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Abstract001

Current large language models (LLMs) often002
exhibit imbalanced multilingual capabilities003
due to their English-centric training corpora.004
To address this, existing fine-tuning approaches005
operating at the data-level (e.g., through data006
augmentation or distillation) typically intro-007
duce implicit cross-lingual alignment, over-008
looking the potential for more profound, latent-009
level1 cross-lingual interactions. In this work,010
we propose CC-TUNING, a novel multilingual011
fine-tuning paradigm that explicitly establishes012
a cross-lingual connection mechanism at the la-013
tent level. During training, CC-TUNING fuses014
the feed forward activations from both English015
and non-English inputs, enabling the model to016
benefit from both linguistic resources. This017
process is facilitated with a trainable Decision018
Maker that identifies beneficial activations. Fur-019
thermore, during inference, a Transform Matrix020
is utilized to simulate the cross-lingual connec-021
tion under monolingual setting through repre-022
sentation transformation. Our experiments on023
six benchmarks covering 22 languages show024
that CC-TUNING outperforms vanilla SFT and025
offers a strong latent-level alternative to data-026
level augmentation methods. Further analysis027
also highlights the practicality of CC-TUNING028
and the potential of latent-level cross-lingual029
interactions in advancing the multilingual per-030
formance of LLMs.031

1 Introduction032

Recent advancements in large language models033

(LLMs) have demonstrated exceptional capabili-034

ties in handling diverse tasks (Dong et al., 2023;035

Wei et al., 2022a,b; Shanahan, 2022; Zhao et al.,036

2023; Liu et al., 2023) while exhibiting promis-037

ing generalizability across diverse languages (Ye038

et al., 2023; Qin et al., 2024). However, significant039

performance disparities persist across languages040

1latent-level: referring to direct manipulation of the
model’s internal representations (e.g., FFN activations)
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Figure 1: Comparison between vanilla supervised fine-
tuning with data augmentation at data level (implicit)
and our method at latent activation level (explicit).

due to the overwhelming dominance of English in 041

training corpora, making balanced multilingual pro- 042

ficiency an ongoing research challenge (Touvron 043

et al., 2023; Zhang et al., 2023; Ye et al., 2024a). 044

One of the prevailing approaches towards these 045

challenges focuses on joint multilingual supervised 046

fine-tuning (SFT) (Ouyang et al., 2022), which 047

refers to fine-tuning the model with supervised 048

data spanning multiple languages. While effective 049

in principle, these methods encounter the “curse 050

of multilinguality” – a paradoxical phenomenon 051

where expanding language coverage during joint 052

training leads to performance degradation across 053

both high- and low-resource languages (Conneau 054

et al., 2020; Wang et al., 2020). 055

To address this, current studies primarily focus 056

on data-level interventions through parallel corpus 057

utilization. Common strategies include: multilin- 058

gual data augmentation with English-aligned paral- 059

lel examples (Aharoni et al., 2019; Shaham et al., 060

2024), explicit translation task formulation (John- 061
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son et al., 2017; Tang et al., 2020), and response062

