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Abstract

In-context learning (ICL) is a cornerstone of large
language model functionality, yet its theoretical
foundations remain elusive due to the complexity
of transformer architectures. In particular, most
existing work only theoretically explains how the
attention mechanism facilitates ICL under certain
data models. It remains unclear how the other
building blocks of the transformer contribute to
ICL. To address this question, we study how a
two-attention-layer transformer is trained to per-
form ICL on n-gram Markov chain data, where
each token in the Markov chain statistically de-
pends on the previous n tokens. We analyze a
sophisticated transformer model featuring relative
positional embedding, multi-head softmax atten-
tion, and a feed-forward layer with normalization.
We prove that the gradient flow with respect to
a cross-entropy ICL loss converges to a limiting
model that performs a generalized version of the
“induction head” mechanism with a learned fea-
ture, resulting from the congruous contribution of
all the building blocks.

1. Introduction

In-context learning (ICL) (Brown et al., 2020) has emerged
as a crucial aspect of large language model (LLM) (Radford
et al., 2019; Brown et al., 2020; Achiam et al., 2023; An-
thropic, 2023; Team et al., 2023) functionality, enabling pre-
trained LLMs to solve user-specified tasks during inference
without updating model parameters. In ICL, a pre-trained
LLM, typically a transformer, receives prompts containing
a few demonstration examples sampled from a task-specific
distribution and produces the desired output for that task.
This capability is noteworthy because the tasks addressed
during ICL might not be part of the original training dataset.
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The success of ICL necessitates that the LLM performs
certain learning processes during inference. While many
previous works aim to demystify ICL from either empirical
or theoretical perspectives, the theoretical foundations of
ICL remain elusive, especially for complex tasks beyond
simple linear regression. This leaves a gap in understand-
ing how full-fledged transformer architectures facilitate ICL
of more complex tasks, especially when there exist latent
causal structures among the tokens in a sequence.

In this paper, we aim to narrow this gap by studying how
a two-attention-layer transformer is trained to perform
ICL of a n-gram Markov chain model, where each token
in the Markov chain statistically depends on n tokens before
it, known as the parent set. Specifically, we consider a trans-
former model with relative positional embedding (RPE) (He
et al., 2020), multi-head softmax attention (MHA), and a
feed-forward network (FFN) layer with normalization. We
employ such a transformer model to predict the (L+1)-th to-
ken of a n-gram Markov chain, with the first L tokens given
as the prompt, where L + 1 is the sequence length. Here
the L-token sequence is sampled from a random Markov
chain model, where a random transition kernel obeying the
n-gram Markov property is used to generate sequences. The
token sequence is fed to the transformer model, which out-
puts a probability distribution over the vocabulary set for
predicting the (L + 1)-th token.

Under this setting, we aim to answer the following three
questions: (i) Does the gradient flow with respect to cross-
entropy loss converge during training? (i1) If yes, how does
the limiting model perform ICL? (iii) How do the building
blocks of the transformer model contribute to ICL?

Main Results. We provide an affirmative answer to the
Question (i) by proving that the gradient flow converges
during training. In particular, we identify three phases of
training dynamics, where in the first stage, FFN learns the
potential parent set; in the second stage, each attention head
of the first MHA layer learns to focus on a single parent
token selected by FFN; and in the final stage, the parameter
of the second attention layer increases and the transformer
approaches the limiting model. Moreover, for Questions
(ii) and (iii), we show that the limiting model performs a
specialized form of exponential kernel regression, dubbed
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“generalized induction head”, which requires the congru-
ous contribution of all the building blocks. Specifically, the
first attention layer acts as a copier, copying past tokens
within a given window to each position. The FFN layer acts
as a selector that generates a feature vector by only looking
at informationally relevant parents from the window accord-
ing to a modified chi-square mutual information. Finally,
the second attention layer is a exponential kernel classifier
that compares the features at each position with that created
for the output position L + 1, and use the resulting similarity
scores to generate the desired output. When specialized to
the case where n = 1, the limiting model selects the true par-
ent token and implements the “induction head” mechanism,
which recovers the theory in Nichani et al. (2024). Our
theory is complemented by numerical experiments, which
validate the three-phase training dynamics and mechanism
of generalized induction head.

2. Problem Setup: In-Context Learning of
Markov Chains

2.1. In-Context Learning and n-Gram Markov Chains

We study autoregressive transformers trained for in-context
learning (ICL). A pretrained transformer is a conditional dis-
tribution fy¢ (- | prompt) over a finite vocabulary X', where
prompt is a sequence of tokens in X. We consider unsu-
pervised learning where fy¢ predicts the (L + 1)-th token
141 given the prompt x1.7, where the joint distribution of
the sequence w1.(741) is sampled from a random n-gram
Markov chain.

n-Gram Markov Chains. We assume the data comes
from a mixture of n-gram Markov chain model, denoted
by a tuple (X, pa, P, uo), where X is the state space and
pa = (—ry,...,—ry,) is the parent set with positive inte-
gers 1y < rg < --- < rp. Thatis, foreachl > r,, ;
only statistically depends on (z;—_,...,Z;—r, ), Which is
denoted by Xy, (;y and referred to as the parent tokens of z;.
We let d = |X| denote the vocabulary size. Moreover, P is
a probability distribution over the set of Markov transition
kernels respecting the parent structure specified by pa, and
o is the joint distribution of the first r,, tokens z1.,,,. Thus,
the sequence x.(r,41) is generated as follows: (i) sample
initial r,, tokens (z1, ..., 2, ) ~ o, (ii) sample a random
transition kernel = ~ P, where 7: X™ — A(X), and (iii)
sample token x; ~ 7(-| Xpa)) forl =r, +1,..., L+ 1.
See Figure 1 for an illustration.

Cross-Entropy (CE) Loss. When xy.(;41) is generated,
x1.7, is fed into the transformer fis to predict zy 1. To
assess the performance, we adopt the population CE loss

L(fee)=—Ernnpay i, 108(fee(@rr1 | 21:L) +€)],
2.1)

where € > 0 is a small constant introduced for numeri-
cal stability. As a remark, we also relax the condition in
Nichani et al. (2024) where they need the last token z 7, to
be resampled from a uniform distribution. In addition, our
analysis can also be extended to sequential CE loss, which
corresponds to predicting every token in the sequence given
the past rather than just the last token x 1. See §E.3 for
further discussion.

2.2. A Two-Layer Transformer Model

We consider a class of two-attention-layer transformer
model TF(M, H, d, D) that incorporates Relative Positional
Embedding (RPE) (He et al., 2020), Multi-Head Attention
(MHA) (Vaswani et al., 2017), and a Feed-Forward network
(FFN) with normalization. Here, M is the RPE window
size, H is the number of attention heads, d is the vocabulary
size, and D controls the complexity of the FFN. The details
of TF(M, H,d, D) are as follows.

Token Embedding, Input and Output. We take X' =
{e1,...,eq} as the vocabulary. Given the input sequence
x1.1, we denote X = (21,...,27)" € R4, and append
a zero vector 0 € R? to the sequence as the place-holder,
defining X = (21,...,27,0)" € RUEADXA and fed this
extended sequence into the transformer. The output of at
the “0” position is denoted by y € R?.

Relative Positional Embedding. In the first attention layer,
we use relative positional embeddings (RPE) to encode the
positional information. Specifically, RPE is parameterized
by a vector w = (w_ps, ..., w_1)" € RM, and it assigns
a scalar Wp (4, j) to query and key positions (¢, j) by

Wpl(i,j) = —o0o if j>i or |j —i| > M.

In other words, the i-th token only attends to tokens with
indicesin {¢ — 1,...,i — M}, referred to as the length-M
window of the i-th token. See Figure 2 for an illustration.

First Attention Layer. The input sequence is first processed
by an attention layer with H parallel heads. In all heads, we
discard the token information and only use RPE to compute
the attention score. Specifically, each attention head i maps
X into a sequence in R? with length L + 1, collected as
V) = (vgh),...,v(Lthl)T. For any | € [L + 1], vl(h) is

computed using RPE WI(Dh) via

L
u® =30, (W () - a;. 22)
7=1

Feed-Forward Network with Normalization. After the
first attention layer, we concatenate the outputs of the
H attention heads and define V. = (V1) .. VD) ¢
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R(EADxHA - Consequenlty, for the I-the row of V' which
we denote by v, , we have v = (0”7, ... o7 and
for any vector u € R¥? in the sequel, we use the notation
w' = (T, uT) with block v® € R?. With
embedding dimension d., each row of V' is passed through
an FFN ¢(-) : R4 — RZ which specifies a polynomial
kernel such that for any u, v € RH4 we have

G, o) = S & [ @™, o™).

S€[H]<p hes

2.3)

Here, the set [H]<p = {S C [H] : |S| < D} contains all
subsets of [H| with cardinality at most D, and {cs : S €
[H]<p} are the corresponding trainable parameters of ¢(-).
An explicit definition of ¢(-) is available in Lemma E.1.

Furthermore, to control the magnitude of the FFN outputs,
we normalize ¢(-) by letting u; = ¢(v;)/+/Cp forall | €
[L + 1] where Cp = Y 5., ¢5- The normalization
scheme is motivated by the popular layer normalization
(Ba et al., 2016) in transformer architectures but without
trainable parameters. See §B.3 for more discussions.

Second Attention Layer. We define normalized vector
sequence as U = (uy,...,ury1) ', which together with the
original sequence X are then fed into the second attention
layer. This attention layer has a single head and a scalar
trainable parameter a. We let Uy.p, = (uq,...,ur)" and
let Mask(-) denote the mask that sets every entry of the first
M rows of a matrix to be —oo. The final output is given by

L
Y= ZJ‘:MH oj(a-uj  Mask(U))) -z,  (2.4)
Note that the softmax function in (2.4) yields a probability
distribution over [L] and that x1., is a sequence of one-hot
vectors. Thus, y in (2.4) is a probability distribution over
X. The mask is just included here to simplify our analysis
while in the experiments we are not using the mask.

In summary, given the input X e REHD *d_in the matrix
form, a transformer model in TF(M, H, d, D) consecutively
applies the following operations:

First Attention: v = a(WI(,h))f(

V=[O . v

U=6¢(V)/VCp

y' = ofa- u—'L—+1Mask(Ul—':L))X
2.5)

Concatenate:
FFN & Normalize:

Second Attention:

The trainable parameters of the above transformer model
are © = {a, {w(_hl), . ,w(_hg/[}he[m, {cs: S € [H]<p}}.
We remark that the transformer model in (2.5) is known as
a disentangled transformer (Friedman et al., 2024), which is
a version of the transformer model that is more amenable

for theoretical analysis. As shown in Nichani et al. (2024),
any standard transformer model can be expressed as a dis-
entangled transformer by specializing the attention weights
to allow feature concatenation.

3. Theoretical Results

3.1. Generalized Induction Head Mechanism for
Learning n-Gram Markov Chains

In the following, we introduce a generalized induction head
(GIH) estimator for the task of predicting xry; given x1.1,
which is based on the following simple idea: x 1 should
be similar to a previous token x; if their parents are similar.
As the parent set pa is unknown, GIH adopts an information-
theoretic criterion to select a subset of previous tokens as
a proxy of the parents. Specifically, GIH uses a modified
version of chi-squared mutual information, which is defined
as follows: We let (z, Z) denote (2;_p, - - -, ;) under the
stationary distribution ¢ with m ~ P, where z = z;, Z =
(zi—py---y21—1) and £ > M.

[2(S) = EK Z W™ (z=e|Z_s)?

& =0

- 1)m<z_s)} |
3.1

where the expectation is taken over m ~ P, (2, Z) ~ p
u™(z = - | Z_g) is the conditional distribution of z induced
by u™ given partial history Z_g, and u™ (Z_g), u™(z) are

the marginal distributions of Z_gs and z under (z, Z) ~ u™.

Intuitively, I, 12 (&) is modified from the vanilla chi-squared
mutual information between two variables (Polyanskiy &
Wu, 2024) and outputs a reweighted mutual information
between Z_g and z. Define S* as

S* = argmaxSE[M]SDfxz(S). 3.2)

As a remark, with the standard chi-squared mutual informa-
tion, the optimal S* is the true parent set pa or a superset of
it by the data processing inequality. However, sometimes a
true parent can also bear little information about the target
and a larger parent set tends to appear less frequently in the
context sequence, leading to poor estimation accuracy. To
handle this issue, the modification in (3.1) reaches a balance
between the information-richness and the model complexity.
See §B.5 for details.

Now we are ready to introduce the Generalized Induction
Head (GIH) estimator. For given window size M, parent
set degree D, The GIH estimator denoted by GIH(-; M, D)
takes the sequence x1.7, as input and outputs a vector y* €
R? as distribution over X’ by

e Jniem e (Ximse = Xpqa-s0), if N > 1,

y =1 V< .
T—M Zl>M x;, otherwise.

(3.3)
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Here, we define X;_g+ as the set {x;_5 : s € §*} and
N =%,y 1(X;—s+ = Xpy1-s+). In a nutshell, the
GIH estimator checks whether the partial histories of X;_ g+
and X ;_s+ match and aggregate all the tokens x; that
satisfy this condition as the predicted distribution of x ;.
Moreover, the GIH estimator is a generalization of the Induc-
tion Head mechanism (Elhage et al., 2021) to the stochastic
setting with multiple parents. As we will show in §G.4,
there exists a transformer model that implements GIH in its
architecture. More importantly, we will show that gradient
flow finds such a limiting model.

3.2. Convergence Guarantee of Gradient Flow

In the following, we present the convergence guarantee for
gradient flow. To simplify our discussion, we consider the
case where H = M. That is, there are enough heads to
implement the GIH mechanism by letting each head copy a
unique parent token from the window of size M. In the fol-
lowing, when we discuss the correspondence between “head”
and “parent”, we always refer to the mapping from head h to
parent z;_, for any h € [H] and [ > M, which is without
loss of generality. Let us first introduce the paradigm of
gradient-flow training.

Training Paradigm. Now we train a transformer
TF(M, H,d, D) in (2.5) to perform ICL on the n-gram
Markov chain model introduced in §2.1. Specifically, we de-
fine £(©) as the population cross-entropy loss in (2.1) with
fis replaced by the transformer model in (2.5) with parame-
ter ©. We train parameter © using gradient descent, under
the ideal setting with infinite training data and infinitesimal
step size. That is, we study the dynamics of gradient flow
with respect to the loss £(0):

20(t) = —VL(O(1)).

To simplify the analysis, we consider a three-stage training
paradigm where in each stage only one part of the weights
gets trained. See §B.1 for a detailed table.

Now we are ready to present our main theoretical result on
training transformers by gradient flow.

Theorem 3.1 (Convergence of Gradient Flow). Suppose As-
sumption B.1 and Assumption B.3 hold. Then the following
holds for the three-stage training of gradient flow when L is
sufficiently large.

Stage I: Parent Selection by FFN. Let  Cp(t) =
Sscinp cst)? and ps(t) = &.()/Cplt)
Then in the first stage of length 1, =
Cp(0)log(Llog L)/(a(0)ALyz), the ratio cs+/cs

grows exponentially fast for any S # S*, and §* dominates
exponentially fast in the sense that,

1 —ps«(t) < (1 —ps«(0))
~exp(—(2Cp) ™t - a(0) - ALz - t), Vt € [0,t1).

4

Stage II: Concentration of The First Attention.
Define o™ (t) o(wM(t)) € RM,
Omin () ming s+ O'(_hh (t). Then in the second
stage of length to < (Llog L)/(a(O)AfXQ ), it holds for all
te [tl,h + t2) that

1 T " ))?

heS*

and let

) 215*] - (M — 1) .
= a(0) AL o (0)(t — t1)/2 + exp(Aw) + (M — 1)

Stage III: Growth of The Second Attention. For some
constants c1,co depending on (P,S8*) with 0 < ¢1 < ca,
there exists a small constant 6 > 0 such that the growth
of a(t) exhibits the following two sub-stages: (i) When
a(t) < log(ci/d), it holds that da(t) = e*®; (ii)
After a(t) has grown such that a(t) > log(ca/9), then
Ora(t) < 1/a(t) until it reaches the value (1 — 0) log L /4.

See §F for a proof sketch and §G for the detailed proof. An
experimental demonstration for the three stages’ s dynamics
is in Figure 4. From Theorem 3.1, we can interpret that:

e The first stage’s training on FFN is learning a selector
that selects an informative set S* by realizing the cor-
responding feature embedding through the polynomial
kernel.

e The second stage’s training on the RPE turns the first

attention layer into a copier by establishing the corre-

spondence between the attention heads and the parents

in the selected S*.

Given that the previous two stages have prepared

the feature mapping ¢ such that (¢)(v;), d(vr+1))

1(X;—s+ = Xp41-s+) , the last stage enforces the

GIH mechanism by increasing the scalar weight a in

the second attention layer, which serves as an exponen-

tial kernel classifier. The two sub-stages with distinct
growth rates can be clearly seen from Figure 4(c), where

Oa(t) is initially large and gradually decays.

~
~

In fact, we theoretically show that the limiting model upon
convergence implements the GIH mechanism with 7 going
to infinity up to an O(L~(1~9/4) error. We defer the formal
statement and proof to §G.4. Moreover, as an answer to the
Question (iii) raised in §1, the different components of the
transformer architecture are all critical for achieving this:
FFN with normalization realizes the selector, the multi-head
design of attention supports the copier, and finally, the soft-
max operation facilitates the exponential kernel classifier.

