
Intermediate Languages Matter: Formal Choice Drives Neurosymbolic
LLM Reasoning

Anonymous ACL submission

Abstract001

Large language models (LLMs) achieve aston-002
ishing results on a wide range of tasks. How-003
ever, their formal reasoning ability still lags004
behind. A promising approach is Neurosym-005
bolic LLM reasoning. It works by using LLMs006
as translators from natural to formal languages007
and symbolic solvers for deriving correct re-008
sults. Still, it remains unclear what the con-009
tributing factors to the success of Neurosym-010
bolic LLM reasoning are. This paper shows011
that one important factor is the choice of the012
formal language. By comparing 4 formal lan-013
guages on 3 datasets over 6 LLMs, we show014
that the choice of formal language affects both015
the syntactic and the semantic reasoning ca-016
pability. Thereby, we introduce the intermedi-017
ate language challenge, which is the challenge018
of picking a suitable formal language for neu-019
rosymbolic reasoning. Further, we compare the020
effects of using different in-context-learning021
examples in an ablation study. We conclude022
that on average, context-aware encodings help023
LLMs to reason, while there is no apparent024
effect of using comments or markdown syntax.025

1 Introduction026

Logical reasoning tasks pose a challenge to Large027

Language Models (LLMs), as they struggle to rea-028

son abstractly and correctly (Saparov and He, 2023;029

Lampinen et al., 2024; Panas et al., 2024). This030

leads to their sometimes spectacular failures, like031

deriving that birds have four legs (Lin et al., 2020).032

One attempt to improve the abstract reasoning capa-033

bility is Chain of Thought (CoT) (Wei et al., 2022)034

prompting. With CoT, LLMs are nudged to rea-035

son step-by-step. However, LLMs’ step-by-step036

reasoning is generally non-faithful - even when all037

individual reasoning steps are correct on their own,038

the final conclusion can be false (Lyu et al., 2023).039

Neurosymbolic LLM reasoning enables faithful040

reasoning chains. It works in two steps: the first041

step translates a natural language-posed logical042

reasoning problem into a formal intermediate lan- 043

guage. The translation uses the in-context-learning 044

(ICL) capability of LLMs. The second step is to 045

solve the translated problem by a symbolic reasoner. 046

State-of-the-art neurosymbolic approaches, such as 047

Logic-LM (Pan et al., 2023) and LINC (Olausson 048

et al., 2023), report substantial improvements over 049

pure LLM prompting. 050

However, it remains unclear what the reasons for 051

their reported success are. This comes, as there are 052

a plethora of possible contributing factors, ranging 053

from the LLM training data, over auxiliary systems 054

(such as re-prompting on errors), to the choice of 055

formal language. We investigate the choice of for- 056

mal language, as it is rarely justified, let alone sup- 057

ported by empirical evidence, leaving its impact on 058

neurosymbolic LLM reasoning largely uncharted. 059

Contributions. By measuring the impact of differ- 060

ent formal languages, we take a first step toward 061

better understanding why neurosymbolic systems 062

obtain state-of-the-art results and how the choice 063

of formal language affects reasoning. The main 064

contributions of this work are: 065

• We introduce the intermediate language chal- 066

lenge: selecting the right formal language for 067

neurosymbolic LLM reasoning. 068

• We conduct an extensive empirical study1 of four 069

formal languages across three logical reasoning 070

datasets (ProntoQA, ProofWriter, FOLIO) and 071

six LLMs (8B–671B). 072

• We perform a systematic ablation study on ICL- 073

example encoding strategies, isolating the effects 074

of context, comments, and markdown syntax. 075

Our experiments show that the choice of formal lan- 076

guage matters: first-order logic outperforms logic 077

programming languages. Echoing earlier findings 078

on symbolic reasoning (Lampinen et al., 2024), 079

1Our supplementary material https://tinyurl.com/
intermediate-language contains the experiment code/data.

1

https://tinyurl.com/intermediate-language
https://tinyurl.com/intermediate-language

Large Language
Model

Problem Formulation
Symbolic
Reasoner

Translated Problem

SolutionOutput

Natural Language Formal (Intermediate) Language

Solution Human Readable

Instruction:
"[Your] task is to parse the problem description [..]
into a [formal language]. [..] A correctly parsed
example is given below. [..]"

Correctly Parsed Example:
"Fae is a cat, all cats are mammals, [..]
Facts: cat(fae).
Rules: mammal(X) :- cat(X). [..]"

