
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning
in Transformers

Anonymous Authors1

Abstract
In-context learning (ICL) is a cornerstone of large
language model functionality, yet its theoretical
foundations remain elusive due to the complexity
of transformer architectures. In particular, most
existing work only theoretically explains how the
attention mechanism facilitates ICL under certain
data models. It remains unclear how the other
building blocks of the transformer contribute to
ICL. To address this question, we study how a
two-attention-layer transformer is trained to per-
form ICL on n-gram Markov chain data, where
each token in the Markov chain statistically de-
pends on the previous n tokens. We analyze a
sophisticated transformer model featuring relative
positional embedding, multi-head softmax atten-
tion, and a feed-forward layer with normalization.
We prove that the gradient flow with respect to
a cross-entropy ICL loss converges to a limiting
model that performs a generalized version of the
“induction head” mechanism with a learned fea-
ture, resulting from the congruous contribution of
all the building blocks.

1. Introduction
In-context learning (ICL) (Brown et al., 2020) has emerged
as a crucial aspect of large language model (LLM) (Radford
et al., 2019; Brown et al., 2020; Achiam et al., 2023; An-
thropic, 2023; Team et al., 2023) functionality, enabling pre-
trained LLMs to solve user-specified tasks during inference
without updating model parameters. In ICL, a pre-trained
LLM, typically a transformer, receives prompts containing
a few demonstration examples sampled from a task-specific
distribution and produces the desired output for that task.
This capability is noteworthy because the tasks addressed
during ICL might not be part of the original training dataset.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

The success of ICL necessitates that the LLM performs
certain learning processes during inference. While many
previous works aim to demystify ICL from either empirical
or theoretical perspectives, the theoretical foundations of
ICL remain elusive, especially for complex tasks beyond
simple linear regression. This leaves a gap in understand-
ing how full-fledged transformer architectures facilitate ICL
of more complex tasks, especially when there exist latent
causal structures among the tokens in a sequence.

In this paper, we aim to narrow this gap by studying how
a two-attention-layer transformer is trained to perform
ICL of a n-gram Markov chain model, where each token
in the Markov chain statistically depends on n tokens before
it, known as the parent set. Specifically, we consider a trans-
former model with relative positional embedding (RPE) (He
et al., 2020), multi-head softmax attention (MHA), and a
feed-forward network (FFN) layer with normalization. We
employ such a transformer model to predict the (L+1)-th to-
ken of a n-gram Markov chain, with the first L tokens given
as the prompt, where L + 1 is the sequence length. Here
the L-token sequence is sampled from a random Markov
chain model, where a random transition kernel obeying the
n-gram Markov property is used to generate sequences. The
token sequence is fed to the transformer model, which out-
puts a probability distribution over the vocabulary set for
predicting the (L+ 1)-th token.

Under this setting, we aim to answer the following three
questions: (i) Does the gradient flow with respect to cross-
entropy loss converge during training? (ii) If yes, how does
the limiting model perform ICL? (iii) How do the building
blocks of the transformer model contribute to ICL?

Main Results. We provide an affirmative answer to the
Question (i) by proving that the gradient flow converges
during training. In particular, we identify three phases of
training dynamics, where in the first stage, FFN learns the
potential parent set; in the second stage, each attention head
of the first MHA layer learns to focus on a single parent
token selected by FFN; and in the final stage, the parameter
of the second attention layer increases and the transformer
approaches the limiting model. Moreover, for Questions
(ii) and (iii), we show that the limiting model performs a
specialized form of exponential kernel regression, dubbed

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

“generalized induction head”, which requires the congru-
ous contribution of all the building blocks. Specifically, the
first attention layer acts as a copier, copying past tokens
within a given window to each position. The FFN layer acts
as a selector that generates a feature vector by only looking
at informationally relevant parents from the window accord-
ing to a modified chi-square mutual information. Finally,
the second attention layer is a exponential kernel classifier
that compares the features at each position with that created
for the output position L+1, and use the resulting similarity
scores to generate the desired output. When specialized to
the case where n = 1, the limiting model selects the true par-
ent token and implements the “induction head” mechanism,
which recovers the theory in Nichani et al. (2024). Our
theory is complemented by numerical experiments, which
validate the three-phase training dynamics and mechanism
of generalized induction head.

2. Problem Setup: In-Context Learning of
Markov Chains

2.1. In-Context Learning and n-Gram Markov Chains

We study autoregressive transformers trained for in-context
learning (ICL). A pretrained transformer is a conditional dis-
tribution ftf(· | prompt) over a finite vocabulary X , where
prompt is a sequence of tokens in X . We consider unsu-
pervised learning where ftf predicts the (L+ 1)-th token
xL+1 given the prompt x1:L where the joint distribution of
the sequence x1:(L+1) is sampled from a random n-gram
Markov chain.

n-Gram Markov Chains. We assume the data comes
from a mixture of n-gram Markov chain model, denoted
by a tuple (X , pa,P, µ0), where X is the state space and
pa = (−r1, . . . ,−rn) is the parent set with positive inte-
gers r1 < r2 < · · · < rn. That is, for each l > rn, xl
only statistically depends on (xl−rn , . . . , xl−r1), which is
denoted by Xpa(l) and referred to as the parent tokens of xl.
We let d = |X | denote the vocabulary size. Moreover, P is
a probability distribution over the set of Markov transition
kernels respecting the parent structure specified by pa, and
µ0 is the joint distribution of the first rn tokens x1:rn . Thus,
the sequence x1:(L+1) is generated as follows: (i) sample
initial rn tokens (x1, . . . , xrn) ∼ µ0, (ii) sample a random
transition kernel π ∼ P , where π : Xn → ∆(X), and (iii)
sample token xl ∼ π(· |Xpa(l)) for l = rn + 1, . . . , L+ 1.
See Figure 1 for an illustration.

Cross-Entropy (CE) Loss. When x1:(L+1) is generated,
x1:L is fed into the transformer ftf to predict xL+1. To
assess the performance, we adopt the population CE loss

L(ftf)=−Eπ∼P,x1:(L+1)

[
log
(
ftf(xL+1 |x1:L) + ϵ

)]
,

(2.1)

where ϵ > 0 is a small constant introduced for numeri-
cal stability. As a remark, we also relax the condition in
Nichani et al. (2024) where they need the last token xL to
be resampled from a uniform distribution. In addition, our
analysis can also be extended to sequential CE loss, which
corresponds to predicting every token in the sequence given
the past rather than just the last token xL+1. See §E.3 for
further discussion.

2.2. A Two-Layer Transformer Model

We consider a class of two-attention-layer transformer
model TF(M,H, d,D) that incorporates Relative Positional
Embedding (RPE) (He et al., 2020), Multi-Head Attention
(MHA) (Vaswani et al., 2017), and a Feed-Forward network
(FFN) with normalization. Here, M is the RPE window
size, H is the number of attention heads, d is the vocabulary
size, and D controls the complexity of the FFN. The details
of TF(M,H, d,D) are as follows.

Token Embedding, Input and Output. We take X =
{e1, . . . , ed} as the vocabulary. Given the input sequence
x1:L, we denote X = (x1, . . . , xL)

⊤ ∈ RL×d, and append
a zero vector 0 ∈ Rd to the sequence as the place-holder,
defining rX = (x1, . . . , xL,0)

⊤ ∈ R(L+1)×d, and fed this
extended sequence into the transformer. The output of at
the “0” position is denoted by y ∈ Rd.

Relative Positional Embedding. In the first attention layer,
we use relative positional embeddings (RPE) to encode the
positional information. Specifically, RPE is parameterized
by a vector w = (w−M , . . . , w−1)

⊤ ∈ RM , and it assigns
a scalar WP (i, j) to query and key positions (i, j) by

WP (i, j) = wj−i if i− j ∈ {1, . . . ,M},
WP (i, j) = −∞ if j ≥ i or |j − i| > M.

In other words, the i-th token only attends to tokens with
indices in {i− 1, . . . , i−M}, referred to as the length-M
window of the i-th token. See Figure 2 for an illustration.

First Attention Layer. The input sequence is first processed
by an attention layer with H parallel heads. In all heads, we
discard the token information and only use RPE to compute
the attention score. Specifically, each attention head h maps
rX into a sequence in Rd with length L + 1, collected as
V (h) = (v

(h)
1 , . . . , v

(h)
L+1)

⊤. For any l ∈ [L + 1], v(h)l is

computed using RPE W (h)
P via

vl
(h) =

L∑
j=1

σj(W
(h)
P (l, ·)) · xj . (2.2)

Feed-Forward Network with Normalization. After the
first attention layer, we concatenate the outputs of the
H attention heads and define V = (V (1), . . . , V (H)) ∈

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

R(L+1)×Hd. Consequenlty, for the l-the row of V which
we denote by v⊤l , we have v⊤l = (v

(1)⊤
l , . . . , v

(H)⊤
l) and

for any vector u ∈ RHd in the sequel, we use the notation
u⊤ = (u(1)⊤, . . . , u(H)⊤) with block u(h) ∈ Rd. With
embedding dimension de, each row of V is passed through
an FFN ϕ(·) : RHd → Rde , which specifies a polynomial
kernel such that for any u, v ∈ RHd, we have

⟨ϕ(u), ϕ(v)⟩ =
∑

S∈[H]≤D

c2S ·
∏
h∈S

⟨u(h), v(h)⟩. (2.3)

Here, the set [H]≤D = {S ⊆ [H] : |S| ≤ D} contains all
subsets of [H] with cardinality at most D, and {cS : S ∈
[H]≤D} are the corresponding trainable parameters of ϕ(·).
An explicit definition of ϕ(·) is available in Lemma E.1.

Furthermore, to control the magnitude of the FFN outputs,
we normalize ϕ(·) by letting ul = ϕ(vl)/

√
CD for all l ∈

[L + 1] where CD =
∑

S∈[H]≤D
c2S . The normalization

scheme is motivated by the popular layer normalization
(Ba et al., 2016) in transformer architectures but without
trainable parameters. See §B.3 for more discussions.

Second Attention Layer. We define normalized vector
sequence as U = (u1, . . . , uL+1)

⊤, which together with the
original sequence rX are then fed into the second attention
layer. This attention layer has a single head and a scalar
trainable parameter a. We let U1:L = (u1, . . . , uL)

⊤ and
let Mask(·) denote the mask that sets every entry of the first
M rows of a matrix to be −∞. The final output is given by

y =
∑L

j=M+1
σj
(
a · u⊤L+1Mask(U

⊤
1:L)

)
· xj (2.4)

Note that the softmax function in (2.4) yields a probability
distribution over [L] and that x1:L is a sequence of one-hot
vectors. Thus, y in (2.4) is a probability distribution over
X . The mask is just included here to simplify our analysis
while in the experiments we are not using the mask.

In summary, given the input rX ∈ R(L+1)×d, in the matrix
form, a transformer model in TF(M,H, d,D) consecutively
applies the following operations:

First Attention: V (h) = σ(W
(h)
P) rX

Concatenate: V = [V (1), . . . , V (H)]

FFN & Normalize: U = ϕ(V)/
√
CD

Second Attention: y⊤ = σ
(
a · u⊤L+1Mask(U

⊤
1:L)

)
X

(2.5)

The trainable parameters of the above transformer model
are Θ =

{
a, {w(h)

−1 , . . . , w
(h)
−M}h∈[H], {cS : S ∈ [H]≤D}

}
.

We remark that the transformer model in (2.5) is known as
a disentangled transformer (Friedman et al., 2024), which is
a version of the transformer model that is more amenable

for theoretical analysis. As shown in Nichani et al. (2024),
any standard transformer model can be expressed as a dis-
entangled transformer by specializing the attention weights
to allow feature concatenation.

3. Theoretical Results
3.1. Generalized Induction Head Mechanism for

Learning n-Gram Markov Chains

In the following, we introduce a generalized induction head
(GIH) estimator for the task of predicting xL+1 given x1:L,
which is based on the following simple idea: xL+1 should
be similar to a previous token xl if their parents are similar.
As the parent set pa is unknown, GIH adopts an information-
theoretic criterion to select a subset of previous tokens as
a proxy of the parents. Specifically, GIH uses a modified
version of chi-squared mutual information, which is defined
as follows: We let (z, Z) denote (zl−M , . . . , zl) under the
stationary distribution µπ with π ∼ P , where z = zl, Z =
(zl−M , . . . , zl−1) and ℓ > M .

rIχ2(S) = E
[(∑

e∈X

[µπ(z = e |Z−S)]
2

µπ(z = e)
− 1

)
µπ(Z−S)

]
,

(3.1)

where the expectation is taken over π ∼ P, (z, Z) ∼ µπ,
µπ(z = · | Z−S) is the conditional distribution of z induced
by µπ given partial history Z−S , and µπ(Z−S), µ

π(z) are
the marginal distributions of Z−S and z under (z, Z) ∼ µπ .

Intuitively, rIχ2(S) is modified from the vanilla chi-squared
mutual information between two variables (Polyanskiy &
Wu, 2024) and outputs a reweighted mutual information
between Z−S and z. Define S⋆ as

S⋆ = argmaxS∈[M]≤D
rIχ2(S). (3.2)

As a remark, with the standard chi-squared mutual informa-
tion, the optimal S⋆ is the true parent set pa or a superset of
it by the data processing inequality. However, sometimes a
true parent can also bear little information about the target
and a larger parent set tends to appear less frequently in the
context sequence, leading to poor estimation accuracy. To
handle this issue, the modification in (3.1) reaches a balance
between the information-richness and the model complexity.
See §B.5 for details.

Now we are ready to introduce the Generalized Induction
Head (GIH) estimator. For given window size M , parent
set degree D, The GIH estimator denoted by GIH(·;M,D)
takes the sequence x1:L as input and outputs a vector y⋆ ∈
Rd as distribution over X by

y⋆ :=

{
1
N

∑
l>M xl · 1(Xl−S⋆ = XL+1−S⋆), if N ≥ 1,

1
L−M

∑
l>M xl, otherwise.

(3.3)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Here, we define Xl−S⋆ as the set {xl−s : s ∈ S⋆} and
N =

∑
l>M 1(Xl−S⋆ = XL+1−S⋆). In a nutshell, the

GIH estimator checks whether the partial histories ofXl−S⋆

and XL+1−S⋆ match and aggregate all the tokens xl that
satisfy this condition as the predicted distribution of xL+1.
Moreover, the GIH estimator is a generalization of the Induc-
tion Head mechanism (Elhage et al., 2021) to the stochastic
setting with multiple parents. As we will show in §G.4,
there exists a transformer model that implements GIH in its
architecture. More importantly, we will show that gradient
flow finds such a limiting model.

3.2. Convergence Guarantee of Gradient Flow

In the following, we present the convergence guarantee for
gradient flow. To simplify our discussion, we consider the
case where H = M . That is, there are enough heads to
implement the GIH mechanism by letting each head copy a
unique parent token from the window of size M . In the fol-
lowing, when we discuss the correspondence between “head”
and “parent”, we always refer to the mapping from head h to
parent xl−h for any h ∈ [H] and l > M , which is without
loss of generality. Let us first introduce the paradigm of
gradient-flow training.

Training Paradigm. Now we train a transformer
TF(M,H, d,D) in (2.5) to perform ICL on the n-gram
Markov chain model introduced in §2.1. Specifically, we de-
fine L(Θ) as the population cross-entropy loss in (2.1) with
ftf replaced by the transformer model in (2.5) with parame-
ter Θ. We train parameter Θ using gradient descent, under
the ideal setting with infinite training data and infinitesimal
step size. That is, we study the dynamics of gradient flow
with respect to the loss L(Θ):

∂tΘ(t) = −∇L
(
Θ(t)

)
.

To simplify the analysis, we consider a three-stage training
paradigm where in each stage only one part of the weights
gets trained. See §B.1 for a detailed table.

Now we are ready to present our main theoretical result on
training transformers by gradient flow.
Theorem 3.1 (Convergence of Gradient Flow). Suppose As-
sumption B.1 and Assumption B.3 hold. Then the following
holds for the three-stage training of gradient flow when L is
sufficiently large.

Stage I: Parent Selection by FFN. Let CD(t) =∑
S∈[H]≤D

cS(t)
2 and pS⋆(t) = c2S⋆(t)/CD(t).

Then in the first stage of length t1 ≍
CD(0) log(L logL)/(a(0)∆rIχ2), the ratio cS⋆/cS
grows exponentially fast for any S ≠ S⋆, and S⋆ dominates
exponentially fast in the sense that,

1− pS⋆(t) ≤ (1− pS⋆(0))

· exp
(
−(2CD)−1 · a(0) ·∆rIχ2 · t

)
, ∀t ∈ [0, t1).

Stage II: Concentration of The First Attention.
Define σ(h)(t) = σ(w(h)(t)) ∈ RM , and let
σmin(t) := minh∈S⋆ σ

(h)
−h(t). Then in the second

stage of length t2 ≍ (L logL)/(a(0)∆rIχ2), it holds for all
t ∈ [t1, t1 + t2) that

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2

≤ 2|S⋆| · (M − 1)

a(0)∆rIχ2σmin(0)(t− t1)/2 + exp(∆w) + (M − 1)
∧ 1.

Stage III: Growth of The Second Attention. For some
constants c1, c2 depending on (P,S⋆) with 0 < c1 < c2,
there exists a small constant δ > 0 such that the growth
of a(t) exhibits the following two sub-stages: (i) When
a(t) ≤ log(c1/δ), it holds that ∂a(t) ≍ ea(t); (ii)
After a(t) has grown such that a(t) ≥ log(c2/δ), then
∂ta(t) ≍ 1/a(t) until it reaches the value (1− δ) logL/4.

See §F for a proof sketch and §G for the detailed proof. An
experimental demonstration for the three stages’ s dynamics
is in Figure 4. From Theorem 3.1, we can interpret that:

• The first stage’s training on FFN is learning a selector
that selects an informative set S⋆ by realizing the cor-
responding feature embedding through the polynomial
kernel.

• The second stage’s training on the RPE turns the first
attention layer into a copier by establishing the corre-
spondence between the attention heads and the parents
in the selected S⋆.

• Given that the previous two stages have prepared
the feature mapping ϕ such that ⟨ϕ(vl), ϕ(vL+1)⟩ ≈
1(Xl−S⋆ = XL+1−S⋆) , the last stage enforces the
GIH mechanism by increasing the scalar weight a in
the second attention layer, which serves as an exponen-
tial kernel classifier. The two sub-stages with distinct
growth rates can be clearly seen from Figure 4(c), where
∂a(t) is initially large and gradually decays.

In fact, we theoretically show that the limiting model upon
convergence implements the GIH mechanism with τ going
to infinity up to anO(L−(1−δ)/4) error. We defer the formal
statement and proof to §G.4. Moreover, as an answer to the
Question (iii) raised in §1, the different components of the
transformer architecture are all critical for achieving this:
FFN with normalization realizes the selector, the multi-head
design of attention supports the copier, and finally, the soft-
max operation facilitates the exponential kernel classifier.

Another takeaway from Theorem 3.1 is that the FFN layer
evolves exponentially faster than the RPE in the first at-
tention layer, suggesting that we can actually train them
together without splitting the first two stages. Indeed, this is
validated by experiments in §D.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S.
Transformers learn to implement preconditioned gra-
dient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

Ahuja, K., Panwar, M., and Goyal, N. In-context
learning through the bayesian prism. arXiv preprint
arXiv:2306.04891, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2023.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,
Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-
shot learning. Advances in neural information processing
systems, 35:23716–23736, 2022.

Anthropic. Model card and evaluations for claude models.
2023.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S.
Transformers as statisticians: Provable in-context learn-
ing with in-context algorithm selection. arXiv preprint
arXiv:2306.04637, 2023.

Bietti, A., Cabannes, V., Bouchacourt, D., Jegou, H., and
Bottou, L. Birth of a transformer: A memory viewpoint.
Advances in Neural Information Processing Systems, 36,
2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, S. and Li, Y. Provably learning a multi-head attention
layer. arXiv preprint arXiv:2402.04084, 2024.

Chen, S., Yang, D., Li, J., Wang, S., Yang, Z., and Wang,
Z. Adaptive model design for markov decision process.
In International Conference on Machine Learning, pp.
3679–3700. PMLR, 2022.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Training
dynamics of multi-head softmax attention for in-context
learning: Emergence, convergence, and optimality. arXiv
preprint arXiv:2402.19442, 2024.

Chen, X. and Zou, D. What can transformer learn with
varying depth? case studies on sequence learning tasks.
arXiv preprint arXiv:2404.01601, 2024.

Cheng, X., Chen, Y., and Sra, S. Transformers implement
functional gradient descent to learn non-linear functions
in context. arXiv preprint arXiv:2312.06528, 2023.

Collins, L., Parulekar, A., Mokhtari, A., Sanghavi, S., and
Shakkottai, S. In-context learning with transformers:
Softmax attention adapts to function lipschitzness. arXiv
preprint arXiv:2402.11639, 2024.

Deora, P., Ghaderi, R., Taheri, H., and Thrampoulidis, C.
On the optimization and generalization of multi-head
attention. arXiv preprint arXiv:2310.12680, 2023.

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. Induc-
tive biases and variable creation in self-attention mecha-
nisms. In International Conference on Machine Learning,
pp. 5793–5831. PMLR, 2022.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., and
Tsilivis, N. The evolution of statistical induction heads:
In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1:1, 2021.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Giannou, A., Rajput, S., Sohn, J.-Y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 11398–11442. PMLR, 23–29 Jul
2023.

Giannou, A., Yang, L., Wang, T., Papailiopoulos, D., and
Lee, J. D. How well can transformers emulate in-context
newton’s method? arXiv preprint arXiv:2403.03183,
2024.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese,
S., and Bai, Y. How do transformers learn in-context
beyond simple functions? a case study on learning with
representations. arXiv preprint arXiv:2310.10616, 2023.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

Honovich, O., Shaham, U., Bowman, S. R., and Levy,
O. Instruction induction: From few examples to
natural language task descriptions. arXiv preprint
arXiv:2205.10782, 2022.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv preprint arXiv:2310.05249, 2023.