Another takeaway from Theorem 3.1 is that the FFN layer
evolves exponentially faster than the RPE in the first at-
tention layer, suggesting that we can actually train them
together without splitting the first two stages. Indeed, this is
validated by experiments in §D.
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A. Organization of The Appendix

The appendices are organized as follows:

* In §B, we provide details omitted from the main text due to space constraints.
» In §C, we present an in-depth discussion on the related works.
* In §D, we discuss the experimental details.

* In §E, we provide explicit expressions for the FFN realizing a low-degree polynomial kernel, and review basics related
to concepts mentioned in the main text.

* In §F, we provide a high-level overview of the proof of our main results.
* In §G, we present the proof for Theorem 3.1.

* In §H, we collect auxiliary results used in the proof of Theorem 3.1.

B. Additional Details for The Main Text
B.1. Table for Training Stages

Stage Block to Train Weights to Train  Duration
StageI ~ FFN, layer 1 {estsem<p t1 < (Cp(0)log L)/(a(0)Alz2)
Stage I Attention RPE, layer 1 {w™}eim to < (Llog L)/(a(0)AlLcz)

Stage III  Attention weight, layer2 a

The three-stage training paradigm is presented in the above table. Specifically, we train the FFN layer in the first stage,
then the first attention layer in the second stage, and finally the second attention layer in the last stage. In each stage, the
parameters of other components of the model are frozen.

B.2. Figures for Illustration and Experiment Results

Figure 1. A 2-gram Markov chain with parent set pa = {—1, —3}.
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Figure 2. Tllustration of the relationship between RPE vector w™ and corresponding matrix W},h).

[lustration of Figure 4 on the three training stages:
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Figure 3. Limiting model of TF(M = 3, H = 3,d = 3, D = 2) trained using gradient descent with L = 100, pa = {—1, —2}: (a) The
top left 10 by 10 block of WI(DI) that attends to the —1 parent. (b) The RPE weight heatmap for all 3 heads. (c) One ¢ dominates. Here,
S represented by “110” means that S* = {1, 2}, which is the exact parent set.
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Figure 4. Training courses of 3 stages for TF(M = 3, H = 3,d = 3, D = 2) trained with L = 100, pa = {—1,—2}. (a) In Stage L, a
dominating cs» was learned with S* = {1, 2} being the exact parent set. (b) In Stage II, the first two heads were trained to attend to
parents —1 and —2, respectively. (c) In Stage III, the value of a increased monotonically.

e The first stage’s training on FFN is learning a selector that selects an informative set S* by realizing the corresponding
feature embedding through the polynomial kernel. In Figure 4(a), S* = {1, 2}, and cs+ immediately dominates within
only a few gradient steps.

e The second stage’s training on the RPE turns the first attention layer into a copier by establishing the correspondence
between the attention heads and the parents in the selected S*. In Figure 4(b), the first two heads initialized towards the
first two parents will deterministically copy parent —1 and —2 eventually while the third head is insignificant as 3 ¢ S*.
Also see Figure 3-(a) and (b).

e Given that the previous two stages have prepared the feature ¥ s« defined in (3.3), the last stage enforces the GIH
mechanism by increasing the scalar weight a in the second attention layer, which serves as an exponential kernel
classifier. The two sub-stages with distinct growth rates can be clearly seen from Figure 4(c), where Oa(t) is initially
large and gradually decays.

B.3. More Details on Layer Normalization

Recall that we have the normalization after the FFN layer as
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To see this, consider a special case where the positional embeddings, after the softmax function, produce attention weights
that are close to one-hot for each head. Then vl(h) in (2.2) is just copying some token in 1.7, and since each token has unit
norm, Hhes(v(h), vM) = 1and ||¢(v;)||2 = v/Cp. Thus, u; is close to the layer normalization ¢(v;)/||¢(v;)||2 (Without
trainable parameters). Such normalization is for simplifying the analysis and in later experiments in §D, we directly use this
{5 layer normalization.

B.4. Assumptions for The Main Theorem

We introduce the following assumptions for our main theorem. We define the information gap within the D-degree parent
set [H]<p as ALz = 1,2(8*) — maxge(m)_ 5\ (s+} {y2(S), where we recall that S* maximizes the modified chi-squared
mutual information as is defined in (3.2).

Assumption B.1 (Initialization). We assume that the following holds at initialization:

1. For the first attention layer’s RPE weights, wihfz > w(f])
scalar related to the modified mutual information by

+ Aw forall h,j € [H| with j # h, where Aw > 0 is a positive

1
Aw > log(M — 1) — log [(1 + AL /(141 2 (s*))] . 1). (B.1)
2. The scalar parameter a in the second attention layer satisfies 0 < a < O(L‘3/ 2).

The first assumption on the RPE is used to boost the correspondence between parents and heads during the training by
breaking the symmetry between different attention heads. The second assumption on the scale of a ensures that the attention
probability given by the second attention layer is close to the uniform distribution over [L]. This alignment enables us to
derive clean descriptions for the dynamics of the first attention layer and the FEN, shedding light on their respective roles in
executing ICL.

Next, we present our assumptions on the Markov chain in the data generation process. To proceed, we define a d"» x d"
transition matrix P, for the Markov chain as follows: Each row/column of P, is indexed by the value of a length-
r, sequence of tokens Z = (z_, ,...,z_1) and each element indexed by tuple (7', Z) is defined as P,(Z',Z) =
(21| Zpa) - W(Z",. .3 = Z_(y,—1):—1)- Note that P is a stochastic matrix but with zero entries due to the indicator.
We need the following notion of the primitive matrix to state our assumption on P;.

Definition B.2 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive if there exists a
positive integer k such that all entries of P* are positive.

We defer more details about the above definition to §E.2. By the celebrated Perron-Frobenius theorem, if P; is primitive,
then (i) there exists a unique stationary distribution for the Markov chain; (ii) P, has a unique leading eigenvalue equal to 1,
and the corresponding eigenvector is the stationary distribution. Next, we state the assumptions on the mixture of Markov
chains for data generation.

Assumption B.3 (Markov Chain). For any m € supp(P), we assume that:

1. Py is primitive. In particular, we assume that there exists A < 1 such that the eigenvalue of Py with the second largest
magnitude satisfies | \a(Pr)| < A
2. There exists vy > 0 such that the transition kernel satisfies 7(x | Xpa) > 7y for any (x, Xpa).

The first assumption guarantees a unique stationary distribution as well as a fast mixing rate of the Markov chain by ensuring
a spectral gap for P;. In addition, the second assumption implies a lower bound on the probability for any S C [M] under
the stationary distribution, i.e., u™ (X _gs) > AI81,

B.5. Further Discussions on The Main Theorem

On the Modified Mutual Information. Now that we have shown how gradient flow approaches the desired GIH model, it
is then natural to ask what is the optimal subset S* that the model selects and how well the model performs. For the purpose
of illustration, let us consider a special case where the stationary distribution ™ over a length-r,, window is uniform over
X7, One can verify that in this case, the stationary distribution over a window of any other length is uniform as well, and
the modified mutual information can be simplified as

logfxz (S) =log I2(S) — |S|logd, (B.2)

10
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where I, 2 (S) is the standard chi-squared mutual information between " (2 | Z_s) and ;" (2), and the second term |S|log d
serves as a penalty on the model complexity. Thus, the GIH mechanism is reaching a balance between the model complexity
and the information richness. Below we characterize two scenarios where the model will select the exact parent set, i.e.,
S* = pa.

1. If n = 1, i.e., each token only has one parent, then S* = pa. This is because S* simultaneously maximizes both terms
in (B.2), thus reproducing the results in (Nichani et al., 2024).

2. If n is known a priori and restricting the polynomial kernel to S € [H]=,, = {S € [H] : |S| = n} for the FEN layer,
then S* = pa. Here, the penalty term does not influence the selection and the exact parent set maximizes the mutual
information by the data-processing inequality.

In the general case, however, the model could be much more flexible, and it is possible that the model selects only a subset
of the true parent set or even some non-parent tokens that are also informative. The rationale is that with a more complex
model, e.g., selecting a large S, the model are able to make more accurate predictions for large L but may behave poorly for
small L, as the exact subsequence X;_s = X11-s may appear rarely in the history.

On the Low-Degree Polynomial Kernel. The goal of using a low-degree polynomial kernel in (2.3) is to strike a balance
between model complexity (which is also related to computational cost) and the model’s accuracy. In this regard, we have
the following corollary.

Corollary B.4. |S*| < n regardless of the degree D.

The rationale is that any S such that |S| > n has the mutual information no larger than the exact parent set pa, while
incurring a larger penalty on the model complexity. In other words, when D > n, minimizing log I 12 (8S) encourages the
model to become simpler, meanwhile solving the ICL task. Furthermore, if D < n, minimizing the modified chi-squared
mutual information will instead become a constrained optimization problem.

C. Related Works

In Context Learning (ICL). Commercial Large Language Models (LLMs) such as ChatGPT (Brown et al., 2020),
GPT-4 (Achiam et al., 2023), and Gemini (Team et al., 2023) typically operate in an autoregressive manner. These models
exhibit remarkable capabilities in performing reasoning steps based on provided prompts, without requiring further training.
Previous research explores various aspects of the in-context learning (ICL) ability of these models. This includes their
performance in zero-shot and few-shot learning scenarios (Honovich et al., 2022; Wei et al., 2021), the use of the chain of
thought method to enhance reasoning (Wei et al., 2022; Zhou et al., 2022), and learning with multi-modalities (Alayrac
et al., 2022).

Recent works focus on the setting of ICL to develop a theoretical understanding of transformers from different perspectives.
A key perspective is the Bayesian view, which explores how transformers can be understood through the lens of Bayesian
inference (Xie et al., 2021; Muller et al., 2021; Zhang et al., 2022; 2023b; Ahuja et al., 2023; Jeon et al., 2024). Another
significant area of investigation examines how transformers internally execute specific algorithms to solve ICL tasks. This
line of work uncovers the intricate mechanisms through which transformers perform these tasks (Akyiirek et al., 2023;
Von Oswald et al., 2023; Bai et al., 2023; Fu et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Giannou et al., 2024).

Furthermore, researchers study the statistical complexities of in-context learning (ICL), focusing on how transformers
manage various statistical challenges (Wu et al., 2023; Cheng et al., 2023; Guo et al., 2023; Collins et al., 2024). There
is also substantial interest in understanding how ICL operates over data drawn from Markov chains, providing insights
into transformer behaviors in these specific data environments (Collins et al., 2024; Edelman et al., 2024; Makkuva et al.,
2024; Chen & Zou, 2024), and with extension to in-context decision making (Lin et al., 2023; Sinii et al., 2023). Moreover,
recent research highlights the properties and advantages of using transformers beyond the traditional ICL setting, thereby
broadening our understanding of their capabilities and applications (Edelman et al., 2022; Li et al., 2023; Jelassi et al., 2022;
Sanford et al., 2023; Giannou et al., 2023; Liu et al., 2022; Tarzanagh et al., 2023a;b; Tian et al., 2023b;a; Song & Zhong,
2023; Deora et al., 2023; Chen & Li, 2024; Rajaraman et al., 2024).

On the other hand, understanding training dynamics from an optimization perspective is crucial for comprehending how
transformers implement the ICL algorithm. The training dynamics for one layer attention are investigated under different
data models for both regression and classification tasks (Zhang et al., 2023a; Huang et al., 2023; Tarzanagh et al., 2023a;b;

11
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Kim & Suzuki, 2024; Chen et al., 2024; Vasudeva et al., 2024; Li et al., 2024; Thrampoulidis, 2024; Sheen et al., 2024).
These studies offer a thorough characterization of the training process, yet they have limitations — they are not directly
applicable to data drawn from Markov processes and are confined to single-layer attention.

Induction Head. (Elhage et al., 2021) introduces the concept of “induction heads” as the mechanism underlying the
ICL capabilities of transformers. At a high level, the induction head mechanism works by matching the history of the
current token with those have been seen previously in the sequence and then predicting the next token based on the matched
historical sub-sequences. (Olsson et al., 2022) provides empirical evidence highlighting that induction heads are crucial
in facilitating the ICL capabilities of transformers. (Bietti et al., 2024; Edelman et al., 2024) conduct a further empirical
investigation into the development of induction heads specifically tailored for the ICL of bi-gram data models. Also, a wider
range of functionalities exhibited by induction heads that interact with various other mechanisms has been observed by
(Wang et al., 2022). On the theory side, (Nichani et al., 2024) studies the ICL of first-order Markov chains using a two-layer
transformer and demonstrates the formation of the induction head mechanism.

Most related to our work is the recent paper by Nichani et al. (2024), where they analyzed how training by gradient descent
enables a two-layer transformer to learn the latent causal graph underlying the ICL data. In comparison, the analysis in
Nichani et al. (2024) applies to Markov chains where each token has at most one parent, while our setting encompasses
general n-gram Markov chains where each token can have multiple parent tokens. Moreover, our transformer models are
more sophisticated, incorporating features like relative positional embedding, multi-head attention, an FNN layer, and
normalization. Notably, we provide an in-depth dynamics analysis of the corresponding FFN layer and two-layer multi-head
attention.

D. Details of Experiments

In this section, we present the simulation results of TF(M, H, d, D) in (2.5) which performs ICL on the n-gram Markov
chain model introduced in §2.1.

Train cs and w® together Train a
1.0 0 > 0 3 —_—a
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4 4
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Figure 5. The evolution of gradient descent dynamics where we first train the first attention layer and the FFN together and then train
the second attention layer. We plot the evolution of parameter {cs,S € [H]<p}, {Wl(ah) Yhern)> and a respectively. Here we train a
transformer TF(M, H,d, D) with M = H = 3,d = 3, and D = 2, the number of input token is L = 100, and Markov chain has parent
set pa = {—1,—2}. (a) A dominating cs+ was learned for S* = pa, i.e., the model selects the true parent set. This can be seen by
observing that the line with the label “110” increases to about 1.0 while other lines decrease to nearly zero. (b) The first two attention
heads, corresponding to the first two rows in the plotted matrix, became concentrated on the —1 and —2 parents, respectively. While the
third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top two
diagonal entries after training have larger values than their initial values as well as those of all other entries. (c) The weight of the second
attention layer, a, increased monotonically. In particular, it grew rapidly during the initial steps, and then the growth slowed down.

Data generation. The dataset for the ICL task was generated using n-gram Markov Chains as described in §2.1. We
randomly sampled 10,000 Markov Chains with L = 100 from the prior distribution P; 9,000 were used for training and
1,000 for validation. Each Markov Chain has 2 parents, i.e., |pa]| = 2. Each token was embedded to d = 3. The prior
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Figure 6. The evolution of gradient descent dynamics where we train the whole limiting model directly. We plot the training loss,
the evolution of parameter {cs,S € [H]<p}, {W;,h)} ne[H]> and a respectively. Here we train a transformer TF(M, H,d, D) with
M = H = 3,d = 3,and D = 2, the number of input token is L = 100, and Markov chain has parent set pa = {—1, —2}. (a) The
training loss curve of the model. (b) A dominating cs+ was learned for S* = pa, i.e., the model selects the true parent set. This can be
seen by observing that the line with the label “110” increases to about 1.0 while other lines decrease to nearly zero. (c) The first two
attention heads, corresponding to the first two rows in the plotted matrix, became concentrated on the —1 and —2 parents, respectively.
While the third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top
two diagonal entries after training have larger values than their initial values as well as those of all other entries. (d) The weight of the
second attention layer, a, increased monotonically. In particular, it grew rapidly during the initial steps, and then the growth slowed down.

distribution P is defined such that each row of the transition matrix of kernel 7 is independently drawn from a Dirichlet
distribution with parameter v = 0.01, i.e., 7([2pa(z)) ~ Dir(a - 14n).

Model initialization. We configured the model with three heads (H = 3) and window size (M = 3). The relative
position encoding (RPE) weight matrix W},,h) was initialized such that the (—:)-th diagonal of WI()h) was set to w(_hz) for

i=1,2,..., M, while all other entries were initialized to —oo. We set w™) = pey,, using a large positive value p = 3 to
ensure that the h-th head focuses on the —h-th position. For other entries not set to —oo, we assigned a value of 0.01. All
cs were initialized to 0.01. The initial value of a was set to 0.01.

Training settings. The models were trained using gradient descent with the cross-entropy loss function and a constant
learning rate (A = 1) for all stages. We trained the model in Stage I (¢s) for 2000 epochs, in Stage I (w™) for 50,000
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epochs, and in Stage III (a) for 5000 epochs, respectively. The training was performed at a low degree (D = 2). All
experiments were conducted using a single Nvidia A100 GPU.

Upon convergence, the weights of the trained disentangled transformers exhibited consistent structures, as shown in Figure 3.
Specifically, cs- dominated the ratio of c%./ SelH]<n c%. Furthermore, heads w(!) and w(?) converged to the relative
positions of the Markov parents. -

In addition to separately training the first attention layer and the FFN (Figure 4), we demonstrate that these two components
can be trained together, as illustrated in Figure 5. We remark that the learning behavior of the model under these two distinct
paradigms is similar.

D.1. Additional Experiments
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Figure 7. The evolution of gradient descent dynamics where we directly train the modified full model. We plot the training loss, evolution
of parameter {cs,S € [H]<p}, {Wl(,h)}he[ H]> and a respectively. Here we train a transformer TF(M, H,d, D) with M = H = 3,
d = 3, and D = 2, the number of input token is L = 100, and Markov chain has parent set pa = {—1, —2}. (a) The training loss of
the model. (b) A relatively dominating cs~ was learned for S* = pa, i.e., the model selects the true parent set. This can be seen by
observing that the line with the label “110” increases to above 0.6 while other lines decrease to nearly zero. (c) The first two attention
heads, corresponding to the first two rows in the plotted matrix, became concentrated on the —1 and —2 parents, respectively. While the
third attention head stays insignificant as the parent set pa contains only two elements. This can be seen by noticing that the top two
diagonal entries after training have larger values than their initial values as well as those of all other entries. (d) The weight of the second
attention layer, a, increased monotonically. In particular, it grew rapidly during initial steps, and then the growth slowed down.
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Previously, we show the simulation results on the simplified model in §D. Now we demonstrate additional experiments on
the full model as follows.