In-context-learning

Figure 1: Neurosymbolic LLM reasoning: A problem formulated in natural language is translated by using in-
context-learning into a formal language. Subsequently, a symbolic reasoner subsequently computes a solution to the
problem, which is followed by the re-translation of the solution.

our neurosymbolic ablation confirms that added080

context improves LLM performance. In contrast,081

adding comments or Markdown markup yields no082

systematic benefit.083

We will continue after this introduction with the084

preliminaries and definitions (Section 2). Next,085

we introduce the intermediate language problem086

(Section 3), which we follow with our experimen-087

tal setup (Section 4), and our experimental results088

(Section 5). We close our paper with the related089

work in Section 6 and our conclusions in Section 7.090

2 Preliminaries091

We briefly present the necessary background ma-092

terial and definitions for understanding the paper.093

Recall that the main objective of this study is to094

compare the reasoning performance of different095

formal languages on modern LLMs. By taking096

the perspective of end-users, we treat LLMs as im-097

mutable black-box next-token predictor machines.098

Therefore, we are mainly interested in what effects099

different prompting strategies have on the reason-100

ing performance. We consider the effects of other101

techniques, such as fine-tuning, as out of scope.102

Throughout this paper, the terms syntax and seman-103

tics are used in their formal language sense.104

2.1 Chain-of-Thought (CoT) prompting105

Chain-of-Thought (CoT) prompting is an in-106

context-learning (ICL) technique with applications107

ranging from helping LLMs to express their un-108

certainty (Xiong et al., 2024), to improving the109

reasoning capabilities of LLMs (Wei et al., 2022).110

CoT nudges the LLM to mimic a reasoning chain,111

where we show an example in the next listing.112

1 The following example showcases the line113
of reasoning you have to follow:114

2 ---- Question ---- 115
3 Each cat is a carnivore. Fae is a cat. 116
4 True or false: Fae is a carnivore 117
5 ---- Reasoning ---- 118
6 Fae is a cat. Each cat is a carnivore. 119