Jelassi, S., Sander, M., and Li, Y. Vision transformers
provably learn spatial structure. Advances in Neural In-
formation Processing Systems, 35:37822–37836, 2022.

Jeon, H. J., Lee, J. D., Lei, Q., and Van Roy, B. An
information-theoretic analysis of in-context learning.
arXiv preprint arXiv:2401.15530, 2024.

Kim, J. and Suzuki, T. Transformers learn nonlinear fea-
tures in context: Nonconvex mean-field dynamics on the
attention landscape. arXiv preprint arXiv:2402.01258,
2024.

Li, Y., Li, Y.-F., and Risteski, A. How do transformers learn
topic structure: Towards a mechanistic understanding.
arXiv preprint arXiv:2303.04245, 2023.

Li, Y., Huang, Y., Ildiz, M. E., Rawat, A. S., and Oymak,
S. Mechanics of next token prediction with self-attention.
In International Conference on Artificial Intelligence and
Statistics, pp. 685–693. PMLR, 2024.

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv preprint arXiv:2310.08566,
2023.

Liu, B., Ash, J., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. ArXiv,
abs/2210.10749, 2022.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Makkuva, A. V., Bondaschi, M., Girish, A., Nagle, A., Jaggi,
M., Kim, H., and Gastpar, M. Attention with markov:
A framework for principled analysis of transformers via
markov chains. arXiv preprint arXiv:2402.04161, 2024.

Meyer, C. D. Matrix analysis and applied linear algebra.
SIAM, 2023.

Muller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do bayesian inference. ArXiv,
abs/2112.10510, 2021.

Nichani, E., Damian, A., and Lee, J. D. How transform-
ers learn causal structure with gradient descent. arXiv
preprint arXiv:2402.14735, 2024.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Polyanskiy, Y. and Wu, Y. Information Theory: From Cod-
ing to Learning. Cambridge University Press, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajaraman, N., Jiao, J., and Ramchandran, K. To-
ward a theory of tokenization in llms. arXiv preprint
arXiv:2404.08335, 2024.

Sanford, C., Hsu, D., and Telgarsky, M. Representational
strengths and limitations of transformers. arXiv preprint
arXiv:2306.02896, 2023.

Sheen, H., Chen, S., Wang, T., and Zhou, H. H. Implicit
regularization of gradient flow on one-layer softmax at-
tention. arXiv preprint arXiv:2403.08699, 2024.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and
Kolesnikov, S. In-context reinforcement learning for
variable action spaces. arXiv preprint arXiv:2312.13327,
2023.

Song, J. and Zhong, Y. Uncovering hidden geometry in
transformers via disentangling position and context. arXiv
preprint arXiv:2310.04861, 2023.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak,
S. Transformers as support vector machines. ArXiv,
abs/2308.16898, 2023a.

Tarzanagh, D. A., Li, Y., Zhang, X., and Oymak, S. Max-
margin token selection in attention mechanism. arXiv
preprint arXiv:2306.13596, 2023b.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Thrampoulidis, C. Implicit bias of next-token prediction.
arXiv preprint arXiv:2402.18551, 2024.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Tian, Y., Wang, Y., Chen, B., and Du, S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. arXiv preprint arXiv:2305.16380,
2023a.

Tian, Y., Wang, Y., Zhang, Z., Chen, B., and Du, S. Joma:
Demystifying multilayer transformers via joint dynamics
of mlp and attention. arXiv preprint arXiv:2310.00535,
2023b.

Vasudeva, B., Deora, P., and Thrampoulidis, C. Implicit
bias and fast convergence rates for self-attention. arXiv
preprint arXiv:2402.05738, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. L. How many pretraining tasks are needed for
in-context learning of linear regression? arXiv preprint
arXiv:2310.08391, 2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023a.

Zhang, Y., Liu, B., Cai, Q., Wang, L., and Wang, Z. An
analysis of attention via the lens of exchangeability and
latent variable models. arXiv preprint arXiv:2212.14852,
2022.

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What and how
does in-context learning learn? bayesian model averag-
ing, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., et al.
Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625,
2022.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

A. Organization of The Appendix
The appendices are organized as follows:

• In §B, we provide details omitted from the main text due to space constraints.

• In §C, we present an in-depth discussion on the related works.

• In §D, we discuss the experimental details.

• In §E, we provide explicit expressions for the FFN realizing a low-degree polynomial kernel, and review basics related
to concepts mentioned in the main text.

• In §F, we provide a high-level overview of the proof of our main results.

• In §G, we present the proof for Theorem 3.1.

• In §H, we collect auxiliary results used in the proof of Theorem 3.1.

B. Additional Details for The Main Text
B.1. Table for Training Stages

Stage Block to Train Weights to Train Duration
Stage I FFN, layer 1 {cS}S∈[H]≤D

t1 ≍ (CD(0) logL)/(a(0)∆rIχ2)

Stage II Attention RPE, layer 1 {w(h)}h∈[H] t2 ≍ (L logL)/(a(0)∆rIχ2)
Stage III Attention weight, layer 2 a -

The three-stage training paradigm is presented in the above table. Specifically, we train the FFN layer in the first stage,
then the first attention layer in the second stage, and finally the second attention layer in the last stage. In each stage, the
parameters of other components of the model are frozen.

B.2. Figures for Illustration and Experiment Results

Figure 1. A 2-gram Markov chain with parent set pa = {−1,−3}.

𝑊𝑃
(ℎ)

𝑤−1
ℎ

𝑤−2
ℎ

…

𝑤−𝑀
ℎ

𝑤 (ℎ)

−∞

(a) (b)

Figure 2. Illustration of the relationship between RPE vector w(h) and corresponding matrix W
(h)
P .

Illustration of Figure 4 on the three training stages:

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

(a) (b) (c)

D=2, train separately

𝑤 (1)𝑊𝑃
(1)

Gray represents −∞

𝑐𝒮

𝒮

𝑐𝒮⋆ dominates

Figure 3. Limiting model of TF(M = 3, H = 3, d = 3, D = 2) trained using gradient descent with L = 100, pa = {−1,−2}: (a) The
top left 10 by 10 block of W (1)

P that attends to the −1 parent. (b) The RPE weight heatmap for all 3 heads. (c) One c⋆S dominates. Here,
S⋆ represented by “110” means that S⋆ = {1, 2}, which is the exact parent set.

Stage III: Train 𝑎Stage II: Train 𝑤 (ℎ)Stage I: Train 𝑐𝒮

(a) (b) (c)

D=2, train separately

Beginning EndingEpoch Epoch

Figure 4. Training courses of 3 stages for TF(M = 3, H = 3, d = 3, D = 2) trained with L = 100, pa = {−1,−2}. (a) In Stage I, a
dominating cS⋆ was learned with S⋆ = {1, 2} being the exact parent set. (b) In Stage II, the first two heads were trained to attend to
parents −1 and −2, respectively. (c) In Stage III, the value of a increased monotonically.

• The first stage’s training on FFN is learning a selector that selects an informative set S⋆ by realizing the corresponding
feature embedding through the polynomial kernel. In Figure 4(a), S⋆ = {1, 2}, and cS⋆ immediately dominates within
only a few gradient steps.

• The second stage’s training on the RPE turns the first attention layer into a copier by establishing the correspondence
between the attention heads and the parents in the selected S⋆. In Figure 4(b), the first two heads initialized towards the
first two parents will deterministically copy parent −1 and −2 eventually while the third head is insignificant as 3 /∈ S⋆.
Also see Figure 3-(a) and (b).

• Given that the previous two stages have prepared the feature ψS⋆ defined in (3.3), the last stage enforces the GIH
mechanism by increasing the scalar weight a in the second attention layer, which serves as an exponential kernel
classifier. The two sub-stages with distinct growth rates can be clearly seen from Figure 4(c), where ∂a(t) is initially
large and gradually decays.

B.3. More Details on Layer Normalization

Recall that we have the normalization after the FFN layer as

ul =
ϕ(vl)

CD
.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

To see this, consider a special case where the positional embeddings, after the softmax function, produce attention weights
that are close to one-hot for each head. Then v(h)l in (2.2) is just copying some token in x1:L and since each token has unit
norm,

∏
h∈S⟨v(h), v(h)⟩ = 1 and ∥ϕ(vl)∥2 =

√
CD. Thus, ul is close to the layer normalization ϕ(vl)/∥ϕ(vl)∥2 (without

trainable parameters). Such normalization is for simplifying the analysis and in later experiments in §D, we directly use this
ℓ2 layer normalization.

B.4. Assumptions for The Main Theorem

We introduce the following assumptions for our main theorem. We define the information gap within the D-degree parent
set [H]≤D as ∆rIχ2 = rIχ2(S⋆)−maxS∈[H]≤D\{S⋆} rIχ2(S), where we recall that S⋆ maximizes the modified chi-squared
mutual information as is defined in (3.2).
Assumption B.1 (Initialization). We assume that the following holds at initialization:

1. For the first attention layer’s RPE weights, w(h)
−h ≥ w

(h)
−j +∆w for all h, j ∈ [H] with j ̸= h, where ∆w > 0 is a positive

scalar related to the modified mutual information by

∆w ≥ log(M − 1)− log
[(

1 + ∆rIχ2/(14rIχ2(S⋆))
] 1

2H − 1
)
. (B.1)

2. The scalar parameter a in the second attention layer satisfies 0 < a ≤ O(L−3/2).

The first assumption on the RPE is used to boost the correspondence between parents and heads during the training by
breaking the symmetry between different attention heads. The second assumption on the scale of a ensures that the attention
probability given by the second attention layer is close to the uniform distribution over [L]. This alignment enables us to
derive clean descriptions for the dynamics of the first attention layer and the FFN, shedding light on their respective roles in
executing ICL.

Next, we present our assumptions on the Markov chain in the data generation process. To proceed, we define a drn × drn

transition matrix Pπ for the Markov chain as follows: Each row/column of Pπ is indexed by the value of a length-
rn sequence of tokens Z = (z−rn , . . . , z−1) and each element indexed by tuple (Z ′, Z) is defined as Pπ(Z

′, Z) =
π(z′−1 |Zpa) · 1(Z ′

−rn:−2 = Z−(rn−1):−1). Note that Pπ is a stochastic matrix but with zero entries due to the indicator.
We need the following notion of the primitive matrix to state our assumption on Pπ .
Definition B.2 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive if there exists a
positive integer k such that all entries of P k are positive.

We defer more details about the above definition to §E.2. By the celebrated Perron-Frobenius theorem, if Pπ is primitive,
then (i) there exists a unique stationary distribution for the Markov chain; (ii) Pπ has a unique leading eigenvalue equal to 1,
and the corresponding eigenvector is the stationary distribution. Next, we state the assumptions on the mixture of Markov
chains for data generation.
Assumption B.3 (Markov Chain). For any π ∈ supp(P), we assume that:

1. Pπ is primitive. In particular, we assume that there exists λ < 1 such that the eigenvalue of Pπ with the second largest
magnitude satisfies |λ2(Pπ)| ≤ λ.

2. There exists γ > 0 such that the transition kernel satisfies π(x |Xpa) ≥ γ for any (x,Xpa).

The first assumption guarantees a unique stationary distribution as well as a fast mixing rate of the Markov chain by ensuring
a spectral gap for Pπ . In addition, the second assumption implies a lower bound on the probability for any S ⊆ [M] under
the stationary distribution, i.e., µπ(X−S) ≥ γ|S|.

B.5. Further Discussions on The Main Theorem

On the Modified Mutual Information. Now that we have shown how gradient flow approaches the desired GIH model, it
is then natural to ask what is the optimal subset S⋆ that the model selects and how well the model performs. For the purpose
of illustration, let us consider a special case where the stationary distribution µπ over a length-rn window is uniform over
X rn . One can verify that in this case, the stationary distribution over a window of any other length is uniform as well, and
the modified mutual information can be simplified as

log rIχ2(S) = log Iχ2(S)− |S| log d, (B.2)

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

where Iχ2(S) is the standard chi-squared mutual information between µπ(z |Z−S) and µπ(z), and the second term |S| log d
serves as a penalty on the model complexity. Thus, the GIH mechanism is reaching a balance between the model complexity
and the information richness. Below we characterize two scenarios where the model will select the exact parent set, i.e.,
S⋆ = pa.

1. If n = 1, i.e., each token only has one parent, then S⋆ = pa. This is because S⋆ simultaneously maximizes both terms
in (B.2), thus reproducing the results in (Nichani et al., 2024).

2. If n is known a priori and restricting the polynomial kernel to S ∈ [H]=n = {S ∈ [H] : |S| = n} for the FFN layer,
then S⋆ = pa. Here, the penalty term does not influence the selection and the exact parent set maximizes the mutual
information by the data-processing inequality.

In the general case, however, the model could be much more flexible, and it is possible that the model selects only a subset
of the true parent set or even some non-parent tokens that are also informative. The rationale is that with a more complex
model, e.g., selecting a large S , the model are able to make more accurate predictions for large L but may behave poorly for
small L, as the exact subsequence Xl−S = XL+1−S may appear rarely in the history.

On the Low-Degree Polynomial Kernel. The goal of using a low-degree polynomial kernel in (2.3) is to strike a balance
between model complexity (which is also related to computational cost) and the model’s accuracy. In this regard, we have
the following corollary.

Corollary B.4. |S⋆| ≤ n regardless of the degree D.

The rationale is that any S such that |S| > n has the mutual information no larger than the exact parent set pa, while
incurring a larger penalty on the model complexity. In other words, when D > n, minimizing log rIχ2(S) encourages the
model to become simpler, meanwhile solving the ICL task. Furthermore, if D < n, minimizing the modified chi-squared
mutual information will instead become a constrained optimization problem.

C. Related Works
In Context Learning (ICL). Commercial Large Language Models (LLMs) such as ChatGPT (Brown et al., 2020),
GPT-4 (Achiam et al., 2023), and Gemini (Team et al., 2023) typically operate in an autoregressive manner. These models
exhibit remarkable capabilities in performing reasoning steps based on provided prompts, without requiring further training.
Previous research explores various aspects of the in-context learning (ICL) ability of these models. This includes their
performance in zero-shot and few-shot learning scenarios (Honovich et al., 2022; Wei et al., 2021), the use of the chain of
thought method to enhance reasoning (Wei et al., 2022; Zhou et al., 2022), and learning with multi-modalities (Alayrac
et al., 2022).

Recent works focus on the setting of ICL to develop a theoretical understanding of transformers from different perspectives.
A key perspective is the Bayesian view, which explores how transformers can be understood through the lens of Bayesian
inference (Xie et al., 2021; Muller et al., 2021; Zhang et al., 2022; 2023b; Ahuja et al., 2023; Jeon et al., 2024). Another
significant area of investigation examines how transformers internally execute specific algorithms to solve ICL tasks. This
line of work uncovers the intricate mechanisms through which transformers perform these tasks (Akyürek et al., 2023;
Von Oswald et al., 2023; Bai et al., 2023; Fu et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Giannou et al., 2024).

Furthermore, researchers study the statistical complexities of in-context learning (ICL), focusing on how transformers
manage various statistical challenges (Wu et al., 2023; Cheng et al., 2023; Guo et al., 2023; Collins et al., 2024). There
is also substantial interest in understanding how ICL operates over data drawn from Markov chains, providing insights
into transformer behaviors in these specific data environments (Collins et al., 2024; Edelman et al., 2024; Makkuva et al.,
2024; Chen & Zou, 2024), and with extension to in-context decision making (Lin et al., 2023; Sinii et al., 2023). Moreover,
recent research highlights the properties and advantages of using transformers beyond the traditional ICL setting, thereby
broadening our understanding of their capabilities and applications (Edelman et al., 2022; Li et al., 2023; Jelassi et al., 2022;
Sanford et al., 2023; Giannou et al., 2023; Liu et al., 2022; Tarzanagh et al., 2023a;b; Tian et al., 2023b;a; Song & Zhong,
2023; Deora et al., 2023; Chen & Li, 2024; Rajaraman et al., 2024).

On the other hand, understanding training dynamics from an optimization perspective is crucial for comprehending how
transformers implement the ICL algorithm. The training dynamics for one layer attention are investigated under different
data models for both regression and classification tasks (Zhang et al., 2023a; Huang et al., 2023; Tarzanagh et al., 2023a;b;

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Kim & Suzuki, 2024; Chen et al., 2024; Vasudeva et al., 2024; Li et al., 2024; Thrampoulidis, 2024; Sheen et al., 2024).
These studies offer a thorough characterization of the training process, yet they have limitations — they are not directly
applicable to data drawn from Markov processes and are confined to single-layer attention.

Induction Head. (Elhage et al., 2021) introduces the concept of “induction heads” as the mechanism underlying the
ICL capabilities of transformers. At a high level, the induction head mechanism works by matching the history of the
current token with those have been seen previously in the sequence and then predicting the next token based on the matched
historical sub-sequences. (Olsson et al., 2022) provides empirical evidence highlighting that induction heads are crucial
in facilitating the ICL capabilities of transformers. (Bietti et al., 2024; Edelman et al., 2024) conduct a further empirical
investigation into the development of induction heads specifically tailored for the ICL of bi-gram data models. Also, a wider
range of functionalities exhibited by induction heads that interact with various other mechanisms has been observed by
(Wang et al., 2022). On the theory side, (Nichani et al., 2024) studies the ICL of first-order Markov chains using a two-layer
transformer and demonstrates the formation of the induction head mechanism.

Most related to our work is the recent paper by Nichani et al. (2024), where they analyzed how training by gradient descent
enables a two-layer transformer to learn the latent causal graph underlying the ICL data. In comparison, the analysis in
Nichani et al. (2024) applies to Markov chains where each token has at most one parent, while our setting encompasses
general n-gram Markov chains where each token can have multiple parent tokens. Moreover, our transformer models are
more sophisticated, incorporating features like relative positional embedding, multi-head attention, an FNN layer, and
normalization. Notably, we provide an in-depth dynamics analysis of the corresponding FFN layer and two-layer multi-head
attention.

D. Details of Experiments
In this section, we present the simulation results of TF(M,H, d,D) in (2.5) which performs ICL on the n-gram Markov
chain model introduced in §2.1.

(a) (b) (c)

D=2, train CW together

Train 𝑐𝒮 and 𝑤 (ℎ) together Train 𝑎

Beginning EndingEpoch

Figure 5. The evolution of gradient descent dynamics where we first train the first attention layer and the FFN together and then train
the second attention layer. We plot the evolution of parameter {cS ,S ∈ [H]≤D}, {W (h)

P }h∈[H], and a respectively. Here we train a
transformer TF(M,H, d,D) with M = H = 3, d = 3, and D = 2, the number of input token is L = 100, and Markov chain has parent
set pa = {−1,−2}. (a) A dominating cS⋆ was learned for S⋆ = pa, i.e., the model selects the true parent set. This can be seen by
observing that the line with the label “110” increases to about 1.0 while other lines decrease to nearly zero. (b) The first two attention
heads, corresponding to the first two rows in the plotted matrix, became concentrated on the −1 and −2 parents, respectively. While the
third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top two
diagonal entries after training have larger values than their initial values as well as those of all other entries. (c) The weight of the second
attention layer, a, increased monotonically. In particular, it grew rapidly during the initial steps, and then the growth slowed down.

Data generation. The dataset for the ICL task was generated using n-gram Markov Chains as described in §2.1. We
randomly sampled 10,000 Markov Chains with L = 100 from the prior distribution P; 9,000 were used for training and
1,000 for validation. Each Markov Chain has 2 parents, i.e., |pa| = 2. Each token was embedded to d = 3. The prior

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in TransformersD=2, train CWa together

Beginning Ending

Epoch Epoch

Epoch

(a) (b)

(c) (d)

Figure 6. The evolution of gradient descent dynamics where we train the whole limiting model directly. We plot the training loss,
the evolution of parameter {cS ,S ∈ [H]≤D}, {W (h)

P }h∈[H], and a respectively. Here we train a transformer TF(M,H, d,D) with
M = H = 3, d = 3, and D = 2, the number of input token is L = 100, and Markov chain has parent set pa = {−1,−2}. (a) The
training loss curve of the model. (b) A dominating cS⋆ was learned for S⋆ = pa, i.e., the model selects the true parent set. This can be
seen by observing that the line with the label “110” increases to about 1.0 while other lines decrease to nearly zero. (c) The first two
attention heads, corresponding to the first two rows in the plotted matrix, became concentrated on the −1 and −2 parents, respectively.
While the third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top
two diagonal entries after training have larger values than their initial values as well as those of all other entries. (d) The weight of the
second attention layer, a, increased monotonically. In particular, it grew rapidly during the initial steps, and then the growth slowed down.

distribution P is defined such that each row of the transition matrix of kernel π is independently drawn from a Dirichlet
distribution with parameter α = 0.01, i.e., π(·|xpa(l)) ∼ Dir(α · 1dn).

Model initialization. We configured the model with three heads (H = 3) and window size (M = 3). The relative
position encoding (RPE) weight matrix W (h)

P was initialized such that the (−i)-th diagonal of W (h)
P was set to w(h)

−i for
i = 1, 2, . . . ,M , while all other entries were initialized to −∞. We set w(h) = ρeh, using a large positive value ρ = 3 to
ensure that the h-th head focuses on the −h-th position. For other entries not set to −∞, we assigned a value of 0.01. All
cS were initialized to 0.01. The initial value of a was set to 0.01.

Training settings. The models were trained using gradient descent with the cross-entropy loss function and a constant
learning rate (λ = 1) for all stages. We trained the model in Stage I (cS) for 2000 epochs, in Stage II (w(h)) for 50,000

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

epochs, and in Stage III (a) for 5000 epochs, respectively. The training was performed at a low degree (D = 2). All
experiments were conducted using a single Nvidia A100 GPU.

Upon convergence, the weights of the trained disentangled transformers exhibited consistent structures, as shown in Figure 3.
Specifically, cS⋆ dominated the ratio of c2S⋆/

∑
S∈[H]≤D

c2S . Furthermore, heads w(1) and w(2) converged to the relative
positions of the Markov parents.