First Attention: V(") = ()N( X7 W(h)))}wé@T c R+ xd
Concat & Norm: V = LN([XN/ V(H) X]) € RE+DX(H+1)d
Feed Forward: ( ) c R+ xde
Concat & Norm: X' = LN([U, V]) e READX((H+1)d+de)
Second Attention: Y = a()N(’WQK)N(’T))N(’WOTV c R(L+D)xd

For the second attention layer, we only use the last row y = Y71 as the output. Here, LN denotes the ¢, layer normalization

without trainable parameters. For head h of the first attention layer, ngh) is the relative positional embedding matrix, Wg})(

and ng are the weight matrices for the query-key, value, and output projections, respectively; ¢ : R(Z+1d _ R js a
feed-forward network; and finally, Wqx and Woy are the query-key matrix and output projection matrix for the second
attention layer. In comparison to the simplified model in (2.5), here we incorporate all query, key, and output projections
as in a standard transformer architecture. Also, we replace the normalization by a \/Cp factor with the usual /5 layer
normalization, though they have similar functionality.

Our training setup is similar to that in §D. We used the same dataset and training settings (except the number of training
epochs).

We initially attempted to train the full model directly, but this approach was ineffective. Consequently, we adopted an
alternative strategy. Specifically, for the first layer, we used all components of the full model together except for the
query-key projection weight Wég?{ For the second layer, we utilized a simplified version similar to the one with polynomial
kernel weights, but we incorporated an additional ReLLU operation to avoid negative values for each product due to the use
of value and output projection Wg@ Both Wg}g and Wg}% were initialized as identity matrices scaled by 0.001. Unlike
the simplified model, we initialized the RPE vector w(®) deterministically as w*) = pe;, with p = 10. We trained the
full model with all parameters together for 50,000 epochs. As illustrated in Figure 7, the full model converged to a state
comparable to our simplified model.

E. Additional Background and Discussions
E.1. Feed-Forward Network for Polynomial Kernel

Lemma E.1. Recall that we define the feed-forward network (FFN) in (2.3), which maps a vector in z € R to a vector in

Rée. We write z as (21, .., 2(H)) where z(") € RY for all h € [H]. Then we can explicitly write ¢(-) by letting
¢((Z(1), .. ,Z(H))) = (CS . H Zz(/,,)) : {i}l}},eg g [d],S S [H]§D> (El)
hes

In particular, for each S € [H)< p, we enumerate iy, € [d] for all h € S. Therefore, the output dimension of ¢ is given by

- Z d'S!. (E.2)
S€[H]<p

Proof. First, we note that the indices of ¢(-) have a grouped structure — we first enumerate all subsets in [H]< p and then
enumerate all monomials with superscripts in S. Since there are d'| monomials, the output dimension is given by (E.2).

It remains to verify (2.3) with ¢(-) defined in (E.1). To this end, we note that for any u,v € R and any S € [H]<p, we
have

Z { H ugf) UZ(:L)} — H ( Z u h) Uzh)> H<u(h)’v(h)>7

in€[d],heS ~ heS heS Nipeld] hes

which directly implies (2.3). Therefore, we conclude the proof of this lemma. O
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E.2. Perron-Frobenius Theorem

Next, we review the basics for the celebrated Perron-Frobenius theorem on non-negative matrices (Meyer, 2023, Chapter 7).
We consider the following class of irreducible matrix.

Definition E.2 (Irreducible Matrix). A nonnegative square matrix P € ]RiXd is called irreducible if the induced directed
graph G is strongly connected, i.e., there always exists a directed path that connects any two given nodes within the graph.
Here, the induced graph G is defined on d nodes with adjacent matrix A given by A;; = 1(P;; # 0).

In particular, if P is a stochastic matrix that corresponds to a d-state Markov chain, then starting from any state, we can
reach any other state with positive probability in a finite number of steps. The irreducibility property also has an equivalent
definition in the matrix form. That is, for any permutation matrix 7', TPT ! cannot be written as a upper triangular block
matrix with the following form

M, M,
0 M|

In other words, an irreducible matrix does not have a nontrivial absorbing subspace that aligns with the standard basis.

In our study, we require more than the irreducibility property from the transition matrix P, defined in §3.2. In fact, we
need the existence of a unique stationary distribution (which is not guaranteed by the irreducibility) so that the chain has a
sufficiently fast mixing rate, which enables us to learn with a finite sequence length L. To achieve that, one typically needs
the second largest magnitude of the eigenvalues of P, which we denote by A, to be bounded below from 1, which is the
leading eigenvalue of the transition matrix. The difference 1 — A is also referred to as the spectral gap. It is well-known that
if P, is has all positive entries, then it is irreducible and there is only one leading eigenvalue on the spectral circle with the
corresponding eigenvector given by the chain’s stationary distribution 1. The other eigenvalues have magnitude strictly
less than 1. However, for our case, the transition matrix P, has zero entries by definition. Fortunately, the nice property on
the existence of spectral gap can be generalized to a class called primitive matrix.

Definition E.3 (Primitive Matrix). A nonnegative and irreducible square matrix P is called primitive if there exists an
integer k such that P* has all positive entries.

By definition of the primitive matrix, one can immediately see that for any k' > k, ijl will have all positive entries. The
following is the celebrated Perron-Frobenius theorem that characterizes the spectral structure of the primitive matrices.

Theorem E.4 (Perron-Frobenius Theorem for Primitive Matrices). Let P be a primitive matrix. Then the following
statements hold:

1. The leading eigenvalue of P is real and positive, and it is the unique eigenvalue with the largest magnitude. In
particular, if P is a stochastic matrix, then the leading eigenvalue is 1.

2. The leading eigenvector of P is positive and unique up to a scaling factor. In particular, if P is a stochastic matrix,
then the leading eigenvector is the stationary distribution of the Markov chain with transition kernel P.

E.3. Sequential CE Loss
We define the sequential CE loss as

L
Lseq(ftf) = Z 7IE7TNP,X [10g<ftf(xl+1 |$1:l) + E)} .

=1

One can equivalently view this sequential CE loss as a mixing of the CE loss defined in (2.1) with different sequence length.
Note that by Assumption B.3, the chain is sufficiently mixed for large L and changing the sequence length does not influence
the stationary distribution. Intuitively, this means that if we pick another large L’ different from L and look back at all
the history up to L', the history will be very similar to that at L in distribution. In fact, the gradient on the transformer
weights will converge fast (as long as we have spectral gap in the transition matrix P;) to a limiting value independent of L.
Suppose the mixing time is Ly < L. Then, for [ = Ly, ..., L, our analysis still holds, and for I < Ly, it suffices to sacrifice
an additional Ly /L = o(1) error. In the proof, however, we only consider the last token’s CE loss in (2.1) to simplify the
analysis.
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E.4. Standard Chi-squared Divergence and Mutual Information
The chi-squared divergence (or chi-squared distance) between two probability distributions P and () over the same probability
space is defined as:
(P(x) = Q(x))
Q(x) ’

where the summation is taken over all elements z in the sample space where Q () > 0. The chi-squared mutual information
between two random variables X and Y with joint distribution Pxy and marginal distributions Py and Py is defined as:

Dy(PQ) =

x

La(X;Y) = Dy (Pxy||[Px @ Py) = > Dya(Px |y (- |9)lIPx(-)) Py (y).

where Py ® Py is the product of the marginals, meaning (Px ® Py )(z,y) = Px(z)Py(y). For a Markov chain
X — Y — Z, the chi-squared mutual information satisfies the data processing inequality

L2(X; Z) < L2 (Y3 2),

which follows from the observation that chi-squared divergence is also an f-divergence.

F. Proof Sketch

In this section, we discuss the main ingredients of analysis of gradient flow. First, we show in §F.1 how to simplify the
model based on our choice of the initialization and the structure of the disentangled transformer. We then proceed to present
the main proof ideas for the three stages of the gradient flow dynamics in Appendices F.2 to F.4. At a high level, the gradient
flow dynamics can be decomposed into three stages, which feature one of the following behaviors respectively.

e Stage I: A unique §* € [H|<p stands out such that the associated parameter cs+ dominates those of the other sets. As
aresult, p5(t) = c%.(t)/Cp(t) approaches to one.

e Stage II: For each h € S*, o(w(h)) approaches a one-hot vector ej; 15 € RM, where w(® contains the parameters
of RPE of the h-th head. During this stage, each head concentrates on copying a particular parent.

e Stage III: Finally, a grows and reaches O(log L). In this case, the learned model approximately implements the GIH
mechanism GIH(z1.1; M, D, 7) with 7 = 400.

F.1. Simplification of the Transformer Model at Initialization

In the following, we simplify the expression of the transformer model under Assumption B.1 for initialization. Specifically,
we will show that the attention scores of the second attention layer admit a simpler form.

For the second attention layer, we write the output as y ' = o(a - s" )X where s := u]  Mask(U}!, ) is the vector of
similarity scores. Recall from (2.5) that U = ¢(V')/+/Cp. Hence, the I-th row of U is given by u; = ¢(v;)/+/Cp. For
l=M+1,...,L, the [-th entry of s is given by

s1 = (u, ur+1) = (p(v1), ¢(vr+1))/Co,
and the other entries are all —oo. From (2.3) we have

c2 . U(h)ﬂ)(h)
5 = Zse[H]gD S HheS< 1 L+1>, forl=M+1,....L. (E.1)

ZSE[H}SD C?S

Note that under Assumption B.1, by the definition of Aw in (B.1), we have w&h,z > w(_h])

the output of the first attention layer satisfies

for j = h at initialization. Thus,

s exp(w)
Y :ZM—(h)"rlszxlfhy forl=M+1,..., L.
k=1 Ej:l eXp(wfj )
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Here we use the fact that Aw is sufficiently large, which makes the softmax function collapse to a one-hot vector
approximately. This further implies that for | = M + 1,..., L, we have

[T ™. o)) = 1{ai; = 2140 fori € S}, (F2)
hes
which is a binary value indicating whether the query and the key token’s history match on the subset S. Combining (F.1)

and (F.2), we obtain the following simplified expression for s;:

2 -
.~ ESE[H]SD ez Mz =xp41-; fori € S}
lN

2 = Z ps - Wz =xp41-; fori € S},
Y oselH]<p €S seilen

where we denote ps = Cg/ZSe[H]<D c% for S € [H]<p.

In summary, when Aw is sufficiently large, vl(h) approximately copies the token x;_;. As a result, the attention score s;

satisfies

S| = Z pb"‘[{ll,‘l,j/:(l,‘LJrl,i fOI’iGS}.
S€[H]<p

F.2. Stage I: Optimal Subset Selection

In the first stage, we track the dynamics of ¢%(t) for each S € [H]<p. For convenience, we drop the dependence on
t in the sequel. Recall the transformer output is y = (o(a - s')X)T and the cross-entropy loss function is £(©) =
—Ermp zy., [£(©)], where £(O) can be written as £(0) = (x41,log(y + €1)) . By direct calculation, we have

4

-
- = . . T mL+1 —
D5, a-oa-s) <y " 61) (1 —y), (F.3)

where z111/(y + €1) is obtained by element-wise division and o;(-) denotes the I-th entry of the softmax function.
Furthermore, by the expression of s; in (F.1), we have

(h) , (h)
@ - 2¢s [nes (Wi 0 p1) - 2ess1 foreach S € [H]<p (F4)
des YsrelH)<p & Ysrel)en €5 -
By applying the chain rule and combining (F.3) and (F.4), we get
L
2 2 0L 2 ot 0
Oilogct = —Oics = —— v = —— Z ]E{Sl}
Cs Cs 803 Ccs =41 (981 605
4a 3 (h) (0 z !
= ]E{ol(a~sT)< <vh N >—sl>(L+1> (xl—y)}
2 1 VL4
ZS/G[H]SD Cs l:%;rl hlgs y+el

Note that Cp = > s/ (m). c%,. Also note that y is a vector in R%. We let y(k) denote the k-th entry of y for all k € [d].

Now utilizing the approximation in (F.2) and expanding (z,+1/(y + €1)) " (2; — y), the above dynamics can be further
simplified as

L
4
O log % ~ C—a Z E
D=

[t 2) (5 55 )

hes kel(d]
4a = < 1(zpi1 =2 = eg)
N E ]l{Il_i =Xy 1—i}> < - 1>
(L—M)Cp l:%:ﬂ hgg * k%] y(k) +¢
4a L 1(zpy1 = x = ex) )

+ E . —1 E.5

(L= M)Co l:% K (ZH y(k) + < E5)
f(t)
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where in the first line we use the fact that both x7; and z; are one-hot vectors and that € is small, and the second
approximation is due to the fact that o;(as ") ~ 1/(L — M) when a is small. We will prove that the first term in the resulting

approximation can be further approximated using the modified chi-squared mutual information I +2(S) when L is large,
which is introduced in ??.

Therefore, it follows from (F.5) that

0y log c3(t) ~ Le(8) = f(1). (F6)

Since the value of f(t) is independent of the specific choice of set S, it is clear that the set S achieving the fastest growth
rate is the information-optimal set $* which maximizes the modified chi-square mutual information within [H] <p,lie,

§* = argmax fxz (S).
S€[H]<p

Correspondingly, by normalization, we have ps+ goes to one at ¢ increases. To determine the growth rate of ps+, we first note
that Cp(t) = Cp(0) due to the normalization (see Lemma G.1). Combining this fact with the definition ps« = ¢s+/Cp,
we can derive a lower bound for the growth rate of ps- () from the dynamics of log c%(¢) in (F.6):

a - AIN 2 ~
log(1 — pg«) < —Q| ——X2 h Al 2 = i I -1 )
elogll —ps:) < ( Cp(0) > where  Ahe = o i 5y H (8~ 1 (S)

Thus, the error 1 — ps+ will decay to zero exponentially fast.

F.3. Stage IT: Convergence of o(w(")) to One-Hot Vector

As we proceed to the second stage after ps« approaches one, we will prove how a(w(h)) converges to a one-hot vector
em+1—p for each h € §*. Recall that we denote X = (z1,...,21) € RE*4, For notational convenience, we denote
oM = a(w(h)) and let X(;_py.i-1) € RM>d denote the submatrix of X with rows [ — M, ...l — 1 for any /. Recall that

h h
- ZSE[H]SD 6«29 ’ Hh63<vl( )7UEJ-)-1>

ZSG[H]SD C%

(R)

To begin with, by chain rule, differentiating s; with respect to w>_; yields
Jsy hy (h
PO Z Ps - <1()U§;+)1>
ow_; Se[H]<p 8“’4 h'eS
h') h
= > ps h) I1 ) (L+)1
S€[H]<p ow —i heES
st heS
3(’0( 7}(h) )
R (h l L
- > ( [T i) 2
ow:’;
Se[Hl<p h'E€S,h'#h —i
st heS
= Y s [T 0" o000 (erraei — (@) T)o™), (E7)
Se[H]<p h'esS
st hes h'#h
where the second equality is because if & ¢ S, then [T, . 5(v, o) v(L}ﬁ} does not depend on w("); for the third equality, we

define b; := X(z_M);(z—l)UL+)1 + X(L+1_M):Lvl(+)1 and and ™) = (o (h)p .. (h)) € RY™M to simplify the notation.

Moreover, here the outer summation indicates summation over all subsets in [H ]<p containing h. Then, similar to the
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derivation of 9; log c%(t), it follows from direct calculation that

L
0 _ g™ — ot Osi _ 9si
Oiw’y — Ow’; = Z ]E{asl <6w(_h) PO)

I=M+1 h —1

. ZL: E[UZ(GST) Z L(zpy = ex) (L(z; = ex) —y(k)) ( 0si 0sy )] ES)

Ry h
I=M+1 keld) y(k) +e ow™  ow™

Furthermore, to simplify the notation, we define

L =e)- (1(x; = ex) — / /
n=> 3 PS'E[UI(GST)Z L(zry1 =ex) (L(zy = ex) — y(k)) H<Uz(h)»”(Lh+)1>bl]-

I=1 S€[H]<p keld) y(k) +e
st heS h'#h

’

Here, we absorb the inner product [[,cs 7ﬁh(vl(h ), U(L}i)1> into the definition of g,. Combining (F.7), (F.8), and the
definition of g;, we have

o™ — 9w (F.9)

=0l (0% arenon = earnr) + (04 = 0%) S0 earsion — earinss)).
J#h

We again apply the approximation in (F.2) and replace the sum over [ by the expectation over the stationary distribution of
the Markov chain (which is valid because L is large), which yields

gn ~ E[(th + X)) [ teew=aow)- (Z We=z=e) _ 1)} €RM, (F.10)

h'eS\{h} keld) pr(ex)

where (Z, z) and (X, ) are independent samples from p™, the stationary distribution of the Markov chain over a window
of size M + 1. To simplify the notation, we treat Z and X as matrices, denoted by Z = [z_1/,...,2_1]" € RM*? and
X =[r_n,...,v_1]" € RMXd Here, each row in Z and X corresponds to a vector sampled from ™, representing the
state of the Markov chain at different time steps within the window.