distillation from resource-rich languages (Zhang063

et al., 2024). While these methods demonstrate par-064

tial success, their reliance on implicitly introducing065

data-level text alignment overlooks the potential066

for deeper, latent-level cross-lingual interactions.067

We propose CC-TUNING, a novel multilingual068

fine-tuning paradigm that introduces explicit cross-069

lingual connections at the latent activation level by070

fusing feed-forward activations from English and071

non-English languages (Figure 1). This approach is072

grounded in recent empirical findings highlighting073

the significant potential of feed-forward activations074

in improving model’s multilingual performance (Ye075

et al., 2024b). During training, our method lever-076

ages parallel bilingual inputs and incorporates a077

trainable Decision Maker to identify linguistically078

beneficial signals from auxiliary English activa-079

tions, integrating them into the forward propaga-080

tion of non-English inputs. Additionally, during081

inference, an “easy-to-learn” Transform Matrix is082

utilized to simulate the cross-lingual connection083

without the parallel bilingual inputs, ensuring the084

practicality of our approach. This latent-level inter-085

action mechanism fundamentally differs from con-086

ventional data-level approaches, as it establishes di-087

rect interlingual activation connections rather than088

relying on statistical correlations in training data.089

To validate our approach, we conduct extensive090

experiments across six benchmarks encompassing091

both natural language understanding and genera-092

tion tasks, spanning 22 languages using two repre-093

sentative LLMs. Our results highlight the superi-094

ority of CC-TUNING over vanilla SFT in multilin-095

gual joint learning scenarios. Besides, compared to096

data-level augmentation or distillation methods that097

leverage parallel data, CC-TUNING offers a highly098

effective alternative for facilitating cross-lingual in-099

teraction. Additionally, our further ablation studies100

and analysis also provide strong evidence of the101

practicality and robustness of CC-TUNING.102

2 Related Work103

Multilingual Large Language Models. Re-104

cently, larger models such as Bloom (Scao et al.,105

2022), Mala-500 (Lin et al., 2024) and Aya106

Model (Üstün et al., 2024) have pushed multilin-107

gual performance further by leveraging the bene-108

fits of greater scale. Generally, multilingual pre-109

training and fine-tuning are now the two main-110

stream methods for improving multilingual capa-111

bilities. Models such as Sabia (Pires et al., 2023), 112

ChineseLLaMA (Cui et al., 2023), ChineseMix- 113

tral (HIT-SCIR, 2024), PolyLM (Wei et al., 2023) 114

and PaLM2 (Anil et al., 2023) have been developed 115

through (continuous) pretraining with large multi- 116

lingual corpora or language-specific data. Other 117

models like BLOOMz (Muennighoff et al., 2022), 118

m-LLaMA (Zhu et al., 2023), Camoscio (Santilli 119

and Rodolà, 2023), Phoenix (Chen et al., 2023) and 120

Bode (Garcia et al., 2024) have opted for a differ- 121

ent approach, leveraging multilingual or language- 122

specific data directly during the SFT stage to foster 123

cross-lingual alignment. 124

Multilingual Supervised Fine-Tuning. Multi- 125

lingual SFT is an effective way to enhance the 126

multilingual performance of LLMs. Current re- 127

search often focuses on data augmentation or distil- 128

lation techniques to enrich training data and im- 129

prove model generalization across multiple lan- 130

guages. For instance, Pan et al. (2024) highlighted 131

the importance of diverse, high-quality data for ma- 132

chine translation fine-tuning, while Li et al. (2023) 133

addressed "translationese" by using Google Trans- 134

late and ChatGPT for multilingual response gen- 135

eration. In terms of instruction tuning, Shaham 136

et al. (2024) showed that adding multilingual ex- 137

amples to English-centric fine-tuning significantly 138

boosts multilingual instruction-following, while 139

Chen et al. (2024) demonstrated the superiority of 140

multilingual tuning over language-specific training. 141

Translation-based fine-tuning has been shown to 142

enhance semantic alignment, as argued by Ranaldi 143

et al. (2024). Similarly, Zhu et al. (2023) combined 144

translation data, cross-lingual tasks, and scaling 145

laws to optimize multilingual performance. Ad- 146

ditionally, Zhang et al. (2024) proposed a self- 147

distillation approach leveraging LLMs’ internal 148

capabilities in resource-rich languages to enhance 149

multilingual performance. 150

The above methods primarily focus on enrich- 151

ing training data with parallel data to foster im- 152

plicit cross-lingual alignment. In contrast, our 153

CC-TUNING emphasizes improving the training 154

paradigm by explicitly incorporating cross-lingual 155

latent interactions into the training process. 156

3 Method 157

In this section, we first revisit the vanilla multilin- 158

gual supervised fine-tuning paradigm, then present 159

the training implementation of CC-TUNING and its 160

specialized configurations during inference stage. 161
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Figure 2: Overview of the cross-lingual connection mechanism in CC-TUNING. In the training stage, CC-TUNING
leverages an auxiliary English input alongside the non-English input, while retaining the vanilla loss computation
without introducing additional training objectives. In the inference stage, a transform matrix is used to simulate
cross-lingual connection in monolingual input scenarios, eliminating the dependence on bilingual parallel input.

3.1 Multilingual Supervised Fine-Tuning162

Multilingual supervised fine-tuning enables pre-163

trained models to better perform downstream164

tasks across diverse languages through training165

on annotated multilingual instruction dataset D =166

{(xi, yi)}Ni=1, where N represents the size of the167

dataset, xi denotes the input question or instruc-168

tion, and yi is the corresponding expected output169

or response. The training process is required to170

minimize the following objective of negative log-171

likelihood of the predicted output with respect to172

the ground-truth response. θ denotes the parame-173

ters of the model.174

LSFT (θ) =
1

N

N∑
i=1

− logP (yi|xi, θ) (1)175

Data Augmentation with Parallel Data. For176

the multilingual instruction dataset D, we define177

its corresponding English parallel data as Den.178

Several previous studies have explored enriching179

the original training data by merging these two180

datasets, incorporating additional translation task181

form data constructed from parallel pairs, or uti-182

lizing techniques such as distillation. We collec-183

tively refer to these augmented datasets as Daug =184

{(xaugi , yaugi )}Mj=1. These approaches, in essence,185

do not alter the SFT process; rather, they introduce186

additional supervised data, as illustrated below:187

LSFTaug(θ) =
1

N

N∑
i=1

− logP (yi|xi, θ)

+
1

M

M∑
j=1

− logP (yaugi |xaugi , θ)

(2)188

3.2 CC-TUNING 189

We will introduce cross-lingual connection mecha- 190

nism in CC-TUNING in detail, focusing on its im- 191

plementation during training and inference stages. 192

3.2.1 Training with Cross-lingual Connection 193

Motivated by the findings in Ye et al. (2024b), 194

which empirically demonstrate that feed-forward 195

activations from English hold the potential to sig- 196

nificantly enhance a model’s performance in non- 197

English languages. The cross-lingual connection 198

mechanism in CC-TUNING aims to incorporate 199

the above latent interactions into the multilingual 200

fine-tuning process, enabling the model to benefit 201

from both English and non-English languages as 202

the parameters are updated. 203

We denote D = {(xi, yi)}Ni=1 as a multilingual 204

supervised instruction dataset, where xi represents 205

the input question for the i-th data point and yi de- 206

notes the corresponding ground-truth response. Be- 207

sides, CC-TUNING requires auxiliary parallel data, 208

Den = {(xi, xeni , yi)}Ni=1, where xeni is the En- 209

glish translation of xi. Generally, the cross-lingual 210

connection mechanism consists of two key opera- 211

tions: (1) adaptive decision maker and (2) latent 212

feed forward connection. Notably, these opera- 213

tions are executed just before the Response Start 214

Token (RST), which marks the beginning of the 215

model’s response in the training template. This 216

ensures that our operations can smoothly introduce 217

the intervention into the response generation pro- 218

cess. Assuming the training template is structured 219

as “ [Input] {question} [output] {answer} ”, these 220

operations are executed at the position that is right 221

before the [output] token. 222
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Adaptive Decision Maker. Given an auxiliary223