In addition to separately training the first attention layer and the FFN (Figure 4), we demonstrate that these two components
can be trained together, as illustrated in Figure 5. We remark that the learning behavior of the model under these two distinct
paradigms is similar.

D.1. Additional Experiments
D=2, train Full model together

Beginning Ending

EpochEpoch

(a) (b)

(c) (d)

Epoch

Figure 7. The evolution of gradient descent dynamics where we directly train the modified full model. We plot the training loss, evolution
of parameter {cS ,S ∈ [H]≤D}, {W (h)

P }h∈[H], and a respectively. Here we train a transformer TF(M,H, d,D) with M = H = 3,
d = 3, and D = 2, the number of input token is L = 100, and Markov chain has parent set pa = {−1,−2}. (a) The training loss of
the model. (b) A relatively dominating cS⋆ was learned for S⋆ = pa, i.e., the model selects the true parent set. This can be seen by
observing that the line with the label “110” increases to above 0.6 while other lines decrease to nearly zero. (c) The first two attention
heads, corresponding to the first two rows in the plotted matrix, became concentrated on the −1 and −2 parents, respectively. While the
third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top two
diagonal entries after training have larger values than their initial values as well as those of all other entries. (d) The weight of the second
attention layer, a, increased monotonically. In particular, it grew rapidly during initial steps, and then the growth slowed down.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Previously, we show the simulation results on the simplified model in §D. Now we demonstrate additional experiments on
the full model as follows.

First Attention: rV (h) = σ
(

rXW
(h)
QK

rX⊤ +W
(h)
P

)
rXW

(h)
OV

⊤
∈ R(L+1)×d

Concat & Norm: V = LN
(
[rV (1), . . . , rV (H), rX]

)
∈ R(L+1)×(H+1)d

Feed Forward: rU = ϕ(V) ∈ R(L+1)×de

Concat & Norm: rX ′ = LN([rU, V]) ∈ R(L+1)×((H+1)d+de)

Second Attention: Y = σ
(

rX ′WQK
rX ′⊤)

rX ′W⊤
OV ∈ R(L+1)×d

For the second attention layer, we only use the last row y = YL+1 as the output. Here, LN denotes the ℓ2 layer normalization
without trainable parameters. For head h of the first attention layer, W (h)

P is the relative positional embedding matrix, W (h)
QK

and W (h)
OV are the weight matrices for the query-key, value, and output projections, respectively; ϕ : R(H+1)d → Rde is a

feed-forward network; and finally, WQK and WOV are the query-key matrix and output projection matrix for the second
attention layer. In comparison to the simplified model in (2.5), here we incorporate all query, key, and output projections
as in a standard transformer architecture. Also, we replace the normalization by a

√
CD factor with the usual ℓ2 layer

normalization, though they have similar functionality.

Our training setup is similar to that in §D. We used the same dataset and training settings (except the number of training
epochs).

We initially attempted to train the full model directly, but this approach was ineffective. Consequently, we adopted an
alternative strategy. Specifically, for the first layer, we used all components of the full model together except for the
query-key projection weight W (h)

QK . For the second layer, we utilized a simplified version similar to the one with polynomial
kernel weights, but we incorporated an additional ReLU operation to avoid negative values for each product due to the use
of value and output projection W (h)

OV . Both W (h)
QK and W (h)

QK were initialized as identity matrices scaled by 0.001. Unlike
the simplified model, we initialized the RPE vector w(h) deterministically as w(h) = ρeh with ρ = 10. We trained the
full model with all parameters together for 50,000 epochs. As illustrated in Figure 7, the full model converged to a state
comparable to our simplified model.

E. Additional Background and Discussions
E.1. Feed-Forward Network for Polynomial Kernel

Lemma E.1. Recall that we define the feed-forward network (FFN) in (2.3), which maps a vector in z ∈ RdH to a vector in
Rde . We write z as (z(1), . . . , z(H)) where z(h) ∈ Rd for all h ∈ [H]. Then we can explicitly write ϕ(·) by letting

ϕ
(
(z(1), . . . , z(H))

)
=

(
cS ·

∏
h∈S

z
(h)
ih

: {ih}h∈S ⊆ [d],S ∈ [H]≤D

)
. (E.1)

In particular, for each S ∈ [H]≤D, we enumerate ih ∈ [d] for all h ∈ S. Therefore, the output dimension of ϕ is given by

de =
∑

S∈[H]≤D

d|S|. (E.2)

Proof. First, we note that the indices of ϕ(·) have a grouped structure — we first enumerate all subsets in [H]≤D and then
enumerate all monomials with superscripts in S. Since there are d|S| monomials, the output dimension is given by (E.2).

It remains to verify (2.3) with ϕ(·) defined in (E.1). To this end, we note that for any u, v ∈ RdH and any S ∈ [H]≤D, we
have ∑

ih∈[d],h∈S

{∏
h∈S

u
(h)
ih

· v(h)ih

}
=
∏
h∈S

(∑
ih∈[d]

u
(h)
ih

· v(h)ih

)
=
∏
h∈S

⟨u(h), v(h)⟩,

which directly implies (2.3). Therefore, we conclude the proof of this lemma.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

E.2. Perron-Frobenius Theorem

Next, we review the basics for the celebrated Perron-Frobenius theorem on non-negative matrices (Meyer, 2023, Chapter 7).
We consider the following class of irreducible matrix.

Definition E.2 (Irreducible Matrix). A nonnegative square matrix P ∈ Rd×d
+ is called irreducible if the induced directed

graph G is strongly connected, i.e., there always exists a directed path that connects any two given nodes within the graph.
Here, the induced graph G is defined on d nodes with adjacent matrix A given by Aij = 1(Pij ̸= 0).

In particular, if P is a stochastic matrix that corresponds to a d-state Markov chain, then starting from any state, we can
reach any other state with positive probability in a finite number of steps. The irreducibility property also has an equivalent
definition in the matrix form. That is, for any permutation matrix T , TPT−1 cannot be written as a upper triangular block
matrix with the following form [

M1 M2

0 M3

]
.

In other words, an irreducible matrix does not have a nontrivial absorbing subspace that aligns with the standard basis.

In our study, we require more than the irreducibility property from the transition matrix Pπ defined in §3.2. In fact, we
need the existence of a unique stationary distribution (which is not guaranteed by the irreducibility) so that the chain has a
sufficiently fast mixing rate, which enables us to learn with a finite sequence length L. To achieve that, one typically needs
the second largest magnitude of the eigenvalues of Pπ, which we denote by λ, to be bounded below from 1, which is the
leading eigenvalue of the transition matrix. The difference 1− λ is also referred to as the spectral gap. It is well-known that
if Pπ is has all positive entries, then it is irreducible and there is only one leading eigenvalue on the spectral circle with the
corresponding eigenvector given by the chain’s stationary distribution µπ. The other eigenvalues have magnitude strictly
less than 1. However, for our case, the transition matrix Pπ has zero entries by definition. Fortunately, the nice property on
the existence of spectral gap can be generalized to a class called primitive matrix.

Definition E.3 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive if there exists an
integer k such that P k has all positive entries.

By definition of the primitive matrix, one can immediately see that for any k′ > k, P k′

π will have all positive entries. The
following is the celebrated Perron-Frobenius theorem that characterizes the spectral structure of the primitive matrices.

Theorem E.4 (Perron-Frobenius Theorem for Primitive Matrices). Let P be a primitive matrix. Then the following
statements hold:

1. The leading eigenvalue of P is real and positive, and it is the unique eigenvalue with the largest magnitude. In
particular, if P is a stochastic matrix, then the leading eigenvalue is 1.

2. The leading eigenvector of P is positive and unique up to a scaling factor. In particular, if P is a stochastic matrix,
then the leading eigenvector is the stationary distribution of the Markov chain with transition kernel P .

E.3. Sequential CE Loss

We define the sequential CE loss as

Lseq(ftf) =

L∑
l=1

−Eπ∼P,X

[
log
(
ftf(xl+1 |x1:l) + ϵ

)]
.

One can equivalently view this sequential CE loss as a mixing of the CE loss defined in (2.1) with different sequence length.
Note that by Assumption B.3, the chain is sufficiently mixed for large L and changing the sequence length does not influence
the stationary distribution. Intuitively, this means that if we pick another large L′ different from L and look back at all
the history up to L′, the history will be very similar to that at L in distribution. In fact, the gradient on the transformer
weights will converge fast (as long as we have spectral gap in the transition matrix Pπ) to a limiting value independent of L.
Suppose the mixing time is L0 ≪ L. Then, for l = L0, . . . , L, our analysis still holds, and for l < L0, it suffices to sacrifice
an additional L0/L = o(1) error. In the proof, however, we only consider the last token’s CE loss in (2.1) to simplify the
analysis.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

E.4. Standard Chi-squared Divergence and Mutual Information

The chi-squared divergence (or chi-squared distance) between two probability distributions P andQ over the same probability
space is defined as:

Dχ2(P∥Q) =
∑
x

(P (x)−Q(x))2

Q(x)
,

where the summation is taken over all elements x in the sample space where Q(x) > 0. The chi-squared mutual information
between two random variables X and Y with joint distribution PXY and marginal distributions PX and PY is defined as:

Iχ2(X;Y) = Dχ2(PXY ∥PX ⊗ PY) =
∑
y

Dχ2(PX |Y (· | y)∥PX(·))PY (y).

where PX ⊗ PY is the product of the marginals, meaning (PX ⊗ PY)(x, y) = PX(x)PY (y). For a Markov chain
X → Y → Z, the chi-squared mutual information satisfies the data processing inequality

Iχ2(X;Z) ≤ Iχ2(Y ;Z),

which follows from the observation that chi-squared divergence is also an f -divergence.

F. Proof Sketch
In this section, we discuss the main ingredients of analysis of gradient flow. First, we show in §F.1 how to simplify the
model based on our choice of the initialization and the structure of the disentangled transformer. We then proceed to present
the main proof ideas for the three stages of the gradient flow dynamics in Appendices F.2 to F.4. At a high level, the gradient
flow dynamics can be decomposed into three stages, which feature one of the following behaviors respectively.

• Stage I: A unique S⋆ ∈ [H]≤D stands out such that the associated parameter cS⋆ dominates those of the other sets. As
a result, p∗S(t) = c2S∗(t)/CD(t) approaches to one.

• Stage II: For each h ∈ S⋆, σ(w(h)) approaches a one-hot vector eM+1−h ∈ RM , where w(h) contains the parameters
of RPE of the h-th head. During this stage, each head concentrates on copying a particular parent.

• Stage III: Finally, a grows and reaches O(logL). In this case, the learned model approximately implements the GIH
mechanism GIH(x1:L;M,D, τ) with τ = +∞.

F.1. Simplification of the Transformer Model at Initialization

In the following, we simplify the expression of the transformer model under Assumption B.1 for initialization. Specifically,
we will show that the attention scores of the second attention layer admit a simpler form.

For the second attention layer, we write the output as y⊤ = σ(a · s⊤)X where s := u⊤L+1Mask(U
⊤
1:L) is the vector of

similarity scores. Recall from (2.5) that U = ϕ(V)/
√
CD. Hence, the l-th row of U is given by ul = ϕ(vl)/

√
CD. For

l =M + 1, . . . , L, the l-th entry of s is given by

sl = ⟨ul, uL+1⟩ = ⟨ϕ(vl), ϕ(vL+1)⟩/CD,

and the other entries are all −∞. From (2.3) we have

sl =

∑
S∈[H]≤D

c2S ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩∑

S∈[H]≤D
c2S

, for l =M + 1, . . . , L. (F.1)

Note that under Assumption B.1, by the definition of ∆w in (B.1), we have w(h)
−h ≫ w

(h)
−j for j ̸= h at initialization. Thus,

the output of the first attention layer satisfies

v
(h)
l =

M∑
k=1

exp(w
(h)
−k)∑M

j=1 exp(w
(h)
−j)

· xl−k ≈ xl−h, for l =M + 1, . . . , L.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Here we use the fact that ∆w is sufficiently large, which makes the softmax function collapse to a one-hot vector
approximately. This further implies that for l =M + 1, . . . , L, we have∏

h∈S

⟨v(h)l , v
(h)
L+1⟩ ≈ 1{xl−i = xL+1−i for i ∈ S}, (F.2)

which is a binary value indicating whether the query and the key token’s history match on the subset S. Combining (F.1)
and (F.2), we obtain the following simplified expression for sl:

sl ≈
∑

S∈[H]≤D
c2S · 1{xl−i = xL+1−i for i ∈ S}∑

S∈[H]≤D
c2S

=
∑

S∈[H]≤D

pS · 1{xl−i = xL+1−i for i ∈ S},

where we denote pS = c2S/
∑

S∈[H]≤D
c2S for S ∈ [H]≤D.

In summary, when ∆w is sufficiently large, v(h)l approximately copies the token xl−h. As a result, the attention score sl
satisfies

sl ≈
∑

S∈[H]≤D

pS · 1{xl−i = xL+1−i for i ∈ S}.

F.2. Stage I: Optimal Subset Selection

In the first stage, we track the dynamics of c2S(t) for each S ∈ [H]≤D. For convenience, we drop the dependence on
t in the sequel. Recall the transformer output is y = (σ(a · s⊤)X)⊤ and the cross-entropy loss function is L(Θ) =
−Eπ∼P,x1:L

[ℓ(Θ)], where ℓ(Θ) can be written as ℓ(Θ) = ⟨xL+1, log(y + ε1)⟩ . By direct calculation, we have

∂ℓ

∂sl
= a · σl(a · s⊤)

(
xL+1

y + ε1

)⊤

(xl − y) , (F.3)

where xL+1/(y + ε1) is obtained by element-wise division and σl(·) denotes the l-th entry of the softmax function.
Furthermore, by the expression of sl in (F.1), we have

∂sl
∂cS

=
2cS

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩∑

S′∈[H]≤D
c2S′

− 2cSsl∑
S′∈[H]≤D

c2S′
, for each S ∈ [H]≤D. (F.4)

By applying the chain rule and combining (F.3) and (F.4), we get

∂t log c
2
S =

2

cS
∂tcS = − 2

cS

∂L
∂cS

= − 2

cS

L∑
l=M+1

E
[
∂ℓ

∂sl

∂sl
∂cS

]

=
4a∑

S′∈[H]≤D
c2S′

L∑
l=M+1

E
[
σl(a · s⊤)

(∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ − sl

)(
xL+1

y + ε1

)⊤

(xl − y)

]
.

Note that CD =
∑

S′∈[H]≤D
c2S′ . Also note that y is a vector in Rd. We let y(k) denote the k-th entry of y for all k ∈ [d].

Now utilizing the approximation in (F.2) and expanding (xL+1/(y + ϵ1))⊤(xl − y), the above dynamics can be further
simplified as

∂t log c
2
S ≈ 4a

CD

L∑
l=M+1

E

[
σl(as

⊤)

(∏
h∈S

1{xl−i = xL+1−i} − sl

)(∑
k∈[d]

1(xL+1 = xl = ek)

y(k) + ε
− 1

)]

≈ 4a

(L−M)CD

L∑
l=M+1

E

[(∏
h∈S

1{xl−i = xL+1−i}
)(∑

k∈[d]

1(xL+1 = xl = ek)

y(k) + ε
− 1

)]

+
4a

(L−M)CD

L∑
l=M+1

E

[
sl ·
(∑

k∈[d]

1(xL+1 = xl = ek)

y(k) + ε
− 1

)]
︸ ︷︷ ︸

f(t)

(F.5)

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

where in the first line we use the fact that both xL+1 and xl are one-hot vectors and that ϵ is small, and the second
approximation is due to the fact that σl(as⊤) ≈ 1/(L−M) when a is small. We will prove that the first term in the resulting
approximation can be further approximated using the modified chi-squared mutual information rIχ2(S) when L is large,
which is introduced in ??.

Therefore, it follows from (F.5) that

∂t log c
2
S(t) ≈

4a

CD(t)
rIχ2(S)− f(t). (F.6)

Since the value of f(t) is independent of the specific choice of set S, it is clear that the set S achieving the fastest growth
rate is the information-optimal set S∗ which maximizes the modified chi-square mutual information within [H]≤D, i.e.,

S⋆ = argmax
S∈[H]≤D

rIχ2(S).

Correspondingly, by normalization, we have pS⋆ goes to one at t increases. To determine the growth rate of pS⋆ , we first note
that CD(t) ≡ CD(0) due to the normalization (see Lemma G.1). Combining this fact with the definition pS⋆ = cS⋆/CD,
we can derive a lower bound for the growth rate of pS⋆(t) from the dynamics of log c2S(t) in (F.6):

∂t log(1− pS⋆) ≤ −Ω

(
a ·∆rIχ2

CD(0)

)
, where ∆rIχ2 = min

S∈[H]≤D\{S⋆}
Iχ2(S⋆)− Iχ2(S).

Thus, the error 1− pS⋆ will decay to zero exponentially fast.

F.3. Stage II: Convergence of σ(w(h)) to One-Hot Vector

As we proceed to the second stage after pS⋆ approaches one, we will prove how σ(w(h)) converges to a one-hot vector
eM+1−h for each h ∈ S⋆. Recall that we denote X = (x1, . . . , xL) ∈ RL×d. For notational convenience, we denote
σ(h) := σ(w(h)) and let X(l−M):(l−1) ∈ RM×d denote the submatrix of X with rows l−M, . . . , l− 1 for any l. Recall that

sl =

∑
S∈[H]≤D

c2S ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩∑

S∈[H]≤D
c2S

To begin with, by chain rule, differentiating sl with respect to w(h)
−i yields

∂sl

∂w
(h)
−i

=
∑

S∈[H]≤D

pS · ∂

∂w
(h)
−i

∏
h′∈S

⟨v(h
′)

l , v
(h′)
L+1⟩

=
∑

S∈[H]≤D

s.t h∈S

pS · ∂

∂w
(h)
−i

∏
h′∈S

⟨v(h
′)

l , v
(h′)
L+1⟩

=
∑

S∈[H]≤D

s.t h∈S

pS ·
(∏

h′∈S,h′ ̸=h

⟨v(h
′)

l , v
(h′)
L+1⟩

)
·
∂⟨v(h)l , v

(h)
L+1⟩

∂w
(h)
−i

=
∑

S∈[H]≤D

s.t h∈S

pS
∏
h′∈S
h′ ̸=h

⟨v(h
′)

l , v
(h′)
L+1⟩b

⊤
l (eM+1−i − (σ(h))⊤)σ

(h)
−i , (F.7)

where the second equality is because if h /∈ S , then
∏

h′∈S⟨v
(h′)
l , v

(h′)
L+1⟩ does not depend on w(h); for the third equality, we

define bl := X(l−M):(l−1)v
(h)
L+1 +X(L+1−M):Lv

(h)
l+1 and and σ(h) = (σ

(h)
−M , . . . , σ

(h)
−1) ∈ R1×M to simplify the notation.

Moreover, here the outer summation indicates summation over all subsets in [H]≤D containing h. Then, similar to the

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

derivation of ∂t log c2S(t), it follows from direct calculation that

∂tw
(h)
−h − ∂tw

(h)
−i =

L∑
l=M+1

E
[
∂ℓ

∂sl

(
∂sl

∂w
(h)
−h

− ∂sl

∂w
(h)
−i

)]

= a

L∑
l=M+1

E
[
σl(as

⊤)
∑
k∈[d]

1(xL+1 = ek) · (1(xl = ek)− y(k))

y(k) + ε

(
∂sl

∂w
(h)
−h

− ∂sl

∂w
(h)
−i

)]
. (F.8)

Furthermore, to simplify the notation, we define

gh :=

L∑
l=1

∑
S∈[H]≤D

s.t h∈S

pS · E
[
σl(as

⊤)
∑
k∈[d]

1(xL+1 = ek) · (1(xl = ek)− y(k))

y(k) + ε

∏
h′∈S
h′ ̸=h

⟨v(h
′)

l , v
(h′)
L+1⟩bl

]
.

Here, we absorb the inner product
∏

h′∈S,h′ ̸=h⟨v
(h′)
l , v

(h′)
L+1⟩ into the definition of gh. Combining (F.7), (F.8), and the

definition of gh, we have

∂tw
(h)
−h − ∂tw

(h)
−i (F.9)

= a · g⊤h
(
σ
(h)
−i (eM+1−h − eM+1−i) +

(
σ
(h)
−h − σ

(h)
−i

)∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)

)
,

We again apply the approximation in (F.2) and replace the sum over l by the expectation over the stationary distribution of
the Markov chain (which is valid because L is large), which yields

gh ≈ E
[
(Zx−h +Xz−h) ·

∏
h′∈S⋆\{h}

1(z−h′ = x−h′) ·
(∑

k∈[d]

1(z = x = ek)

µπ(ek)
− 1

)]
∈ RM , (F.10)

where (Z, z) and (X,x) are independent samples from µπ, the stationary distribution of the Markov chain over a window
of size M + 1. To simplify the notation, we treat Z and X as matrices, denoted by Z = [z−M , . . . , z−1]

⊤ ∈ RM×d and
X = [x−M , . . . , x−1]

⊤ ∈ RM×d. Here, each row in Z and X corresponds to a vector sampled from µπ, representing the
state of the Markov chain at different time steps within the window.

Next, we derive the lower bound of the g⊤h (eM+1−h − eM+1−i) for all i ̸= h in (F.9). By (F.10), we have g⊤h eM+1−h ≈
rIχ2(S⋆). It further follows from the Cauchy-Schwarz inequality that

g⊤h eM+1−i ≈ E
[
1(x−i = z−h)

∏
h′∈S⋆\{h}

1(x−h′ = z−h′)

(∑
k∈[d]

1(x = z = ek)

y(k)
− 1

)]

≤
rIχ2(S⋆) + rIχ2((S⋆\{h}) ∪ {i})

2
≤ rIχ2(S⋆)− 1

2
·∆rIχ2 .