Next, we derive the lower bound of the g,;'— (enmr+1—n — em+1—;) for all i # h in (F.9). By (F.10), we have g,;reMH,h ~
I,2(S*). It further follows from the Cauchy-Schwarz inequality that

I(z=z=¢e¢
e ~E|1(z_; = 2_p) H 1(z_p = 2z_p) ( Z M - 1)}
h'eS*\{h} keld]

La(8) +Te (SN UL _ 5
- <

* 1 T
S X2(S)_§.AIX2'

Here recall that we define AI~X2 = sz (8*) — maxgse(m).p\(5+) fxz (8), which is the gap between the information-optimal
set S* and any other subset of [H]< p in terms of the modified chi-squared mutual information. Plugging this back to the
gradient difference, we conclude that

(h) (h) (h) (h) (h)
oy (h) (h)  A0_; ac 7 (0) - exp(— (w2, —w2))) ~
iy = Oy Oy 2 o AL 5 AT

815 IOg

Thus, so long as a&h,z > O(j-)

converge to a one-hot vector e_j,. The convergence rate is given by

T e 215*] - (M - 1)
1 hg*( —h(t)) < a(0) - AINXZ - Omin(0) - t2/2 + exp(Aw) + (M — 1)

when the second stage starts, wih,z will thereafter grow faster than w(h) and a(w(h)) will

—1

AL,

where oppin (0) := minge g+ Ugh) (0).
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F4. Stage I11: Growth of a

In the last stage, we turn to the training of a given that o(w™) has converged to one-hot vectors for all b € S*. The
following approximation of the dynamics of a(t) is performed in the region a < O(log L), where the signal term in the
dynamics dominates the approximation error.

After Stages I and II, the output is approximated as y(k) = y*(k) := Zlel of 1(z; = ey), where we define

. exp (a - [Tpes V(@—n = xr41-1))

O—l = T )
Zl’:M-H €Xp (a : Hhes* L(xy_p = $L+1—h))

By approximating the empirical distribution * (k) with the population distribution ;™ (ex| X _s+ ), the gradient on a is given
by

~ 1z =2= ek)
Oha(t) * B p (2.x 2 2)mgr | LX -8+ = Z5+) - ( Z i (er| X_se) 1”’

where the underlying joint distribution of (z, X, Z, Z ) is given by
q" = p"(z, X s) - 17 (Z, 2*5* | X_s+),
and i"(Z | X) is defined as

iEZ1X) s i (2,2) -exp (0 1(X s = Zos))
As aresult, the gradient on a can be rewritten as

1| (7 =X s | X_g+) (E11)

W@ = e Xos-)?
0ra(t) ® Enp ox_soympr || D Sos
e F (Z=ep|X_s+)

As we consider the cases where a is sufficiently small or large, the lower and upper bounds of (F.11) can be derived
respectively. For small values of a, it undergoes super-exponential growth until it reaches a critical “elbow” time, e ~%(0) .
Ernp [YXxo. Dy (07| Xs2), | ™ ()™ (X s5+)?] ~!. For large values of a, it grows logarithmically until it reaches
Q(log L).

G. Dynamics Analysis

Additional Notation. To simplify the notation, we ignore the Mask in the simplified model (2.5) and let the index / runs
from 1 to L. If the out of range issue occurs, e.g., we have z;_ 5 for I < M, we can safely treat those out-of-range tokens as
zero vectors. In a summation with respect to [ for I € [L], the total number of the occurrence of the out-of-range issues is no
larger than O(M). Thus, as long as L > M, it just gives an O (M /L) additional error term, which does not influence our
results. Recall the error Ay (¢1) and Ay(t2) defined in Theorem 3.1. We further denote by A the value of A;(¢;) at the end
of Stage 1. And A, is defined similarly.

G.1. Analysis for Stage I

In this section, we analyze the dynamics of the parameter {C%}Se[ H].p in the first stage of training. We will show that there
is a unique S, such that c%. dominates all the other c% at the end of the first stage. Additionally, we will characterize how
fast this happens and provide a corresponding convergence rate.

Proof Strategy. At a high level, the strategy is to analyze 9; log c%. — d;logc% > 0 for all S # S* via the following
steps:

1. Dynamics Calculation. First, we calculate the dynamics of log % for a fixed S. By selecting sufficiently small values
for a and ¢, and leveraging the mixing properties of the Markov chain with large L, the dynamics of log c¢% can be

approximated using the modified mutual information fxz (S).
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2. Lower Bound for The Growth Rate. Consequently, we are able to lower bound 9; log ¢%. — 9; log ¢% in terms of
Al, the gap between the modified mutual information of S* and the second-best set.

3. Convergence. Finally, we derive the convergence using the derived lower bound on 9; log c%. — 9y log c%.

The detailed proof is provided below.

G.1.1. CALCULATION OF THE DYNAMICS OF log c%

Recall that our simplified model is given by

; S e & Thes @ o)
y=(o(a-s"H)X)" = Zo’l(a -sT) -2, where s = selH)<p ©5 " Unes\t Y41/
=1

ZSE[H]SD 3
The loss function can be rewritten as
L =-E[{], where ¢={xpi1,log(y+el)).

Here the expectation E is taken over both the sequence (z1, ..., 21+1) and the Markov kernel 7 ~ P.

In the sequel, we first consider a fixed S € [H]<p and derive the dynamics of c%. We abbreviate ¢ = o(as') for

convenience. By direct calculation, we have

h h
@ _ 2cs Hh€S<Ul( )’U(L_31> B 2cs s
aCS ZS’E[H]SD C?,;/ ZS/E[H]SD C?g/

@:XT 8—g:a-al(wsT)-(elT—a),

oo T 0

Then applying the chain rule, we can calculate 9¢/0s; as follows

ol _8£8y80_ Tri1 T .
0sy _8y80651_a(y+€1) (ml y) UZ(G S )

Further using the chain rule 9¢/dcs = Z{;l 0l/ds; - Ds;/Ocs and the gradient flow formula that d;c% = —2cs - OL/dcs,
2

we obtain the following dynamics for cg
L
= E
2
ZS’G[H]SD Csr ;

2
atc?s‘ _ dacg

- T
o} (a~5T) . <yi+€11) (x;—y) - <H<vl(h),v(;21> — 5l>] .

hes

Recall the notations Cp 1= ¢ €[H]<p ckand ps:=c%/> s clH]<p c%,. In the following, we consider a fixed 7 for error
analysis and take expectation over 7 again when plugging in everything back into the dynamics. As a result, E means the
expectation of the sequence X for a fixed 7 if it is not specified. To simplify the expression of d;c%, we define quantities
go,s and f as

L
1(z =x=e k)1(z =e
go,sizzE o (a-sT)~Z< (rri =z =ep) yk) Lz k>>'H<Ul(h)7U(LhJ£1> 7
=1

! y(k) +e y(k) +e s
- (G.1)
L
Tz =m=er) yk)L(zri = ex)
F=3E al(a.;).z< - 5
= | by y(k) +e y(k) +e
Based on the definition, we can rewrite the dynamics as follows:
9 a
Ologcs = — -Equplgos — fl- (G.2)

Cp

One can notice that C'p does not change during the train as described in Lemma G.1 and f does not depend on S.
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G.1.2. PRESERVATION OF C'p ALONG THE GRADIENT FLOW

Lemma G.1. The quantity Cp = ZSE[H]<D c?g is preserved under the dynamics, i.e., 9;Cp = 0.

Proof of Lemma G.1. Plugging the definition of g s and f into the dynamics of c¢%, we have

Orcx = B, plda -ps(g0.s — f)]-

Then, we can derive the dynamics of C'p in the following.

Cp= Y Oct=4a-FErup| > psgos—f| =0

Se[H]<p S€[H]<p

where ps == c%/ > S'e€[Hl<p c%,. Thus, the quantity Cp is preserved under the dynamics. O

G.1.3. APPROXIMATION OF gg s

For the analysis of the dynamics of c%, we need to understand the quantities go s and f. To approximiate g s, we introduce
the following quantities:

1 & 1(z z=ey) gk iz er) B (h)
L+1 =T = €k L+1 = €k R) (h
g8 = 7 ZE[(Z - - p- ) ’ H<Ul 7UL+1>]’ (G.3)
L= keld) yk) +e y(k) +e heS
x =gz =c
Go.5 = ZEKZ L“ﬂ(e l) k) 1) SR vgﬁg} (G.4)
keld] K k hes
Tz =2z=¢g) .
93,5 = E(z.X),(z,2)~pm@u K > (7T(e) - 1) 1 (U(h)(z),v(”(X)%], (G.5)
vy MGk hes
where Z = (z_pr,...,2_1) is independent of X = (z_,y,...,z_1) and we define v (X) := Zihe[M] a(_hi)hx,ih,

v (Z) = DinelM] U(_};)hz,ih, and y := Zle x;/ L. Recall that the modified chi-squared mutual information is

La(8) = Exp (c2pmn KZ“ Z;_Ze—)> —1> "(Z-s)

eceX

In the following, we draw a connection between gy s and the modified chi-squared mutual information. Specifically, we
demonstrate that max {|go.s — 91,5/, |01.5 — 92.5|, |92.5s — g3.s|} < O(1 J)ur..), provided that a and ¢ are
sufficiently small. This holds under Assumption B.1, alongside the property that the Markov chain sequence over a window
mixes as L increases.

Closeness between gy s and g1 s. Let us first consider the approximation of gy s by g1,s. If we select a to be sufficiently
small, the attention scores of the second layer approach uniformity, meaning o;(a - s') a 1/L. Hence, it follows from
Lemma H.2 that

8ad
|90, — g1,5| < =

Closeness between g1 s and g s. For the approximation of g1 s by g2 s, we leverage the approximation y(k) ~ u™ (ey)
for large L. The result in Lemma H.3 implies that

D
l91.s — 92,5/ < 2- \/EX [Dya (7 (- | Xpa(r1) I 17 () + 1] - ( >

Tn \/D 2(po[pm)+1 ¢
L:u?nin L(l - /\):umm /’[’glin’

2(po() |7 (-) +1 T
L(1=A) - pulin * Lu&n)

1+4+¢ €
V 1 - /'me Iu’mm
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Closeness between g» s and g3 s. Finally, we approximate ga s by g3 s owing to the mixing property of the Markov
chain. Lemma H.4 states that

(MVry) 4Dyl [am) +1 1
. < < _— .
92,5 — g3.5| < < 7 LI ) <0 L(1—)\)

Combining the above results, and letting a = a(0) < O(1/L3/?) , ¢ = 1/+/L, we obtain

1
— <O| —m/————— 1.
|go,s g3,s| > ( L(l — A)Nﬂ@)

Then, the dyanmics of ¢ in (G.2) can be approximated as follows

4a 1
at log C% = CiD . EWN’P (g&s - f +0 (W)) . (G6)

Connection between E..p[g3 s] and I~X2 (S). For the next step, we establish the connection between E.p[g3,s] and

the modified chi-squared mutual information I 12 (8). It follows from Lemma H.5 that B p[g3 s] can be approximated as
follows:

Erp lgs.s] — [ (@)% L2(S)
hesS

: (1 - H(aﬁ"zf) 1,2(8%). (@7)

hes

G.1.4. LOWER BOUND FOR THE DIFFERENCE &, log cfg* — O¢log c?g

Then, by (G.6) and (G.7), the difference between the dynamics of ci« and c?s* can be lower bounded by

O log c?s* — Ot log c?s

4a a
— - +0| ——M —
Ch (93,5 93,5) ( (- A)ﬂ&m)]

> % ( H (U(,h;z)2 . TX2(8*) — H(O’SZZ)Q I~X2(S) — <2 _ H (Ugh}z)Q _ H(U(hfz)2> TX2(8*)>

hesS* hesS heS* hesS

- ETrNP

where the inequality follows from the assumption that (- | Xpa) > v uniformly. This can be further lower bounded as
follows:

O log cs. — Oy logcs

2 % (( [T+ 11e )2 ) S*) — H(a(,hg)Qfxz(S) - 21}(3*)) _ erT.

heS* hesS hesS
4 ~ ~
> Ci <2 IT @")? Les*) + [J(e")? - AL - ZIxz(S*)> — err.
D\ res hes
4 ~ ~
> 2 I 0% - Te(s7) + H "Y2 AT o — 21,2(S*) | — e, (G.8)
D
he[H]

where we define Afx2 = minge(m)_p\(5+} I~Xz (S*)ffxa (S8) and err := O (a/\ /L(1 — A)*y). Here, the second inequality

follows form the definition of AT 2, and the last inequality follows by replacing [],,.s(c"")2 with [, clH] ez,
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G.1.5. EXPONENTIAL GROWTH OF c%,

In the following, we show that the first term in (G.8) dominates the err term and leads to the exponential growth of cZ..

Note that by Assumption B.1, it holds that w(_h,z > w(_hj) + Aw for all j # h, and h € [H], where

Aw > log (M — 1) — log ((1 + AT /(141 2 (s*))) " 1) :

(h;z > w(hj) at initialization, [ [, e[H)] (a£h2)2 is sufficiently large. More precisely, we can check

that [T,c g (0)? > (21,2(8*) + 2A12) /(21,2 (S*) + ALz2), which yields

Since we have dominant w

~ ~ ~ 2 ~
2 [T (0")? - La(s*) + ] (0")?- ALz - 21,2(5%) > 3L (G.9)
he[H] he[H]

By (G.8), and (G.9), we conclude that

AT
Orlogcs. — Oy logcs > i Sl

It implies that c%. grows exponentially fast, dominating all the other c% at the end of the first stage. Consequently, ps+
converges to 1.

G.1.6. CONVERGENCE OF p%.

Now, let us derive the convergence rate of ps-. Since for all S # S*, 8; (c%/c%.) < 0, it holds that 8; (log Cp/c%.) =
O (log > sel-p €5/ c?g*) < 0. Together with Lemma G.1, we have 9, log ¢%. > 0. Furthermore,

. 2 2 2
6t<log ZSE[H]QSD\S s) L Z 3t< 025 >

= — 2
Cs Cp = s setufomist)

2 2 2
CSn cs €3
:701)7 5 Z 5 6tlog(2 >

St seimip\(sy °S* Eh
2 2
D AT
Cp — cs. Cos
Se[H]<p\{S*}
< % ( aAINX2> B aAfxz
= —&. 2 - 20p
selHlem sy P T Cp Cp
Then, we can derive the convergence rate of ps+ as follows:
> . C AT,
d,log(1 — ps+) = d; log (56”%5\83 < —“2052.
Applying the Gronwall’s inequality, we have
(IAT 2
1—ps«(t) < (l—pg*(O))-eXp(— 20; ~t>. (G.10)

G.2. Analysis for Stage 11

In this section, we provide the analysis of the dynamics of 0" = o(w™) for h € S*. For h ¢ S*, it follows from the

results in Stage I that the dynamics of w(_h,z exponentially decay to zero. Conversely, for h € S*, we establish the dominance

(h) (h) (h)
—h

of w>; over w,; forall ¢ # h, yielding 0>, — 1 as ¢t — oo, along with the corresponding convergence rate.
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Proof Strategy. Similar to the proof of Stage I, our analysis characterizes the difference dynamics, (’9,511/ — O w(h) for
all i # h, via the following steps:

1. Dynamics Calculation. We initiate the analysis by deriving the dynamics of w( ) for fixed index ¢ and h.

2. Dynamics Approximation Subsequently, we approximate the dynamics in terms of the modified chi-squared mutual
information I, (8*), considering sufficiently small a, &, and large L.

3. Lower Bound for The Growth Rate By comparing the corresponding modified chi-squared mutual information, we
establish a lower bound for the difference dynamics.

4. Convergence. Finally, we derive the convergence rate of agh,z to 1 as t — oo from the obtained lower bound.

Now we are ready to provide the proof of Stage II.

G.2.1. CALCULATION OF THE DYNAMICS OF dyw ("

For convenience, we recall the following notations:

2
c
Z ps - H ’ L+1 » Ps = 278627 Uz(h) = Z US}Li)xl—i = oM X _nra-,
S€[H]<p hes Se[H]<p 78 i€[M]
where X;_ 701 € RM*d is the submatrix of X withrows! — M, ...,l —1and o) = (0(_}3347 ... ,cr(_hl)) € RY*M The
gradients are given by
A 0™ )y (T o)
9 () — HI=Mi-1 Ju diag(c'") — (o) o',
oo™ Os; By (W) (h
ooy = X ara o (ding(0™) = (@®)To®), = > s T @l
I, Se€[Hl<p  WeS\{h}
st heS
asl Y (WY (h ol wra )
Z ps - H Ul( )U(L+)1>Uz( )7 67‘9:(1 Tl (1 —y)-oi1(a-s).
v} L+1 Se[Hl<p  heS\{r} : Y
st heS

To simplify the notation, we define b; := X(_r).1—1) (U(Lhiﬂ + X(L+1_M):L(vl(_7_)1) € RM . By the chain rule, we have

Osi__ Os T oy + 9s1 Tavgﬁ1
6w(—hi) avl(h) 310(_}? 3U(L’21 ow™
h h h

> wse TI 0 0 (enrorsi— 0™)7) -0,

S€[H]<p h’eS\{h}
st heS

where we note that e; € R is the i-th standard basis vector. To proceed, we define the quantity gy, o as follows:

lern=n=c k)1(zr4 =e
ghO*Z Z Ds - ]E{Jla s)Z( (L—;(k)+zg k)y()y((kiig k))

=1 Se[H keld]
s.t hES

h’
I @™ o8 ul.
h'eS\{h}
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By the gradients and the definition of gy, o, the gradient flow dynamics of w(_h) is given by

i

3tw(h.) — ZL: % 9s1
—4 — 85[ aw(f?
L

.
Tr41 0sy

=a- E|lo/(a-s T —Y) ——

>k o (224 @ aw(_h}]

L Wzp1 =z =er) y(k)L(zpi1 =ex) 0s;
=a- E|oi(a-s)- _ .
; l Z( ) o

h
o y(k) +e y(k) +e w”)

=a-E;up [g;;o (U(,hi) (€M+1—i - (U(h))T>>} )

The difference of the dynamics of wgh,z and w(j) can be written as

o™ — )

- L ]l(xLJrl =T = ek) y(k) ]l(xLJrl = ek) aSl 881
a2 Blaa-s): S (FrEm e ) 20 20

ke(d]

—1

=a- -Erup g;;r,o U(_hi) (em41—h — €n4i1—i) + (0(_]1;3, - U(_hi)) ZU(_hj)(eMJrlfh —em+y1—5) | | - (G.1D)

J#h
G.2.2. APPROXIMATION OF gy, o

To further analyze the dynamics of w(_hfz — w(_hl) we define the following quantities that are used for approximating gy, o.