input xeni , we first pass it through the model to ex-224

tract its feed-forward activations F en
i ∈ RL×d =225

{fen
i,l }Ll=1 from L decoder layers, where d is the226

dimensionality of the hidden states. But notably,227

prior research has shown that not all feed-forward228

activations contribute equally to cross-lingual in-229

teractions and some may degrade performance (Ye230

et al., 2024b). To mitigate this issue, we introduce231

a trainable linear layer WDM ∈ Rd×L, referred to232

as the Decision Maker, which adaptively selects233

the most beneficial layer. By combining F en
i with234

the embedding activations ei ∈ Rd of xi, we inte-235

grate features from both English and non-English236

inputs. The resulting combined features are then237

fed into the Decision Maker along with Gumbel-238

Softmax (Jang et al., 2016) to achieve the identifi-239

cation as follows:240

Hi =
1

L

L∑
l=1

(fen
i,l + ei) ·WDM (3)241

242
fen
i,s = Gumbel-Softmax(Hi)⊙ F en

i (4)243

where fen
i,s ∈ Rd represents the feed-forward ac-244

tivation from the s-th layer among the L decoder245

layers of English input that is selected.246

Latent Feed Forward Connection. The second247

step aims to transfer the beneficial activation fen
i,s248

identified in the previous step into the forward prop-249

agation process of non-English input. When the250

input xi is fed into the model, let the output of all251

L decoders be denoted as Oi = {oi,l}Ll=1, where252

each oi,l should have been obtained by combining253

the feed-forward activations fi,l and self-attention254

activations ai,l through a residual connection. How-255

ever, the incorporation of fen
i,s refines this process256

by connecting itself with the feed-forward activa-257

tion fi,1 from the first decoder layer. Formally, this258

modification can be expressed as:259

f̃i,1 = fi,1 + fen
i,s (5)260

The forward propagation of the input xi then con-261

tinues with this modification. Consequently, the262

original decoder outputs {oi,l}Ll=j will be altered to263

{õi,l}Ll=j due to the update of fi,1 → f̃i,1, leading264

to new final prediction outcomes õi,L.265

And within CC-TUNING, the training objective266

remains the same as the vanilla loss objective in267

Equation 1. During the tuning process, the model it-268

self, along with the Decision Maker, learns to lever-269

age the benefits of both English and non-English270

languages, improving its multilingual capabilities.271

3.2.2 Inference with Transform Matrix 272

Unlike the training stage, our inference process 273

is conducted without the need for parallel inputs. 274

Instead, we leverages a training-free Transform 275

Matrix to simulate the cross-lingual connection. 276

The role of the Transform Matrix WT here is to 277

achieve the transformation of Fi = {fi,l}Ll=1 → 278

F en
i = {fen

i,l }Ll=1 in the absence of parallel En- 279

glish input xeni . Specifically, after training, we 280

first sample 1,000 parallel pairs (xi, xeni ) from the 281

datasets D and Den, and collect their feed-forward 282

activations, Fi and F en
i , respectively. These ac- 283

tivations are then stacked and denoted as A = 284

{fi,l | i = 1, ..., N ; l = 1, ..., L} and B = {fen
i,l | 285

i = 1, ..., N ; l = 1, ..., L}. Therefore, A can be 286

mapped into B as follows through WT : 287

A ·WT = B (6) 288

To minimize the difference A and B, our objective 289

is defined as follows (Least-Squares optimization): 290

W ∗
T = argmin

WT

N∑
i=1

L∑
l=1

∥∥fi,lWT − fen
i,l

∥∥2 (7) 291

This problem seeks the optimal W ∗
T that minimizes 292

the distance between the source and target repre- 293

sentations. Hence, the closed-form solution to this 294

optimization problem is: 295

W ∗
T =

(
N∑
i=1

L∑
i=l

(fi,l)
T fi,l

)−1( N∑
i=1

L∑
i=l

(fi,l)
T fen

i,l

)
(8) 296

Once the optimal WT has been learned, it can 297

be applied to the non-English representation to 298

map it to the corresponding English representa- 299

tion. This resulting mapped representation Fi ·WT , 300

then substitutes F en
i = {fen

i,l }Ll=1 in equations 3, 4, 301

5, thereby simulating the cross-lingual connection. 302

This alignment effectively eliminates the depen- 303

dence for bilingual parallel data and enables the 304

simulation of cross-lingual connection in a mono- 305

lingual scenario. 306

4 Experiments 307

4.1 Setup 308

Models. We selected two representative LLMs: 309

(1) LLaMA-3.1-8B (Dubey et al., 2024) and (2) 310

Qwen2.5-7B (Yang et al., 2024). 311

Training Corpus. We totally select 20,236 mul- 312

tilingual instruction pairs from aya dataset (Singh 313
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Method

Multilingual Understanding Multilingual Generation

XNLI XStoryCloze MMMLU MKQA XQuAD XLSum

LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen.

Baselines

ML-SFT 31.88 48.23 65.23 70.06 40.20 50.05 14.64 14.73 60.42 63.61 12.27 12.40

+EN 35.02 50.76 65.13 71.63 39.62 48.80 13.28 13.05 57.40 62.34 12.04 12.20
+MT 35.90 47.05 69.90 70.50 40.68 47.49 13.56 13.54 58.40 64.03 12.89 12.48
+SDRRL 29.74 52.36 55.82 80.67 28.06 47.28 – – – – – –

Ours

CC-TUNING 38.42 51.00 70.60 71.43 40.74 49.65 15.94 14.84 61.85 63.72 12.88 12.50
(+6.54) (+2.77) (+5.37) (+1.37) (+0.54) (-0.40) (+1.30) (+0.11) (+1.21) (+0.11) (+0.61) (+0.10)

+EN 32.72 49.48 60.94 64.69 38.73 47.35 14.61 13.56 60.89 62.69 12.78 12.63
(-2.30) (-1.28) (-4.19) (-6.94) (-0.89) (-1.45) (+1.33) (+0.51) (+3.40) (+0.35) (+0.74) (+0.43)

+MT 36.44 48.13 73.54 71.39 38.87 49.39 15.59 13.77 61.55 64.26 13.05 12.87
(+0.54) (+1.08) (+3.64) (+0.89) (-1.81) (+1.90) (+2.03) (+0.23) (+3.10) (+0.23) (+0.16) (+0.39)

+SDRRL 29.84 53.06 69.19 80.93 37.77 47.87 – – – – – –
(+0.10) (+0.70) (+13.37) (+0.26) (+9.71) (+0.59) – – – – – –

Table 1: Main results that are the averages of the performance across all languages involved for each dataset.
Blue cell indicates better performance than the vanilla ML-SFT under the same training data setting, while
Gray cell indicates the opposite. Bold numbers indicate the best performance. LLaMA. and Qwen. respectively

represent LLaMA-3.1-8B and Qwen2.5-7B.