Here recall that we define ∆rIχ2 = rIχ2(S⋆)−maxS∈[H]≤D\{S⋆} rIχ2(S), which is the gap between the information-optimal
set S∗ and any other subset of [H]≤D in terms of the modified chi-squared mutual information. Plugging this back to the
gradient difference, we conclude that

∂t log
σ
(h)
−h

σ
(h)
−i

= ∂tw
(h)
−h − ∂tw

(h)
−i ≥

aσ
(h)
−i

2
·∆rIχ2 ≥

aσ
(h)
−h(0) · exp(−(w

(h)
−h − w

(h)
−i))

2
·∆rIχ2 ·

Thus, so long as σ(h)
−h > σ

(h)
−i when the second stage starts, w(h)

−h will thereafter grow faster than w(h)
−i and σ(w(h)) will

converge to a one-hot vector e−h. The convergence rate is given by

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2 ≤ 2|S⋆| · (M − 1)

a(0) ·∆rIχ2 · σmin(0) · t2/2 + exp(∆w) + (M − 1)
∧ 1,

where σmin(0) := minh∈S⋆ σ
(h)
−h(0).

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

F.4. Stage III: Growth of a

In the last stage, we turn to the training of a given that σ(w(h)) has converged to one-hot vectors for all h ∈ S⋆. The
following approximation of the dynamics of a(t) is performed in the region a ≤ O(logL), where the signal term in the
dynamics dominates the approximation error.

After Stages I and II, the output is approximated as y(k) ≈ y⋆(k) :=
∑L

l=1 σ
⋆
l 1(xl = ek), where we define

σ⋆
l =

exp
(
a ·
∏

h∈S⋆ 1(xl−h = xL+1−h)
)∑L

l′=M+1 exp
(
a ·
∏

h∈S⋆ 1(xl′−h = xL+1−h)
) ,

By approximating the empirical distribution y⋆(k) with the population distribution rµπ(ek|X−S⋆), the gradient on a is given
by

∂ta(t) ≈ Eπ∼P,(x,X,rz, rZ)∼qπ

[
1(X−S⋆ = rZ−S⋆) ·

(∑
k∈[d]

1(x = rz = ek)

rµπ(ek |X−S⋆)
− 1

)]
,

where the underlying joint distribution of (x,X, rz, rZ) is given by

qπ = µπ(x,X−S⋆) · rµπ(rz, rZ−S⋆ |X−S⋆),

and rµπ(rZ |X) is defined as

rµπ(rz, rZ |X) ∝ µπ(z, Z) · exp
(
a · 1(X−S⋆ = rZ−S⋆)

)
.

As a result, the gradient on a can be rewritten as

∂ta(t) ≈ Eπ∼P,(x,X−S⋆)∼µπ

∑
k∈[d]

µπ(x = ek |X−S⋆)2

rµπ(rz = ek |X−S⋆)
− 1


rµπ(rZ−S⋆ = X−S⋆ |X−S⋆)

 (F.11)

As we consider the cases where a is sufficiently small or large, the lower and upper bounds of (F.11) can be derived
respectively. For small values of a, it undergoes super-exponential growth until it reaches a critical “elbow” time, e−a(0) ·
Eπ∼P

[∑
XS⋆

Dχ2(µπ(· |X−S⋆), |, µπ(·))µπ(X−S⋆)2
]−1

. For large values of a, it grows logarithmically until it reaches
Ω(logL).

G. Dynamics Analysis
Additional Notation. To simplify the notation, we ignore the Mask in the simplified model (2.5) and let the index l runs
from 1 to L. If the out of range issue occurs, e.g., we have xl−M for l ≤M , we can safely treat those out-of-range tokens as
zero vectors. In a summation with respect to l for l ∈ [L], the total number of the occurrence of the out-of-range issues is no
larger than O(M). Thus, as long as L≫M , it just gives an O(M/L) additional error term, which does not influence our
results. Recall the error ∆1(t1) and ∆2(t2) defined in Theorem 3.1. We further denote by ∆1 the value of ∆1(t1) at the end
of Stage 1. And ∆2 is defined similarly.

G.1. Analysis for Stage I

In this section, we analyze the dynamics of the parameter {c2S}S∈[H]≤D
in the first stage of training. We will show that there

is a unique S∗ such that c2S⋆ dominates all the other c2S at the end of the first stage. Additionally, we will characterize how
fast this happens and provide a corresponding convergence rate.

Proof Strategy. At a high level, the strategy is to analyze ∂t log c2S⋆ − ∂t log c
2
S > 0 for all S ≠ S⋆ via the following

steps:

1. Dynamics Calculation. First, we calculate the dynamics of log c2S for a fixed S . By selecting sufficiently small values
for a and ε, and leveraging the mixing properties of the Markov chain with large L, the dynamics of log c2S can be
approximated using the modified mutual information rIχ2(S).

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

2. Lower Bound for The Growth Rate. Consequently, we are able to lower bound ∂t log c2S⋆ − ∂t log c
2
S in terms of

∆rIχ2 , the gap between the modified mutual information of S⋆ and the second-best set.

3. Convergence. Finally, we derive the convergence using the derived lower bound on ∂t log c2S⋆ − ∂t log c
2
S .

The detailed proof is provided below.

G.1.1. CALCULATION OF THE DYNAMICS OF log c2S

Recall that our simplified model is given by

y = (σ(a · s⊤)X)⊤ =

L∑
l=1

σl(a · s⊤) · xl, where sl =

∑
S∈[H]≤D

c2S ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩∑

S∈[H]≤D
c2S

.

The loss function can be rewritten as

L = −E[ℓ], where ℓ = ⟨xL+1, log(y + ε1)⟩ .

Here the expectation E is taken over both the sequence (x1, . . . , xL+1) and the Markov kernel π ∼ P .

In the sequel, we first consider a fixed S ∈ [H]≤D and derive the dynamics of c2S . We abbreviate σ ≡ σ(as⊤) for
convenience. By direct calculation, we have

∂y

∂σ
= X⊤,

∂σ

∂sl
= a · σl

(
a · s⊤

)
· (e⊤l − σ),

∂sl
∂cS

=
2cS

∏
h∈S⟨v

(h)
l , v

(h)
L+1⟩∑

S′∈[H]≤D
c2S′

− 2cSsl∑
S′∈[H]≤D

c2S′
.

Then applying the chain rule, we can calculate ∂ℓ/∂sl as follows

∂ℓ

∂sl
=
∂ℓ

∂y

∂y

∂σ

∂σ

∂sl
= a

(
xL+1

y + ε1

)⊤

(xl − y) · σl
(
a · s⊤

)
.

Further using the chain rule ∂ℓ/∂cS =
∑L

l=1 ∂ℓ/∂sl · ∂sl/∂cS and the gradient flow formula that ∂tc2S = −2cS · ∂L/∂cS ,
we obtain the following dynamics for c2S

∂tc
2
S =

4ac2S∑
S′∈[H]≤D

c2S′

L∑
l=1

E

[
σl
(
a · s⊤

)
·
(
xL+1

y + ε1

)⊤

(xl − y) ·

(∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ − sl

)]
.

Recall the notations CD :=
∑

S∈[H]≤D
c2S and pS := c2S/

∑
S′∈[H]≤D

c2S′ . In the following, we consider a fixed π for error
analysis and take expectation over π again when plugging in everything back into the dynamics. As a result, E means the
expectation of the sequence X for a fixed π if it is not specified. To simplify the expression of ∂tc2S , we define quantities
g0,S and f as

g0,S :=

L∑
l=1

E

σl (a · s⊤)·∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

,
f :=

L∑
l=1

E

σl (a · s⊤)·∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·sl

 .
(G.1)

Based on the definition, we can rewrite the dynamics as follows:

∂t log c
2
S =

4a

CD
· Eπ∼P [g0,S − f]. (G.2)

One can notice that CD does not change during the train as described in Lemma G.1 and f does not depend on S .

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

G.1.2. PRESERVATION OF CD ALONG THE GRADIENT FLOW

Lemma G.1. The quantity CD =
∑

S∈[H]≤D
c2S is preserved under the dynamics, i.e., ∂tCD ≡ 0.

Proof of Lemma G.1. Plugging the definition of g0,S and f into the dynamics of c2S , we have

∂tc
2
S = Eπ∼P [4a · pS(g0,S − f)].

Then, we can derive the dynamics of CD in the following.

∂tCD =
∑

S∈[H]≤D

∂tc
2
S = 4a · Eπ∼P

 ∑
S∈[H]≤D

pSg0,S − f

 = 0,

where pS := c2S/
∑

S′∈[H]≤D
c2S′ . Thus, the quantity CD is preserved under the dynamics.

G.1.3. APPROXIMATION OF g0,S

For the analysis of the dynamics of c2S , we need to understand the quantities g0,S and f . To approximiate g0,S , we introduce
the following quantities:

g1,S :=
1

L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
, (G.3)

g2,S :=
1

L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
, (G.4)

g3,S := E(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨v(h)(Z), v(h)(X)⟩,
]
, (G.5)

where Z = (z−M , . . . , z−1) is independent of X = (x−M , . . . , x−1) and we define v(h)(X) :=
∑

ih∈[M] σ
(h)
−ih

x−ih ,

v(h)(Z) :=
∑

ih∈[M] σ
(h)
−ih

z−ih , and sy :=
∑L

l=1 xl/L. Recall that the modified chi-squared mutual information is

rIχ2(S) = Eπ∼P,(z,Z)∼µπ

[(∑
e∈X

µπ(z = e |Z−S)
2

µπ(z = e)
− 1

)
µπ(Z−S)

]
.

In the following, we draw a connection between g0,S and the modified chi-squared mutual information. Specifically, we
demonstrate that max {|g0,S − g1,S |, |g1,S − g2,S |, |g2,S − g3,S |} ≤ O(1/

√
L(1− λ)µπ

min), provided that a and ε are
sufficiently small. This holds under Assumption B.1, alongside the property that the Markov chain sequence over a window
mixes as L increases.

Closeness between g0,S and g1,S . Let us first consider the approximation of g0,S by g1,S . If we select a to be sufficiently
small, the attention scores of the second layer approach uniformity, meaning σl(a · s⊤) ≈ 1/L. Hence, it follows from
Lemma H.2 that

|g0,S − g1,S | ≤
8ad

ε2
.

Closeness between g1,S and g2,S . For the approximation of g1,S by g2,S , we leverage the approximation sy(k) ≈ µπ(ek)
for large L. The result in Lemma H.3 implies that

|g1,S − g2,S | ≤ 2 ·

√
EX

[
Dχ2(π(· |Xpa(L+1)) ∥µπ(·)) + 1

]
·
(
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) · µπ
min

+
rn

Lµπ
min

)
+

rn
Lµπ

min

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)µπ
min

+
ε

µπ
min

,

≤ O

(
1 + ε√

L(1− λ)µπ
min

+
ε

µπ
min

)
.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Closeness between g2,S and g3,S . Finally, we approximate g2,S by g3,S owing to the mixing property of the Markov
chain. Lemma H.4 states that

|g2,S − g3,S | ≤

(
4(M ∨ rn)

L
+

4
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)

)
≤ O

(
1

L(1− λ)

)
.

Combining the above results, and letting a = a(0) ≤ O(1/L3/2) , ε = 1/
√
L, we obtain

|g0,S − g3,S | ≤ O

(
1√

L(1− λ)µπ
min

)
.

Then, the dyanmics of c2S in (G.2) can be approximated as follows

∂t log c
2
S =

4a

CD
· Eπ∼P

(
g3,S − f ±O

(
1√

L(1− λ)µπ
min

))
. (G.6)

Connection between Eπ∼P [g3,S] and rIχ2(S). For the next step, we establish the connection between Eπ∼P [g3,S] and
the modified chi-squared mutual information rIχ2(S). It follows from Lemma H.5 that Eπ∼P [g3,S] can be approximated as
follows: ∣∣∣∣∣Eπ∼P [g3,S]−

∏
h∈S

(σ
(h)
−h)

2 · Iχ2(S)

∣∣∣∣∣ ≤
(
1−

∏
h∈S

(σ
(h)
−h)

2

)
Iχ2(S⋆). (G.7)

G.1.4. LOWER BOUND FOR THE DIFFERENCE ∂t log c
2
S⋆ − ∂t log c

2
S

Then, by (G.6) and (G.7), the difference between the dynamics of c2S and c2S⋆ can be lower bounded by

∂t log c
2
S⋆ − ∂t log c

2
S

= Eπ∼P

[
4a

CD
· (g3,S⋆ − g3,S)±O

(
a√

L(1− λ)µπ
min

)]

≥ 4a

CD

(∏
h∈S⋆

(σ
(h)
−h)

2 · rIχ2(S⋆)−
∏
h∈S

(σ
(h)
−h)

2 · rIχ2(S)−

(
2−

∏
h∈S⋆

(σ
(h)
−h)

2 −
∏
h∈S

(σ
(h)
−h)

2

)
rIχ2(S⋆)

)

−O

(
a√

L(1− λ)γ

)
,

where the inequality follows from the assumption that π(· |Xpa) > γ uniformly. This can be further lower bounded as
follows:

∂t log c
2
S⋆ − ∂t log c

2
S

≥ 4a

CD

((
2
∏
h∈S⋆

(σ
(h)
−h)

2 +
∏
h∈S

(σ
(h)
−h)

2

)
rIχ2(S⋆)−

∏
h∈S

(σ
(h)
−h)

2
rIχ2(S)− 2rIχ2(S⋆)

)
− err.

≥ 4a

CD

(
2
∏
h∈S⋆

(σ
(h)
−h)

2 · rIχ2(S⋆) +
∏
h∈S

(σ
(h)
−h)

2 ·∆rIχ2 − 2rIχ2(S⋆)

)
− err.

≥ 4a

CD

2
∏

h∈[H]

(σ
(h)
−h)

2 · rIχ2(S⋆) +
∏

h∈[H]

(σ
(h)
−h)

2 ·∆rIχ2 − 2rIχ2(S⋆)

− err, (G.8)

where we define ∆rIχ2 = minS∈[H]≤D\{S⋆} rIχ2(S⋆)−rIχ2(S) and err := O
(
a/
√
L(1− λ)γ

)
. Here, the second inequality

follows form the definition of ∆rIχ2 , and the last inequality follows by replacing
∏

h∈S(σ
(h)
−h)

2 with
∏

h∈[H](σ
(h)
−h)

2.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

G.1.5. EXPONENTIAL GROWTH OF c2S⋆

In the following, we show that the first term in (G.8) dominates the err term and leads to the exponential growth of c2S⋆ .

Note that by Assumption B.1, it holds that w(h)
−h ≥ w

(h)
−j +∆w for all j ̸= h, and h ∈ [H], where

∆w ≥ log (M − 1)− log

((
1 + ∆rIχ2/(14rIχ2(S⋆))

) 1
2H − 1

)
,

Since we have dominant w(h)
−h ≫ w

(h)
−j at initialization,

∏
h∈[H](σ

(h)
−h)

2 is sufficiently large. More precisely, we can check

that
∏

h∈[H](σ
(h)
−h)

2 ≥ (2rIχ2(S⋆) + 2
3∆

rIχ2)/(2rIχ2(S⋆) + ∆rIχ2), which yields

2
∏

h∈[H]

(σ
(h)
−h)

2 · rIχ2(S⋆) +
∏

h∈[H]

(σ
(h)
−h)

2 ·∆rIχ2 − 2rIχ2(S⋆) ≥ 2

3
∆rIχ2 . (G.9)

By (G.8), and (G.9), we conclude that

∂t log c
2
S⋆ − ∂t log c

2
S ≥

a∆rIχ2

2CD
.

It implies that c2S⋆ grows exponentially fast, dominating all the other c2S at the end of the first stage. Consequently, pS⋆

converges to 1.

G.1.6. CONVERGENCE OF p2S⋆

Now, let us derive the convergence rate of pS⋆ . Since for all S ≠ S⋆, ∂t
(
c2S/c

2
S⋆

)
< 0, it holds that ∂t

(
logCD/c

2
S⋆

)
=

∂t

(
log
∑

S∈[H]≤D
c2S/c

2
S⋆

)
< 0. Together with Lemma G.1, we have ∂t log c2S⋆ > 0. Furthermore,

∂t

(
log

∑
S∈[H]≤D\S⋆ c2S

c2S⋆

)
=

c2S⋆

CD − c2S⋆

∑
S∈[H]≤D\{S⋆}

∂t

(
c2S
c2S⋆

)

=
c2S⋆

CD − c2S⋆

∑
S∈[H]≤D\{S⋆}

c2S
c2S⋆

∂t log

(
c2S
c2S⋆

)

=
∑

S∈[H]≤D\{S⋆}

c2S
CD − c2S⋆

∂t log
c2S
c2S⋆

≤
∑

S∈[H]≤D\{S⋆}

c2S
CD − c2S⋆

·
(
−
a∆rIχ2

2CD

)
= −

a∆rIχ2

2CD
.

Then, we can derive the convergence rate of pS⋆ as follows:

∂t log(1− pS⋆) = ∂t log

(∑
S∈[H]≤D\S⋆ c2S

CD

)
≤ −

a∆rIχ2

2CD
.

Applying the Grönwall’s inequality, we have

1− pS⋆(t) ≤ (1− pS⋆(0)) · exp
(
−
a∆rIχ2

2CD
· t
)
. (G.10)

G.2. Analysis for Stage II

In this section, we provide the analysis of the dynamics of σ(h) ≡ σ(w(h)) for h ∈ S⋆. For h /∈ S⋆, it follows from the
results in Stage I that the dynamics of w(h)

−h exponentially decay to zero. Conversely, for h ∈ S⋆, we establish the dominance

of w(h)
−h over w(h)

−i for all i ̸= h, yielding σ(h)
−h → 1 as t→ ∞, along with the corresponding convergence rate.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Proof Strategy. Similar to the proof of Stage I, our analysis characterizes the difference dynamics, ∂tw
(h)
−h − ∂tw

(h)
−i for

all i ̸= h, via the following steps:

1. Dynamics Calculation. We initiate the analysis by deriving the dynamics of w(h)
−i for fixed index i and h.

2. Dynamics Approximation Subsequently, we approximate the dynamics in terms of the modified chi-squared mutual
information rIχ2(S⋆), considering sufficiently small a, ε, and large L.

3. Lower Bound for The Growth Rate By comparing the corresponding modified chi-squared mutual information, we
establish a lower bound for the difference dynamics.

4. Convergence. Finally, we derive the convergence rate of σ(h)
−h to 1 as t→ ∞ from the obtained lower bound.

Now we are ready to provide the proof of Stage II.

G.2.1. CALCULATION OF THE DYNAMICS OF ∂tw
(h)

For convenience, we recall the following notations:

sl =
∑

S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩, pS =

c2S∑
S∈[H]≤D

c2S
, v

(h)
l =

∑
i∈[M]

σ
(h)
−i xl−i = σ(h)Xl−M :l−1,

where Xl−M :l−1 ∈ RM×d is the submatrix of X with rows l −M, . . . , l − 1 and σ(h) = (σ
(h)
−M , . . . , σ

(h)
−1) ∈ R1×M . The

gradients are given by

∂v
(h)
l

∂σ(h)
= X⊤

l−M :l−1,
∂σ(h)

∂w(h)
= diag(σ(h))− (σ(h))⊤σ(h),

∂v
(h)
l

∂w(h)
= X⊤

l−M :l−1

(
diag(σ(h))− (σ(h))⊤σ(h)

)
,

∂sl

∂v
(h)
l

=
∑

S∈[H]≤D

s.t h∈S

pS ·
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩v

(h)
L+1,

∂sl

∂v
(h)
L+1

=
∑

S∈[H]≤D

s.t h∈S

pS ·
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩v

(h)
l ,

∂ℓ

∂sl
= a

(
xL+1

y + ε1

)⊤

(xl − y) · σl (a · s) .

To simplify the notation, we define bl := X(l−M):(l−1)(v
(h)
L+1) +X(L+1−M):L(v

(h)
l+1) ∈ RM . By the chain rule, we have

∂sl

∂w
(h)
−i

=
∂sl

∂v
(h)
l

⊤ ∂v
(h)
l

∂w
(h)
−i

+
∂sl

∂v
(h)
L+1

⊤ ∂v
(h)
L+1

∂w
(h)
−i

=
∑

S∈[H]≤D

s.t h∈S

pS ·
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · b

⊤
l

(
eM+1−i − (σ(h))⊤

)
· σ(h)

−i ,

where we note that ei ∈ RM is the i-th standard basis vector. To proceed, we define the quantity gh,0 as follows:

gh,0 :=

L∑
l=1

∑
S∈[H]≤D

s.t h∈S

pS · E
[
σl (a · s)

∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)

·
∏

h′∈S\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · bl

]
.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

By the gradients and the definition of gh,0, the gradient flow dynamics of w(h)
−i is given by

∂tw
(h)
−i = −

L∑
l=1

∂L
∂sl

∂sl

∂w
(h)
−i

= a ·
L∑

l=1

E

[
σl (a · s)

(
xL+1

y + ε1

)⊤

(xl − y) · ∂sl

∂w
(h)
−i

]

= a ·
L∑

l=1

E

σl (a · s) · ∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
· ∂sl

∂w
(h)
−i


= a · Eπ∼P

[
g⊤h,0

(
σ
(h)
−i

(
eM+1−i − (σ(h))⊤

))]
,

The difference of the dynamics of w(h)
−h and w(h)

−i can be written as

∂tw
(h)
−h − ∂tw

(h)
−i

= a ·
L∑

l=1

E

σl (a · s) · ∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·

(
∂sl

∂w
(h)
−h

− ∂sl

∂w
(h)
−i

) .
= a · Eπ∼P

g⊤h,0
σ(h)

−i (eM+1−h − eM+1−i) +
(
σ
(h)
−h − σ

(h)
−i

)∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)

 . (G.11)

G.2.2. APPROXIMATION OF gh,0

To further analyze the dynamics of w(h)
−h − w

(h)
−i , we define the following quantities that are used for approximating gh,0.

gh,1 :=

L∑
l=1

E

σl (a · s)∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · bl


gh,2 :=

1

L

L∑
l=1

E

∑
k∈[d]

(
1(xL+1 = xl = ek)

sy(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · bl


gh,3 :=

1

L

L∑
l=1

E

∑
k∈[d]

(
1(xL+1 = xl = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)

l , v
(h′)
L+1⟩ · bl


gh,4 := E(x,X),(z,Z)∼µπ⊗µπ

∑
k∈[d]

(
1(x = z = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · b(X,Z)

 ,
where Z = [z−M , . . . , z−1]

⊤ ∈ RM×d is an independent copy of the data X = [x−M , . . . , x−1]
⊤ ∈ RM×d within a M +1

size window and

v(h)(X) :=
∑

ih∈[M]

σ
(h)
−ih

x−ih , v(h)(Z) :=
∑

ih∈[M]

σ
(h)
−ih

z−ih ,

b(X,Z) := Z(v(h)(X)) +X(v(h)(Z)), sy :=
1

L

L∑
l=1

xl.