So Fae is a carnivore. 120

Reasoning chains are faithful whenever the result 121

follows from the individual steps in the reasoning 122

chain. However, LLMs’ reasoning chains are non- 123

faithful in general (Lyu et al., 2023). 124

2.2 Neurosymbolic LLM Reasoning 125

Figure 1 depicts the high-level schematics of neu- 126

rosymbolic LLM reasoning. A natural language- 127

posed problem is translated into its formal lan- 128

guage representation by using ICL. ICL comprises 129

an instruction and an example, sometimes called 130

ICL-instruction and ICL-example. The instruction 131

describes the general task, while the example show- 132

cases how to translate the natural language-posed 133

problem into a formal language. We refer to the 134

formal language of the ICL-example, as the chosen 135

formal language. 136

In a second step, the symbolic reasoner solves 137

the problem by obtaining a solution from the formal 138

representation, which can be either re-translated 139

into natural language or directly used as output. 140

Logic-LM (Pan et al., 2023) and Logic-LM++ (Kir- 141

tania et al., 2024) re-prompt the LLM in case of syn- 142

tax errors, with the error message of the symbolic 143

reasoner. LINC (Olausson et al., 2023) uses multi- 144

ple ICL-examples for one problem and prompts the 145

LLM non-deterministically multiple times, where a 146

majority vote is taken to get the final output. Most 147

approaches use a backup strategy on syntax errors, 148

such as CoT prompting or random choice. We ab- 149

stain from a backup strategy, as we want to measure 150

the impact of the formal language directly. 151

2

3 The Intermediate Language Challenge152

for Logical Reasoning153

We proceed to define our intermediate language154

challenge for neurosymbolic LLM reasoning. We155

assume to have given a natural language-posed rea-156

soning problem P and a set of possible formal157

languages L.158

Definition 1 The intermediate language challenge159

is the task of choosing a formal language l ∈ L for160

solving P with a high reasoning accuracy.161

Inherent to the intermediate language challenge is162

autoformalization (Wu et al., 2022).163

Definition 2 Let l ∈ L be a fixed formal language.164

Then, autoformalization aims for automatic and165

correct translation of P into l.166

While autoformalization is concerned with the cor-167

rect translation from natural language into a fixed168

formal language l, the intermediate language chal-169

lenge is about choosing a suitable formal language170

l′ ∈ L s.t. autoformalization can be done effec-171

tively. We identify two root causes of the intermedi-172

ate language problem: (i) Syntax affects LLMs’ rea-173

soning performance, and (ii) one logical problem174

can be translated into multiple formal languages.175

Syntax affects LLMs’ reasoning performance.176

Consider the following two logical reasoning prob-177

lems: (1) “Tommi is a tumpus. Each tumpus is178

a wumpus. Is Tommi a wumpus?” (2) “Tommi179

is a cat. Each cat is an animal. Is Tommi an180

animal?” Recent work suggests that, on average,181

LLMs perform better for scenarios of type (2) than182

type (1) (Saparov and He, 2023; Lampinen et al.,183

2024). From a semantic perspective, both scenar-184

ios require the application of modus ponens. Thus,185

as the only difference lies in the syntax, we can186

conclude that the syntax affects LLMs’ reasoning187

capabilities. Going back to formal languages, ob-188

serve that the syntax of formal languages differs.189

Therefore, we conclude that the choice of formal190

language affects LLMs’ reasoning capabilities.191

Logical problems can be encoded in different192

formal languages. Take the logical reasoning prob-193

lem (2) from the paragraph above. This problem194

can be encoded in different formal languages, such195

as logic programming or first-order logic (FOL),196

while maintaining semantic correctness.197

4 Experiment Setup198

To show the impact of the intermediate lan-199

guage challenge, we investigate a set of for-200

mal languages L = {Pyke,ASP,NLTK,FOL}. 201

We conduct experiments on three different 202

datasets, ProntoQA (Saparov and He, 2023), 203

ProofWriter (Tafjord et al., 2021), and FOLIO (Han 204

et al., 2024). Let D be a given dataset, then each 205

data instance P ∈ D can be considered a reasoning 206

problem. For evaluation we use six LLMs, ranging 207

from 8B to 671B parameters. 208

4.1 Formal Languages 209

We will provide a brief overview of the formal 210

languages L used for our experiments. 211

Pyke: The logic programming derivative 212

Pyke (Frederiksen, 2008) expresses rules similar 213

to if -then statements. One defines a fact- and 214

a rule-base, where conclusions are reached by 215

forward, or backward chaining algorithms. We 216

show a translation of problem (2) into Pyke’s 217

syntax. 218

1 Cat(Tommi , True) 219
2 fact1 220
3 foreach 221
4 facts.Cat($x, True) 222
5 assert 223
6 facts.Animal($x, True) 224

ASP: The non-monotonic logic programming 225

paradigm Answer Set Programming (ASP) (Gel- 226

fond and Leone, 2002; Schaub and Woltran, 2018) 227

has seen a rise in popularity in industry (Abels et al., 228

2021). A program is written as a set of rules, which 229

is first grounded (Kaminski and Schaub, 2023) and 230

then solved (Gebser et al., 2016). For details, we 231

refer to (Eiter et al., 2009). We translate problem 232

(2) into ASP’s syntax. 233

1 cat(tommi). animal(X) :- cat(X). 234

NLTK: The natural language toolkit (Bird et al., 235

2009) is a Python library that enables an integration 236

of FOL with Prover9 (McCune, 2010). We assume 237

familiarity with the semantics of FOL. We show a 238

translation of problem (2) into NLTK’s syntax. 239

1 cat(Tommi); all x. (cat(x) -> animal(x)) 240

FOL: We assume familiarity with the syntax and 241

semantics of FOL. For our experiments, we im- 242

plemented a parser that translates FOL to NLTK 243

formulas, which are then solved by Prover9. Our 244

problem (2) from above is translated as follows: 245

1 cat(Tommi); ∀x. (cat(x) → animal(x)) 246

Observe that the formal languages of NLTK and 247

FOL differ, but the solvers coincide. Further, ob- 248

serve that Pyke’s syntax is lengthy, compared to 249

our other formal languages, which might impact 250

reasoning performance. 251

3

GPT-4o-mini

Ministral-8b
Llama-8b

DeepSeek-8b

DeepSeek-32b

DeepSeek-V3

Large Language Model

0

20

40

60

80

100
M

ax
 O

ve
ra

ll-
A

cc
ur

ac
y

P
ro

nt
oQ

A
[%

]

Baseline
Pyke
ASP
NLTK
FOL

GPT-4o-mini

Ministral-8b
Llama-8b

DeepSeek-8b

DeepSeek-32b

DeepSeek-V3

Large Language Model

0

20

40

60

80

100

M
ax

 O
ve

ra
ll-

A
cc

ur
ac

y
P

ro
of

W
rit

er
 [%

]

Baseline
Pyke
ASP
NLTK
FOL

Figure 2: Parallel coordinates plot showing maximum overall-accuracy for the ProntoQA (left) and ProofWriter
(right) datasets for all LLMs. Maximum is computed w.r.t. all ablation study scenarios per formal language.