L
1(x =z =e K 1(z =e / /
=3 a9y (HoZm =) wB e 20l )T 40
1=1 ]

held y(k) +e vk re  esim

r [ _
1 L(rppr =2 =ex)  ylk)L(rpir = ex) 'y (h')
ma= 3B [ Y (H Sy B GRS
L~ e y(k) +e y(k) +e heS\[h)
1 L [ ]l(,’],‘ = = e ) / /
9h,3 ::—Z]E Z( LHN - —1> : H <Ul(h)7v2h+)1>'bl
L= ke(d) p(er) h'eS
= | \{h)
]l(.%‘ =2z = ek) ’ ’
gh4 ‘= E(m,X),(z,Z)wu“@,u" Z (71.(6) - 1) : H <v(h )(Z)vv(h )(X)> ’ b(Xv Z) ’
keld) HACk heS\{h}
where Z = [2_p,...,2-1]" € RM*4 s an independent copy of the data X = [z_p,...,z_1]" € RM*? withina M +1

size window and

h h
oM (X) = Z (f(_i)hx,ih, oM (Z2) = Z 0(_i)hz,ih,
74/h6[1\/l] i}LE[M]

L
b(X,Z) = Z("W (X)) + X (" (2)), 7:= %Z“‘l
=1

To simplify the notation, we treat X and Z as matrices, where each row in Z and X reflects a vector sampled from ¢,
indicating the state of the Markov chain at different steps within the window.

One can observe from (G.11) that the lower bounded of 9;{,0 (epmr41—h — em+1—4) for all @ # h is required to show

Gtw(_h,z - Btw(_hi) > 0. To achieve this, we first approximate 9;,0 (enmr11-n — enrs+1-i) by 9;{,4 (erMi1-h — eM+1—i)s
similar to our approach in Stage I.
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Closeness between g, o and g;, ;. Due to the rapid exponential dominance of ps« from Stage I, the coefficients ps for S #

S* in g, o are negligible. Moreover, note that b, (exs+1-h — enr41—i) = <’U(L}21, Tjp—Tj—i) — (vl(h), TLtl—h—TL41—i)-
By similar argument in (G.17), we have

|(gh7o —gn1) " (enrs1-n — €M+1—z')| S (1 —pse)=:4q

for all ¢ # h. Given (1 — ps«(t)) < exp <fatAINX2/(QCD)) from (G.10), we consider ¢t 2 log(L log L)/(aAsz) to
ensure that Ay < O (1/(LlogL)).

Closeness between g;, 1 and g, ». Next, since a is chosen to be a sufficiently small value, we have o; (a- sT) ~ 1/L, and
9;,1 (enm+1—h — €M+1—;) can be approximated by 9;2 (emr+1—h — €m+1—i). By Lemma H.2, it holds that

ad
9h,1 — Gh,2 EM+1-h — EM+1—i)| X .
( )" ( <5

Closeness between g,. and gj3. In addition, as Z(k) ~ p"(ex), for large L, we can approximate
9}12 (em+1—h — €rm+1—:) DY 9,13 (enmr+1—h — €m+1—i)- More precisely, it follows from Lemma H.3 that

|(9h,2 - 9h,3)T (€M+17h - €M+17¢)’
S \/Ex [Dy (m(- | Xpar 1) [ 07 () +1] - <D"

T \/D 2po o) +1 ¢
L:ufnin L(l - A):umln :ugin .

2o () +1 7w
L(l - >\) : luglin L,U/:;in

+

Closeness between g; 3 and g 4. Finally, the mixing of the Markov chain implies the approximation of
ng,B) (enrs1-n — enmr1-i) by 9,14 (enr+1-n — enr+1—4). This is described in Lemma H.4, which states

(M Vr \/D 2(po || pm) +1
T TL
[(gn,3 = gn,a) " (enrs1-n — enrv1-i)| 5 L L(1-))

Combining the above results and setting ¢ = 1/+/L, and a = a(0) < O(1/L?/?), we obtain

1
T
— e _n—€ )| SO0 —/— |-
‘(gh,o gh74) (M-‘rl h M+1 )’ ( L(l)\)#&m>

G.2.3. LOWER BOUND FOR THE DIFFERENCE 8tw(_h}3 — 8tw(_h2

Then, we can rewrite (G.11) as

8tw£h}2 — 0 w(h-)

h h h
=a-Erup ( ) €M+1—h - €M+1—i) + (0(_;1) - 0(_1-)) ZU €M+1 h — €M+1—j)
J#h ]
h)
2a-Erep (err+1-n — €nm41- 7)+( “) - )20_7 eM+1—h — EM+1—j)
J#h

M) . (G.12)
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To show 9,w"") h— O w™ > 0, we derive the lower bound of E,.p [gh s (€Ms1—pn —eny1— l)} for any ¢ # h. Since
(z,X)and (2, Z) are mdependent and identically distributed, by the definition of b(X, Z), it can be written as

Ernp [9n.4 (€rr41-n — enr41-3)]

= OB,y (0. X).(2.2) o o7 [Z <]l(‘$:z:ek) _ 1) , H w")(2), 0 (X)) - (™ (X), Zh>]
h

keld] u(er) res\{h}
T(zx=z=¢eg) / /
— Q]Eq-r,(m’X),(z,Z)Nlﬂr(@p,“ |:Z ('Lﬂr(ek) — 1) . H <’U(h )(Z)7’U(h )(X)) . <U(h)()()7 Z1>:|
ke(d] h’eS*\{h}
=2Tp1 — 27h 2,

where we define

L(x=2=¢g) / /
Th,1 ::E‘n-,(m,X),(z,Z)Nu"(@u" Z </ﬂ(€k) - 1) : H <'U(h )(Z)ﬂf(h )(X» ) <U(h)(X)a Z_p)|,
| k€(d] h'eS*\{h}

I(x=z=¢y / /
Th,2 =B (2.%),(2,2)~um@pm Z <(7r)) — 1) . H <v(h )(Z),v(h )(X)> . (v(h)(X), Z_3)

| keld] ur(en h'eS*\{h}

Hence, it suffices to analyze the difference between 73,1 and 75, 2. Drawing on similar reasoning as in the proof of
Lemma H.5, we can approximate 73,1 and 7y, 2 as follows:

mi— ] @)oo TasH < (1 T ©@%)2-o®) | Le(sY).
h'eS*\{h} hes\{h}
Th2 — H (U(hhy) U(,hfz P <[ 1- H (a(hh?) ogh}z INXz(S*),
hes*\{h} hes\{h}
where
T(x=2=¢)
P = Ew,(:c,X),(z,Z)w/_N‘@,u7r H ]l(.%‘,h/ = th’) ]l(l‘,h = Zfi) Z W —1]].
h'eS*\{h} keld] Ho(€ek

To establish the lower bound for 7, 1 — 7, 2, let’s begin by finding an upper bound for 1), which is approximately equal to
Th,2. We consider the two cases: i € S* and i ¢ S*. If i ¢ S*, we invoke Lemma H.6 with S = S* and &’ = S*\{h}U{i}.
Then,

AL

N =

Y= QIXZ(S*)—*I (S \{RY) U{i}) < Te(S*) -

On the other hand, if ¢ € S*, we apply Lemma H.7 with S = S*\{h} and S’ = S* and obtain

¥ < 3Ba(89) — STa((S\ (1) < Ta(s) - 5 - Al

In both cases, we have the same upper bound for . Thus,

2Th1 — 2Th o > H (UE%})Q . a&h,z . AINXz —411- H (aﬂ’i?)? . a(f;f TXQ (8"

h'eS*\{h} h'eS*\{h}
> [T ") -ahe—a|1— ] ") | Ta(s%). (G.13)
he[H] he[H]
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Note that it follows from Assumption B.1, that

_ ALe(SY) + 2AIe

IT (")? > =X X (G.14)
he[H] 4IX2(8*) +AIX2
Consequently, by (G.13) and (G.14), it holds that
2 ~
271 — 270 > gAIX2~ (G.15)

Together with (G.12) and (G.15) implies that 5‘,511)(_}2 — O w(_h,’t-) > 0 for all ¢ # h and w(_h,z will grow faster than w(_hi) for all
i1 # hith e S*.

G.2.4. CONVERGENCE OF o™

Next, we characterize the convergence rate of (™). Since 8t0£h,2 > 0 for all h € S*, the lower bound for o is given by

o) > ") exp(—(w) —w"))) > o) (0) - exp(—(w") — w)). (G.16)

—h —1

Then, by (G.12), (G.15) and (G.16), the following lower bound is obtained.

D™ — D™

>a-Erup 9;14 0(,}? (€M+1—h - 6M+1—i) + (U(,hfz - 0(,}?) ZUS};')(eM-'rl—h - €M+1—j)

Jj#h
-0 <a >
L(1 - Xy

a
> 0B [P0 errcn =) =0 (i
< aAfxa

h h h
> =25 (0) - exp(— () — wh)).

—1

(R) (R)

Rearranging the terms, the dynamics of w; — w’;/ can be characterized as follows:

aAL 2 ™0
Oy exp(w(_h,z — w(f?) > L_h() > 0,

- 2

AL -o™(0
wmdﬂw—w@a»zg—ﬁilﬂl

—1

-t + exp(Aw),

where we use the assumption that w&h,z (0) — w(f;) (0) > Aw. As aresult, during the Stage II, (") becomes a hot one vector

enr+1—n and the following upper bound goes to zero as ¢ goes to infinity.

215"
B oM 2 <1 1
! H (=B <1 (1 +(M-1)- (aAfxa < omin(0) - /2 + exp(Aw))1>

hesS*
:1_<1_ (M 1) (@Bl - onin(0) /2 + exp(Au) )25'
1+ (M —1)- (aALyz - omin(0) - t/2 + exp(Aw)) !
_2AS (M -1 (aAfoz - Omin(0) - £/2 + exp(Aw))
1+ (M —1)- (aALg - omin(0) - t/2 4 exp(Aw)) !
2|8* - (M —1)
B aAfxz - Omin(0) - /2 + exp(Aw) + (M — 1)’

where we define oy, (0) := minpes- a&hg(o) use the inequality (1 —z)™ > 1 — nx forz € [0,1/n] and n > 1.
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G.3. Proof of Stage I11

Additional Notation. For aset S C [M], we let X;_s denote the set of tokens {X;_,|s € S}. If | = 0, we will ignore
in the subscript and simply use X _s.

In this section, we derive the dynamics of the second layer’s weights a in Stage III. We characterize the dynamics of a when
a < O(log L), where the signal term of the dynamics dominates the approximation error. We provide the growth rate of the
weights for two regimes: when a is either sufficiently small or large.

Proof Strategy. We analyze the dynamics of a via the following steps:
1. Dynamics Calculation. First, we derive the dynamics of a.

2. Dynamics Approximation. We approximate the dynamics by exploiting the mixing properties of the Markov chain
and the convergence of the weights from Stage I and II.

3. Lower and Upper Bound for The Growth Rate. Finally, we establish the upper and lower bounds for the growth rate
of the dynamics of @ when a is either sufficiently small or large.

G.3.1. CALCULATION OF THE DYNAMICS OF a

Let us consider the time-derivative of a at Stage III. By taking the gradient through the softmax operation, we have

ol [ xpp T(x_ ).0<a_ST>
das;))  \y+el LTy '

Therefore,

8ta:IE

Z (yxiJ;ll)T (w1 —y) o (a-sT) 'Sz]

=1

L T(axpyr =z =ex) yk)1(zp41 = ex) (h) (k)
=E| >, pS'E"l'Z]( +y(k)+a - y(k)trs )'H@l Vol

SE[H]SD ke[d heS

Here, y = Zle oy is the predicted output, which is a vector function of (z 1, X). Also, we abbreviate ;(a - s ) as oy
and denote by o the vector (g1,...,07) . We denote the above quantity by fo.

G.3.2. APPROXIMATION OF 0;a

Approximation of f, by f1. Our first step is to remove the summation over [H]<p\{S*} where S* is the optimal set that
maximizes the modified mutual information defined in (??) and cs~ dominates according to the training of Stage 1. To this
end, we define f; as

a Lapp =m=c)  y(k) Lepn = o) )
f1:=E Zgl.z< L+l =T =¢€g) L+l = Ck >'H<”zha”LZ1>
e NI OAS y(k) +e nes-

It follows that
Ifo— f1] <2(1 — ps+) =:2A,.
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Here, the inequality holds by noting that for any S € [H]<p,

L Lapy =z =ex)  yk)L(rpi1 = ep) (h) ()
ZUI'Z( Z(k)—k&? a y(k):-&? >'H<“lh »VL41)

=1  keld hes

<| Syt s s |5 5 MG =)

keld] =1 keld] 1=1
< Zzal Zzal <2 Zﬂ <2 (G.17)
- y(k) +e|

keld] I=1 ke[d) I=1 ke[d)

In summary, the difference between fj and f; is controlled by the convergence results from Stage I.

Approximation of f; by fo. Next, we use the results from Stage II to control the difference between [, . 5. <vl(h) U(Lh-21>

and [[,cs+ L(z1—n = 2L41-1) @S

H<(h)»( — I 1@i—n = 2141 h)<1_H((—h’z) =4z

heS* heS* heS*

Note that these two error terms also influence our definition of f; through o; as the second layer’s softmax score is given by

sp=a- Z bs - H (h)7

S€[H]<p hes
Let us define s} = 1pes+ 1(2;—p = xr41-4). Then, we have
lsi —s7] < A1+ Ay, Ve [L]
To proceed, we define o} as

. exp(a-[Thes W@-n =2r41-1))

Ul = T
21— €XP (a Tlhes- Lar-n = $L+17h))

)

and define y* (k) = Zlel of 1(z; = ex). As aresult, by Lemma 5.1 of Chen et al. (2022),

log 2L\ <2a-||s—s*||, < 2a- (A + Ay),
]

o0

lo—o*ll, <4a- s — s*floc < da- (A +Ay),
ly* = yll, < llo = o* 11 < 4a- (As + Ag).

To this end, we also define

< =x =€ * Tr41 =€
Zgl*. Z (]I(IL;-*l(k) +z€ k) Y (k)y]i((k§—:—5 k)). H U(iop = Trp1-1)

=1 ke[d] heS*
The approximation error is then given by

|f1 — fa] < erry + erry + errs,
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where the three error terms are give respectively by

._ - (=2 =ex) Yy (k)W(wpi1 =eyp)
err; ;= |E Zal.z ( ) 1 e _ o e )

=1  ke[d]
: <H <vz(h) UL+1 H L(xi—p = xp41- h)ﬂ
heS* heS*

erry := |E EL:(JZ* —0)- Y <]l(xL+1 =z =e) Yy (k)L(zpy = €k)>- 11 ™ )y
T * * l L+1 ’
= keld] y(k) +e v (k) +e hes

L
1 1 Ry (h
emii= B S 3 (o~ ye) ten =a = e ILof2)

[I=1  keld] heS*
L
y* (k) y(k) (), (h)
+ |E Zal~z< " — ~]l($L+1:€k)'H<Uz ) L+1>
= e\ (k) +e  y(k)+e e

It then holds that

-(1+¢)

err; + erry + errg < g ! a ly* (k) — y(F)ly (k)
AP MY RS TR

<e M (Ax+4a(Ar + Ag) +4a- (A + Ag) - (1+¢))
= 0(5_1(1 —+ a)(Al + Ag))

In summary, this error terms captures the difference between the ideal weights and the actual converging weights from Stage
II.

Approximation of f, by fs. Next, we approximate f> by f3 where we replace y* = Zle oy x; by its population
counterpart

P (2, Z)exp (a- [Thes L(z—n = T141-1))
>z W (2, Z) exp (¢ [Thes- Llz—n = xr41-0))

ﬁ&(z,Z) =

where Z = (z_p,...,2-1) and p™ (2, Z) is the joint distribution of a length-(M + 1) window of the Markov chain. We
denote by 1% (er) = i% (z = ex) where i% (2) is the marginal distribution for z. We define f3 as

L j— j—
fa=E > of-) (]l(xuiﬁ_ o= ek) L(zpyr = ek))' 1T 1@in =2r1n)

=1 keld] A (ex) hes*

One can immediately draw a connection to Lemma H.3 as both targets characterize the gap between the empirical and
population distributions. The only difference is that this time we have the distribution reweighted by some exponential term.
For completeness, we provide the following lemma.

Lemma G.2. The difference between fs and fs is bounded by

TR AES g | \/ng GoO) [ O) +1 _ 8M e
(Z A S )

min, z ., p" L(1—\) L 5

where < hides some universal constant.