et al., 2024) as our training corpus and the multi-314

lingual training corpus covers more than 60 lan-315

guages, ensuring extensive multilingual coverage.316

Our training processes are conducted on 8 * A800-317

SXM4-80GB with the following settings: batch318

size=16, epochs=3, learning rate=1.0e-5, warmup319

ratio=0.1, and bf16=true. The implementation is320

based on LLaMA-Factory (Zheng et al., 2024).321

Baselines. More details are in Appendix A.1.322

• ML-SFT represents vanilla supervised instruc-323

tion tuning (Ouyang et al., 2022) with original324

multilingual instruction dataset (data size=N ).325

• ML-SFT+EN incorporates the full parallel En-326

glish version of the dataset for training, followed327

by vanilla supervised fine-tuning (data size=2N ).328

• ML-SFT+MT constructs additional translation329

task form data by pairing the original multilin-330

gual instruction dataset with its parallel English331

version and then applies supervised instruction332

tuning (data size=2N ).333

• ML-SFT+SDRRL (Zhang et al., 2024) is a334

self-distillation-based method that integrates En-335

glish instruction tuning data and its multilingual336

code-switched extensions. Additionally, it in-337

corporates partially translated data and comple-338

tion data for fine-tuning (LLaMA-3.1-8B: data339

size≈1.2N , Qwen2.5-7B: data size≈1.6N ).340

And CC-TUNING (+EN, +MT, +SDRRL) refers341

to our method applying the cross-lingual connec-342

tion mechanism and its combination with different 343

above mentioned training data settings. 344

Evaluation Datasets. We conduct experiments 345

on 6 benchmarks, which can be categorized into: 346

• Multilingual Understanding: (1) XNLI (Con- 347

neau et al., 2018), a multilingual natural language 348

inference (NLI) dataset, (2) XStoryCloze (Lin 349

et al., 2022), a multilingual commonsense rea- 350

soning dataset for evaluating story understand- 351

ing and (3) MMMLU, the multilingual version 352

of MMLU (Hendrycks et al., 2020), designed to 353

evaluate models’ general knowledge. 354

• Multilingual Generation: (1) MKQA (Long- 355

pre et al., 2021), an open-domain multilin- 356

gual question answering evaluation dataset, (2) 357

XQuAD (Artetxe et al., 2020), a question answer- 358

ing dataset and (3) XLSum (Hasan et al., 2021), 359

a multilingual abstractive summarization bench- 360

mark comprising professionally annotated article- 361

summary pairs. 362

For each of the above datasets, we conduct experi- 363

ments on 10 language subsets, covering a total of 364

22 languages. For XNLI, XStoryCloze, MMMLU, 365

MKQA and XQuAD datasets, Accuracy metric 366

is used for evaluation. And for XLSum dataset, 367

ROUGE-L scores are reported. We use greedy 368

decoding with a max of 40 new tokens for each 369

model. Detailed information on the datasets and 370

evaluations can be found in Appendix A.2. 371
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4.2 Main Results372

The average results across the different languages373

involved in each dataset are presented in Table 1.374

The detailed results for different languages can be375

found in Table 5, 6. Note that the results of apply-376

ing +SDRRL to NLG tasks are not reported, as it377

may lead to deviations from the prompt language378

in model responses, as shown in Appendix A.3.379

(1) CC-TUNING outperforms vanilla SFT in380

joint multilingual learning scenarios. The re-381

sults in Table 1 demonstrate that under the same382

multilingual training data settings of original data,383

+MT and +SDRRL, CC-TUNING significantly384

outperforms vanilla SFT in both multilingual under-385

standing and multilingual generation tasks. How-386

ever, under the +EN setting, where more than half387

of the training data is in English, the cross-lingual388

connection becomes an EN2EN connection. This389

shift undermines the core goal of CC-TUNING—to390

promote cross-lingual latent interaction—leading391

to a notable decline in performance, which also392

emphasizes CC-TUNING’s alignment with its mo-393

tivation and use case in joint multilingual learning394

scenarios.395

(2) CC-TUNING with original training data out-396

performs data augmentation and distillation397

methods on LLaMA-3.1-8B. As observed on398

LLaMA-3.1-8B, CC-TUNING, even when trained399

solely with the original dataset (data size = N ),400

outperforms the data augmentation and distilla-401

tion approaches of ML-SFT+EN (data size = 2N ),402

+MT (data size = 2N ), and +SDRRL (data size ≈403

1.2N ), which utilize larger training set. This sug-404

gests that, compared to implicitly introducing cross-405

lingual alignment information at the data level, the406

explicit latent-level cross-lingual connection mech-407

anism in CC-TUNING provides a compelling alter-408

native for facilitating cross-lingual interaction.409

4.3 Ablation Studies410

We perform ablation studies to assess the following411

aspects: (1) the effectiveness of the Transform Ma-412

trix, (2) the necessity of the Decision Maker, and413

(3) the advantages of feed-forward activations in414

facilitating cross-lingual interactions.415

(1) The Transform Matrix aligns well with the416

effect of using parallel bilingual inputs. We417

verify whether the Transform Matrix WT can ef-418

fectively achieve the alignment by evaluating the419

mean squared error (MSE) between fi,l ·WT and420

Method
(|M | = 1000)

XNLI XStoryCloze MMMLU MKQA XQuAD XLSum

Model: LLaMA-3.1-8B

MSE value MSE = 1
N×L

∑N
i=1

∑L
l=1(

1
d
∥fi,l ·WT − fen

i,l ∥22)

CC-TUNING 1.17e−36 1.82e−36 3.71e−36 1.46e−36 9.15e−38 5.49e−37

+EN 8.37e−37 3.81e−37 5.61e−37 7.03e−37 9.32e−37 2.10e−37

+MT 5.13e−37 2.54e−36 6.79e−37 5.16e−37 1.04e−36 2.74e−36

+SDRRL 1.02e−36 4.18e−36 3.99e−36 – – –

AVG.MSE 8.84e−37 2.23e−36 2.24e−36 8.93e−37 6.86e−37 1.17e−36

|∆| value |∆| = | Result(Parallel Bilingual Input) - Result(Transform Matrix) |

CC-TUNING 0.16 0.60 0.03 0.01 0.21 0.28
+EN 0.08 0.31 0.25 0.01 0.08 0.16
+MT 0.01 0.23 0.36 0.12 0.07 0.10
+SDRRL 0.06 0.56 0.11 – – –

AVG.|∆| 0.08 0.43 0.19 0.05 0.12 0.18

Table 2: The results of mean squared error between feed-
forward representations in English and the transformed
representations after applying the Transform Matrix, as
well as the performance difference |∆| between using
parallel bilingual inputs and applying Transform Matrix.
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Figure 3: Performance comparisons of using Decision
Maker, Mean Pooling and Random Pooling strategy on
XNLI and MKQA datasets.

fen
i,l as well as the performance difference |∆| be- 421

tween using parallel bilingual inputs during infer- 422

ence and applying the Transform Matrix. The re- 423

sults in Table 2 show that the MSE value reaches 424

the order of magnitude as low as 10−36, indicating 425

that the Transform Matrix effectively transforms 426

fi,l into fen
i,l . Additionally, the small performance 427

difference |∆| further suggests that the Transform 428

Matrix serves as an effective substitute for parallel 429

bilingual inputs, achieving great alignment. 430

(2) The Decision Maker plays a crucial role. To 431

verify the necessity of the Decision Maker, we 432

replaced it with two alternative strategies—Mean 433

Pooling and Random Pooling—during both training 434

and inference, and compared their performance in 435

Figure 3. In Mean Pooling, the feed-forward activa- 436

tions from all layers are averaged, while in Random 437

Pooling, a single activation is randomly selected 438

from the set of feed-forward activations across all 439

layers. The results demonstrate that the perfor- 440

mance with the Decision Maker significantly out- 441

performs the other two strategies, confirming that 442
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Figure 4: Performance comparisons of utilizing feed
forward activations, self-attention activations and whole
decoder block activations for cross-lingual connection
on XNLI and MKQA datasets.