4.2 Datasets252

We perform experiments on three datasets. We253

used one partly hand-crafted ICL-example (training254

data) per dataset/formal language, which is not part255

of the test set. Each test set configuration resembles256

the configuration of Logic-LM.257

ProntoQA (Saparov and He, 2023). The ProntoQA258

dataset is a generated dataset. We use the fictional259

character version with a reasoning depth of 5. A260

random answer has a probability of 50% for getting261

a correct answer (closed-world assumption - CWA),262

and a test set with 500 samples is used.263

ProofWriter (Tafjord et al., 2021). ProofWriter is264

a generated dataset. We chose a reasoning depth of265

5. A random answer has a probability of about 33%266

to get a correct answer (open-world assumption -267

OWA). The test set has 600 samples.268

FOLIO (Han et al., 2024). FOLIO is a (partly)269

expert-written dataset. A random answer is correct270

with about 33% (OWA). The FOLIO test set has271

204 samples. As ASP and Pyke are logic program-272

ming paradigms, which can only handle a (proper)273

subset of first-order logic, we do not use them on274

the FOLIO dataset.275

4.3 Large Language Models276

We compare the formal languages on 6 different277

large language models, ranging from 8 billion to278

671 billion parameters. For all experiments we set279

the temperature to 0, to obtain a near-deterministic280

behavior. We restricted the maximum number of281

new tokens to be 2048 and did not perform any282

additional modifications to the LLMs.283

We are primarily interested in how the interme-284

diate language affects small models (≈ 8 billion pa-285

rameters). This comes, as we view neurosymbolic286

AI as a potential enabler for low-resource LLM287

usage. We used the following LLMs of approxi-288

mately 8B parameters: GPT-4o-mini2, Ministral- 289

8B3, Llama-8B4. and DeepSeek-8B5. 290

To study the effects when using bigger models, 291

we additionally perform experiments on DeepSeek- 292

32B6 (≈ 32 billion parameters) and DeepSeek-V37 293

(≈ 671 billion parameters) models. 294

4.4 Baselines 295

We show for each dataset the chance of getting a 296

correct answer by a random draw. Chance is either 297

50% for ProntoQA, as it has a CWA, or 33% for 298

ProofWriter and FOLIO, as they have an OWA. 299

Additionally, we use the following four baselines. 300

Standard - refers to standard prompting. The LLM 301

is given a short instruction on the task, the natural 302

language-posed problem, and a short example of 303

how the LLM shall answer the question. 304

CoT - refers to CoT prompting. The LLM is given 305

a short instruction on the task, the natural language- 306

posed problem, and an example which showcases 307

how to use CoT for obtaining a correct solution. 308

Logic-LM* and LINC* - refer to the formal lan- 309

guages of Logic-LM and LINC. We do not use any 310

auxiliary systems of either Logic-LM or LINC. As 311

formal languages, Logic-LM uses a custom Pyke 312

derivative for ProntoQA and ProofWriter and a 313

slightly adapted FOL encoding for FOLIO. LINC 314

uses NLTK as a formal language. We use the ICL- 315

instructions of Logic-LM and LINC in user-mode. 316

2https://platform.openai.com/docs/models/
gpt-4o-mini

3https://mistral.ai/news/ministraux
4https://openrouter.ai/meta-llama/llama-3.

1-8b-instruct
5https://openrouter.ai/deepseek/

deepseek-r1-distill-llama-8b
6https://openrouter.ai/deepseek/

deepseek-r1-distill-qwen-32b
7https://api-docs.deepseek.com/news/news1226

4

https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://mistral.ai/news/ministraux
https://openrouter.ai/meta-llama/llama-3.1-8b-instruct
https://openrouter.ai/meta-llama/llama-3.1-8b-instruct
https://openrouter.ai/deepseek/deepseek-r1-distill-llama-8b
https://openrouter.ai/deepseek/deepseek-r1-distill-llama-8b
https://openrouter.ai/deepseek/deepseek-r1-distill-qwen-32b
https://openrouter.ai/deepseek/deepseek-r1-distill-qwen-32b
https://api-docs.deepseek.com/news/news1226

No-C.
p2(X) :- p1(X).

Text
animal(X) :- cat(X).

/
animal(X) :- cat(X).

Comm.
% Each cat is an animal

animal(X) :- cat(X).

/
animal(X) :- cat(X).