Proof of Lemma G.2. The proof follows the same arguments as Lemma H.3. We use y% (k) in place of yx (k) to remind the
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reader that y* (k) is also a function of the whole chain. We note that

Z = = — _
s — fol = ‘]E Lz; " (g[;ﬂ ]l(xLyJ; e o) k%;ﬂ Mmﬁ;(i@ o)
k;] yx (k x;rg_ k) | 1) .hg* L(zi_p = xL+1h):| ’
L s *
- ‘E{; g (%;ﬂ((ﬂx(gki 6)%2((@) k() +€s)ﬁ§( )) A@rn =a=e)

We also define three error terms as

erry = |E Z i (ex) = Y (k) ZL:O'*]I(QJ x) = eg) H 1(x x )
1= o : 1 L+1 =T =€) - I—h = TL+1-h) | |
£ W) + i) £ s |
- i 5 :
erryi=|E | Y — D oilaer = =ex) [[ M@on =200 ||
2 W+ k(o) £ s |
. L
errg:= |E Z S T e A(wpg1 = ex) Z of H L(@i—p = xp41-n)
| k€[d] ux I=1  heS*
For the first error term, we have have that
I N * L *
_ 1(z) —
err; <E ‘Mx(ik) yx (k)| Z 9 ~Sjﬁl €k)
(yx (k) +¢) ; 1% (ex)

where we recall that by assumption, - provides a lower bound for 7 (- | X;a), hence also lower bound for i% (ey). The
following proposition provides a bound for the 1-norm of the difference between the empirical and population distributions.

Proposition G.3. It holds that

s x 2 Dy (po() () +1  3M
Ex [[li% (ex) — yx (F)Il1] < My o (o 25 \/ Ta-N +

Hence, we control the first error term.

For the second error term, we follow the same procedure and obtain an upper bound as

*

€ or 1(z; = ey) _
<E . ! < Lde.
P3N e P D SR

vem Fxler) 1= (v
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For the last error term, it holds that

€
erry3 <E kez[d] ROET (zp1 = ex)

E|Y el(zr1 = ex) YR {5(9}@

ienrs || T1&5 0 G

) — % (ex)) - L(xpi1 = ep)
% (en) +e)(yx (k) +¢)

IN

£ lyx (k) — 1% (ex)|
+E E
y+e

|
2
+
m

We further have the last term controlled by the upper bound in Proposition G.3.
In summary, the difference between f-> and f3 is bounded by
|f2 — f3] <erry + errg + errs

) - [ Prelmo() [pm () +1 3M | de
~ minz,zfs* /1/77(27 Z*S*)

L(1-X) L v’
which completes our proof. O

Approximation of f; by f;. Note that in the expression for f3, we still have o that implicitly depends on the whole
sequence. We define f, by replacing o} by its population counterpart o* (X;_ s« ) which is defined as

o*(X)_s+) = p(Xi—s+)exp(a- [[hess W Xin = Xz41-0))
_ 2ox;_g WX s ) expla- [Thes W(X[_p = Xp41-1))

S*

And we define f; as

1(z =z=ce
fo=Bizminx | D ( L22 6 _ I(zL41 = ek))' I tGn =2rr1-n)

keld) ik (ex) heS+

We only need to characterize the difference between o} and o*(X,;_s+). We have the following proposition.
Lemma G.4. The difference between f3 and fy4 is bounded by

27! | \/szom(-) L) +1 , 30

min, z_g. p™ (2, Z_s+) L

|f3 = fal S L) T

Proof of Lemma G.4. We follow the same notation as in the proof of Proposition G.3 and let

R(Z_s+, Xp41-8+) = exp <a' I 1z = XL+1—h)>
hes*

ForZ = (z_py...y2-1)and Z' = (2/p,. .., 20 ), welet Z_gs« = (2_p)pes+. We note that

L ~
(2, Z_sx)R(Z_s+, X _s+
Zal*ﬂ(xl — Z;XI—S* — Z—S*) — /J’X(Zy S ) A( S*s S ),
=1 ®
,LL’T(Z,Z_S*)R Z_S*,X_S*)

‘We further define

~

¢(Z7Z78*) = Mﬂ(z7zfs*)R(Zfs*7X7$*)> Qb(Z,Z,S*) = ﬁ§(27Z73*)R(Z7$*>X73*)-
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Therefore, the difference of f3 and f, is given by

~

(,ZS(Z, Z—S*) ¢(Z>Z—$*)

|fs — fa| <y ' Ex Z

Z,Z_S*

=

® ®

Following the same procedure of (H.14) and (H.15) in the proof of Proposition G.3, we have

Z ¢(Z,Z—S*) ¢(Z, g_s*) <2. Z |M7T(Zv Z—S*) _ ﬁ}(z, Z—S*)‘

i)
2,7 _g* 2,7 _g*
(2, X_g«)— 0% X_g+
W (Z-s+)
The second term of the right-hand side of (G.18) has an upper bound
2 [P0 () +1 3u
ming u™(Z_g« = E) L(1-2X) L

as we have established in (H.16), (H.17), and (H.18). For the first term, we have by the Cauchy-Schwarz inequality that

Ex Z |/L7T(Za Z—S*) - ﬁ&(’% Z—S*)|

s N _ T . 2
< |Ex Z (w (Z7Z—$ﬂ) ZMX(Z,Z—S )
2.7 _gx H (27 —S*)
- ! [P0 () +1 3
T Vming g pt(z =€, Z_s- = E) L(1—)) L’
where Lemma H.10 is used in the last inequality. O

Approximation of f, by fs. Now that we have z, Z distributed according fi%, which depends only on Xy i_g«.
In the sequel, we abbreviate (741, Xr+1-s+) as (x, X_g+) where X_g+« = (x_p)pes+. The joint distribution for
(x,X_s+, 2, Z_s«) is given by

ﬁw(l‘7X—S*aZaZ—S*) :p7£+1(x7X—5*) : ﬁﬂ(ZaZ—S* |X—S*)7

where we use i" (2, Z_s+ | X_s+) to replace [i% (2, Z_s+) for a clearer notation of the dependency. Here, p7 ,, is the
distribution for (1,41, X1 +1-s+) and g™ (+) is defined as

P (2, Z-s+)exp (a-[ljes- L(z—n = 2-1))
ZZ,Z,S* Mﬂ(z3 Z*S*) exXp (a : HhES* ]]-(th = x,h))

(2, Z-s+ | Xos+) =

For our convenience, we define
" =p" (2, X _s) 1" (2,2 5 | X_5+),

and let

]1(1} =z = ek)
=E ~gT o — —1 = €L . 1(z_p = x_
f5 (2,X 512,70 _gv)~q E (,u”(ek|Xs*) (z ek)) || (zp =x_p)

keld] hesS*
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One can rewrite f5 as

PSRN D AL S0 (EERE EL SRS
- T S* )~ -

el A (z = e | X_s+)

- ﬁW(Z_S* == X_S* |X_S*):| .

And f; is given by replacing the distribution of (x, X _s+) by pT ,; in f5. The difference between f; and f5 is thus bounded
by the results in (H.11) of Lemma H.8:

|fa— f5| < ||n7 (2, X_s+) = pT 41 (2, X_s4)||, < AL*M\/DX‘Z(MO ™) +1

Collecting all the approximation results, we have

\fo—fsl SAL+e (14 a) (A + Ag) + )\L_M\/Dx2(ﬂ0 ) +1

! Dy (po() [ #m () +1 L 3M | de
(2, Z-sv)

min; z_ ., pu”

L(1-)) L

Here, we split the error into two parts where the first part is constant error and the second part is the error that also depends
on a:

€= Ay + XM Dy o || ) +1

7 [ PelmoO)[pm () +1  3M | de
(2, Z_s+)

min; z_ ., p”

L(1—-X) L
Ya) = 1 +a) (A + Ay).

G.3.3. LOWER AND UPPER BOUND FOR THE DYNAMICS OF a

Now, we can safely work with f5. By definition, we have

pr(r = e | X_s-)?

fo=Bax s || D = 1| " (Z_s = X_s | X_s+)

keld]

(x=ep|X_g+ o ~
- Z Z N — :| X s’ 1| " (Z-s = X s | X s )™ (X_s+)
X o Z 6k| S*)

3 Z( LS 1) =l Xs)

_s* ke[d]

b (z=ep| X_s+)

. /jﬂ-(Z_S* = X—S* |X_5*) . /,Lﬂ’(X_S*)

where we note that 1" (z = ey | Z_s+ = X_g+,X_5+) = p™(x = ex | X_s+) as fixing Z_s+ makes z independent of
X_g+. We can rewrite i" (2 | X _s+) as

B (2| X s)= > 1" (2| 2 5) - W (Z-s+ | X_s*)
Z_gx
_ (W (Zos )+ pm(Xos ) (e = 1) - 1(Z-s- = X_s+))
- Z Wizl Zos) 1+ 7 (X_s)(e” — 1)

1 (Z) pr(z| Xose) - pm(Xos+) - (e” — 1)
1+ pm(X_s+) - (e* = 1) '
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For our convenience, we let 7(X _gs+) = (1 + u™(X_s+) - (e — 1)) ~L. We then have

(2] X_s0) = r(X_se) - p7(2) + (1= r(X_s.)) - p™(x = 2| X_s2),
/NJ,W(Z,‘s* ZX,S* |X,5*) = e“r(X,g*) M (X S*)

Consequently, we have for f5 that

_ p(x=ep | X_s+) Y
fim 2 Z( X_s+)-pmer) + (1 —r(Xos)) - pm(z = ex [ X_sv) 1)

X_s* k'e

. M (Z = €k |X7$*) . ﬁﬂ-(Z,S* = X*S* |X*S*) . MF(X,S*)

_ (¢ =ern| Xos) = pm(e)\* ro
; Z Z( Zk_ekTX s) k> Fle=e]Xs)

_S* ke

“r(Xose)?p"(Xose)?

Z Z l’—€k|X 8*)_,11/”(616)) ~e“7’(X75*)3‘//r(X*3*)2'

ar(z=er| X_s+)

X_sx k‘E
J(X_S*;a)
We see that f5 is bounded below as
‘ (W (x = ep| Xos+) — " (er))” 3 2
> min ce'r(X_g+)® (X _s+)7,
fs 2 XZS:* a€lp—(a),p+(a)] k%;ﬂ (1—a)um(z =er | X_s+) + ap™(ex) (X-5:)" p"(X-5)

where

pi(a) = (1+ min p"(X_s:)(e” = 1))~

—S*

p-(a) = (14 max (X _s.)(e* — 1))

,5*
which are given by the upper and lower bound of (X _gs+), respectively. Let us define

N o (P(z) = Qx))?
Dyzp((P[1Q) =  min ;{ =006 + P

In the sequel, as we study the dynamics of a, we will denote f5 as f5(a). Then, the lower bound for f5 can be also written as

> 3 Dyt (7O I X)) e o ().

Fosr J_ (X,S* .q)

Also, since

Sz ol Xos) - p(e)”
v (L um(@ = e | Xos+) + apm(er)
is a convex function of « (by noting that the second derivative is non-negative), we have
f5(@) < (Do (™ () |17 (1 X—s)) - (1= r(X_s2)) + D (™ (-] X_so) [ 17()) - r(X_s-))
. ear(X_S*)?’ . MW(X_S*)2

& aely @), (0) (1=a) Dy (u™ () | 5™ (- | X—s+)) + - Dy (™ (- | X—s+) | 7 (-)))
X_s - P+ (a
Ji(X_s+;a)
e n™(X_s+) _
(1 +H7T X—S*) . (ea _ 1))3 1% (st*)



Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers

Note that both J, (X _s«;a) and J_(X_gs+;a) are of constant scale, i.e., uniformly upper and lower bounded regardless of
a. Also, the time derivative of a is given by

Ora = Eroplfs] £ (§ + ¥(a)).

G.3.4. CONVERGENCE OF a

Here, we abuse the notation and denote by £ = E,p[¢] and ¥(a) = E,p[t0(a)]. Thus, a continues to increase until it
reaches a point where f5 no longer dominates the error. We denote by a* the threshold where f5(a*) = £ 4 1 (a*). Note that
a* can be as large as log L since we could make v (a) arbitrarily small by letting the first and second stages to be sufficiently
long and £ = O(L‘l/ 2) will be the elbow. In the following, we only characterize the dynamics of a for a < a*. We also
use * = o(1) to denote that a term is much smaller than 1, e.g., * = (loglog L) ™. We use x = z & J to represent the fact
that = is bounded around z( by 4 error.

Small a. Consider the case where a is small in the sense that ;™ (X _g+)e® < §, VX _g«,Vr € supp(P) for some small
constant 6. Then, we have for the gradient that

Oa=(1+0(0)) - Errp Z J(X_s+;a €QMW(X—S*)2i(€+¢(a))

X_s+

Here, we recall that

L W@ = e | Xose) — i (er))?
J(X S* )_kg[;i] ﬁ“(z:€k|X—S*) :

with lower bound J_ (X_s+; a) and upper bound J, (X_s+;a). We notice that p_(a) > 1 — §. Thus, both J_(X_s+;a)
and J, (X_s+; a) are controlled within (1 4= O(6))D,2(p™ (- | X_s+) || #™(-)). Here, we use the condition that

E+P(log L) = O(L7V/2 47187172 (1 = \)71/2)

<5 Brnp | 3 D(W (| Xos) | 07()) - 1™ (X_s0)?

X_g+
which gives us
Ora=(1%£00)) Ennp | Y Dy (| Xos) [ 17() - ™ (X_s0)?| - €.
X_g+
With the result, we have
~9,c™" = (1£0(9)) - Egnp Z Dy (0™ (-| Xoso) [ 1) - 1™ (X )? | |

which implies that for small a, the growth follows

a(t) < —log [ eV — (1+0(3)) - Exnp ZD (1 X—s) ™ (Dp™(X-s:)?*| -t ],

a(t) > —log | =¥ = (1 - 0(9)) - Erwp Z Dy (™ (-| Xoso) [ 17 ()™ (Xs54)?| -t

Therefore, at the beginning, a grows super exponentially fast.
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Large a. As a grows large such that 4™ (X _g+)e® > 61, VX _s+, V7 € supp(P) with § being the same as in the previous
case, we have for the gradient that

—2a

8ta—(1:l:0 . ﬂ—N'P ZJX S*;Q W

£ (§ +1(a)).

Notice that p4 (a) = (1 + minx_,, u™(X_s+)(e® —1))~! < § this time, which implies that

J(Xos+50) = (1£0(0)) - Dy (™ () [ 17 (- | X—s+))-
To ensure that the signal in the gradient dominates the error, we require

—2a

e
D, X_s+)) ———— =w(&+ ¥(a)).
X DO I X5 o = e+ vla)
s*
A sufficient condition for this to be true is a < (1 — §)log L/4 with
6o Y D™ () |7 (-| Xos2)) - L2 = 0(y 72 - (1= 0)71)

X_s+

given the fact that ¢ = O(L~'/?) and +(a) < O(L~'/?) by letting the first two stages run long enough such that
A;+ Ay <O(L7Y2/log L). Thus,

—2a

0= (14 0(5)) - Enp Z:D TONRC X s ) o S |

which gives us

) Dy (57 () | 17| X))
8t (1 :l:O((S)) T~P Xg’( 2,LL7T(X73*)

Suppose this large a regime starts at to with value a(tg). Thus, for large a, the growth rate is characterized by

OV GRED))

(t—t 2a(to)
207 (X _gr) ( 0) te 5

alt) = L1og | (120(0)) oo | 37 222

X_g+

until it reaches the value (1 — §) log L /4.

G.4. Lemma on GIH Approximation Error

Now given the convergence result for the training dynamics, the natural question to ask is how well the learned model
implements the GIH mechanism. In the following part of this section, we state the lemma on the approximation error and
also present a formal proof of the lemma.

Lemma G.5. Consider H = M and Assumption B.3 holds. Suppose the error Ay, Ay < L~ after the first two stages’
training, and a > (1 — ¢) log L/4 for some small constant 6 < 1 after the last stage’s training. Let y be the output of the
model in (2.5) after the training and y* be the output of the GIH mechanism GIH(x1.1,; M, D). Then with high probability
1 — O(L™1Y), it holds that

ly* = yll, < O(L=E=7),

Proof of Lemma G.5. Let s; =[], cq« 1(x1—p = vr41-1) and s; = (ur41,u). Let us invoke Lemma H.1 to obtain the
model misspecification error as

%nax\sl — 51| <2(A1+ Ag):=A.
€L
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We note that the second layer’s attention weight a can be as large as (1 — ¢) log L/4. We are comparing the output of the
model with the GIH mechanism GIH(x1..; M, D). Let N = 3,/ [1,cs« 1(x1—n = £L41-1). The output of this GIH
mechanism is given by

1 .
y = N Ysm @ pess L@i—n =2p41-5), if N =1,
ﬁ ZZ>M x;, otherwise.

We define

otherwise,

1 .
Uz* — {N ’ Hhes* ]l(l‘l—h = 33L+1—h)a if N>1,
1

L—M°

with 0* = (0] );> m. Therefore, the -1 norm of the difference between y* and the model’s actual output is given by

ly" = ylly <llo” = ol .

Letus definethe setI' = {L > 1 > M : [[,coc L(wi—p = 2p41-5) = 1} and T = {L > 1> M : [], o L(xion =
Zp+1-p) = 0}. We then have

lo* —all, <D lof —aul + Y o
leT leTe

Forl € I',wehave 1 > s; > 1 — A and for [ € "¢, we have 0 < s; < A. Consider the normalization factor in the softmax
operator.