the Decision Maker effectively serves its role in443

beneficial activation identification and contributes444

to the overall training paradigm of CC-TUNING.445

(3) Feed-forward activations contribute the most446

in cross-lingual connection. In addition to in-447

vestigating cross-lingual connections at the feed-448

forward activation level, we also explored the po-449

tential contributions of self-attention activations450

and whole decoder block activations. Our results,451

as shown in Figure 4, indicate that feed-forward452

activations have the most pronounced impact on453

cross-lingual connections within the CC-Tuning454

paradigm. This finding highlights the crucial role455

of feed-forward activations in facilitating cross-456

lingual latent interactions, which well match the457

findings presented in Dai et al. (2022), where FFN458

stores factual knowledge, as well as the motiva-459

tion of cross-lingual feed forward transplantation460

operation in Ye et al. (2024b).461

5 Further Analysis462

5.1 Practicality Analysis463

(1) Is the Transform Matrix difficult to learn?464

Figure 5 presents the variation in MSE values be-465

tween fi,l ·WT and fen
i,l as the amount of parallel466

data, |M |, used to acquire the Transform Matrix467

increases. We observe that when |M | = 300, the468

MSE value drops sharply to the order of 10−36,469

after which it stabilizes. This indicates that only470

a few hundred pairs of parallel data are sufficient471

to effectively align fi,l with fen
i,l through the Trans-472

form Matrix, suggesting that the Transform Matrix473

is relatively easy to learn.474

(2) Does incorporating cross-lingual connection475

substantially interfere with model training and476

model inference? During training, as shown in477
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Figure 5: The curves of mean squared error between
feed-forward representations in English and the trans-
formed representations after applying the Transform
Matrix, as the amount of parallel data used to acquire
the Transform Matrix increases.

Figure 6: The training loss curves of vanilla supervised
fine-tuning and CC-TUNING under different training
settings (models and training data).

Figure 6, the loss curves of vanilla SFT and CC- 478

TUNING are closely aligned, suggesting that the 479

incorporation of cross-lingual connection on top of 480

vanilla SFT introduces only negligible interference 481

to the overall training process. This is primarily 482

because no additional training objectives are intro- 483

duced. In terms of training overhead, our statistics 484

show that the training time for CC-TUNING is ap- 485

proximately 1.12∼1.16 times that of vanilla SFT 486

(Table 3). Moreover, the additional linear layer 487

Decision Maker accounts for only 0.0016% and 488

0.0013% of the total parameter count in LLaMA- 489

3.1-8B and Qwen2.5-7B, respectively—proportions 490

so small that they are practically negligible. Dur- 491

ing inference, the time cost for inference with the 492

Transform Matrix is also approximately 1.1 times 493

that of vanilla inference (Table 4). 494

7
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Figure 7: t-SNE visualizations of output representations
by LLaMA-3.1-8B before fine-tuning, after vanilla su-
pervised fine-tuning and after CC-TUNING.

5.2 Multilingual Representation Analysis495

To analyze the impact of CC-TUNING on multilin-496

gual representations, we employ t-SNE (Van der497

Maaten and Hinton, 2008) to visualize the repre-498

sentations of 200 sentences sampled from XNLI in499

parallel across English, Arabic, and Chinese.500

As depicted in Figure 7 (c), after applying CC-501

TUNING, the multilingual representations show a502

significantly more compact clustering. This indi-503

cates that CC-TUNING has already facilitated a504

certain level of cross-lingual interaction through505

the cross-lingual connection mechanism, allowing506

the multilingual representations after CC-TUNING507

require less extensive sharing with representations508

from other languages in high-dimensional space.509

And the boundaries between different language510

representations become more distinct, suggesting511

that CC-TUNING alleviates the mutual dependency512

between representations of different languages, en-513

abling the model to exhibit clearer and more dis-514

tinct multilingual modeling capabilities.515

5.3 Beneficial Layer Distribution Analysis516

In this section, we present the distribution of the517

layer with the highest probability of being selected518

by the Decision Maker across NLU and NLG tasks,519

as shown in Figure 8. This analysis explores layer-520

wise effectiveness within the cross-lingual connec-521

tion. The distribution results indicate that LLMs522

tend to predominantly utilize the middle layers for523

both NLU and NLG tasks (LLaMA-3.1-8B: 19;524

Qwen2.5-7B: 17), which suggests that the middle525

layers may capture more valuable and generalized526

knowledge, potentially acting as a bridge between527

representations in different languages. Addition-528

ally, we observe that the beneficial layers identified529

in NLG tasks are more diverse, likely due to the in-530

herent complexity of generation tasks. In contrast,531

NLU tasks—primarily focused on selecting from532

predefined options (e.g., A, B, C, or D)—are less533
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Figure 8: The distribution of the layer with the highest
probability of being selected after the Decision Maker
over NLU and NLG tasks.

complex, and thus, the layer distribution tend to be 534

more concentrated. 535

6 Conclusion 536

In this paper, we propose CC-TUNING, a novel 537

multilingual fine-tuning paradigm that establishes a 538

cross-lingual connection mechanism at latent level 539

to address the imbalanced multilingual capabilities 540

of current LLMs. During training, CC-TUNING 541

fuses the feed forward activations from both En- 542

glish and non-English inputs, enabling the model to 543

benefit from both languages. During inference, we 544

simulate the cross-lingual connection using only 545

monolingual input through representation transfor- 546

mation techniques. Extensive experiments across 547

six benchmarks covering 22 languages demonstrate 548

that CC-TUNING outperforms vanilla supervised 549

fine-tuning and serves as a strong latent-level alter- 550

native to data-level augmentation approaches. Our 551

results also highlight the importance of rethinking 552

multilingual training paradigms beyond superficial 553

data manipulation, suggesting that deeper architec- 554

tural interventions may unlock greater potential in 555

LLMs’ multilingual capabilities. 556
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Limitations557