MD
```animal(X) :- cat(X).```

Figure 3: Ablation study design about ICL-example encodings on 3 axes. Comparing context with No-C. and Text,
comments with / and Comm., and markdown with / and MD. Examples shown in ASP syntax.

Context Comment Markdown0

20

40

60

80

100

M
ea

n 
O

ve
ra

ll-
A

cc
ur

ac
y 

w
ith

 S
E

M
 [%

]

Feature Disabled
Feature Enabled

Pyke ASP NLTK FOL0

20

40

60

80

100

M
ea

n 
O

ve
ra

ll-
A

cc
ur

ac
y 

w
ith

 S
E

M
 [%

]

Figure 4: We show the effects of the ablation study (left), averaged across all formal languages, LLMs, and datasets
and the effects of the formal languages (right), averaged across all ablation study scenarios, LLMs, and the ProntoQA
and ProofWriter datasets. Error bars show the SEM, where n = 200 (left) and n = 80 (right).

Scenario Avg. SEM Lang. Avg. SEM

No-C. 45.49 1.84 Pyke 44.55 3.09

Text 58.42 2.22 ASP 56.40 2.84

/ 50.67 1.98 NLTK 61.44 3.54

Comm. 53.23 2.18 FOL 63.92 3.08

/ 51.49 2.03
MD 52.42 2.14

Table 1: Scenarios per formal language ablation study
(left) and formal languages overall results (right). All
values in [%], for average overall-accuracy (Avg.) and
SEM, with n = 200 (left) and n = 80 (right).

4.5 Ablation Study Design317

In addition to the choice of the formal language,318

we are interested in studying how different ICL-319

example encodings affect the reasoning perfor-320

mance. Both Logic-LM and LINC encode predi-321

cates names in a way that is close to the semantic322

concept. Example: “Tommi is a cat” is translated as323

cat(tommi) and not p1(tommi). Further, Logic-324

LM and LINC include comments for every rule,325

respectively formula. These comments, written in326

natural language, relate the rule or formula to the327

natural language-posed problem. As syntax affects328

the reasoning performance of LLMs, these encod-329

ing choices made by Logic-LM and LINC have an330

effect on reasoning performance.331

To shed light on the effects, we study what the332

effects of predicate naming (context), the inclusion333

of comments (comm.), and the wrapping of prob-334

lems in markdown syntax (MD) are. These are335

our three axes of variation for our ablation study,336

resulting in 8 scenarios. We show the schematics337

of the ablation study design in Figure 3.338

Context: We measure the impact of predicate 339

names on reasoning performance. Predicates are ei- 340

ther given a suitable name according to the problem 341

definition (Text) or are enumerated (No-C.). 342

Comments: We study whether adding comments 343

(Comm.) to the ICL-example, such as in Logic-LM 344

and LINC, actually helps, or not (/). 345

Markdown: Code, or formal language, is often 346

wrapped in markdown code syntax by LLMs. We 347

test whether putting the example encoding in mark- 348

down code syntax has an effect (MD), or not (/). 349

4.6 Experimental Evaluation 350

We conduct our experiments on an adapted Logic- 351

LM implementation. Our adaptation includes an 352

ASP symbolic solver based on Clingo (Gebser 353

et al., 2016), a new Pyke implementation, and an 354

adapted NLTK/FOL solver implementation. We 355

conduct experiments for 4 formal languages and 8 356

scenarios per formal language, leading to 32 total 357

experiments for ProntoQA and ProofWriter. In- 358

cluding the 4 baseline experiments, we report 36 359

experiments, respectively. For FOLIO, we conduct 360

20 experiments in total (Pyke and ASP cannot be 361

measured). This leads to a total of 92 experiments 362

per LLM and 552 experiments with 39280 queries 363

passed to LLMs. We report costs of about 110$. 364

Let #D be the dataset size, #EXEC the num- 365

ber of correctly parsed instances, and #TRUE the 366

number of correctly solved instances. Syntactically 367

correct refers to a translation that adheres to the 368

defined formal language, whereas correctly solved 369

refers to a correct syntactical translation and the cor- 370

rect output of the solver. The execution-rate is the 371

5



0 20 40 60 80 100
Execution-Rate [%]

0

20

40

60

80

100
E

xe
cu

tio
n-

A
cc

ur
ac

y 
[%

]

10%

20%

30%

40%

50%

60%

70%

80%
90%

Ablation Study Scenarios

No-C.
Text
Comm.-No-C.
Comm.-Text
MD-No-C.
MD-Text
MD-Comm.-No-C.
MD-Comm.-Text

0 20 40 60 80 100
Execution-Rate [%]

0

20

40

60

80

100

E
xe

cu
tio

n-
A

cc
ur

ac
y 

[%
]

10%

20%

30%

40%

50%

60%

70%

80%
90%

Formal Languages

Pyke
ASP
NLTK
FOL

Figure 5: Scatter plots comparing execution-rate to execution-accuracy for the 8 ablation study scenarios (left) and
the formal languages (right). Both are averaged across ProntoQA and ProofWriter datasets and all LLMs (n = 10).
Contour lines show overall-accuracy in steps of 10%.

fraction of correct syntactical outputs (Exec-Rate,372
#EXEC
#D ), execution-accuracy, is the fraction of cor-373

rectly solved instances of all syntactically correct374

ones (Exec-Acc, #TRUE
#EXEC ), and overall-accuracy375

is the fraction of correctly solved instances over376

the entire dataset (Overall-Acc, #TRUE
##D ). Observe:377

Overall-Acc = Exec-Acc · Exec-Rate.378

Logic-LM and LINC employ backup procedures379

to increase overall-accuracy. Backup procedures,380

such as CoT prompting on syntax errors, can also381

be integrated with our formal languages. Baselines382

not using neurosymbolic reasoning (i.e., Standard383

and CoT) are considered to have an execution-rate384

of 100%, while their execution-accuracy resembles385

