25 6.00 9052.57 ≈ 0

Domain Factor 6.16 1.00 3207.72 ≈ 0
Residual 13.42 6992.00 NA NA

STS
Model Factor 10.55 6.00 149.00 1.64× 10−178

Domain Factor 304.09 1.00 25761.71 ≈ 0
Residual 82.53 6992.00 NA NA

Clustering
Model Factor 0.29 6.00 47.60 1.59× 10−57

Domain Factor 32.25 1.00 32161.37 ≈ 0
Residual 7.01 6992.00 NA NA

Summarization
Model Factor 12.98 6.00 145.31 2.90× 10−174

Domain Factor 14.49 1.00 973.32 3.60× 10−200

Residual 104.07 6992.00 NA NA

Reranking
Model Factor 5.38 6.00 489.05 ≈ 0

Domain Factor 0.64 1.00 346.78 1.39× 10−75

Residual 12.84 7002.00 NA NA

Pair Classification
Model Factor 0.25 6.00 1.97 0.07

Domain Factor 249.19 1.00 11989.92 ≈ 0
Residual 145.31 6992.00 NA NA

Average Model Factor 0.00 6.00 1.34 0.37
Domain Factor 0.08 1.00 253.87 ≈ 0

Residual 0.00 6.00 NA NA

Table 13: Analysis of Variance (ANOVA) Results Across Tasks and Factors. Factor represents the independent
variables analyzed: Model Factor pertains to variations attributed to different models, and Domain Factor pertains
to variations due to different domains (MTEB or FinMTEB). Residual refers to the unexplained variance. The
Sum of Squares, Degrees of Freedom, F-Statistic, and p-value are presented for each factor within each task.
Asterisks denote significance levels, with lower p-values indicating higher statistical significance. The Domain
Factor consistently shows high significance across all tasks.
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Table 14: Performance comparison of Fin-E5 and Baseline (e5-mistral-7b-instruct) across task categories. The
p-values are from Paired T-Tests, and significance is determined at α = 0.05.

Task Datasets Fin-E5 Score Baseline Score p-value Significance (α = 0.05)

STS 2 0.4342 0.3800 0.1252 Not significant
Retrieval 9 0.7105 0.6749 0.0489 Significant
Classification 8 0.7565 0.6449 0.0206 Significant
Clustering 6 0.5650 0.5783 0.1864 Not significant
Reranking 3 0.9896 0.9875 0.1623 Not significant
PairClassification 3 0.8014 0.7394 0.2066 Not significant
Summarization 3 0.4797 0.5275 0.3607 Not significant
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