To simplify the notation, we treat X and Z as matrices, where each row in Z and X reflects a vector sampled from µπ,
indicating the state of the Markov chain at different steps within the window.

One can observe from (G.11) that the lower bounded of g⊤h,0 (eM+1−h − eM+1−i) for all i ̸= h is required to show

∂tw
(h)
−h − ∂tw

(h)
−i > 0. To achieve this, we first approximate g⊤h,0 (eM+1−h − eM+1−i) by g⊤h,4 (eM+1−h − eM+1−i),

similar to our approach in Stage I.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Closeness between gh,0 and gh,1. Due to the rapid exponential dominance of pS⋆ from Stage I, the coefficients pS for S ≠

S⋆ in gh,0 are negligible. Moreover, note that b⊤l (eM+1−h − eM+1−i) = ⟨v(h)L+1, xl−h−xl−i⟩−⟨v(h)l , xL+1−h−xL+1−i⟩.
By similar argument in (G.17), we have∣∣(gh,0 − gh,1)

⊤ (eM+1−h − eM+1−i)
∣∣ ≲ (1− pS⋆)=:∆1

for all i ̸= h. Given (1 − pS⋆(t)) ≤ exp
(
−at∆rIχ2/(2CD)

)
from (G.10), we consider t ≳ log(L logL)/(a∆rIχ2) to

ensure that ∆1 ≤ O (1/(L logL)) .

Closeness between gh,1 and gh,2. Next, since a is chosen to be a sufficiently small value, we have σl(a · s⊤) ≈ 1/L, and
g⊤h,1 (eM+1−h − eM+1−i) can be approximated by g⊤h,2 (eM+1−h − eM+1−i). By Lemma H.2, it holds that

∣∣(gh,1 − gh,2)
⊤ (eM+1−h − eM+1−i)

∣∣ ≲ ad

ε2
.

Closeness between gh,2 and gh,3. In addition, as sy(k) ≈ µπ(ek), for large L, we can approximate
g⊤h,2 (eM+1−h − eM+1−i) by g⊤h,3 (eM+1−h − eM+1−i). More precisely, it follows from Lemma H.3 that∣∣(gh,2 − gh,3)

⊤ (eM+1−h − eM+1−i)
∣∣

≲

√
EX

[
Dχ2(π(· |Xpa(L+1)) ∥µπ(·)) + 1

]
·
(
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) · µπ
min

+
rn

Lµπ
min

)
+

rn
Lµπ

min

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)µπ
min

+
ε

µπ
min

.

Closeness between gh,3 and gh,4. Finally, the mixing of the Markov chain implies the approximation of
g⊤h,3 (eM+1−h − eM+1−i) by g⊤h,4 (eM+1−h − eM+1−i). This is described in Lemma H.4, which states

∣∣(gh,3 − gh,4)
⊤ (eM+1−h − eM+1−i)

∣∣ ≲ (M ∨ rn)
L

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
.

Combining the above results and setting ε = 1/
√
L, and a = a(0) ≤ O(1/L3/2), we obtain

∣∣(gh,0 − gh,4)
⊤ (eM+1−h − eM+1−i)

∣∣ ≤ O

(
1√

L(1− λ)µπ
min

)
.

G.2.3. LOWER BOUND FOR THE DIFFERENCE ∂tw
(h)
−h − ∂tw

(h)
−i

Then, we can rewrite (G.11) as

∂tw
(h)
−h − ∂tw

(h)
−i

= a · Eπ∼P

g⊤h,0
σ(h)

−i (eM+1−h − eM+1−i) +
(
σ
(h)
−h − σ

(h)
−i

)∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)


≥ a · Eπ∼P

g⊤h,4
σ(h)

−i (eM+1−h − eM+1−i) +
(
σ
(h)
−h − σ

(h)
−i

)∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)


−O

(
a√

L(1− λ)γ

)
. (G.12)

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

To show ∂tw
(h)
−h − ∂tw

(h)
−i > 0, we derive the lower bound of Eπ∼P

[
g⊤h,4 (eM+1−h − eM+1−i)

]
for any i ̸= h. Since

(x,X) and (z, Z) are independent and identically distributed, by the definition of b(X,Z), it can be written as

Eπ∼P
[
g⊤h,4 (eM+1−h − eM+1−i)

]
= 2Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
k∈[d]

(
1(x = z = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), Z−h⟩
]

− 2Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
k∈[d]

(
1(x = z = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), Z−i⟩
]

= 2τh,1 − 2τh,2,

where we define

τh,1 :=Eπ,(x,X),(z,Z)∼µπ⊗µπ

∑
k∈[d]

(
1(x = z = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), Z−h⟩

 ,
τh,2 :=Eπ,(x,X),(z,Z)∼µπ⊗µπ

∑
k∈[d]

(
1(x = z = ek)

µπ(ek)
− 1

)
·
∏

h′∈S⋆\{h}

⟨v(h
′)(Z), v(h

′)(X)⟩ · ⟨v(h)(X), Z−i⟩

 .
Hence, it suffices to analyze the difference between τh,1 and τh,2. Drawing on similar reasoning as in the proof of
Lemma H.5, we can approximate τh,1 and τh,2 as follows:∣∣∣∣∣∣τh,1 −

∏
h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h · rIχ2(S⋆)

∣∣∣∣∣∣ ≤
1−

∏
h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h

 rIχ2(S⋆).

∣∣∣∣∣∣τh,2 −
∏

h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h · ψ

∣∣∣∣∣∣ ≤
1−

∏
h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h

 rIχ2(S⋆),

where

ψ := Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∏
h′∈S⋆\{h}

1(x−h′ = z−h′)1(x−h = z−i)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]
.

To establish the lower bound for τh,1 − τh,2, let’s begin by finding an upper bound for ψ, which is approximately equal to
τh,2. We consider the two cases: i ∈ S⋆ and i /∈ S⋆. If i /∈ S⋆, we invoke Lemma H.6 with S = S⋆ and S ′ = S⋆\{h}∪{i}.
Then,

ψ =
1

2
rIχ2(S⋆)− 1

2
rIχ2((S⋆\{h}) ∪ {i}) ≤ rIχ2(S⋆)− 1

2
·∆rIχ2 .

On the other hand, if i ∈ S⋆, we apply Lemma H.7 with S = S⋆\{h} and S ′ = S⋆ and obtain

ψ <
1

2
rIχ2(S⋆)− 1

2
rIχ2((S⋆\{h})) ≤ rIχ2(S⋆)− 1

2
·∆rIχ2 .

In both cases, we have the same upper bound for ψ. Thus,

2τh,1 − 2τh,2 ≥
∏

h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h ·∆rIχ2 − 4

1−
∏

h′∈S⋆\{h}

(σ
(h′)
−h′)

2 · σ(h)
−h

 rIχ2(S⋆)

≥
∏

h∈[H]

(σ
(h)
−h)

2 ·∆rIχ2 − 4

1−
∏

h∈[H]

(σ
(h)
−h)

2

 rIχ2(S⋆). (G.13)

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Note that it follows from Assumption B.1, that∏
h∈[H]

(σ
(h)
−h)

2 ≥
4rIχ2(S⋆) + 2

3∆
rIχ2

4rIχ2(S⋆) + ∆rIχ2

. (G.14)

Consequently, by (G.13) and (G.14), it holds that

2τh,1 − 2τh,2 ≥ 2

3
∆rIχ2 . (G.15)

Together with (G.12) and (G.15) implies that ∂tw
(h)
−h − ∂tw

(h)
−i > 0 for all i ̸= h and w(h)

−h will grow faster than w(h)
−i for all

i ̸= h if h ∈ S⋆.

G.2.4. CONVERGENCE OF σ(h)

Next, we characterize the convergence rate of σ(h). Since ∂tσ
(h)
−h > 0 for all h ∈ S⋆, the lower bound for σ(h)

−i is given by

σ
(h)
−i ≥ σ

(h)
−h · exp(−(w

(h)
−h − w

(h)
−i)) ≥ σ

(h)
−h(0) · exp(−(w

(h)
−h − w

(h)
−i)). (G.16)

Then, by (G.12), (G.15) and (G.16), the following lower bound is obtained.

∂tw
(h)
−h − ∂tw

(h)
−i

≥ a · Eπ∼P

g⊤h,4
σ(h)

−i (eM+1−h − eM+1−i) +
(
σ
(h)
−h − σ

(h)
−i

)∑
j ̸=h

σ
(h)
−j (eM+1−h − eM+1−j)


−O

(
a√

L(1− λ)γ

)

≥ a · Eπ∼P

[
σ
(h)
−i g

⊤
h,4 (eM+1−h − eM+1−i)

]
−O

(
a√

L(1− λ)γ

)

≥
a∆rIχ2

2
· σ(h)

−h(0) · exp(−(w
(h)
−h − w

(h)
−i)).

Rearranging the terms, the dynamics of w(h)
−h − w

(h)
−i can be characterized as follows:

∂t exp(w
(h)
−h − w

(h)
−i) ≥

a∆rIχ2 · σ(h)
−h(0)

2
> 0,

exp(w
(h)
−h(t)− w

(h)
−i (t)) ≥

a∆rIχ2 · σ(h)
−h(0)

2
· t+ exp(∆w),

where we use the assumption that w(h)
−h(0)−w

(h)
−i (0) ≥ ∆w. As a result, during the Stage II, σ(h) becomes a hot one vector

eM+1−h and the following upper bound goes to zero as t goes to infinity.

1−
∏
h∈S⋆

(σ
(h)
−h(t))

2 ≤ 1−

(
1

1 + (M − 1) · (a∆rIχ2 · σmin(0) · t/2 + exp(∆w))−1

)2|S⋆|

= 1−

(
1−

(M − 1) · (a∆rIχ2 · σmin(0) · t/2 + exp(∆w))−1

1 + (M − 1) · (a∆rIχ2 · σmin(0) · t/2 + exp(∆w))−1

)2|S⋆|

≤
2|S⋆| · (M − 1) · (a∆rIχ2 · σmin(0) · t/2 + exp(∆w))−1

1 + (M − 1) · (a∆rIχ2 · σmin(0) · t/2 + exp(∆w))−1

≤ 2|S⋆| · (M − 1)

a∆rIχ2 · σmin(0) · t/2 + exp(∆w) + (M − 1)
,

where we define σmin(0) := minh∈S⋆ σ
(h)
−h(0) use the inequality (1− x)n ≥ 1− nx for x ∈ [0, 1/n] and n ≥ 1.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

G.3. Proof of Stage III

Additional Notation. For a set S ⊆ [M], we let Xl−S denote the set of tokens {Xl−s|s ∈ S}. If l = 0, we will ignore l
in the subscript and simply use X−S .

In this section, we derive the dynamics of the second layer’s weights a in Stage III. We characterize the dynamics of a when
a < O(logL), where the signal term of the dynamics dominates the approximation error. We provide the growth rate of the
weights for two regimes: when a is either sufficiently small or large.

Proof Strategy. We analyze the dynamics of a via the following steps:

1. Dynamics Calculation. First, we derive the dynamics of a.

2. Dynamics Approximation. We approximate the dynamics by exploiting the mixing properties of the Markov chain
and the convergence of the weights from Stage I and II.

3. Lower and Upper Bound for The Growth Rate. Finally, we establish the upper and lower bounds for the growth rate
of the dynamics of a when a is either sufficiently small or large.

G.3.1. CALCULATION OF THE DYNAMICS OF a

Let us consider the time-derivative of a at Stage III. By taking the gradient through the softmax operation, we have

∂tℓ

∂(asl)
=

(
xL+1

y + ε1

)⊤

(xl − y) · σl
(
a · s⊤

)
.

Therefore,

∂ta = E

[
L∑

l=1

(
xL+1

y + ε1

)⊤

(xl − y) · σl
(
a · s⊤

)
· sl

]

= E

 ∑
S∈[H]≤D

pS ·
L∑

l=1

σl ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

 .
Here, y =

∑L
l=1 σlxl is the predicted output, which is a vector function of (xL+1, X). Also, we abbreviate σl(a · s⊤) as σl

and denote by σ the vector (σ1, . . . , σL)⊤. We denote the above quantity by f0.

G.3.2. APPROXIMATION OF ∂ta

Approximation of f0 by f1. Our first step is to remove the summation over [H]≤D\{S⋆} where S⋆ is the optimal set that
maximizes the modified mutual information defined in (??) and cS⋆ dominates according to the training of Stage I. To this
end, we define f1 as

f1 :=E

 L∑
l=1

σl ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

 .
It follows that

|f0 − f1| ≤ 2(1− pS⋆)=: 2∆1.

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Here, the inequality holds by noting that for any S ∈ [H]≤D,∣∣∣∣∣∣
L∑

l=1

σl ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

y(k) + ε
− y(k)1(xL+1 = ek)

y(k) + ε

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
k∈[d]

L∑
l=1

σl ·
1(xL+1 = xl = ek)

y(k) + ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈[d]

L∑
l=1

σl ·
y(k)1(xL+1 = ek)

y(k) + ε

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
k∈[d]

L∑
l=1

σl ·
1(xl = ek)

y(k) + ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈[d]

L∑
l=1

σl ·
y(k)

y(k) + ε

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
∑
k∈[d]

y(k)

y(k) + ε

∣∣∣∣∣∣ ≤ 2. (G.17)

In summary, the difference between f0 and f1 is controlled by the convergence results from Stage I.

Approximation of f1 by f2. Next, we use the results from Stage II to control the difference between
∏

h∈S⋆⟨v(h)l , v
(h)
L+1⟩

and
∏

h∈S⋆ 1(xl−h = xL+1−h) as∣∣∣∣∣ ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣ ≤ 1−
∏
h∈S⋆

(σ
(h)
−h)

2 :=∆2.

Note that these two error terms also influence our definition of f1 through σl as the second layer’s softmax score is given by

sl = a ·
∑

S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩.

Let us define s⋆l = 1h∈S⋆ 1(xl−h = xL+1−h). Then, we have

|sl − s⋆l | ≤ ∆1 +∆2, ∀l ∈ [L].

To proceed, we define σ⋆
l as

σ⋆
l =

exp
(
a ·
∏

h∈S⋆ 1(xl−h = xL+1−h)
)∑L

l′=1 exp
(
a ·
∏

h∈S⋆ 1(xl′−h = xL+1−h)
) ,

and define y⋆(k) =
∑L

l=1 σ
⋆
l 1(xl = ek). As a result, by Lemma 5.1 of Chen et al. (2022),∥∥∥∥log σ⋆

l

σl

∥∥∥∥
∞

≤ 2a · ∥s− s⋆∥∞ ≤ 2a · (∆1 +∆2),

∥σ − σ⋆∥1 ≤ 4a · ∥s− s⋆∥∞ ≤ 4a · (∆1 +∆2),

∥y⋆ − y∥1 ≤ ∥σ − σ⋆∥1 ≤ 4a · (∆1 +∆2).

To this end, we also define

f2 = E

 L∑
l=1

σ⋆
l ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

 .
The approximation error is then given by

|f1 − f2| ≤ err1 + err2 + err3,

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

where the three error terms are give respectively by

err1 :=

∣∣∣∣∣∣E
 L∑

l=1

σl ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)

·

(∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

1(xl−h = xL+1−h)

)]∣∣∣∣∣ ,
err2 :=

∣∣∣∣∣∣E
 L∑

l=1

(σ⋆
l − σl)·

∑
k∈[d]

(
1(xL+1 = xl = ek)

y⋆(k) + ε
− y⋆(k)1(xL+1 = ek)

y⋆(k) + ε

)
·
∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣∣ ,
err3 :=

∣∣∣∣∣∣E
 L∑

l=1

σl ·
∑
k∈[d]

(
1

y⋆(k) + ε
− 1

y(k) + ε

)
· 1(xL+1 = xl = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
 L∑

l=1

σl ·
∑
k∈[d]

(
y⋆(k)

y⋆(k) + ε
− y(k)

y(k) + ε

)
· 1(xL+1 = ek)·

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣∣ .
It then holds that

err1 + err2 + err3 ≤ ε−1 (∆2 + 4a(∆1 +∆2)) +
∑
k∈[d]

|y⋆(k)− y(k)|y(k)
(y⋆(k) + ε)(y(k) + ε)

· (1 + ε)

≤ ε−1 (∆2 + 4a(∆1 +∆2) + 4a · (∆1 +∆2) · (1 + ε))

= O(ε−1(1 + a)(∆1 +∆2)).

In summary, this error terms captures the difference between the ideal weights and the actual converging weights from Stage
II.

Approximation of f2 by f3. Next, we approximate f2 by f3 where we replace y⋆ =
∑L

l=1 σ
⋆
l xl by its population

counterpart

rµπ
X(z, Z) =

µπ(z, Z) exp
(
a ·
∏

h∈S⋆ 1(z−h = xL+1−h)
)∑

z,Z µ
π(z, Z) exp

(
a ·
∏

h∈S⋆ 1(z−h = xL+1−h)
) ,

where Z = (z−M , . . . , z−1) and µπ(z, Z) is the joint distribution of a length-(M + 1) window of the Markov chain. We
denote by rµπ

X(ek) = rµπ
X(z = ek) where rµπ

X(z) is the marginal distribution for z. We define f3 as

f3 :=E

 L∑
l=1

σ⋆
l ·
∑
k∈[d]

(
1(xL+1 = xl = ek)

rµπ
X(ek)

− 1(xL+1 = ek)

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

 .
One can immediately draw a connection to Lemma H.3 as both targets characterize the gap between the empirical and
population distributions. The only difference is that this time we have the distribution reweighted by some exponential term.
For completeness, we provide the following lemma.

Lemma G.2. The difference between f2 and f3 is bounded by

|f2 − f3| ≲
γ−1

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
+
dε

γ
,

where ≲ hides some universal constant.

Proof of Lemma G.2. The proof follows the same arguments as Lemma H.3. We use y⋆X(k) in place of yX(k) to remind the

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

reader that y⋆(k) is also a function of the whole chain. We note that

|f3 − f2| =
∣∣∣∣E[L∑

l=1

σ⋆
l

(∑
k∈[d]

1(xL+1 = xl = ek)

y⋆X(k) + ε
−
∑
k∈[d]

1(xL+1 = xl = ek)

rµπ
X(ek)

−
∑
k∈[d]

y⋆X(k)1(xL+1 = ek)

y⋆X(k) + ε
+ 1

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣
=

∣∣∣∣E[L∑
l=1

σ⋆
l

(∑
k∈[d]

(
rµπ
X(ek)− y⋆X(k)

(y⋆X(k) + ε)rµπ
X(ek)

− ε

(y⋆X(k) + ε)rµπ
X(ek)

)
· 1(xL+1 = xl = ek)

−
∑
k∈[d]

ε1(xL+1 = ek)

y⋆X(k) + ε

)
·
∏
h∈S⋆

1(xl−h = xL+1−h)

]∣∣∣∣.
We also define three error terms as

err1 :=

∣∣∣∣∣∣E
∑
k∈[d]

rµπ
X(ek)− y⋆X(k)

(y⋆X(k) + ε)rµπ
X(ek)

·
L∑

l=1

σ⋆
l 1(xL+1 = xl = ek) ·

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣∣ ,
err2 :=

∣∣∣∣∣∣E
∑
k∈[d]

ε

(y⋆X(k) + ε)rµπ
X(ek)

·
L∑

l=1

σ⋆
l 1(xL+1 = xl = ek) ·

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣∣ ,
err3 :=

∣∣∣∣∣∣E
∑
k∈[d]

ε

y⋆X(k) + ε
· 1(xL+1 = ek) ·

L∑
l=1

σ⋆
l

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣∣ .
For the first error term, we have have that

err1 ≤ E

∑
k∈[d]

|rµπ
X(ek)− y⋆X(k)|
(y⋆X(k) + ε)

·
L∑

l=1

σ⋆
l 1(xl = ek)

rµπ
X(ek)


= E

∑
k∈[d]

|rµπ
X(ek)− y⋆X(k)|
(y⋆X(k) + ε)

· y
⋆
X(k)

rµπ
X(ek)


≤ γ−1 · E

∑
k∈[d]

|rµπ
X(ek)− y⋆X(k)|

 ,
where we recall that by assumption, γ provides a lower bound for π(· |Xpa), hence also lower bound for rµπ

X(ek). The
following proposition provides a bound for the 1-norm of the difference between the empirical and population distributions.

Proposition G.3. It holds that

EX [∥rµπ
X(ek)− y⋆X(k)∥1] ≲

2

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
.

Hence, we control the first error term.

For the second error term, we follow the same procedure and obtain an upper bound as

err2 ≤ E

∑
k∈[d]

ε

rµπ
X(ek)

·
L∑

l=1

σ⋆
l 1(xl = ek)

(y⋆X(k) + ε)

 ≤ γ−1dε.