their overall-accuracy, as they are not required to386

adhere to a formal language.387

5 Results388

We show the experimental results in Figures 2–6389

and Tables 1–2. We perform the Wilcoxon signed390

rank test with a significance level of 0.01, where we391

show the details in the appendix. Here we present392

the main findings.393

Figure 2 shows the best (max) overall-accuracy394

each formal language achieved per LLM, for the395

ProntoQA and ProofWriter datasets. Performances396

vary greatly between LLMs and formal languages.397

Generally, the best results of FOL beat the best ones398

of ASP and Pyke on both datasets for all LLMs.399

For DeepSeek-32B and DeepSeek-V3, the best neu-400

rosymbolic approaches were able to beat (or be401

equal to) the baseline in three out of four cases. For402

FOLIO (Figure 6), the neurosymbolic approaches403

show promising results, as they approach the per-404

formance of the baselines within 10% for 3 LLMs.405

In Figure 4 and Table 1, we show averaged re- 406

sults with the standard error of the mean (SEM) for 407

the ablation study scenarios per formal language 408

and the effects of the different formal languages. 409

We average an ablation study scenario over all 410

LLMs, datasets, and formal languages. For averag- 411

ing the formal languages, we compute the average 412

across all LLMs, ablation study scenarios, and the 413

datasets ProntoQA and ProofWriter. 414

While the use of context increases overall- 415

accuracy, the results for using comments or wrap- 416

ping ICL-examples in markdown code are incon- 417

clusive. The best results were achieved using text 418

and at least one of comments or markdown code. 419

In general, FOL achieves better results than ASP 420

or Pyke. Further, NLTK and ASP have a higher 421

overall-accuracy than Pyke. The results between 422

FOL and NLTK, and NLTK and ASP, are incon- 423

clusive. For the problems in the datasets, we do 424

not encounter problems when solving in terms of 425

intractability - a combinatorial explosion in the 426

solver. Therefore, we are not required to use spe- 427

cial strategies for tackling intractability, such as 428

symmetry breaking (Fahle et al., 2001) or tackling 429

the ASP bottleneck (Beiser et al., 2024). 430

In Figure 5, we show scatter plots of the 431

execution-rate (x-axis) vs. execution-accuracy (y- 432

axis), for the ablation study scenarios and the for- 433

mal languages. Both plots show the same data, 434

however, with different legends. Each dot repre- 435

sents a formal language with a certain ablation 436

study scenario, averaged across all LLMs and 437

ProntoQA, and ProofWriter datasets. The overall- 438

accuracy is obtained by multiplying a point’s x- 439

position with its respective y-position. 440

No context leads to both lower execution- 441

6



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc

Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 48.80 100.00 48.80 47.33 100.00 47.33 54.90 100.00 54.90
CoT 86.60 100.00 86.60 51.67 100.00 51.67 60.78 100.00 60.78
Logic-LM* 2.20 3.20 68.75 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 6.20 6.80 91.18 5.00 13.67 36.59 1.96 8.82 22.22

Pyke

No-C. 44.00 89.20 49.33 18.17 45.83 39.64 / / /
Text 66.20 97.20 68.11 50.17 84.33 59.49 / / /
Comm.-No-C. 45.20 72.00 62.78 21.50 46.67 46.07 / / /
Comm.-Text 38.80 52.40 74.05 15.17 23.17 65.47 / / /
MD-No-C. 47.60 99.20 47.98 11.33 26.50 42.77 / / /
MD-Text 69.60 97.80 71.17 52.00 86.17 60.35 / / /
MD-Comm.-No-C. 61.20 99.00 61.82 21.67 41.83 51.79 / / /
MD-Comm.-Text 64.60 78.80 81.98 11.67 18.33 63.64 / / /

ASP

No-C. 42.40 86.00 49.30 13.67 29.00 47.13 / / /
Text 65.60 79.40 82.62 41.83 73.67 56.79 / / /
Comm.-No-C. 61.40 98.60 62.27 65.50 94.00 69.68 / / /
Comm.-Text 88.20 89.20 98.88 48.83 78.83 61.95 / / /
MD-No-C. 30.60 62.40 49.04 23.83 49.00 48.64 / / /
MD-Text 86.60 95.60 90.59 38.33 70.67 54.25 / / /
MD-Comm.-No-C. 62.20 99.40 62.58 66.67 93.17 71.56 / / /
MD-Comm.-Text 93.20 93.80 99.36 50.17 80.67 62.19 / / /

NLTK

No-C. 40.40 87.60 46.12 32.50 65.83 49.37 4.90 12.25 40.00
Text 97.20 99.80 97.39 87.00 97.17 89.54 26.96 69.12 39.01
Comm.-No-C. 82.20 100.00 82.20 72.50 83.50 86.83 0.49 1.47 33.33
Comm.-Text 99.60 100.00 99.60 93.00 97.17 95.71 45.10 76.96 58.60
MD-No-C. 29.20 58.00 50.34 35.50 74.67 47.54 6.37 17.16 37.14
MD-Text 93.00 100.00 93.00 89.17 97.00 91.92 33.82 76.96 43.95
MD-Comm.-No-C. 82.80 100.00 82.80 75.50 85.67 88.13 0.98 2.45 40.00
MD-Comm.-Text 99.40 100.00 99.40 94.17 97.83 96.25 44.61 72.55 61.49

FOL

No-C. 37.80 81.60 46.32 36.33 69.50 52.28 35.78 67.16 53.28
Text 92.60 100.00 92.60 87.83 98.17 89.47 45.10 74.51 60.53
Comm.-No-C. 83.40 100.00 83.40 86.67 95.83 90.43 55.88 87.25 64.04
Comm.-Text 100.00 100.00 100.00 94.67 98.67 95.95 57.84 79.41 72.84
MD-No-C. 26.60 57.20 46.50 35.17 66.17 53.15 33.82 70.59 47.92
MD-Text 86.40 100.00 86.40 86.67 97.67 88.74 49.02 79.90 61.35
MD-Comm.-No-C. 82.60 100.00 82.60 87.50 96.17 90.99 57.35 88.24 65.00
MD-Comm.-Text 99.60 100.00 99.60 91.17 95.50 95.46 57.84 78.92 73.29

Table 2: Detailed results for the Ministral-8B model, depicting overall-accuracy, execution-rate, and execution-
accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

accuracy and lower execution-rate, as out of the442

12 points below 50% overall-accuracy 10 have443

no-context. The best results are achieved with444

text and text with markdown. Pyke performs ap-445