This work exhibits several limitations worth not-558

ing. Firstly, though several ablation experiments559

are conducted to validate the benefits of our train-560

ing paradigm, we believe there is much more to561

explore and investigate in latent cross-lingual inter-562

actions. Such interactions should not only be lim-563

ited to the form discussed in our work. Secondly,564

our experiments were conducted on LLaMA-3.1-565

8B and Qwen2.5-7B. While these models represent566

important milestones in open-source LLM devel-567

opment, the evaluation across more LLMs would568

improve the generalizability of our findings across569

the broader LLM ecosystem. Thirdly, due to the570

computational constraints, we did not conduct com-571

parisons between LLMs of different model sizes572

(particularly larger models), resulting in a lack of573

insights into the impact of model capacity on per-574

formance.575
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman 746
Castagné, Alexandra Sasha Luccioni, François Yvon, 747
Matthias Gallé, et al. 2022. Bloom: A 176b- 748
parameter open-access multilingual language model. 749
arXiv preprint arXiv:2211.05100. 750

Uri Shaham, Jonathan Herzig, Roee Aharoni, Idan 751
Szpektor, Reut Tsarfaty, and Matan Eyal. 2024. Mul- 752
tilingual instruction tuning with just a pinch of mul- 753
tilinguality. In Findings of the Association for Com- 754
putational Linguistics: ACL 2024, pages 2304–2317, 755
Bangkok, Thailand. Association for Computational 756
Linguistics. 757

Murray Shanahan. 2022. Talking about large language 758
models. ArXiv preprint, abs/2212.03551. 759

Shivalika Singh, Freddie Vargus, Daniel Dsouza, 760
Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin 761
Ko, Herumb Shandilya, Jay Patel, Deividas Mat- 762
aciunas, Laura OMahony, Mike Zhang, Ramith 763
Hettiarachchi, Joseph Wilson, Marina Machado, 764
Luisa Souza Moura, Dominik Krzemiński, Hakimeh 765
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A Experiment Details879

A.1 Baselines Settings880

This section introduces the details of different train-881

ing data settings.882

• +EN combines the original multilingual dataset883

D with its translated parallel English dataset Den,884

resulting in a total training dataset size of N +885

N = 2N .886

• +MT constructs additional translation task form887

data by pairing the original multilingual dataset888

D with its translated parallel English dataset Den889

as follows:890

{
"instruction": "Translate the following sentence from
English to Spanish.\n The category corresponds to poli-
tics.",
"output": "La categoría corresponde a política. "
}

891

N pairs of parallel data from D and Den can be892

constructed into N additional samples of trans-893

lation task form data, resulting in a total training894

dataset size of N +N = 2N .895

• +SDRRL (Zhang et al., 2024) is a self-896

distillation-based method that integrates English897

instruction tuning data and its multilingual code-898

switched extensions. Additionally, it incor-899

porates partially translated data and comple-900

tion data for fine-tuning (LLaMA-3.1-8B: data901

size≈1.2N , Qwen2.5-7B: data size≈1.6N ).902

A.2 Datasets and Evaluations903

A.2.1 Datasets904

The language subsets used in the 6 evaluation905

datasets involved in our experiments and the data906

size used for each language subset are as follows:907

Involved Languages (10 languages each dataset)

XNLI: en, ar, el, hi, ru, sw, th, tr, ur, zh

XStoryCloze: en, ar, es, eu, hi, id, ru, sw, te, zh

MMMLU: en, ar, bn, es, hi, id, ko, pt, sw, yo

XQuAD: en, ar, de, el, hi, ru, th, tr, vi, zh

MKQA: en, ar, de, ja, ko, pt, ru, tr, vi, zh

XLSum: en, ar, fr, hi, id, ru, sw, tr, ur, vi

A total of 22 unique languages are involved
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1. "...\n问题： ⿊豹队的防守丢了多少分？\n\n您的答案：
2. "...\n问题： 贾⾥德在职业⽣涯中有多少次擒杀？\n\n您的答案："
3. "...\n问题： 卢克·坎克利贡献了多少次擒抱？\n\n您的答案："
4. "...\n问题： 约什·诺曼拦截了多少球？\n\n您的答案："
5. "...\n问题： 本赛季谁为球队贡献的擒杀最多？\n\n您的答案："
6. "...\n问题： 2015年⿊豹队的防守有多少次拦截记录？\n\n您的答案："
7. "...\n问题： 谁带领⿊豹队擒杀？\n\n您的答案："
8. "...\n问题： 有多少名⿊豹队防守球员⼊选了职业碗？\n\n您的答案："
9. "...\n问题： 托⻢斯·戴维斯有多少次迫使掉球？\n\n您的答案："
10. "...\n问题： 本赛季哪个球员拦截次数最多？\n\n您的答案："
11. ...

1. "The answer is 308 points."
2. "Jared Allen has 136 career sacks."
3. "在他们⾝后，⿊豹队的三名⾸发线卫中有两⼈⼊选了职业碗：托⻢斯·戴维斯和卢克·坎克"
4. "四次"
5. "Jared Allen"
6. "The answer is 24."
7. "Jared Allen"
8. "11⼈"
9. "Thomas Davis forced four fumbles."
10. "The answer is: Josh Norman"
11. ...

Questions (ask in Chinese)

Answers

Figure 9: Examples of the deviations from the prompt
language in model responses when applying +SDRRL.

Sample Size

XNLI: 1000× 10 = 10000 (parallel)
XStoryCloze: 1511× 10 = 15110 (parallel)
MMMLU: 1000× 10 = 10000 (parallel)
MKQA: 1000× 10 = 10000 (parallel)
XQuAD: 1190× 10 = 11900 (parallel)
XLSum: 100× 10 = 1000 (non-parallel)
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A.2.2 Evaluations 910

XNLI, XStoryCloze, and MMMLU all belong to 911

the multiple-choice category. For these datasets, 912

a model’s response is considered correct only if it 913

contains the correct option and excludes all other 914

options. For the short QA generative dataset MKQA 915

and XQuAD, a model’s answer is deemed correct 916

if the gold answer appears in the model’s response. 917

A.3 Model Responses with +SDRRL 918

The results of applying +SDRRL to NLG tasks 919

are not reported in the main body, as it may lead to 920

deviations from the prompt language in model re- 921

sponses. Since +SDRRL aims to achieve distilla- 922

tion from resource-rich languages to low-resource 923

languages, many of the training data’s input and 924

output languages under this setup are inconsistent. 925

Although this issue is partially mitigated through 926

code-switching and the incorporation of external 927

parallel corpora, we still observed that it easily 928

leads to deviations from the prompt language in 929

model responses, making it unsuitable for NLG 930

tasks. As the examples shown in Figure 9, only 931

3 out of the 10 given questions are correctly an- 932

swered in Chinese, while the rest are all responded 933

to in English. 934
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Training Time Cost (h:m:s) LLaMA-3.1-8B Qwen2.5-7B

ML-SFT 01:36:43 01:33:10
CC-TUNING 01:51:58 01:45:15

Time Cost Ratio 1.16 1.13

ML-SFT+EN 03:08:25 03:03:02
CC-TUNING+EN 03:34:28 03:25:30

Time Cost Ratio 1.14 1.12

ML-SFT+MT 03:08:24 03:04:13
CC-TUNING+MT 03:34:19 03:25:59

Time Cost Ratio 1.14 1.12

ML-SFT+SDRRL 01:52:17 02:23:00
CC-TUNING+SDRRL 02:08:52 02:41:20

Time Cost Ratio 1.15 1.13

Table 3: Comparisons of training time cost.