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

For the last error term, it holds that

err3 ≤ E

∑
k∈[d]

ε

y⋆X(k) + ε
· 1(xL+1 = ek)


≤

∣∣∣∣∣∣E
∑
k∈[d]

ε1(xL+1 = ek)

rµπ
X(ek) + ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈[d]

E
[
ε(y⋆X(k)− rµπ

X(ek)) · 1(xL+1 = ek)

(rµπ
X(ek) + ε)(y⋆X(k) + ε)

]∣∣∣∣∣∣
≤ ε

γ + ε
+ E

∑
k∈[d]

|y⋆X(k)− rµπ
X(ek)|

γ + ε

 .
We further have the last term controlled by the upper bound in Proposition G.3.

In summary, the difference between f2 and f3 is bounded by

|f2 − f3| ≤ err1 + err2 + err3

≲
γ−1

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
+
dε

γ
,

which completes our proof.

Approximation of f3 by f4. Note that in the expression for f3, we still have σ⋆
l that implicitly depends on the whole

sequence. We define f4 by replacing σ⋆
l by its population counterpart σ⋆(Xl−S⋆) which is defined as

σ⋆(Xl−S⋆) :=
µπ(Xl−S⋆) exp(a ·

∏
h∈S⋆ 1(Xl−h = XL+1−h))∑

X′
l−S⋆

µπ(X ′
l−S⋆) exp(a ·

∏
h∈S⋆ 1(X ′

l−h = XL+1−h))
.

And we define f4 as

f4 :=E(z,Z)∼rµπ
X ,X

∑
k∈[d]

(
1(xL+1 = z = ek)

rµπ
X(ek)

− 1(xL+1 = ek)

)
·
∏
h∈S⋆

1(zl−h = xL+1−h)

 .
We only need to characterize the difference between σ⋆

l and σ⋆(Xl−S⋆). We have the following proposition.

Lemma G.4. The difference between f3 and f4 is bounded by

|f3 − f4| ≲
2γ−1

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
.

Proof of Lemma G.4. We follow the same notation as in the proof of Proposition G.3 and let

R(Z−S⋆ , XL+1−S⋆) = exp

(
a ·

∏
h∈S⋆

1(Z−h = XL+1−h)

)

For Z = (z−M , . . . , z−1) and Z ′ = (z′−M , . . . , z
′
−1), we let Z−S⋆ = (z−h)h∈S⋆ . We note that

L∑
l=1

σ⋆
l 1(xl = z,Xl−S⋆ = Z−S⋆) =

pµπ
X(z, Z−S⋆)R(Z−S⋆ , X−S⋆)

pΦ
,

rµπ
X(z, Z−S⋆) =

µπ(z, Z−S⋆)R(Z−S⋆ , X−S⋆)

Φ
.

We further define

ϕ(z, Z−S⋆) = µπ(z, Z−S⋆)R(Z−S⋆ , X−S⋆), pϕ(z, Z−S⋆) = pµπ
X(z, Z−S⋆)R(Z−S⋆ , X−S⋆).

35

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Therefore, the difference of f3 and f4 is given by

|f3 − f4| ≤ γ−1 · EX

 ∑
z,Z−S⋆

∣∣∣∣∣ϕ(z, Z−S⋆)

Φ
−

pϕ(z, Z−S⋆)

pΦ

∣∣∣∣∣
 .

Following the same procedure of (H.14) and (H.15) in the proof of Proposition G.3, we have

∑
z,Z−S⋆

∣∣∣∣∣ϕ(z, Z−S⋆)

Φ
−

pϕ(z, Z−S⋆)

pΦ

∣∣∣∣∣ ≤ 2 ·
∑

z,Z−S⋆

|µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆)|

+ 2 ·
∑

z |µπ(z,X−S⋆)− pµπ
X(z,X−S⋆)|

µπ(Z−S⋆)
. (G.18)

The second term of the right-hand side of (G.18) has an upper bound

2

minE µπ(Z−S⋆ = E)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L

as we have established in (H.16), (H.17), and (H.18). For the first term, we have by the Cauchy-Schwarz inequality that

EX

[∑
z

|µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆)|

]

≤

√√√√√EX

 ∑
z,Z−S⋆

(µπ(z, Z−S⋆)− pµπ
X(z, Z−S⋆))2

µπ(z, Z−S⋆)


≤ 1√

mine,E µπ(z = e, Z−S⋆ = E)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
,

where Lemma H.10 is used in the last inequality.

Approximation of f4 by f5. Now that we have z, Z distributed according rµπ
X , which depends only on XL+1−S⋆ .

In the sequel, we abbreviate (xL+1, XL+1−S⋆) as (x,X−S⋆) where X−S⋆ = (x−h)h∈S⋆ . The joint distribution for
(x,X−S⋆ , z, Z−S⋆) is given by

rpπ(x,X−S⋆ , z, Z−S⋆) = pπL+1(x,X−S⋆) · rµπ(z, Z−S⋆ |X−S⋆),

where we use rµπ(z, Z−S⋆ |X−S⋆) to replace rµπ
X(z, Z−S⋆) for a clearer notation of the dependency. Here, pπL+1 is the

distribution for (xL+1, XL+1−S⋆) and rµπ(·) is defined as

rµπ(z, Z−S⋆ |X−S⋆) =
µπ(z, Z−S⋆) exp

(
a ·
∏

h∈S⋆ 1(z−h = x−h)
)∑

z,Z−S⋆
µπ(z, Z−S⋆) exp

(
a ·
∏

h∈S⋆ 1(z−h = x−h)
) .

For our convenience, we define

qπ = µπ(x,X−S⋆) · rµπ(z, Z−S⋆ |X−S⋆),

and let

f5 = E(x,X−S⋆ ,z,Z−S⋆)∼qπ

∑
k∈[d]

(
1(x = z = ek)

rµπ(ek |X−S⋆)
− 1(x = ek)

)
·
∏
h∈S⋆

1(z−h = x−h)

 .
36

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

One can rewrite f5 as

f5 = E(x,X−S⋆)∼µπ

[∑
k∈[d]

µπ(x = ek |X−S⋆)rµπ(z = ek, Z−S⋆ = X−S⋆ |X−S⋆)

rµπ(z = ek |X−S⋆)

− rµπ(Z−S⋆ = X−S⋆ |X−S⋆)

]
.

And f4 is given by replacing the distribution of (x,X−S⋆) by pπL+1 in f5. The difference between f4 and f5 is thus bounded
by the results in (H.11) of Lemma H.8:

|f4 − f5| ≤
∥∥µπ(x,X−S⋆)− pπL+1(x,X−S⋆)

∥∥
1
≤ λL−M

√
Dχ2(µ0 ∥µπ) + 1.

Collecting all the approximation results, we have

|f0 − f5| ≲ ∆1 + ε−1(1 + a)(∆1 +∆2) + λL−M
√
Dχ2(µ0 ∥µπ) + 1

+
γ−1

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
+
dε

γ
.

Here, we split the error into two parts where the first part is constant error and the second part is the error that also depends
on a:

ξ = ∆1 + λL−M
√
Dχ2(µ0 ∥µπ) + 1

+
γ−1

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L
+
dε

γ

ψ(a) = ε−1(1 + a)(∆1 +∆2).

G.3.3. LOWER AND UPPER BOUND FOR THE DYNAMICS OF a

Now, we can safely work with f5. By definition, we have

f5 = E(x,X−S⋆)∼µπ

∑
k∈[d]

µπ(x = ek |X−S⋆)2

rµπ(z = ek |X−S⋆)
− 1


rµπ(Z−S⋆ = X−S⋆ |X−S⋆)


=
∑
X−S⋆

∑
k∈[d]

µπ(x = ek |X−S⋆)2

rµπ(z = ek |X−S⋆)
− 1


rµπ(Z−S⋆ = X−S⋆ |X−S⋆)µπ(X−S⋆)

=
∑
X−S⋆

∑
k∈[d]

(
µπ(x = ek |X−S⋆)

rµπ(z = ek |X−S⋆)
− 1

)2

· rµπ(z = ek |X−S⋆)

· rµπ(Z−S⋆ = X−S⋆ |X−S⋆) · µπ(X−S⋆)

where we note that rµπ(z = ek |Z−S⋆ = X−S⋆ , X−S⋆) = µπ(x = ek |X−S⋆) as fixing Z−S⋆ makes z independent of
X−S⋆ . We can rewrite rµπ(z |X−S⋆) as

rµπ(z |X−S⋆) =
∑
Z−S⋆

µπ(z |Z−S⋆) · rµπ(Z−S⋆ |X−S⋆)

=
∑
Z−S⋆

µπ(z |Z−S⋆) · (µ
π(Z−S⋆) + µπ(X−S⋆)(ea − 1) · 1(Z−S⋆ = X−S⋆))

1 + µπ(X−S⋆)(ea − 1)

=
µπ(z) + µπ(z |X−S⋆) · µπ(X−S⋆) · (ea − 1)

1 + µπ(X−S⋆) · (ea − 1)
.

37

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

For our convenience, we let r(X−S⋆) = (1 + µπ(X−S⋆) · (ea − 1))−1. We then have

rµπ(z |X−S⋆) = r(X−S⋆) · µπ(z) + (1− r(X−S⋆)) · µπ(x = z |X−S⋆),

rµπ(Z−S⋆ = X−S⋆ |X−S⋆) = ear(X−S⋆) · µπ(X−S⋆).

Consequently, we have for f5 that

f5 =
∑
X−S⋆

∑
k∈[d]

(
µπ(x = ek |X−S⋆)

r(X−S⋆) · µπ(ek) + (1− r(X−S⋆)) · µπ(x = ek |X−S⋆)
− 1

)2

· rµπ(z = ek |X−S⋆) · rµπ(Z−S⋆ = X−S⋆ |X−S⋆) · µπ(X−S⋆)

=
∑
X−S⋆

∑
k∈[d]

(
µπ(x = ek |X−S⋆)− µπ(ek)

rµπ(z = ek |X−S⋆)

)2

· rµπ(z = ek |X−S⋆)

· ear(X−S⋆)3 · µπ(X−S⋆)2

=
∑
X−S⋆

∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
2

rµπ(z = ek |X−S⋆)︸ ︷︷ ︸
J(X−S⋆ ; a)

·ear(X−S⋆)3 · µπ(X−S⋆)2.

We see that f5 is bounded below as

f5 ≥
∑
X−S⋆

 min
α∈[ρ−(a),ρ+(a)]

∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
2

(1− α)µπ(x = ek |X−S⋆) + αµπ(ek)

 · ear(X−S⋆)3 · µπ(X−S⋆)2,

where

ρ+(a) = (1 + min
X−S⋆

µπ(X−S⋆)(ea − 1))−1,

ρ−(a) = (1 + max
X−S⋆

µπ(X−S⋆)(ea − 1))−1,

which are given by the upper and lower bound of r(X−S⋆), respectively. Let us define

rDχ2,ρ(a)(P ∥Q) = min
α∈[0,ρ(a)]

∑
x∈X

(P (x)−Q(x))2

(1− α)Q(x) + αP (x)
.

In the sequel, as we study the dynamics of a, we will denote f5 as f5(a). Then, the lower bound for f5 can be also written as

f5(a) ≥
∑
X−S⋆

rDχ2,ρ(a) (µ
π(·) ∥µπ(· |X−S⋆))︸ ︷︷ ︸

J−(X−S⋆ ; a)

· eaµπ(X−S⋆)

(1 + µπ(X−S⋆) · (ea − 1))3
· µπ(X−S⋆).

Also, since ∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
2

(1− α)µπ(x = ek |X−S⋆) + αµπ(ek)

is a convex function of α (by noting that the second derivative is non-negative), we have

f5(a) ≤
(
Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · (1− r(X−S⋆)) +Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · r(X−S⋆)

)
· ear(X−S⋆)3 · µπ(X−S⋆)2

≤
∑
X−S⋆

max
α∈[ρ−(a),ρ+(a)]

(
(1− α) ·Dχ2(µπ(·) ∥µπ(· |X−S⋆)) + α ·Dχ2(µπ(· |X−S⋆) ∥µπ(·))

)
︸ ︷︷ ︸

J+(X−S⋆ ; a)

· eaµπ(X−S⋆)

(1 + µπ(X−S⋆) · (ea − 1))3
· µπ(X−S⋆).

38

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Note that both J+(X−S⋆ ; a) and J−(X−S⋆ ; a) are of constant scale, i.e., uniformly upper and lower bounded regardless of
a. Also, the time derivative of a is given by

∂ta = Eπ∼P [f5]± (ξ + ψ(a)).

G.3.4. CONVERGENCE OF a

Here, we abuse the notation and denote by ξ = Eπ∼P [ξ] and ψ(a) = Eπ∼P [ψ(a)]. Thus, a continues to increase until it
reaches a point where f5 no longer dominates the error. We denote by a⋆ the threshold where f5(a⋆) = ξ+ψ(a⋆). Note that
a⋆ can be as large as logL since we could make ψ(a) arbitrarily small by letting the first and second stages to be sufficiently
long and ξ = O(L−1/2) will be the elbow. In the following, we only characterize the dynamics of a for a ≤ a⋆. We also
use x = o(1) to denote that a term is much smaller than 1, e.g., x = (log logL)−1. We use x = x0 ± δ to represent the fact
that x is bounded around x0 by δ error.

Small a. Consider the case where a is small in the sense that µπ(X−S⋆)ea ≤ δ, ∀X−S⋆ ,∀π ∈ supp(P) for some small
constant δ. Then, we have for the gradient that

∂ta = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

J(X−S⋆ ; a) · eaµπ(X−S⋆)2 ± (ξ + ψ(a))

 .
Here, we recall that

J(X−S⋆ ; a) =
∑
k∈[d]

(µπ(x = ek |X−S⋆)− µπ(ek))
2

rµπ(z = ek |X−S⋆)

with lower bound J−(X−S⋆ ; a) and upper bound J+(X−S⋆ ; a). We notice that ρ−(a) ≥ 1− δ. Thus, both J−(X−S⋆ ; a)
and J+(X−S⋆ ; a) are controlled within (1±O(δ))Dχ2(µπ(· |X−S⋆) ∥µπ(·)). Here, we use the condition that

ξ + ψ(logL) = O(L−1/2 · γ−|S⋆|−2 · (1− λ)−1/2)

≤ δ · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2

 ,
which gives us

∂ta = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2

 · ea.

With the result, we have

−∂te−a = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·)) · µπ(X−S⋆)2

 ,
which implies that for small a, the growth follows

a(t) ≤ − log

e−a(0) − (1 +O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·))µπ(X−S⋆)2

 · t

 ,

a(t) ≥ − log

e−a(0) − (1−O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(· |X−S⋆) ∥µπ(·))µπ(X−S⋆)2

 · t

 .

Therefore, at the beginning, a grows super exponentially fast.

39

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Large a. As a grows large such that µπ(X−S⋆)ea ≥ δ−1,∀X−S⋆ ,∀π ∈ supp(P) with δ being the same as in the previous
case, we have for the gradient that

∂ta = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

J(X−S⋆ ; a) · e−2a

µπ(X−S⋆)

± (ξ + ψ(a)).

Notice that ρ+(a) = (1 + minX−S⋆ µ
π(X−S⋆)(ea − 1))−1 ≤ δ this time, which implies that

J(X−S⋆ ; a) = (1±O(δ)) ·Dχ2(µπ(·) ∥µπ(· |X−S⋆)).

To ensure that the signal in the gradient dominates the error, we require∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · e−2a

µπ(X−S⋆)
= ω(ξ + ψ(a)).

A sufficient condition for this to be true is a ≤ (1− δ)logL/4 with

δ ·
∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · Lδ/2 ≥ O(γ−2 · (1− λ)−1/2)

given the fact that ξ = O(L−1/2) and ψ(a) < O(L−1/2) by letting the first two stages run long enough such that
∆1 +∆2 ≤ O(L−1/2/ logL). Thus,

∂ta = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆)) · e−2a

µπ(X−S⋆)

 ,
which gives us

∂te
2a = (1±O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆))·
2µπ(X−S⋆)

 .
Suppose this large a regime starts at t0 with value a(t0). Thus, for large a, the growth rate is characterized by

a(t) =
1

2
log

(1±O(δ)) · Eπ∼P

 ∑
X−S⋆

Dχ2(µπ(·) ∥µπ(· |X−S⋆))

2µπ(X−S⋆)

 · (t− t0) + e2a(t0)

 ,

until it reaches the value (1− δ) logL/4.

G.4. Lemma on GIH Approximation Error

Now given the convergence result for the training dynamics, the natural question to ask is how well the learned model
implements the GIH mechanism. In the following part of this section, we state the lemma on the approximation error and
also present a formal proof of the lemma.

Lemma G.5. Consider H =M and Assumption B.3 holds. Suppose the error ∆1,∆2 ≲ L−1/2 after the first two stages’
training, and a ≥ (1− δ) logL/4 for some small constant δ < 1 after the last stage’s training. Let y be the output of the
model in (2.5) after the training and y⋆ be the output of the GIH mechanism GIH(x1:L;M,D). Then with high probability
1−O(L−1) , it holds that

∥y⋆ − y∥1 ≤ O(L−(1−δ)/4).

Proof of Lemma G.5. Let s⋆l =
∏

h∈S⋆ 1(xl−h = xL+1−h) and sl = ⟨uL+1, ul⟩. Let us invoke Lemma H.1 to obtain the
model misspecification error as

max
l∈[L]

|s⋆l − sl| ≤ 2(∆1 +∆2) :=∆.

40

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

We note that the second layer’s attention weight a can be as large as (1− δ) logL/4. We are comparing the output of the
model with the GIH mechanism GIH(x1:L;M,D). Let N =

∑
l>M

∏
h∈S⋆ 1(xl−h = xL+1−h). The output of this GIH

mechanism is given by

y⋆ :=

{
1
N ·
∑

l>M xl ·
∏

h∈S⋆ 1(xl−h = xL+1−h), if N ≥ 1,
1

L−M

∑
l>M xl, otherwise.

We define

σ⋆
l =

{
1
N ·
∏

h∈S⋆ 1(xl−h = xL+1−h), if N ≥ 1,
1

L−M , otherwise,

with σ⋆ = (σ⋆
l)l>M . Therefore, the ℓ-1 norm of the difference between y⋆ and the model’s actual output is given by

∥y⋆ − y∥1 ≤ ∥σ⋆ − σ∥1 .

Let us define the set Γ = {L ≥ l > M :
∏

h∈S⋆ 1(xl−h = xL+1−h) = 1} and Γc = {L ≥ l > M :
∏

h∈S⋆ 1(xl−h =
xL+1−h) = 0}. We then have

∥σ⋆ − σ∥1 ≤
∑
l∈Γ

|σ⋆
l − σl|+

∑
l∈Γc

σl

For l ∈ Γ, we have 1 ≥ sl ≥ 1−∆ and for l ∈ Γc, we have 0 ≤ sl ≤ ∆. Consider the normalization factor in the softmax
operator.

Z :=
∑
l>M

exp(a · sl).

The normalization factor is lower and upper bounded by

Z ≥ N exp(a · (1−∆)) + (L−M −N) ·=:Z−,

Z ≤ N exp(a) + (L−M −N) · exp(a ·∆)=:Z+.

We then have for l ∈ Γ that

|σ⋆
l − σl| =

∣∣∣∣exp(a · sl)Z
− 1

N

∣∣∣∣ ≤ ∣∣∣∣exp(a)Z−
− 1

N

∣∣∣∣ ∨ ∣∣∣∣exp(a · (1−∆))

Z+
− 1

N

∣∣∣∣
≤
∣∣∣∣ 1

N exp(a · (−∆)) + (L−M −N) · exp(−a)
− 1

N

∣∣∣∣
∨
∣∣∣∣ exp(a · (−∆))

N + (L−M −N) exp(a · (−1 + ∆))
− 1

N

∣∣∣∣ .
The right hand side is upper bounded by O(a∆/N) +O(L exp(−a)/N2). For l ∈ Γc, we have

σl ≤
exp(a∆)

Z−
≤ exp(a · (2∆− 1))

N
.

In summary,

∥y⋆ − y∥1 ≤ ∥σ⋆ − σ∥1 ≤ O(a∆) +O (L exp(−a)/N) . (G.19)

The above inequality holds whenever N ≥ 1, where we use the condition that a∆ ≤ logL ·∆ ≪ 1. By Lemma H.10, we
have the second moment

E

(L−1
L∑

l=1

1(Xl−S⋆ = E)− µπ(E)

)2
 ≤ Dχ2

(
L−1

L∑
l=1

1(Xl−S⋆ = ·)
∥∥∥µπ(·)

)

≲
1

L(1− λ) · γ|S⋆| , ∀E ∈ X |S⋆|.

41

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Therefore, by the Chebyshev’sinequality, we have

P

(∣∣∣∣∣L−1
L∑

l=1

1(Xl−S⋆ = E)− µπ(E)

∣∣∣∣∣ ≥ t

)
≤ 1

L(1− λ) · γ|S⋆| · t2
.

We can take t = minE∈X |S⋆| µπ(E)/2 and by also taking a union bound over X |S⋆|, we conclude that with high probability
(say 0.99) it holds that N ≥ tL = L ·minE∈X |S⋆| µπ(E)/2. Thus, it follows from (G.19) that with high probability

∥y⋆ − y∥1 ≲ a∆+ exp(−a) ≲ L−1/2 logL+ L−(1−δ)/4.

where in the last inequality we use a ≥ (1− δ) logL/4.

H. Auxiliary Lemmas
H.1. Useful Inequalities

Lemma H.1 (Model Misspecification). Let uL+1 be the output feature after the FFN & Normalization layer. Then, the
model misspecification error defined as

max
l∈[L]

∣∣∣∣∣⟨uL+1, ul⟩ −
∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣
is bounded by 2(∆1 +∆2), where ∆1 and ∆2 are the errors after the first and second stage’s training, respectively, and are
defined respectively as

∆1 := 1− pS⋆ , ∆2 := 1−
∏
h∈S⋆

(σ
(h)
−h)

2.

Proof. Let us consider the output feature ul after the FFN & Normalization layer, where the inner product is given by

⟨uL+1, ul⟩ =
∑

S∈[H]≤D

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩.