proximately equally well on execution-rate and446

execution-accuracy, while having all dots below447

the 60% overall-accuracy mark, where most (6 out448

of 8) are below 50%. ASP’s execution-rate tends449

to stay relatively high, by ranging from 72.27%450

to 87.41%, and its overall-accuracy does not fall451

below 40%, while it goes beyond 60%. NLTK’s452

execution-accuracy is relatively high, by staying453

above 60%. Its overall-accuracy does not fall be-454

low 40% and reaches over 70%. FOL’s behav-455

ior is similar to NLTK’s, however, with a higher456

execution-rate, resulting in FOL’s overall-accuracy457

being marginally higher than NLTK’s.458

5.1 Qualitative Error Analysis459

In this section, we discuss common errors across460

formal languages to get a better understanding of461

the diffferences in our statistical results. 462

Across all formal languages, we experience 463

cases where the LLMs seemingly got trapped in 464

an endless output token generation, which is only 465

stopped by setting a hyperparameter that caps the 466

maximum number of output tokens (2048 in our 467

case). For Pyke in particular, we notice that LLMs 468

format the output incorrectly, by missing line 469

breaks. When translating to ASP, LLMs struggle 470

to distinguish the two notions of negation: strong, 471

written as −, and default, written as not. This re- 472

sults in program statements such as -not p1(wren), 473

which are syntactically incorrect. The syntactic er- 474

rors between NLTK and FOL are similar. Examples 475

include incorrectly setting parentheses or using a 476

predicate with multiple arities. For example, us- 477

ing p14(X) and p14(X,Y ). The Logic-LM* and 478

LINC* neurosymbolic baselines were particularly 479

prone to small syntax errors, like wrapping lines 480

or predicates in markdown bold-faced letters, or 481

enumerating lines. Take, for example, the intended 482

7



GPT-4o-mini

Ministral-8b
Llama-8b

DeepSeek-8b

DeepSeek-32b

DeepSeek-V3

Large Language Model

0

20

40

60

80

100
M

ax
 O

ve
ra

ll-
A

cc
ur

ac
y 

FO
LI

O
 [%

]

Baseline
NLTK
FOL

Figure 6: Par.-coord. plot showing max overall-accuracy
for the FOLIO dataset for all LLMs. Maximum is com-
puted w.r.t. all scenarios per formal language.

output of Cold($x,bool) and the produced output483

1. **Cold($x, bool)**. We consider such transla-484

tions as syntactically false, which explains the bad485

performance of Logic-LM* and LINC* in Table 2.486

6 Related Work487

Improving LLM’s reasoning capability was ap-488

proached by different angles. CoT prompting, part489

of the emergent ICL or few-shot-learning capabil-490

ity (Shanahan, 2024), improves LLMs performance491

on reasoning tasks (Wei et al., 2022). However,492

CoT is non-faithful (Lyu et al., 2023) and LLMs493

“remain limited in their capabilities to performing494

probabilistic retrieval” (Panas et al., 2024). Re-495

lated results show that LLMs do not acquire sys-496

tematic problem solving skills (Dziri et al., 2023).497

Fine-tuning or pre-training improves numerical ca-498

pabilities (Geva et al., 2020), syntax recognition499

of ASP with LLASP (Coppolillo et al., 2024), or500

proof verification (Geva et al., 2020). However, it501

remains unclear whether fine-tuning enables LLMs502

to reason precisely (Panas et al., 2024).503

Neurosymbolic AI (Garcez and Lamb, 2023)504

combines approaches offer an alternative to the505

pure sub-symbolic approaches, ranging from dif-506

ferentiable logic (Badreddine et al., 2022) over507

visual question answering (Eiter et al., 2023), to508

LLMs (Pan et al., 2023). For knowledge-based509

systems, previous research focused on the profi-510

ciency of LLMs on formal languages (Liu et al.,511

2024). While autoformalization (Wu et al., 2022) is512

concerned with the translation of natural language513

into a particular formal language, the intermediate514

language challenge is about choosing a suitable for-515

mal language. For logical reasoning tasks, Logic-516

LM (Pan et al., 2023) is a neurosymbolic method517

that combines LLMs with symbolic solvers. Logic-518

LM uses Pyke (Frederiksen, 2008) for logic pro- 519

gramming, Z3 (de Moura and Bjorner, 2008) for 520

SAT problems, Prover9 (McCune, 2010) for FOL 521

problems, and the Python-constraint (Niemeyer 522

et al., 2024) library for constraint programming. 523

Logic-LM’s formal languages deviate from the cor- 524

responding formal languages of the solvers, thereby 525

requiring parsers. The LINC (Olausson et al., 526

2023) system uses NLTK as an intermediate lan- 527

guage and uses multiple ICL-examples and parallel 528

prompts. Also, integration of the error messages of 529

the solvers (Kirtania et al., 2024) into the transla- 530

tion process or the usage of different solvers (Lam 531

et al., 2024) is discussed. However, to the best of 532

our knowledge, no neurosymbolic LLM approach 533

thus far studied the effects of different formal lan- 534

guages on logical reasoning performance. 535

7 Conclusion 536

Logical reasoning tasks pose a problem to LLMs, 537

as they remain limited in their ability to perform 538

probabilistic retrieval (Panas et al., 2024). Neu- 539

rosymbolic approaches help, by constraining the 540

probabilistic nature to the translation step of a nat- 541

ural language-posed problem into a formal lan- 542

guage (Pan et al., 2023; Olausson et al., 2023). 543