Inference Time Cost (s) LLaMA-3.1-8B Qwen2.5-7B

vanilla inference 2012.26 1898.89
inference w/ Transform Matrix 2209.90 2064.50

Time Cost Ratio 1.10 1.09

Table 4: Comparisons of inference time cost on the
Arabic subset of XNLI dataset.
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Models Dataset: XNLI
en ar el hi ru sw th tr ur zh Avg

ML-SFT (LLaMA-3.1-8B) 12.90 35.50 35.80 31.10 34.50 31.20 31.60 37.70 33.10 35.40 31.88
+EN 46.60 38.70 24.40 32.20 32.70 31.90 32.00 37.60 38.90 35.20 35.02
+MT 47.20 35.10 22.10 35.80 40.90 31.00 32.90 39.20 36.90 37.90 35.90
+SDRRL 29.80 29.70 29.70 29.80 29.70 29.80 29.70 29.70 29.80 29.70 29.74

CC-TUNING (LLaMA-3.1-8B) 51.10 40.50 38.90 33.20 42.50 30.70 37.10 39.00 35.10 36.10 38.42
+EN 39.50 32.00 33.40 29.20 34.50 30.00 31.20 31.70 34.50 31.20 32.72
+MT 48.70 36.20 37.30 30.40 39.70 31.10 32.50 38.00 33.00 37.50 36.44
+SDRRL 29.70 29.60 29.70 31.00 29.50 29.00 29.70 29.70 30.70 29.80 29.84

ML-SFT (Qwen2.5-7B) 60.60 52.60 44.80 45.90 56.60 29.70 51.20 48.10 36.30 56.50 48.23
+EN 81.70 54.10 39.70 43.30 59.60 30.50 50.70 49.30 39.70 59.00 50.76
+MT 61.60 49.60 36.70 45.80 56.80 29.70 51.60 48.10 42.00 48.60 47.05
+SDRRL 81.60 56.60 34.00 51.00 60.20 33.10 55.20 54.10 38.90 58.90 52.36

CC-TUNING (Qwen2.5-7B) 78.90 51.80 41.70 44.00 60.10 30.70 52.30 50.60 40.50 59.40 51.00
+EN 72.00 54.30 43.10 47.00 56.50 28.60 51.70 48.40 35.90 57.30 49.48
+MT 64.40 51.40 36.70 43.70 57.70 29.70 52.50 49.40 37.90 57.90 48.13
+SDRRL 83.80 56.30 33.40 46.00 60.00 32.20 58.00 58.30 42.30 60.30 53.06

Models Dataset: XStoryCloze
en ar es eu hi id ru sw te zh Avg

ML-SFT (LLaMA-3.1-8B) 88.62 65.32 21.91 64.86 70.81 83.39 43.61 62.54 63.40 87.82 65.23
+EN 77.04 40.44 65.45 59.36 77.10 79.62 49.44 60.49 55.46 86.90 65.13
+MT 91.73 77.70 85.04 60.82 75.78 80.48 62.14 57.84 20.91 86.57 69.90
+SDRRL 72.93 65.32 45.80 20.32 68.63 64.13 66.05 45.14 49.64 60.29 55.82

CC-TUNING (LLaMA-3.1-8B) 89.34 73.73 64.26 51.09 79.48 79.81 70.22 58.24 55.33 84.45 70.60
+EN 69.36 66.71 75.38 25.74 62.48 75.78 49.77 50.36 49.24 84.58 60.94
+MT 87.43 73.99 87.62 57.91 82.06 82.86 76.44 59.43 38.65 89.01 73.54
+SDRRL 86.96 71.67 70.42 34.61 80.61 77.17 77.63 50.56 66.18 76.04 69.19

ML-SFT (Qwen2.5-7B) 92.12 78.89 93.51 52.95 79.48 79.48 71.21 37.06 28.92 86.96 70.06
+EN 78.23 54.27 91.00 56.25 81.80 87.36 71.34 44.74 61.02 90.27 71.63
+MT 82.06 56.12 92.19 57.64 82.20 88.15 73.92 29.52 57.78 85.44 70.50
+SDRRL 93.85 88.42 94.51 62.61 82.00 89.15 93.05 52.88 62.01 88.22 80.67

CC-TUNING (Qwen2.5-7B) 91.59 81.60 91.00 54.86 77.96 80.68 78.82 35.94 37.59 84.25 71.43
+EN 39.38 37.46 90.40 55.26 79.55 86.70 85.24 45.00 42.55 85.31 64.69
+MT 65.32 66.64 91.66 55.06 81.67 86.43 75.12 52.75 53.47 85.77 71.39
+SDRRL 93.45 90.87 92.26 57.58 82.26 88.68 94.51 57.25 59.03 93.45 80.93

Models Dataset: MMMLU
en ar bn es hi id ko pt sw yo Avg

ML-SFT (LLaMA-3.1-8B) 57.40 41.60 31.70 51.20 37.60 44.70 39.40 51.70 20.70 26.00 40.20
+EN 56.80 35.90 32.00 50.90 36.00 40.80 40.50 48.10 29.80 25.40 39.62
+MT 59.20 37.80 33.10 51.50 37.60 42.80 42.50 48.10 28.30 25.90 40.68
+SDRRL 53.70 32.20 23.00 27.80 35.30 30.50 27.20 36.70 12.80 1.40 28.06

CC-TUNING (LLaMA-3.1-8B) 57.50 41.30 33.40 51.70 37.60 43.30 41.70 46.80 27.00 27.10 40.74
+EN 56.50 38.10 30.80 49.90 37.00 40.70 39.00 47.30 26.80 21.20 38.73
+MT 55.70 36.80 30.70 49.60 36.10 39.90 38.70 48.40 26.70 26.10 38.87
+SDRRL 53.10 38.60 33.40 46.40 36.50 41.10 35.70 47.20 31.70 14.00 37.77