Since each v(h)l is a convex combination of xM(l) where M(l) = {l −M, . . . , l − 1}, we have v(h)l having norm at most 1.
Thus, ∣∣∣∣∣⟨uL+1, ul⟩ −

∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩

∣∣∣∣∣ ≤ (1− pS⋆) +
∑

S∈[H]≤D\{S⋆}

pS ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

≤ 2(1− pS⋆)=: 2∆1,

where ∆1 is the error after the first stage’s training By definition of v(h)l =
∑

j∈M σ
(h)
−j xl−j , we have

⟨v(h)l , v
(h)
L+1⟩ =

∑
i,j∈[M]2

σ
(h)
−i σ

(h)
−j ⟨xl−i, xL+1−j⟩ =

∑
i,j∈[M]2

σ
(h)
−i σ

(h)
−j 1(xl−i = xL+1−j).

Hence, we have that ∣∣∣∣∣ ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

(σ
(h)
−h)

2 1(xl−h = xL+1−h)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

{ih,jh}h∈S⋆ ̸={h,h}h∈S⋆

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh)

∣∣∣∣∣∣
≤

∑
{ih,jh}h∈S⋆ ̸={h,h}h∈S⋆

∏
h∈S⋆

σ
(h)
−ih

σ
(h)
−jh

≤ 1−
∏
h∈S⋆

(σ
(h)
−h)

2 =:∆2,

42

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

where ∆2 is the error after the second stage’s training. As a result,∣∣∣∣∣ ∏
h∈S⋆

⟨v(h)l , v
(h)
L+1⟩ −

∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣ ≤ 2

(
1−

∏
h∈S⋆

(σ
(h)
−h)

2

)
= 2∆2.

In summary, we have that ∣∣∣∣∣⟨uL+1, ul⟩ −
∏
h∈S⋆

1(xl−h = xL+1−h)

∣∣∣∣∣ ≤ 2(∆1 +∆2).

Hence, the model misspecification error is bounded by 2(∆1 +∆2). We finish the proof.

Lemma H.2. Consider g0,S in (G.1) with a = a0 = a(0) and g1,S in (G.3), which is equivalent to g0,S when a = 0. Then,
for a0 ≤ 1, it holds that

|g0,S − g1,S | ≤
8a0d

ε2
.

Proof of Lemma H.2. By triangular inequality, we have

|g0,S − g1,S | ≤
L∑

l=1

E
[∑
k∈[d]

{∣∣∣∣σ (a0 · s⊤)l − 1

L

∣∣∣∣∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε

∣∣∣∣
+

1

L

∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε
− 1(xL+1 = xl = ek)

sy(k) + ε

∣∣∣∣+ ∣∣∣∣σ (a0 · s⊤)l − 1

L

∣∣∣∣∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε

∣∣∣∣,
+

1

L

∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

∣∣∣∣} ·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
.

Note that 0 ≤ sl ≤ 1 for all l ∈ [L] thanks to the layer normalization. Then, for the softmax operation, we have

1

1 + (L− 1) exp(a0)
≤ σ

(
a0 · s⊤

)
l
≤ exp(a0)

L− 1 + exp(a0)
,

which implies that∣∣∣∣σ (a0 · s⊤)l − 1

L

∣∣∣∣ ≤ max

{
1

L
− 1

1 + (L− 1) exp(a0)
,

exp(a0)

L− 1 + exp(a0)
− 1

L

}
≤ exp(a0)− 1

L
. (H.1)

Since indicator functions are bounded above by 1, we have∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε

∣∣∣∣ ≤ 1

ε
,

∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε

∣∣∣∣ ≤ 1

ε
, (H.2)

For the second term, we have∣∣∣∣1(xL+1 = xl = ek)

y(k) + ε
− 1(xL+1 = xl = ek)

sy(k) + ε

∣∣∣∣ ≤ |sy(k)− y(k)|
ε2

≤
∑L

l=1 |σ
(
a0 · s⊤

)
l
− 1

L |
ε2

(H.3)

≤ exp(a0)− 1

ε2
,

where the last inequality follows from (H.1). Similary, the following bound can be derived.∣∣∣∣y(k)1(xL+1 = ek)

y(k) + ε
− sy(k)1(xL+1 = ek)

sy(k) + ε

∣∣∣∣ ≤ exp(a0)− 1

ε
. (H.4)

43

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Combining (H.1), (H.2), (H.3) and (H.4), it holds that

|g0,S − g1,S | ≤
L∑

l=1

E
[
4
∑
k∈[d]

exp(a0)− 1

ε2L
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
≤ 4d(exp(a0)− 1)

ε2
≤ 8a0d

ε2
,

where the last inequality follows from exp(x)− 1 ≤ 2x for 0 ≤ x ≤ 1.

Lemma H.3. Consider g1,S in (G.3) and g3,S in (G.4). Then, it holds that

|g1,S − g2,S | ≤ 2

√
EX

[
Dχ2(π(· |Xpa(L+1)) ∥µπ(·)) + 1

]
·
(
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) · µπ
min

+
rn

Lµπ
min

)
+

rn
Lµπ

min

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)µπ
min

+
ε

µπ
min

,

where µ0(·) is the initial distribution over the first rn tokens, µπ
min is the minimum of the one-token stationary distribution.

Proof of Lemma H.3. Let us use syX(·) to remind ourself that sy(·) is also a function of X . By rearranging the terms, we
have

|g1,S − g2,S | =
∣∣∣∣ 1L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

syX(k) + ε
−
∑
k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

−
∑
k∈[d]

syX(k)1(xL+1 = ek)

syX(k) + ε
+ 1

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣
=

∣∣∣∣ 1L
L∑

l=1

E
[(∑

k∈[d]

(µπ(ek)− syX(k)

(syX(k) + ε)µπ(ek)
− ε

(syX(k) + ε)µπ(ek)

)
· 1(xL+1 = xl = ek)

−
∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣.
Here, we have three terms to control. For the first error term, we define

err1 :=

∣∣∣∣ 1L
L∑

l=1

E
[∑
k∈[d]

µπ(ek)− syX(k)

(syX(k) + ε)µπ(ek)
· 1(xL+1 = xl = ek) ·

∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣
Using Cauchy-Schwarz inequality, we arrive at

err21 ≤ EX

∑
k∈[d]

(
µπ(ek)− syX(k)√

µπ(ek)

)2


· EX

∑
k∈[d]

(
1

L

L∑
l=1

π(ek |Xpa(L+1))1(xl = ek) ·
∏

h∈S⟨v
(h)
l , v

(h)
L+1⟩

(syX(k) + ε)
√
µπ(ek)

)2


≤ EX

∑
k∈[d]

(
µπ(ek)− syX(k)√

µπ(ek)

)2
 · EX

∑
k∈[d]

(
π(ek |Xpa(L+1))sy(k)

(syX(k) + ε)
√
µπ(ek)

)2


≤ EXDχ2(syX(·) ∥µπ(·)) · EX

[
Dχ2(π(· |Xpa(L+1)) ∥µπ(·)) + 1

]
where in the first inequality, we also invoke the exchangeability of summation over L and the expectation. The second
inequality holds by noting that ⟨v(h)l , v

(h)
L+1⟩ ≤ 1. Now, the problem boils down to controlling the chi-square divergence

44

2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

between the empirical distribution and the stationary distribution. Lastly, we invoke Lemma H.10 which indicates that the
first chi-square distance is upper bounded by

Dχ2(µ0(B = ·) ∥µπ(B = ·)) + 1

L(1− λ) · µπ
min

+
rn

Lµπ
min

.

For the second term, we have

err2 =

∣∣∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

E

[
ε

(syX(k) + ε)µπ(ek)
· 1(xL+1 = xl = ek) ·

∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

E
[

ε

(syX(k) + ε)µπ(ek)
· 1(xL+1 = xl = ek)

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

E

[
ε

(syX(k) + ε)
·
L−1

∑L
l=1 1(xL+1 = xl = ek)− µπ(ek)syX(k)

µπ(ek)

]∣∣∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

E
[

εsyX(k)

(syX(k) + ε)

]∣∣∣∣∣∣︸ ︷︷ ︸
(ii)

We invoke (H.12) of Lemma H.9 for the first term, which gives us

(i) ≤

∣∣∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

E

[
L−1

∑L
l=1 1(xL+1 = xl = ek)− µπ(ek)syX(k)

µπ(ek)

]∣∣∣∣∣∣
≤ rn
Lµπ

min

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)µπ
min

.

And the second term (ii) is directly upper bounded by ε. Lastly, we have the error term

err3 :=
1

L

L∑
l=1

E

∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

 ≤ E

∑
k∈[d]

ε1(xL+1 = ek)

syX(k) + ε


≤

∣∣∣∣∣∣E
∑
k∈[d]

ε1(xL+1 = ek)

µπ(ek) + ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈[d]

E
[
ε(syX(k)− µπ(ek)) · 1(xL+1 = ek)

(µπ(ek) + ε)(syX(k) + ε)

]∣∣∣∣∣∣ .
Here, the first term is upper bounded by ε/µπ

min, and for the second term we have by Cauchy-Schwartz that∣∣∣∣∣∣
∑
k∈[d]

E
[
ε(syX(k)− µπ(ek)) · 1(xL+1 = ek)

(µπ(ek) + ε)(syX(k) + ε)

]∣∣∣∣∣∣
2

≤ ε2 · E

∑
k∈[d]

(syX(k)− µπ(ek))
2

µπ(ek)

 · E

∑
k∈[d]

π(xL+1 = ek |Xpa(L+1))
2

(syX(k) + ε)2µπ(ek)


≤ EXDχ2(syX(·) ∥µπ(·)) · EX

[
Dχ2(π(· |Xpa(L+1)) ∥µπ(·)) + 1

]
,

which shares a similar upper bound as err1. Hence, we complete our proof.

45

2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Lemma H.4. Consider g2,S in (G.4) and g3,S in (G.5). Then, it holds that

|g2,S − g3,S | ≤
4(M ∨ rn)

L
+

4
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
,

where µ0(·) is the initial distribution over the first rn tokens.

Proof of Lemma H.4. Recall that v(h)(X) :=
∑

ih∈[M] σ
(h)
−ih

X−ih , v(h)(Z) :=
∑

ih∈[M] σ
(h)
−ih

Z−ih . By triangular inequal-
ity, we have

|g2,S − g3,S | ≤
∣∣∣∣ 1L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]

− E(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
·
(∏

h∈S

⟨v(h)(Z), v(h)(X)⟩
))]∣∣∣∣

+

∣∣∣∣ 1L
L∑

l=1

E
[∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[(∏
h∈S

⟨v(h)(Z), v(h)(X)⟩
)]∣∣∣∣,

We can establish the upper bounds for each of the absolute value terms. Initially, we focus on bounding the first absolute
value term. Since v(h)l :=

∑
ih∈[M] σ

(h)
−ih

xl−ih , we can write

∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ =

∑
{ih,jh}h∈S

∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh).

Then,

1

L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]

=
1

L

L∑
l=1

∑
{ih,jh}h∈S

E
[∑
k∈[d]

∑
{kh}h∈S

1(xL+1 = xl = ek)

µπ(z = ek)
·
∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh = ekh
)

]

=
∑

{ih,jh}h∈S

∑
k∈[d]

∑
{kh}h∈S

1
L

∑L
l=1 p

π(xL+1 = xl = ek, xl−ih = xL+1−jh = ekh
,∀h ∈ S)

µπ(z = ek)

·
∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

(H.5)

Similarly,

E(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
·
(∏

h∈S

⟨v(h)z , v(h)x ⟩
))]

=
∑

{ih,jh}h∈S

∑
k∈[d]

∑
{kh}h∈S

µπ(x = ek, x−ih = ekh
∀h ∈ S) · µπ(z = ek, z−jh = ekh

∀h ∈ S)
µπ(z = ek)

·
∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

(H.6)

46

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

By Lemma H.9, we have

∣∣∣∣ 1L
L∑

l=1

∑
k∈[d]

∑
{kh}h∈S

pπ(xL+1 = xl = ek, xl−ih = xL+1−jh = ekh
,∀h ∈ S)

− µπ(x = ek, x−ih = ekh
∀h ∈ S) · µπ(z = ek, z−jh = ekh

∀h ∈ S)
∣∣∣∣

≤ 2(M ∨ rn)
L

+
2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
, (H.7)

where µ0(·) is the initial distribution over the first rn tokens. Then, by (H.5), (H.6), (H.7), and the triangular inequality, it
holds that ∣∣∣∣ 1L

L∑
l=1

E
[(∑

k∈[d]

1(xL+1 = xl = ek)

µπ(ek)

)
·
∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]

− E(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
·
(∏

h∈S

⟨v(h)z , v(h)x ⟩
))]∣∣∣∣

≤
∑

{ih,jh}h∈S

∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

·

(
2(M ∨ rn)

L
+

2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)

)

=

(
2(M ∨ rn)

L
+

2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)

)
.

For the second absolute value term, the analagous argument can be applied. It follows form Lemma H.9 that

∣∣∣∣ 1L
L∑

l=1

E
[∏
h∈S

⟨v(h)l , v
(h)
L+1⟩

]
− E(x,X),(z,Z)∼µπ⊗µπ

[(∏
h∈S

⟨v(h)z , v(h)x ⟩
)]∣∣∣∣

≤

(
2(M ∨ rn)

L
+

2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)

)
.

This completes the proof.

Lemma H.5. Consider g3,S in (G.5). Then, it holds that∣∣∣∣∣Eπ∼P [g3,S]−
∏
h∈S

(σ
(h)
−h)

2 · Iχ2(S)

∣∣∣∣∣ ≤
(
1−

∏
h∈S

(σ
(h)
−h)

2

)
Iχ2(S⋆),

Proof of Lemma H.5. Since v(h)l =
∑

ih∈[M] σ
(h)
−ih

xl−ih , we have

∏
h∈S

⟨v(h)l , v
(h)
L+1⟩ =

∑
{ih,jh}h∈S

∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = xL+1−jh).

Recall that

Eπ∼P [g3,S] := Eπ,(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)
·
∏
h∈S

⟨v(h)z , v(h)x ⟩
]
,

47

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Then the Eπ∼P [g3,S] can be expressed as the summation of two terms:

Eπ[g3,S]

= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
{ih,jh}h∈S

∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

1(xl−ih = z−jh)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]

= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∏
h∈S

(σ
(h)
−h)

2 1(x−h = z−h)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]

+ Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
(ih,jh)∈Γc(S)

∏
h∈S

σ
(h)
−ih

σ
(h)
−jh

1(x−ih = z−jh)

(∑
k∈[d]

1(x = z = ek)

µπ(ek)
− 1

)]

where the signal set is defined as Γ(S) := {(ih, jh) | ih = jh = h,∀h ∈ S} and the error set is Γc(S) :=
{(ih, jh) | ∀h ∈ S} \Γ(S). Note that we can upper bound the second term by Lemma H.6 as

Eπ,(x,X),(z,Z)∼µπ⊗µπ

∏
h∈S

1(x−ih = z−jh)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

) ≤ Iχ2(S⋆).

Thus, the gradient is upper and lower bounded by

∏
h∈S

(σ
(h)
−h)

2 · Iχ2(S)±

(
1−

∏
h∈S

(σ
(h)
−h)

2

)
Iχ2(S⋆)

Lemma H.6. Consider any S = {i1, . . . , i|S|},S ′ = {j1, . . . , j|S′|} ∈ A≤D
H such that |S| = |S ′| It holds that

Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∏
l∈[|S|]

1(x−il = z−jl)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
=

1

2

(
rIχ2(S) + rIχ2(S ′)

)
≤ rIχ2(S⋆).

Proof of Lemma H.6. Note that

Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∏
l∈[|S|]

1(x−il = z−jl)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
= Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∑
{kl}l∈|S|

1(X−S = Z−S′)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[(∑
k∈[d]

µπ(x = ek|X−S) · µπ(z = ek|Z−S)

µπ(z = ek)
− 1

)]

= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
k∈[d]

(
µπ(x = ek|X−S)

µπ(z = ek)
− 1

)
·
(
µπ(z = ek|Z−S)

µπ(z = ek)
− 1

)
· µπ(z = ek)

]
.

(H.8)

48

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Then, we apply the inequality ab ≤ a2 + b2/2 to the (H.8) and obtain the upper bound as follows:

1

2
Eπ,(x,X)∼µπ

[∑
{kl}l∈|S|

∑
k∈[d]

(
µπ(x = ek|X−S)

µπ(z = ek)
− 1

)2

· µπ(z = ek) · µπ(X−S)

]

+
1

2
Eπ,(z,Z)∼µπ

[∑
{kl}l∈|S|

∑
k∈[d]

(
µπ(z = ek|Z−S)

µπ(z = ek)
− 1

)2

· µπ(z = ek) · µπ(Z−S)

]

=
1

2
rIχ2(S) + 1

2
rIχ2(S ′) ≤ rIχ2(S⋆),

where the equality follows from the definition of the modified mutual information and the last inequality follows from the
definition of S⋆.

Lemma H.7. Consider any S = {i1, . . . , i|S|},S ′ = {j1, . . . , j|S|+1} ∈ A≤D
H such that |S|+ 1 = |S ′|. Let i|S|+1 = il∗

for some l∗ ∈ [|S|]. It holds that

Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∏
l∈[|S|+1]

1(x−il = z−jl)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
<

1

2
rIχ2(S) + 1

2
rIχ2(S ′) ≤ rIχ2(S⋆).

Proof of Lemma H.7. The proof is similar to the proof of Lemma H.6. The left hand side of the inequality can be expressed
as follows:

Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∏
l∈[|S|+1]

1(x−il = z−jl)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
= Eπ,(x,X),(z,Z)∼µπ⊗µπ

 ∏
l∈[|S|]

1(x−il = z−jl)1(z−il∗ = z−j|S|+1
)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
= Eπ,(x,X),(z,Z)∼µπ⊗µπ

1(X−S = Z−S′\{j|S|+1})1(z−j|S|+1
= z−il∗)

(∑
k∈[d]

1(x = z = ek)

µπ(z = ek)
− 1

)
= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
k∈[d]

µπ(x = ek|X−S) · µπ(z = ek|Z−S′\{j|S|+1}, z−j|S|+1
= z−il∗)

µπ(z = ek)
− 1

]

= Eπ,(x,X),(z,Z)∼µπ⊗µπ

[∑
k∈[d]

(
µπ(x = ek|X−S)

µπ(z = ek)
− 1

)

·
(
µπ(z = ek|Z−S′\{j|S|+1}, z−j|S|+1

= z−il∗)

µπ(z = ek)
− 1

)
· µπ(z = ek)

]
.

(H.9)

49

2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

By the inequality ab ≤ a2 + b2/2 the upper bound of (H.9) can be derived as

1

2
Eπ,(x,X)∼µπ

[∑
k∈[d]

(
µπ(x = ek|X−S)

µπ(z = ek)
− 1

)
· µπ(z = ek) · µπ(X−S)

]

+
1

2
Eπ,(z,Z)∼µπ

[∑
k∈[d]

(
µπ(z = ek|Z−S′\{j|S|+1}, z−j|S|+1

= z−il∗)

µπ(z = ek)
− 1

)2

· µπ(z = ek) · µπ(Z−S′\{j|S|+1}, z−j|S|+1
= z−il∗)

]
=

1

2
rIχ2(S) + 1

2
Eπ,(z,Z)∼µπ

[∑
k∈[d]

(
µπ(z = ek|Z−S′)

µπ(z = ek)
− 1

)2

· µπ(z = ek) · µπ(Z−S′) · 1(z−j|S|+1
= z−il∗)

]
<

1

2
rIχ2(S) + 1

2
rIχ2(S ′) ≤ rIχ2(S⋆),

where the equality follows from the definition of the modified mutual information and the last inequality follows from the
definition of S⋆.

H.2. Lemmas on Concentration of Markov Chain

For simplicity, we denote by M(l) = {l − 1, l − 2, . . . , l −M} the length-M window before l. Also, recall that we have
the parent set pa(l) = {−r1, . . . ,−rn} and we define N (l) = {l − 1, . . . , l − rn} as the minimal set of continuous indices
that contains pa(l). We denote by pπ(·) the joint distribution of the chain (X,xL+1) under the Markov kernel π. For M(l)
or N (l) that goes to the negative index, we extend pπ(·) to be

pπ(xL+1, X,XM(1)) = pπ(xL+1, X) ·
∏

l∈M(1)

1(xl = 0),

where we extend the space of X to also include the zero vector 0.

Let us first introduce the notations to be used in the later proof. For more generality, let us take YL+1 as a subset of
(xL+1, X) such that the maximal index and minimal index within YL+1 have difference at most m+ 1. Here, m is just an
integer less than L. Two special cases of the definition is YL+1 = {xL+1, XM(L+1)} with m =M and YL+1 = {xL+1}
with m = 0 which will be studied extensively. Take Yl as the the subset with indices shifted from YL+1 by −(L+ 1− l).
Let A = XN (L−m+rn+1) and Bl = XN (l+1). By the Markov property, we have

YL+1 ⊥⊥ (Bl, Yl) |A, (YL+1, A) ⊥⊥ Yl |Bl, ∀l ∈ [L−m+ rn],

The quantity of interest here is

ppπ(E,E′) :=
1

L

L∑
l=1

pπ(YL+1 = E, Yl = E′)

=
1

L

L∑
l=1

∑
A,b

pπ(YL+1 = E |A) · π(L−l−(m−rn))(A |Bl = b)

· pπ(Yl = E′ |Bl = b) · pπ(Bl = b). (H.10)

Here, we denote by π(i) the i-step transition kernel of the chain. In the matrix form, let K of shape |X rn | × |X rn | be the
transition matrix such that Kij = π(j | i). Let µ denote the vector of the stationary distribution of the chain with element
µ(i) = µπ(i). Let us consider the reweighted transition kernel

rK = diag
(√
µ
−1) ·K · diag (√µ) ,

50

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Since the transition matrix is primitive by assumption and having only one eigenvalue 1 on its spectral circle, we also have
for rK that the leading eigenvalue is 1 with eigenvector

√
µ. However, the projection in the leading eigenspace (or the Perron

projection) is not of our interest. We note that

Ki − µ1⊤ = diag (
√
µ) ·

(
rK −√

µ
√
µ
⊤)i · diag(√µ−1)

.