Z = Z exp(a - s1).
I>M
The normalization factor is lower and upper bounded by
Z>Nexpla-(1-A)+(L-M-N)-=Z_,
Z< Nexp(a)+(L—M —N)-expla-A)=:Z,.

We then have for [ € T that

o — o] = exp(a-s) 1 exp(a) 1] |exp(a-(1-A)) 1

o Z N|=| 2 N Z. N
< ’ ! .
“|Nexp(a:-(=A)+(L—M —N)-exp(—a) N

exp(a- (=A))

1
v N+(L—M—N)exp(a-(—1+A))_N"

The right hand side is upper bounded by O(aA/N) + O(L exp(—a)/N?). For I € T'°, we have

o) < epogaA) < exp(a - (AQZA -1))

In summary,
ly* —yll, < llo* —oll; < O(aA) + O (Lexp(—a)/N). (G.19)

The above inequality holds whenever N > 1, where we use the condition that aA < log L - A < 1. By Lemma H.10, we
have the second moment

L 2 L
E <L1 S 1(Xis = B) - m(E>> < Dy (Ll > 1is =) “”'))
=1 =1

1

<— — VEexll
ST TS
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Therefore, by the Chebyshev’sinequality, we have

|

We can take ¢ = min g yis+ #™ (E)/2 and by also taking a union bound over X'¥"I, we conclude that with high probability
(say 0.99) it holds that N > ¢L = L - min g s+ 1" (E)/2. Thus, it follows from (G.19) that with high probability

1
>t .
) S LA =N AST 2

L
L™ 1(X,_s: = E) — " (E)
=1

ly* = yll, S aA +exp(—a) S L™ log L+ L™ (17974,

where in the last inequality we use a > (1 — §) log L/4. O

H. Auxiliary Lemmas
H.1. Useful Inequalities

Lemma H.1 (Model Misspecification). Let ur 1 be the output feature after the FFN & Normalization layer. Then, the
model misspecification error defined as

max [(ur41,u) — H 1(zi—p = xr11-1)
telt] hes*

is bounded by 2(A1 + Ay), where Ay and As are the errors after the first and second stage’s training, respectively, and are
defined respectively as

Aq:=1—pg-, Ay:=1— H (a&hg)z.
heS*

Proof. Let us consider the output feature w; after the FFN & Normalization layer, where the inner product is given by

(upq1,w) = Z bs - H " UL+1

S€[H]<p hes
Since each v( ) is a convex combination of x pq(r) where M(1) = {I — M, ...l — 1}, we have vl( ) having norm at most 1.
Thus,
h h) . (h
(wperw) = [ o™ o) <@ -ps)+ >0 ps [T, 00
hes* Se[H]l<p\{S*} hes
S 2(1 —ps*) = 2A1,
where A is the error after the first stage’s training By definition of vl(h) =3 jeM a(fj)xl_ j» we have
(v (h)7 Z U 0 331 is TL41-j) Z U(h U( )]l(ﬂfl i = Tri1—j)-
i,j€[M]? i,jE€[M]?

Hence, we have that

H <Ul(h)7v2hll> - H (a(f,i)z 1(x1—n = xr41-n)

heS* heS*

Z H U*%h *Jh xl*ih :xLJrl*jh)

{indntnes #{h,h}hes+ h€S*

S %% <o [eras

{ih,dn}tnesx#{h,h}ncsx hES* heS*

IN
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where As is the error after the second stage’s training. As a result,

heS*

<2 <1 - 11 (a(_’;j)?> =2A,.

h h
H <Ul( )7U(L-&)-1> - H L(xi—p = 2p41-0)

hesS* heS*

In summary, we have that
<2(A1 + Ag).

(Up1,uw) — H L(x1—n = xr41-n)
hes*

Hence, the model misspecification error is bounded by 2(A; + As). We finish the proof.

Lemma H.2. Consider gy s in (G.1) with a = ag = a(0) and g1 s in (G.3), which is equivalent to gy s when a = 0. Then,

for ag < 1, it holds that
8a0d
90,5 — 91,8 < —5
€

Proof of Lemma H.2. By triangular inequality, we have

Z{ 1H1(IL+1zlek)

a(ao-ST)z*L y(k)+5

L
|90, — g1,5] < E[
=1

ke(d]
1 ]l(xL+1 =X = ek) ]l(xL+1 =X = ek) T
+L‘ y(k) + ¢ g(k) + ¢ +lofars), — 7
1 ‘y(k) L(rpy1=er) Yk)Urp = ex) } (h) (R
+ = - - ‘ H<Ul VL) |-
L y(k)+¢ y(k)+e s
Note that 0 < s; < 1 for all [ € [L] thanks to the layer normalization. Then, for the softmax operation, we have
1 T exp(ao)
< . PO 4 Sl VN
ofag-s'), < L1+ oxplag)’

1+ (L —1)exp(ag)

which implies that
exp(ao)

1

1 1
.

. — < — — — —
o (a0s7), L‘max{L 1+ (L —1)exp(ap)’ L—1+exp(ag) L

Since indicator functions are bounded above by 1, we have

1 Hy(k) (g = o)
y(k)+e

1} _ exp(ao) ~1

lerp=m=e)| 1 |yk) L@y =ep)| 1
y(k)+e — e’ y(k)+e — e’
For the second term, we have
_ L
Vepp =w=ep) Larp=w=ep)| _ [yk) —yk)| _ Sl lo(ao-sT), -
y(k)+e yk)+e - g2 - g2
< exp(ag) — 1

= 52

where the last inequality follows from (H.1). Similary, the following bound can be derived.
y(k) L(zp1 = ex)| _ exp(ag) — 1
y(k) +e e

’y(k) L(zr41 = ex) _
y(k)+e
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Combining (H.1), (H.2), (H.3) and (H.4), it holds that

L
exp(ag) — 1 h 4d(exp(ag) — 1) 8apd
90,5 — g1,8] < Z { Z T'H@f ), (L-21>:| < - S
=1 ke[d] hes
where the last inequality follows from exp(z) — 1 < 2z for 0 < z < 1. O

Lemma H.3. Consider g1 s in (G.3) and g3 s in (G.4). Then, it holds that

91,5 — g2.s| < 2\/EX [Dy2 (7 (- | Xpa(r1) | 47 () +1] - (DX

L _Tn %D (pollp=)+1 ¢
Luglin L(l - )\)Mmln Mglin’

O ()41
L= ) - 1 +Lugm>

where p(+) is the initial distribution over the first r,, tokens, uZ . is the minimum of the one-token stationary distribution.

Proof of Lemma H.3. Let us use yx (+) to remind ourself that g(-) is also a function of X. By rearranging the terms, we
have

_ l T(xpy1 = o = ex) _ (21 = x = ex)
A (PN e e

|g1,s -
=1 keld] keld]
yx (k) L(zpyr = ex) R) (h
- ey et
ke[d] Yx hes

:lliEKZ( i (er) — gx (k) . ke
t keld) (Ux (k) +e)pm(er)  (yx (k) +&)pm(ex) L1 =T =€k

1 (xp1=¢€
-5 ) )|

hesS

RS i (ex) — ix (k) o S0 )
erry ~—' ZE[Z (ix (k) + o) (en) A(zp =x1 =€) - hI;[s< ) UL+1>”

Using Cauchy-Schwarz inequality, we arrive at

et <Ex | 3 (u”(ek)—yx(k)>2

keld] :uﬂ(ek)

=

Z ( EL: (€ | Xpa(z4n) Bloe = er) Hhes<”l(h) ”(Lh421>>
kel \ =1 (yx (k) +&)\/u™(ex)

B uﬂ(ew—mk)f = <w<ekxpa@+l>>y<k>>2
- %;]< 1 (ex) " ,2[;] (5 (k) + ) /1 (ex)

<Ex Dy (gx () | 17()) - Ex [Dye (| Xpazan) | 47 () +1]

where in the first inequality, we also invoke the exchangeability of summation over L and the expectation. The second

inequality holds by noting that <Uz( ) U(L}fzﬁ < 1. Now, the problem boils down to controlling the chi-square divergence
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between the empirical distribution and the stationary distribution. Lastly, we invoke Lemma H.10 which indicates that the
first chi-square distance is upper bounded by

Die(po(B=)|p"(B=")+1 1

L= A) - i T
For the second term, we have
I -
erryg = lz E | — € “M(zp41 =$l=ek)- H<Ul(h)7v(Lh+)1>
L= keld] | (Ux (k) +e)um(ex) L
1 & r -
S e E — ]l(.’L‘L 1:$l:ek):|
L l—zlke[d] L(Ux (k) + €)™ (ex) +
<|7 i E - : LT Y i =z =) — Mﬂ(ek)yx(k)]
L =1 ke[d] _(yX(k) +E) Mﬂ(ek)
(i)
Ly eyx (k)
+Y E{ _EUx }
L =1 ke[d] (yX(k) + 8)
(i)

We invoke (H.12) of Lemma H.9 for the first term, which gives us

LS W(ap = o = ex) — p(er)yx (k)
(i) < E =
< Tn \/D /J/O || /”' +1
- L/l&n L(l - /\):umm .

And the second term (4) is directly upper bounded by e. Lastly, we have the error term

el(zp41 =ek)
yx (k) +e¢

el(zri1 = ex) (h)  (h)
CIT3 = ZE Z W"g@z )| <E Z

z 1 ke[d] keld]

el(zri1 = ex) e(yx (k) —p"(ex)) - L(zLs1 = €x)
F | & e e *keZME[ e S|

Here, the first term is upper bounded by €/u7 ., and for the second term we have by Cauchy-Schwartz that

(Ix (k) —p™(ex))? | T(zr41 = ex | Xpa(r41))?
e | |2 T G e

k
<ExDye (gix () | 17()) - Ex [Dye (7 (- | Xpa4) [117(-)) + 1]

which shares a similar upper bound as err;. Hence, we complete our proof.
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Lemma H.4. Consider g3 s in (G.4) and g3.s in (G.5). Then, it holds that

4(M V1) 4\/D 2 (o || ™) + 1
L L(1-MX) ’

92,5 — g3,s] <

where po(+) is the initial distribution over the first r,, tokens.

Proof of Lemma H.4. Recall that v(" (X)) := D inem) @ (_hz)hX_zh v (Z) = DinelM] 0(_}21 Z_;, . By triangular inequal-
ity, we have

L
1 :cL =T = €L h h
s sl < |7 08| (0 A=) [Tl ol

=1 L \kep pr(en) hes
l(z=2=¢e
= B, x),(z.2)~pmour K > (,T(e)) : (H " (2), 0™ (X)>>>} ’
keld] K k hesS
L
1 by (h

+ ‘L ZE |:H <Ul( )’ U(L—31>:| - IE(JU,X).,(z,Z)Nu’*®,u,7r |:<H <U(h)(Z)7 U(h) (X)>):| s

=1 ‘hes hes

We can establish the upper bounds for each of the absolute value terms. Initially, we focus on bounding the first absolute
value term. Since vl(h) = ZihE[M] U(,hi)hfﬂl—ih, we can write

h)  ( R) (1
[T ein= > TLo%o% i =or).

hes {in.jn}nes hES
Then,
Ly Lzppr =m = ex) OIR0)
2N L+1 =T = ek ) _ O ]
L ; |:<kz pn(ex) [ ™)
- €[d] hesS
L
1 W(wp 1 =2 = eg) B (h
:ZZ Z |:Z Z Z_ek) : H (_l)} (—J)} ]].(Zl_ih’ :xL""l—jh :ekh)
=1 {in,jn}nes keld] {kn}nes hes
= > > Xt L P (L = 21 = er Ty = 14—, = ek, Vh E )
{in-Jntnes k€ld] {kn}nes pur (Z = ek)
3 A (H.5)
heS
Similarly,

SRRTPIN § Sf LS EESN | RN

ke[d] heS

B Z Z Z L (z=ep,x_;, =ep,YheS) pu(z=exz2_j =epVheS)

{inrintnes keld] {kntnes pr(z = ex)

1o, (H.6)

hes
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By Lemma H.9, we have

1

L
g 5 "(Tp4+1 = Ty = €, Ti—4), = TL41—j, = €k,, VR ES)
=1 ke[d] {k)h}hgs

S

—pT(r=ep,x_;, =ep,VheS) pu"(z=-ey,2_j =e,VheS)

2(M V ry) 2\/D (o [ ™) +1 (HT)
=TI S '

where () is the initial distribution over the first r,, tokens. Then, by (H.5), (H.6), (H.7), and the triangular inequality, it
holds that

(5 ) Lo

=1 keld) u(ex) hes
IL(x=z=¢eg) o (h
- E(m,X),(z,Z)wu"@/ﬂ |:<Z W . <H<U2(: )7,U§ )>
keld] k hes

{ih:jnthes hES L(l _ )\)

_<2M\/rn 2\/D (o | ™) +1>

(M Vry) 2 Dy (po || p™) +1
| N e

L L1-))

For the second absolute value term, the analagous argument can be applied. It follows form Lemma H.9 that

L
1 h
EPIC] (CRRT) EERTES—— § ) (R
=1 hes hes
_ (201 V) 2\/D (o [ 1m) + 1
= L L(1— ) '

This completes the proof.

Lemma H.5. Consider g3 s in (G.5). Then, it holds that

Ernp l93,s] — H (0(_”;52 L2 (S)
hes

< (1 - H(o(_"ﬁ)2> L,2(8Y),

hes
: () _ (h) ‘
Proof of Lemma H.5. Since v, =) ine[M] T—i, Tl—ij» We have

h) . (h h) _(h
[[w" iy = > TLo% et =2ras).

hes {in:jnthes hES

Recall that

T(x=2=¢g)
Expl93,5] = Ex (2,x),(z,2)~pm@pm [( > e 1) 11 (vgh),v;’%],

Py w (e
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Then the E,p[gs,s] can be expressed as the summation of two terms:
Ex[93,s]

h T(x=2=¢g)
= Er (2.X),(2,2)~um@um { Z H U(,Z)h ﬂh L(@i—), = Z—jn)(z T e 1”

{in,jn}thes hES

; L(x=2z=¢g)
= ET(,(QE,X),(Z,Z)NH"@M’" |:H( (—Liz) ]]'(Z_h = Z_h) ( Z - 7/ N 1):|

hes keld) p(ex)

", B T(z=2=¢)
+ IETr,(I,X),(Z,Z)N,Lﬂ‘®,LL7r |: Z H —1h —]h x*ih - Z*jh,) ( Z 7) -1

(in,jn)€T(S) hES

where the signal set is defined as I'(S) := {(in,Jn) | in = jrn = h,Vh € S} and the error set is I'°(S) :=
{(in, jn) | Yh € S}\I'(S). Note that we can upper bound the second term by Lemma H.6 as

Iz =z=c¢)
E. (2,X),(2,Z)~puT™@u™ H ]1 T—ip _Z]h)<z <7 — 1) < Ixz(s*).

hes keld]

Thus, the gradient is upper and lower bounded by

[Te")? 12(5) + (1 -1I (o<’2>2> [,2(8%)

hes hes
O
Lemma H.6. Consider any S = {i1,...,i|s},S" = {j1,.-,jjs/|} € AIS{D such that |S| = |S'| It holds that
T(x=2z=¢eg)
En,(x,X),(z,Z)N/ﬂ‘@;ﬂ l H ]l {E—zl Z—jz) < Z m — 1>
IS keld]
1/~ ~ ~
= (Ixz (S)+ Ie (s')) < T 2(8Y).
Proof of Lemma H.6. Note that
T(x=2z=¢g)
EW»(%X%(Z;Z)NM”@M" H 11 -T—zl = Z—jl) Z m -1
le[|S]] keld]
T(x=2=¢eg)
=En (0, x),c)mmens | Y, L X-s=2Z_s) — . L
pr(z = ex)
{kitie)s) kel(d]
B (x = ey X s) "(z = exlZ-s)
pr(z = ex|X_s) p"(z = ex|Z-s) x
= EW7(w:X)7(Z7Z)NNﬂ®HW |:Z < T _ - 1) : < T — - 1 . ,LL (Z = ek) .
2w p =)
(H.8)
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Then, we apply the inequality ab < a? + b2 /2 to the (H.8) and obtain the upper bound as follows

I (@ = ey X_ 2
o] T (D e )
2" (ki }ie s kEld) "(z = ex)
1 K" ex|Z_s . .
+ 5B e 2y { ) Z(Z))l) (2 =ep) W (Z-s)
{ki}ic)s) k€ld) ek

1= *
§IX2(S) + §IX2(S/) < IX2(S ),

where the equality follows from the definition of the modified mutual information and the last inequality follows from the
O

definition of S*.