ML-SFT (Qwen2.5-7B) 69.80 53.30 42.00 65.60 41.10 59.50 55.70 62.60 28.60 22.30 50.05
+EN 65.90 53.20 37.90 64.60 40.30 56.80 55.70 62.10 28.20 23.30 48.80
+MT 60.50 51.40 40.00 63.90 39.50 58.30 49.00 63.00 28.80 20.50 47.49
+SDRRL 66.00 46.00 38.30 60.70 41.50 56.90 52.10 58.60 29.90 22.80 47.28

CC-TUNING (Qwen2.5-7B) 69.10 52.80 40.50 65.10 41.20 59.10 54.90 62.30 30.90 20.60 49.65
+EN 67.10 54.50 38.10 64.20 41.90 55.50 53.90 61.30 24.10 12.90 47.35
+MT 66.60 53.10 40.30 64.70 41.70 60.50 53.60 63.10 29.90 20.40 49.39
+SDRRL 66.30 50.60 39.30 60.30 41.60 56.30 52.30 57.50 28.10 26.40 47.87

Table 5: Performance comparisons between LLMs’ original performance and the upper bound results of XTransplant
on multilingual tasks. UpperBoundEn2lang represents XTransplant from English to involved language.
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Models Dataset: MKQA
en ar de ja ko pt ru tr vi zh Avg

ML-SFT (LLaMA-3.1-8B) 33.60 4.90 23.30 9.10 6.00 20.70 10.00 15.60 14.30 8.90 14.64
+EN 26.00 6.30 18.80 9.70 5.70 19.40 10.00 15.60 13.00 8.30 13.28
+MT 29.20 5.80 19.50 9.10 5.70 17.10 10.70 15.50 14.40 8.60 13.56
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 32.00 6.00 24.10 10.90 6.30 22.40 10.50 17.80 18.20 11.20 15.94
+EN 27.70 6.40 20.20 11.10 7.30 20.50 9.50 17.20 15.50 10.70 14.61
+MT 32.10 6.90 21.90 10.70 7.30 21.10 10.10 17.70 17.30 10.80 15.59
+SDRRL – – – – – – – – – – –

ML-SFT (Qwen2.5-7B) 30.30 6.60 19.10 11.20 8.90 19.70 9.40 12.10 15.80 14.20 14.73
+EN 27.80 6.90 14.80 10.80 7.40 17.50 8.10 10.10 14.70 12.40 13.05
+MT 27.10 6.90 16.10 9.60 7.90 19.40 8.60 11.00 14.70 14.10 13.54
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 30.3 7.2 18.60 11.6 8.5 20.5 8.3 12.9 15.80 14.7 14.84
+EN 27.60 5.90 15.10 10.80 7.60 19.20 9.60 12.90 13.60 13.30 13.56
+MT 29.30 6.50 16.10 11.20 7.90 18.30 8.50 12.50 13.30 14.10 13.77
+SDRRL – – – – – – – – – – –

Models Dataset: XQuAD
en ar bn es hi id ko pt sw yo Avg

ML-SFT (LLaMA-3.1-8B) 72.61 56.13 64.62 52.18 60.00 47.73 58.49 53.70 64.87 73.87 60.42
+EN 63.28 53.45 62.02 51.09 57.73 46.39 58.40 50.84 61.18 69.66 57.40
+MT 71.76 53.78 60.84 50.84 58.99 49.33 54.03 47.73 65.21 71.51 58.40
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 75.29 55.29 64.96 51.34 62.27 52.10 60.42 54.20 67.82 74.79 61.85
+EN 69.08 58.32 64.03 52.77 60.59 51.51 60.25 52.69 66.64 73.03 60.89
+MT 77.73 55.29 63.45 53.61 61.34 52.18 56.72 53.11 68.24 73.78 61.55
+SDRRL – – – – – – – – – – –

ML-SFT (Qwen2.5-7B) 79.92 66.97 70.08 40.00 46.39 53.95 64.96 56.05 72.77 85.04 63.61
+EN 74.29 64.54 69.41 36.13 47.39 54.37 64.03 59.41 73.19 80.59 62.34
+MT 79.33 65.13 69.33 41.01 50.67 52.61 67.56 58.24 72.69 83.70 64.03
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 79.24 64.12 71.34 39.75 47.06 53.61 65.71 57.73 74.03 84.62 63.72
+EN 72.18 64.45 68.40 41.01 47.31 54.37 66.30 58.99 72.94 80.92 62.69
+MT 77.98 67.31 71.26 39.75 49.41 52.86 69.33 57.82 72.27 84.62 64.26
+SDRRL – – – – – – – – – – –

Models Dataset: XLSum
en ar fr hi id ru sw tr ur vi Avg

ML-SFT (LLaMA-3.1-8B) 24.36 9.67 18.66 1.94 13.72 14.47 8.05 11.07 6.64 14.14 12.27
+EN 22.46 10.62 19.66 2.97 13.72 14.02 6.76 7.14 5.77 17.27 12.04
+MT 25.74 11.06 19.50 3.97 14.78 14.74 7.56 9.58 7.16 14.78 12.89
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 25.00 10.87 19.46 3.02 13.46 15.55 8.63 10.01 7.20 15.63 12.88
+EN 23.76 10.26 21.45 3.67 14.30 14.45 8.94 9.94 6.15 14.92 12.78
+MT 27.57 11.38 21.08 3.23 13.34 15.71 9.14 10.88 4.41 13.73 13.05
+SDRRL – – – – – – – – – – –

ML-SFT (Qwen2.5-7B) 24.13 12.20 22.10 0.33 14.89 16.10 5.95 8.04 5.47 14.74 12.40
+EN 23.75 11.70 20.14 0.33 14.97 15.61 6.90 8.51 5.78 14.36 12.20
+MT 26.72 12.32 21.47 0.67 14.00 15.29 5.66 8.73 5.12 14.78 12.48
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 23.22 10.75 22.21 0.62 14.47 17.61 6.47 8.37 5.43 15.84 12.50
+EN 25.06 12.79 19.58 0.33 14.71 15.63 7.12 10.62 5.39 15.01 12.63
+MT 25.84 11.46 22.62 1.00 15.77 16.43 5.69 9.37 5.06 15.46 12.87
+SDRRL – – – – – – – – – – –

Table 6: Performance comparisons between LLMs’ original performance and the upper bound results of XTransplant
on multilingual tasks. UpperBoundEn2lang represents XTransplant from English to involved language.
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