Thus, it is the eigenvalue of second largest magnitude that matters when studying the convergence of the chain. Let λ
denote the second largest magnitude of the eigenvalues of rK. Before we proceed to study ppπ, let us first study a simpler
convergence result, which is to quantify the closeness between

∑L
l=1 η

L−lpπ(Bl = b)/(
∑L

l=1 η
L−l) and µπ(b) for certain

η ∈ (0, 1].
Lemma H.8. The following two inequalities hold for length-rn window:∥∥∥∥∥

∑L
l=1 λ

L−lpπ(Bl = ·)∑L
l=1 λ

L−l
− µπ(·)

∥∥∥∥∥
TV

≤ L · λL−rn · (1− λ)

1− λL
·
√
Dχ2(µ0 ∥µπ) + 1,∥∥∥∥∥

∑L
l=1 p

π(Bl = ·)
L

− µπ(·)

∥∥∥∥∥
TV

≤
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
+
rn
L
,

where Dχ2(µ0 ∥µπ) is the χ2 divergence between the initial distribution µ0 and the stationary distribution µπ . For a set Yl
that can be covered by a length-m window, we have∥∥∥∥∥

∑L
l=1 p

π(Yl = ·)
L

− µπ(·)

∥∥∥∥∥
TV

≤
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
+
m ∨ rn
L

,

∥pπ(YL+1 = ·)− µπ(YL+1 = ·)∥TV ≤ λL−m∨rn
√
Dχ2(µ0 ∥µπ) + 1. (H.11)

Proof of Lemma H.8. Let cl = ηL−l/
∑L

l=1 η
L−l. Let µ0 ∈ X rn be the vector of the initial distribution of the chain. Using

the matrix representation, we have

L∑
l=rn

cl · (pπ(Bl = b)− µπ(b)) =

L∑
l=rn

cl · 1⊤
B ·Kl−rn · (µ0 − µ)

=

L∑
l=rn

cl · 1⊤
B · (Kl−rn − µ1⊤) · µ0

=

L∑
l=rn

cl · 1⊤
B · diag (√µ) ·

(
rK −√

µ
√
µ
⊤
)l−rn

· diag
(√

µ
−1
)
· µ0.

To conclude, we use the variational representation of the total variation distance and have for any test vector u ∈ {0, 1}|X rn |

that

u⊤ ·
L∑

l=rn

cl · (pπ(Bl = ·)− µπ(·)) ≤
L∑

l=rn

cl · u⊤ · diag (√µ)︸ ︷︷ ︸
∥·∥2 ≤ 1

·
(

rK −√
µ
√
µ
⊤
)l−rn

· diag
(√

µ
−1
)
· µ0

≤
L∑

l=rn

cl · λl−rn ·
∥∥∥diag (√µ−1

)
· µ0

∥∥∥
2

=

L∑
l=rn

cl · λl−rn ·
√
Dχ2(µ0 ∥µπ) + 1.

Plugging in the definition of cl, we have∥∥∥∥∥
∑L

l=1 η
L−lpπ(Bl = b)∑L
l=1 η

L−l
− µπ(b)

∥∥∥∥∥
TV

≤
∑L

l=rn
ηL−l · λl−rn ·

√
Dχ2(µ0 ∥µπ) + 1 +

∑rn−1
l=1 ηL−l∑L

l=rn
ηL−l +

∑rn−1
l=1 ηL−l

.

51

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

We consider two special cases. In the first case, we set η = λ, which gives us∥∥∥∥∥
∑L

l=1 λ
L−lpπ(Bl = b)∑L
l=1 λ

L−l
− µπ(b)

∥∥∥∥∥
TV

≤
∑L

l=rn
λL−rn ·

√
Dχ2(µ0 ∥µπ) + 1 +

∑rn−1
l=1 λL−l

(1− λL)/(1− λ)

≤ L · λL−rn · (1− λ)

1− λL
·
√
Dχ2(µ0 ∥µπ) + 1.

In the second case, we set η = 1, which gives us∥∥∥∥∥
∑L

l=1 p
π(Bl = b)

L
− µπ(b)

∥∥∥∥∥
TV

≤
∑L

l=rn
λl−rn ·

√
Dχ2(µ0 ∥µπ) + 1 + rn − 1

L

≤
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
+
rn
L
.

Similar results can also be derived for a length-(m+ 1) windows. Note that∥∥∥∥∥
∑L

l=1 p
π(Yl = ·)
L

− µπ(·)

∥∥∥∥∥
TV

=

∥∥∥∥∥
∑L

l=1 p
π(Bl−(m−rn)∨0 = ·)

L
− µπ(·)

∥∥∥∥∥
TV

≤ m ∨ rn
L

+

∥∥∥∥∥
∑L−(m−rn)∨0

l=rn
pπ(Bl = ·)

L
− L−m ∨ rn

L
· µπ(·)

∥∥∥∥∥
TV

≤ m ∨ rn
L

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
.

Lastly, we consider the difference between pπ(YL+1 = ·) and µπ(·).

∥pπ(YL+1 = ·)− µπ(YL+1 = ·)∥TV

≤ ∥pπ(BL+1−(m−rn)∨0 = ·)− µπ(BL+1−(m−rn)∨0 = ·)∥TV

≤ max
u∈{0,1}drn

u⊤ · diag (√µ) ·
(

rK −√
µ
√
µ
⊤
)L−m∨rn

· diag
(√

µ
−1
)
· µ0

≤ λL−m∨rn
√
Dχ2(µ0 ∥µπ) + 1.

Hence, the proof is completed.

Now that we know that the average of pπ(Bl = ·) converges to µπ(·), which is “first-ordered” convergence. The next
question is whether ppπ(·, ·) converges to µπ(·) · µπ(·). The following lemma quantifies the total variation distance between
the distribution ppπ and the product of two stationary distributions.

Lemma H.9. For ppπ defined in (H.10), we have

∥ppπ(·, ·)− µπ(·)µπ(·)∥TV ≤ 2(M ∨ rn)
L

+
2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
.

In particular, ∥∥∥∥∥ppπ(E,E′)− µπ(E) ·

(
1

L

L∑
l=1

pπ(Yl = E′)

)∥∥∥∥∥
TV

≤ M ∨ rn
L

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
. (H.12)

Proof of Lemma H.9. We want to control the difference between ppπ and the averaged product distribution of YL+1 and Yl,

52

2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

which is given by

ppπ(E,E′)− µπ(E) ·

(
1

L

L∑
l=1

pπ(Yl = E′)

)

=
1

L

L∑
l=1

∑
A,b

pπ(YL+1 = E |A) ·
(
π(L−l−(M−rn))(A |Bl = b)− µπ(A)

)
· pπ(Yl = E′ |Bl = b) · pπ(Bl = b). (H.13)

We can also rewrite (H.13) in the matrix form as

ppπ(·, ·)− µπ(·) ·

(
1

L

L∑
l=1

pπ(Yl = ·)

)

=
1

L

L∑
l=1

pπ(YL+1 = · |A = ·) · diag (√µ) ·
(

rK −√
µ
√
µ
⊤
)L−l−(M−rn)

· diag
(√

µ
−1
)

· diag(pπ(Bl = ·)) · pπ(Yl = · |Bl = ·)⊤.

When considering the ℓ1-norm of the difference between the two distributions, we introduce a test matrix U of shape
|XM | × |XM | with each element of U chosen from {0, 1}. Then, we have

TV1 :=

∥∥∥∥∥ppπ(·, ·)− µπ(·) ·

(
1

L

L∑
l=1

pπ(Yl = ·)

)∥∥∥∥∥
TV

≤ max
U

Tr

[
1

L

L∑
l=1

pπ(YL+1 = · |A = ·) · diag (√µ) ·
(

rK −√
µ
√
µ
⊤
)L−l−(M−rn)

· diag
(√

µ
−1
)
· diag(pπ(Bl = ·)) · pπ(Yl = · |Bl = ·)⊤ · U(·, ·)⊤

]
.

To upper bound this quantity, we consider each row of U as U(YL+1, ·) = u(· |YL+1)
⊤. Note that u(· |YL+1) is also a

{0, 1}-valued vector. In this spirit, we have

TV1 ≤
∑
E

max
u(· |YL+1=E)

1

L

L∑
l=1

pπ(YL+1 = b |A = ·) · diag (√µ) ·
(

rK −√
µ
√
µ
⊤
)L−l−(M−rn)

· diag
(√

µ
−1
)
· diag(pπ(Bl = ·)) · pπ(Yl = · |Bl = ·)⊤ · u(· |YL+1 = E).

Note that the norm of the vector in the last line is at most∥∥∥diag (√µ−1
)
· diag(pπ(Bl = ·)) · pπ(Yl = · |Bl = ·)⊤ · u(· |YL+1 = E)

∥∥∥
2

≤
∥∥∥diag (√µ−1

)
· diag(pπ(Bl = ·)) · 1

∥∥∥
2

≤
√
Dχ2(pπ(Bl = ·) ∥µπ(·)) + 1 ≤

√
Dχ2(µ0 ∥µπ) + 1,

where the first inequality holds by noting that pπ(Yl = · |Bl = ·)⊤ · u(· |YL+1 = E) is a vector with element within [0, 1].

53

2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

The last inequality is the data processing inequality. Consequently, we have for the TV distance that

TV1 ≤ M − rn
L

+
1

L

L−(M−rn)∑
l=1

λL−l−(M−rn) ·
√
Dχ2(µ0 ∥µπ) + 1

·
∑
E,b

max
v(· |E):∥v(· |E)∥2≤1

pπ(YL+1 = E |A = b) ·
√
µπ(b) · v(b |E)

≤ M − rn
L

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
· max
{v(· |E)}E : ∥v(· |E)∥2≤1

√∑
E,b

v(b |E)2pπ(YL+1 = E |A = b)

≤ M ∨ rn
L

+

√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
,

where the first inequality follows from the spectral norm of the matrix rK −√
µ
√
µ⊤, and the second inequality follows

from the Cauchy-Schwarz inequality. Now, it remains to quantify the TV distance

TV2 :=

∥∥∥∥∥µπ(·) ·

(
1

L

L∑
l=1

pπ(Yl = ·)

)
− µπ(·) · µπ(·)

∥∥∥∥∥
TV

=

∥∥∥∥∥
(

1

L

L∑
l=1

pπ(Yl = ·)

)
− µπ(·)

∥∥∥∥∥
TV

.

Invoking Lemma H.8, we have this quantity upper bounded by

TV2 ≤
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
+
M

L
.

Using the triangular inequality for the total variation distance, we have

∥ppπ(·, ·)− µπ(·)µπ(·)∥TV ≤ TV1 +TV2 ≤ 2M

L
+

2
√
Dχ2(µ0 ∥µπ) + 1

L(1− λ)
.

Hence, the proof is completed.

In the following, we use a similar technique as in Lemma H.9 to derive a bound for the chi-square distance.

Lemma H.10. Consider Yl has a cover of size m, i.e., there exists a j ∈ [L] and a successive sequence {xj , · · · , xj+m−1}
such that Yl is a subset of the sequence. Then, for the chi-square divergence between the empirical distribution
L−1

∑L
l=1 1(Yl = ·) and the stationary distribution ππ(·), we have

Dχ2

(
L−1

L∑
l=1

1(Yl = ·)
∥∥∥µπ(·)

)
≤
Dχ2(µ0(B = ·) ∥µπ(B = ·)) + 1

L(1− λ) ·minE µπ(Y = E)
+

2rn ∨ (3m− rn)

LminE µπ(Y = E)
.

Proof of Lemma H.10. What we aim to bound is just

E

∑
E

(
L−1

∑L
l=1 1(Yl = E)− µπ(E)

)2
µπ(E)

 = E

[∑
E

L−2
∑

l,l′∈[L]2 1(Yl = Yl′ = E)− µπ(E)2

µπ(E)

]
,

Let us separate this term into two parts:

J1 :=E

[∑
E

L−2
∑

l,l′∈[L]2 1(Yl = Yl′ = E)− L−1
∑

l∈[L] 1(Yl = E)µπ(E)

µπ(E)

]
,

J2 :=E

[∑
E

L−1
∑

l∈[L] 1(Yl = E)µπ(E)− µπ(E)2

µπ(E)

]
= E

∑
E

L−1
∑
l∈[L]

1(Yl = E)− µπ(E)

 = 0.

54

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Following our convention, we let Bl and Bl′ be two length-rn window such that

Yl+1 ⊥⊥ (Bl′ , Yl′) |Bl, (Yl+1, Bl) ⊥⊥ Yl′ |Bl′ .

For the first part J1, let us fix an index l ≥ rn∨m+(m−rn)∨0 and take a summation overm∨rn ≤ l′ ≤ l−(m−rn)∨0.
Let τ = (m− rn) ∨ 0 and ϱ = m ∨ rn. This gives us

J1(l) :=
1

L2

l−τ∑
l′=ϱ

∑
Bl,b

pπ(Yl = E |Bl) ·
(
π(l−l′−τ)(Bl |Bl = b)− µπ(Bl)

)
· pπ(Yl′ = E |Bl′ = b) · pπ(Bl′ = b) · µπ(E)−1

=
1

L2

l−τ∑
l′=ϱ

Tr
[
pπ(Yl = · |Bl = ·) · diag (√µ) ·

(
rK −√

µ
√
µ
⊤)l−l′−τ

· diag
(√
µ
−1) · diag(pπ(Bl′ = ·)) · pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1)

]
.

We next invoke the Cauchy-Schwarz inequality for trace, i.e., Tr(W⊤V)2 ≤ Tr(W⊤W) Tr(V ⊤V), and take

W⊤ = diag(µπ(Yl = ·)−1/2) · pπ(Yl = · |A = ·) · diag (√µ) ·
(

rK −√
µ
√
µ
⊤)l−l′−τ

,

V = diag
(√
µ
−1) · diag(pπ(Bl′ = ·)) · pπ(Yl′ = · |Bl′ = ·)⊤ · diag(µπ(Yl′ = ·)−1/2),

which gives us

J1(l) ≤
1

L2

l−τ∑
l′=ϱ

λl−l′−τ ·

√〈
pπ(Yl′ = ·, Bl′ = ·)2
µπ(Bl′ = ·)µπ(Yl′ = ·)

〉
·
〈

pπ(Yl = ·, Bl = ·)2
µπ(Yl = ·)µπ(Bl = ·)

〉
.

Here, we use the bracket ⟨·⟩ to denote summation over the variables represented by “·”. We further have〈
pπ(Yl = ·, Bl = ·)2

µπ(Yl = ·)µπ(Bl = ·)

〉
≤ max

b,E

pπ(Yl = E |Bl = b)

µπ(Yl = E)
·
〈
pπ(Bl = ·)2

µπ(Bl = ·)

〉
≤ 1

minE µπ(Yl = E)
·
(
Dχ2(µ0(B = ·) ∥µπ(B = ·)) + 1

)
,

where the second inequality holds by the data processing inequality. Therefore, we conclude that

J1(l) ≤
Dχ2(µ0(B = ·) ∥µπ(B = ·)) + 1

L2(1− λ) ·minE µπ(Y = E)
.

For the remaining term not included in J1, we note that each term indexed by l, l′ is at most (L2 minE µ
π(Y = E))−1 in

value and we have at most L · (2τ + ϱ) of these terms. As a result, we conclude that

J1 ≤
Dχ2(µ0(B = ·) ∥µπ(B = ·)) + 1

L(1− λ) ·minE µπ(Y = E)
+

2rn ∨ (3m− rn)

LminE µπ(Y = E)
.

Since the second term is 0, we complete the proof.

Proof of Proposition G.3. To unify the notations, we let Z = (z−M , . . . , z−1) and define

pµπ
X(z, Z) =

1

L

L∑
l=1

1(xl = z,XM(l) = Z),

R(Z,X) = exp

(
a ·

∏
h∈S⋆

1(z−h = xL+1−h)

)
.

55

3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Using these notations, we can define the normalizing factor in rµπ
X and y⋆X respectively as

Φ =
∑
z,Z

µπ(z, Z) ·R(Z,X), pΦ =
∑
z,Z

pµπ
X(z, Z) ·R(Z,X).

We also define

ϕ(z) =
∑
Z

µπ(z, Z) ·R(Z,X), pϕ(z) =
∑
Z

pµπ
X(z, Z) ·R(Z,X).

We can then rewrite the objective as

∥rµπ
X(ek)− y⋆X(k)∥1 =

∑
z

∣∣∣∣∣ϕ(z)Φ
−

pϕ(z)

pΦ

∣∣∣∣∣
≤
∑
z

pϕ(z) · |pΦ− Φ|+ |ϕ(z)− pϕ(z)| · pΦ

Φ · pΦ

=
|pΦ− Φ|+

∑
z |ϕ(z)− pϕ(z)|
Φ

≤
2
∑

z |ϕ(z)− pϕ(z)|
Φ

. (H.14)

Furthermore, notice that∑
z |ϕ(z)− pϕ(z)|

Φ
=

∑
z |
∑

Z(µ
π(z, Z)− pµπ

X(z, Z)) ·R(Z,X)|∑
z,Z µ

π(z, Z) ·R(Z,X)

≤
∑

z |
∑

Z(µ
π(z, Z)− pµπ

X(z, Z))|+ (ea − 1)
∑

z

∣∣∑
Z∈ΓX

(µπ(z, Z)− pµπ
X(z, Z))

∣∣
1 + (ea − 1) ·

∑
z

∑
Z∈ΓX

µπ(z, Z)

≤
∑
z

|µπ(z)− pµπ
X(z)|+

∑
z

∣∣∑
Z∈ΓX

(µπ(z, Z)− pµπ
X(z, Z))

∣∣∑
z

∑
Z∈ΓX

µπ(z, Z)
. (H.15)

where we define ΓX = {Z : Z−S⋆ = XL+1−S⋆}. For the first term, we have by Cauchy-Schwarz that

EX

[∑
z

|µπ(z)− pµπ
X(z)|

]
≤

√√√√EX

[∑
z

(µπ(z)− pµπ
X(z))2

µπ(z)

]

≤

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) · µπ
min

+
rn

L · µπ
min

,

where in the last inequality, we invoke Lemma H.10 for a length-1 window. For the second term, we note that

EX

[∑
z

∣∣∑
Z∈ΓX

(µπ(z, Z)− pµπ
X(z, Z))

∣∣∑
z

∑
Z∈ΓX

µπ(z, Z)

]

=
∑
E,z

EX

[
|µπ(z, Z−S⋆ = E)− pµπ

X(z, Z−S⋆ = E)|
µπ(Z−S⋆ = E)

1(XL+1−S⋆ = E)

]

≤
∑
E,z

√√√√√EX

(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E)√

µπ(Z−S⋆ = E)

)2
 · p

π(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)

≤

√√√√√EX

∑
E,z

(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E))

2

µπ(Z−S⋆ = E)

 ·
∑
E,z

pπ(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)
, (H.16)

56

3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

where the last two inequalities hold by the Cauchy-Schwarz inequality. We have an upper bound for the second term as√√√√∑
E,z

pπ(XL+1−S⋆ = E)

µπ(Z−S⋆ = E)
≤

√
1

minE µπ(Z−S⋆ = E)
. (H.17)

We can also apply Lemma H.10 to the first term and conclude that√√√√√EX

∑
E,z

(µπ(z, Z−S⋆ = E)− pµπ
X(z, Z−S⋆ = E))

2

µπ(Z−S⋆ = E)


≤

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) ·minz,Z−S⋆ µπ(z, Z−S⋆)
+

3M

Lminz,Z−S⋆ µπ(z, Z−S⋆)
. (H.18)

In summary, we have

EX [∥rµπ
X(ek)− y⋆X(k)∥1] ≤

2

minz,Z−S⋆ µπ(z, Z−S⋆)
·

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ)
+

3M

L

+ 2

√
Dχ2(µ0(·) ∥µπ(·)) + 1

L(1− λ) · µπ
min

+
rn

L · µπ
min

57

	Introduction
	Problem Setup: In-Context Learning of Markov Chains
	In-Context Learning and n-Gram Markov Chains
	A Two-Layer Transformer Model

	Theoretical Results
	Generalized Induction Head Mechanism for Learning n-Gram Markov Chains
	Convergence Guarantee of Gradient Flow

	Organization of The Appendix
	Additional Details for The Main Text
	Table for Training Stages
	Figures for Illustration and Experiment Results
	More Details on Layer Normalization
	Assumptions for The Main Theorem
	Further Discussions on The Main Theorem

	Related Works
	Details of Experiments
	Additional Experiments

	Additional Background and Discussions
	Feed-Forward Network for Polynomial Kernel
	Perron-Frobenius Theorem
	Sequential CE Loss
	Standard Chi-squared Divergence and Mutual Information

	Proof Sketch
	Simplification of the Transformer Model at Initialization
	Stage i: Optimal Subset Selection
	Stage ii: Convergence of (w(h)) to One-Hot Vector
	Stage iii: Growth of a

	Dynamics Analysis
	Analysis for Stage i
	Calculation of The Dynamics of cS2
	Preservation of CD along The Gradient Flow
	Approximation of g0,S
	Lower Bound for The Difference tcS2 - tcS2
	Exponential Growth of cS2
	Convergence of pS2

	Analysis for Stage ii
	Calculation of The Dynamics of t w(h)
	Approximation of gh,0
	Lower Bound for The Difference t w-h(h)- t w-i(h)
	Convergence of (h)

	Proof of Stage iii
	Calculation of The Dynamics of a
	Approximation of t a
	Lower and Upper Bound for The Dynamics of a
	Convergence of a

	Lemma on GIH Approximation Error

	Auxiliary Lemmas
	Useful Inequalities
	Lemmas on Concentration of Markov Chain