Lemma H.7. Consider any S = {iy,...,i5/},S" = {j1,...,j|s|+1} € AEID such that |S| +1 = |S'|. Let i|s|41 = i1~

for some 1* € [|S]]. It holds that

Er (2,%),(z.2)~pr@p [
<

Proof of Lemma H.7. The proof is similar to the proof of Lemma H.6. The left hand side of the inequality can be expressed

as follows:

Eﬂ'#(wxx)#(z’z)'\//‘ﬂ-@uﬂ H ﬂ(x_il = %= (Z TI'(
1e[|S|+1] keld]

H ]1(33—1‘1 = Z_jl)]l(z_il* = Z—j|s+1)(z m

keld)

WX s=2 1 - Uz =z=cx)

( -S = *5'\{j\s|+1}) (Z—j\s|+1_z—iz*) Z -1
e M=)

,(2,X),(2,2)~p" @u™
LLElIS]]

= Er (@,%),,2)~pm@pm

(= en|Xos) - 17 (2 = ekl Zosn\ (s} Fiisin = Fis) 1}

w(
= Er (2,x),(2,2)~um@um [Z e
e p(z = ex)

wr=e,|X_s
= EW’(Iyx),(z,Z)~;L"®;L" |:Z (M - 1)

ke(d]
(2 = eg|Z_sn1, V2§ = Z_j.
_ (,u ( k| S\{j|s|+1} Jis|+1 ) ) 1) (2 ek)]'

pr(z = ex)
(H.9)
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By the inequality ab < a? + b?/2 the upper bound of (H.9) can be derived as

%Em(ﬂ%x)"’l” {Z <M(x7r(::’“|X)3) - 1) (2 = ex) 'MW(XS)}

keld]
1 'uﬂ(z = eklZ*S'\{ﬂs 1 R=disi41 Z*iz*) 2
+ 5B 2,2y [ > ( e -1
2 keld] pr(z = er)

) Nﬂ(z = ek) ) Nﬂ(Z—S’\{j|s\+1}7 B—jis|+1 — R—ip= ):|

1~ 1 K (z = ex|Z-s) ’
=-L2(85)+ zE; (= NW[E (—1
97X (S) g m (2, 2)~u er 1 (z = eg)

: Uw(z = ek) ) UW(Z—S’) : ]l(z—j|s\+1 = Z—ipx ):l

where the equality follows from the definition of the modified mutual information and the last inequality follows from the
definition of S*. O

H.2. Lemmas on Concentration of Markov Chain

For simplicity, we denote by M(l) = {l — 1,1 — 2,...,l — M} the length-M window before [. Also, recall that we have
the parent set pa(l) = {—ry,...,—r,} and we define N'(I) = {{ — 1,...,] — r,,} as the minimal set of continuous indices
that contains pa(l). We denote by p™ (-) the joint distribution of the chain (X, 1) under the Markov kernel 7. For M (l)
or /(1) that goes to the negative index, we extend p™ (-) to be

P (rp41, X, X)) = 0" (2041, X H 1(z; = 0),
leM(1)
where we extend the space of X to also include the zero vector 0.

Let us first introduce the notations to be used in the later proof. For more generality, let us take Y7, as a subset of
(141, X) such that the maximal index and minimal index within Y7, have difference at most m + 1. Here, m is just an
integer less than L. Two special cases of the definitionis Y741 = {241, Xaqz 1)} Withm = M and Y71 = {2p 1}
with m = 0 which will be studied extensively. Take Y] as the the subset with indices shifted from Y71 by —(L + 1 — ).
Let A = Xn(L—m+r,+1) and By = X (41). By the Markov property, we have

YL+1J-L(BZ7)/I)|A5 (YL-‘rl)A)J'L}/”Bla Vi e [L—m+rn],

The quantity of interest here is

L
P (E,E'): Z (Yoi1 = E,Y, = E')

h \

h \

L
ZZ (Yo = B[ A) - nE7=0m=r)) (4| By = b)
=1 Ab
p"(Yi=FE'|B =0b) p" (B =b). (H.10)

Here, we denote by 7(?) the i-step transition kernel of the chain. In the matrix form, let K of shape |X""| x |X"™| be the
transition matrix such that K;; = m(j |4). Let  denote the vector of the stationary distribution of the chain with element
w(i) = p™(4). Let us consider the reweighted transition kernel

K= diag(\/ﬁ_l) - K - diag (\/i) ,
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Since the transition matrix is primitive by assumption and having only one eigenvalue 1 on its spectral circle, we also have
for K that the leading eigenvalue is 1 with eigenvector /1. However, the projection in the leading eigenspace (or the Perron
projection) is not of our interest. We note that

; . ~ TN . -1

K'— 1" = diag (Vi) - (K = iaya©)' - diag(vii ).
Thus, it is the eigenvalue of second largest magnitude that matters when studying the convergence of the chain. Let A
denote the second largest magnitude of the eigenvalues of K. Before we proceed to study p”, let us first study a simpler
convergence result, which is to quantify the closeness between 1, n=~'p™(B; = b) /(31— n ") and 17 (b) for certain
n € (0,1].
Lemma H.8. The following two inequalities hold for length-r,, window:

SEAT(B =) L-AL=m (1= ))
— L _ -1 () < L /Dy (po || w7) + 1,
H Zl:1 ALl TV 1=A \/
S (Bi=) "0 VDo) +1
L a . L(1— ) L’

where D, (po || (1) is the x? divergence between the initial distribution 1o and the stationary distribution |1™. For a set'Y,
that can be covered by a length-m window, we have

Siar (Y= Ol < VD (o l[pm) +1  mvr,
L a = L(1— ) L
TV
1P (Yir =) = 1" (Ygr = -)[loy < AF7™Y \/Dx2 (ko [l ) + 1. (H.11)

Proof of Lemma H.8. Let ¢; = nt=!/ Zlel nt=! Let o € X" be the vector of the initial distribution of the chain. Using
the matrix representation, we have

o

L
doa- @ (Bi=b) =@t (b)) =Y a1 KT (uo — p)

l=r, l=r,

= Z e -1g- (K5 —pl™) - po

o

- Z ¢ -1k - diag (Vi) - (f(_ \/ﬁ\/ﬁ—r)l_r” ding (\/ﬁ—l) - Jio.

l=ry

To conclude, we use the variational representation of the total variation distance and have for any test vector u € {0, 1}/*""|

that

L L l—r
wl - e (p™(B) =) — 4™ (- el - dia (K — ™ " dia -1y .
D07 (Bi=) =) < ey ding (V) (&= viava") - diag (Vi ') - o

2 <1

< 3o e ()

=7Tn

L
=3 AT \/DX2 (po [| ) + 1.

l=r,
Plugging in the definition of ¢;, we have

‘ S T (B = b)
Zlel n“

L — —r p= Trn—1 —
< i, nEt N Dy (po ) + 14+ 352 ot

- 'U’Tr(b) L rp—1
TV Sl TR
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We consider two special cases. In the first case, we set = A, which gives us

S AT (B =b) 11" (b) Zz o AETT D (g [m) + 14 Y0y AL
Zszl ALt v - (1 _ )\L)/( /\)
LA (1—
= 1= )\L \/D 2(po || ™)

In the second case, we set n = 1, which gives us

L —r —
S (Bi=b) o S, A /Do (o [0T) + 1 47— 1
zimP 20 s <
L L
v
_ VD (uollpm) +1 LI
- L(1-X) L
Similar results can also be derived for a length-(m + 1) windows. Note that
L r L =
Zl:lp ()/l = ) T o Zl:lp (Bl—(m—rn)\/o = ) -
sE=———-u"0)| = — ()
L L
v TV
<m\/rn+ Zer(nm Te)VO p"(Bi=-) L-mVr, ")
< 7 7 K
TV
L mVrn /Dy (po [ o) +1
=L L1- )
Lastly, we consider the difference between p™ (Y41 = -) and p™(+).
[P (Ye41 =) = p" (Y41 =)[vv
< ||p7r(BL+1—(m—m,)v0 = ) - HW(BLH—(m—rn)vo = ')||TV
~ L—mVr, _
< o, o dine (V) (K = iyaT) g (Vi) o
< AT D (g || ) + 1
Hence, the proof is completed. O
Now that we know that the average of p™(B; = -) converges to p™(+), which is “first-ordered” convergence. The next

question is whether p™ (-, -) converges to ™ (+) - u” (-). The following lemma quantifies the total variation distance between
the distribution p™ and the product of two stationary distributions.

Lemma H.9. For p™ defined in (H.10), we have

157C.) — 1 OBy < 22T wpufo_”f; =

In particular,

L L(l - >\)

< (H.12)

L
P"(B.E') - " (E) - (i > opr(vi= E’))
=1

TV

Proof of Lemma H.9. We want to control the difference between p™ and the averaged product distribution of Y71 and Y},
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which is given by

s (sr)

L
S Vi = BIA) - (x4 By =) - 7(4))
Ab

=1

b« \

p"(Yi=E'|B =b)-p" (B, =b). (H.13)

We can also rewrite (H.13) in the matrix form as

1 L
P70 — 1) (L S (Y= -))

L
Z (Vipr =1 A=) - diag (Vi) - (R - Vv

~diag(p™(By =) - p"(Yi=-|B=-)".

T) Lol (M=r) ding (\/p‘l)

h \

When considering the ¢;-norm of the difference between the two distributions, we introduce a test matrix U of shape
|XM| x |xM| with each element of U chosen from {0, 1}. Then, we have

L
TV, = |57 ) = () (in”m _ .>)
- v
L T —Tn
<m[§iXT|:1Zp7T YL+1 A:')'diag(\/ﬁ)'(k—\/ﬁ\/ﬁT>L I—(M )
=1

ding (Vi) -ding(p7 (B =) 57 (5 =+ B =T U7

To upper bound this quantity, we consider each row of U as U(Y741,-) = u(-|Yz41) . Note that u(-|Yz41) is also a
{0, 1}-valued vector. In this spirit, we have

L N L—l—(M—r,)
TV, < Z max  — ZPW(YL-H =b|A=")-diag (/) - (K - \/ﬁ\/ﬁT)
=1

- diag (\/ﬁfl) ~diag(p™(Bi=")) - p"(Yi=-|Bi=")" -u(-|Yp11 = E).
Note that the norm of the vector in the last line is at most

|diag (Vi) - ding (@™ (Bi =) 5" (Vi = | Br= ) u(-| Vi = B)||
< |[diag (vii ") - ding(p™ (B =) -1

< /D0 (Br =) [ 157()) +1 < \/Dya o || ) +1

where the first inequality holds by noting that p™(Y; = - | B; = -) T - u(- | Y41 = E) is a vector with element within [0, 1].
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The last inequality is the data processing inequality. Consequently, we have for the TV distance that

M—r, 177
—Tn + 2 : L—l—(M-ry) . T

=1

. max (Y] =FE|A=0D)- () -v(b|FE
> oy P (Yo \ ) V() -v(b| E)

v
Eb

TV, <

M—rn \/D 2(po || pm) +1
g . max v(b| E 2p7r Y, = F A -
L L1 =) B e: lv(-| B)ll2<1 \/; (b BP?p" (Vi | )

<M\/’I"n \/D ,U/OH/’L +1
=L La-x

where the first inequality follows from the spectral norm of the matrix K- \/ﬁ\/ﬁ—r, and the second inequality follows
from the Cauchy-Schwarz inequality. Now, it remains to quantify the TV distance

L L
TVy:=||u™ <LZ = ) —u() - p H( Z ) — 1 ()
=1 =1 TV
Invoking Lemma H.8, we have this quantity upper bounded by
VDol [+ 1 M
TV, < X —.
R 7 S R
Using the triangular inequality for the total variation distance, we have
2\/ Dy (po || p) +1
P () — ()" (- <TV; +TV — .
||p(7) ,u()u()HTV— 1+ 2 L L(l—)\)
Hence, the proof is completed. O

In the following, we use a similar technique as in Lemma H.9 to derive a bound for the chi-square distance.

Lemma H.10. Consider Y; has a cover of size m, i.e., there exists a j € [L] and a successive sequence {x;, -+ ,Tjtm—1}
such that Y; is a subset of the sequence. Then, for the chi-square divergence between the empirical distribution
L1 Zlel 1(Y; = -) and the stationary distribution 7w (), we have

e i Dy(po(B=")|p™(B=-))+1  2r, VvV (3m—r,)
’ (L ;MY’:')H“ (')> S L =) ming 7 (Y = B) | Laming (Y = B’

Proof of Lemma H.10. What we aim to bound is just

(L SE 10 = B) - ()
=2 i (B) "

E

L Srequp 106 = Yo = B) — (B

€]
2 p(E) ’

Let us separate this term into two parts:

Z L2 e lVi=Yr =E) - Lt e 1Yo = E)u™ (E)

=E
h /7 (B) ’

E

> L™ ey 1Y = BE)u™(E) — p™(E)?

J2 =K
= pr(E)

=E ZE: IR —u"(E) || =0.

le[L]
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Following our convention, we let B; and B be two length-r,, window such that
Yiq1 AL (By,Yy) | B, (Yiy1, By) WL Yy | By,

For the first part J1, let us fix an index [ > r,, Vm+ (m —r,) V0 and take a summation over mVr, <!’ <l—(m—r,) V0.

Let7 = (m —r,) V0and o = m V r,. This gives us

= Z S vi= BB (7B B =b) - 17 (B))
l'=¢ B1,b
" (Yo = E| By =b) - p"(By =b) - " (E)”

l—7
= %ZTI‘ p”(Yl = ~|Bl = ) dlag(\/ﬁ) . (fg_\/ﬁ\/ﬁT)l—l -7
U'=e

~diag (/i) - diag(p™(By = ) - p™ (Y

1

=By =-)" - diag(p" (Yy = ~)‘1)]

We next invoke the Cauchy-Schwarz inequality for trace, i.e., Tr(W V)2 < Tr(W W) Tr(V V), and take

W = diag(u™(V; =-)"Y2) - p" (Vi = - | A=) - diag (/1) - (K ViV )l e
_) 1/2)7

V = diag(yp ) - diag(p"(By = -)) - p" (Yo = | By = )" - diag(u" (Vi =

which gives us

l—7
1 ’ WY/:~B/:-2 7T}/:»B:~2
Tl) € = SO <P(z ,Br =) >_<P(l B =) >
pr (B =) (Yo =) pr(Yy = )um(Br =)
Here, we use the bracket (-) to denote summation over the variables represented by “-”. We further have

pr(Yi =B =) P(Yi=E|B =b) [p"(B=")
<m<Yz=->m<Bz=->> ST =B <m<Bz= >>
57 (DB =) |i7(B =) +1).

1
= ming pm (Y, =
where the second inequality holds by the data processing inequality. Therefore, we conclude that

Dy (uo(B =) | w*(B =) + 1
Ji(l) < L2(1 = A) - ming u™(Y = E) .

For the remaining term not included in J;, we note that each term indexed by [, " is at most (L* ming u™ (Y = E))
value and we have at most L - (27 + p) of these terms. As a result, we conclude that

=) g (B=)N+1 2,V (3m—ry)
Lming (Y = E)

I < DXZ(NO(B
"= TLA =N ming pm (Y = E)

Since the second term is 0, we complete the proof.

Proof of Proposition G.3. To unify the notations, we let Z = (z_yy, ..., 2_1) and define

L(xy = 2, X pmqq) = Z),

MH
NgS

—

pix(z,2) =

R(Z,X) = exp (a' H L(zp = $L+1—h)> .

heS*
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Using these notations, we can define the normalizing factor in /1% and y% respectively as
®=) y"(22) R(ZX), &= [ik(z2) R(ZX).
We also define
$(z) = ™ (2.2) - R(Z,X), ¢(z) =) i%(z2) R(ZX).
z z
We can then rewrite the objective as

o(z)  d(2)

7% ex) =kl = 3 | 557 — %5

5 ) [0+ (o) - Ga)|- @

. )
_ B9+ 3. 10() ~ ()] _ 25.16() — B s
o d
Furthermore, notice that
2. 190(2) —o(2)| _ 2.1, (2 2) — ik (2, 2)) - R(Z, X))
o ZZ)Z/LW(Z’Z)'R(ZvX)
S (W (2 2) = ik (5, 2))| + (e = 1) 3 [Eger, W7 (2, Z) — % (2, 2))|
<
B T+ (e*=1)- >0 > zery #™ (2, Z)
Z)—p%(z,Z
<Z|“ ()| + PO |ZZeI‘X " (2, 7)r pk (2 ))| (H.15)
Z ZZGFX (sz)
where we define 'y = {Z : Z_g+ = X1 11-s+}. For the first term, we have by Cauchy-Schwarz that
~ (1™ (2) — 1% (2))?
T(2) = 1% (2)]| <4|E
3o - 5 >|] < \[Ex [Z -
< [PelmO () + 1
L(l - A) ’ /’[’glin L- :u;rnin
where in the last inequality, we invoke Lemma H.10 for a length-1 window. For the second term, we note that
By > [ zer, W7 (2. 2) — % (2, Z))]
> zery MM (2, Z)
(5, 2o = E) - i (2, Z_s- = E)|
kx| (75 = E) (Krt1-s: = E)
2
< Z Ey W(z,Z_s» =E)—[%(2,Z_s+ = E) PT(Xpy1-s = E)
pr(Z-s« = E) pr(Z-s« = E)
(4 (2, Z-s+ = B) = j% (2, Z_s- = E))” XL+1 s+ =FE)
< ; (H.16)
EZ pr(Z-_s» = E) EZ "(Z-s+ =E)
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where the last two inequalities hold by the Cauchy-Schwarz inequality. We have an upper bound for the second term as

4 X —S* = E ].
Zp (Xrt1-s ) <. , (H.17)
o w(Z_s« = E) ming u™(Z_g« = F)

We can also apply Lemma H.10 to the first term and conclude that

(2,7 g =F) — 1% (2,7 g« = E))?
EX Z(:u (Z7 S ) :U‘X(Zv S ))

o p(Z-s» = E)
_ Dy (po(-) | 7 (1) +1 SM (H.18)
“VLA-X) min, z o, p™(2,Z-s+) Lmin, g , p™(z,Z_s+) )
In summary, we have
N 2 Dy2(po() [[p())+1  3M
E T —yx(k < . X o
x (7% (ex) = yx (B)I1] < R P \/ Ty +5
po (DO L)L e
L(l - >\) " Fmin L- Hmin

O]
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