Therefore, the reasoning step itself is not affected 544

by the probabilistic nature of LLMs. 545

In this paper, we discuss the effect of the chosen 546

formal language on a model’s reasoning perfor- 547

mance. We introduce the intermediate language 548

challenge, which refers to the problem of choos- 549

ing a suitable formal language for neurosymbolic 550

reasoning. In our experiments, we compare Pyke, 551

ASP, NLTK, and FOL as formal languages, and 8 552

ablation study scenarios on ICL-example encod- 553

ings, using 6 different LLMs and three datasets 554

(i.e., ProntoQA, ProofWriter, and FOLIO). Re- 555

sults show that, on average, FOL performs better 556

than logic programming approaches. Further, FOL 557

slightly outperforms NLTK on average, whereas 558

ASP clearly outperforms Pyke. The investigated ab- 559

lation study scenarios show that, on average, more 560

content information increases overall-accuracy for 561

neurosymbolic reasoning. 562

For future work, we want to investigate the im- 563

pact of fine-tuning LLMs for neurosymbolic rea- 564

soning and study the behavior of other formal lan- 565

guages or prompting techniques. The latter extends 566

to the application on additional datasets, possibly 567

including non-classical non-monotonic logic. 568

8



Limitations569

To the best of our knowledge, no study thus far has570

compared the impact of the chosen formal language571

on neurosymbolic LLM reasoning performance.572

Different LLMs. We considered an LLM from573

a user perspective, thereby being unaffected by574

additional training data. In this context, we stud-575

ied the behavior of formal languages primarily on576

small (≈ 8 billion parameters) models, while we577

also performed analysis also on bigger models (≈578

32 billion and ≈ 671 billion). Therefore, on fine-579

tuned, bigger, or future models, the performance580

might change significantly.581

Different Formal Languages. We considered582

4 formal languages, which we chose either due583

to their recent usage in related neurosymbolic rea-584

soning tasks (Pyke, NLTK, FOL), or due to their585

popularity in industry or science (ASP). However,586

we acknowledge that encodings in other formal lan-587

guages, such as description logics, might change588

the results significantly. The formal languages589

presented thus far have in common that they are590

declarative. Conversely, using procedural formal591

languages, such as the widely used programming592

language of Python, might be interesting as a com-593

parison. However, due to their procedural nature,594

it is unlikely that their usage yields substantial per-595

formance improvements on logical reasoning prob-596

lems w.r.t. overall-accuracy.597

Other contributing factors affecting perfor-598

mance. The formal language is not the only fac-599

tor affecting performance w.r.t. overall-accuracy.600

Undoubtedly, model architecture and training data601

have an effect. Although highly interesting, we602

consider a detailed evaluation of the model archi-603

tecture and training data as outside of the scope of604

this study.605

Further, we observed that alterations of the ICL-606

instruction, not only the ICL-example, has effects607

on overall-accuracy. Therefore, our approach was608

to achieve maximal comparability by keeping ICL609

instructions largely the same between formal lan-610

guages. Still, we cannot rule-out the possibility611

that better performance is achieved when other612

ICL-instructions are used. On a related note, some613

methods, such as LINC, instruct the LLM in system-614

mode to adhere to another personality - e.g., not615

being a chatbot, but a translation engine. We opted616

for a user-mode, as by doing that, a fair comparison617

between neurosymbolic and CoT/standard prompt-618

ing baselines is ensured. Using LLMs with a per-619

sonality defined in system mode might change the 620

results. 621

Retrieval-Augmented-Generation (RAG) en- 622

ables the LLM to look up facts, such as syntactic 623

definitions. Although using RAG in a reasoning 624

setting is related, we view it as out of scope of this 625

study. 626

Automatic Neurosymbolic Reasoning. Inher- 627

ent to the neurosymbolic approach is the inclusion 628

of a separate symbolic reasoning system. However, 629

in an ideal integration of a symbolic solver into an 630

LLM, the symbolic solver’s details are hidden from 631

the end-user. Nonetheless, the symbiosis of the 632

LLM with the symbolic solver into one coherent 633

system that automatically detects when the usage 634

of the symbolic solver is beneficial, might pose a 635

major challenge. 636

Selection of Logical Reasoning Tasks. We con- 637

sidered the three logical reasoning datasets Pron- 638

toQA, ProofWriter, and FOLIO. However, the style 639

of how questions are posed and answered is semi- 640

formal. Further, only certain logical reasoning as- 641

pects are considered in the datasets, where classical 642

logic (such as first-order logic) is the intended logi- 643

cal reasoning concept. Other tasks, which would re- 644

quire non-classical logics such as in non-monotonic 645

reasoning, potentially change the reasoning perfor- 646

mance of the systems. As for example, ASP is a 647

non-monotonic reasoning framework, it is expected 648

that it performs better on non-monotonic reasoning 649

tasks. Further, ProntoQA and ProofWriter promi- 650

nently require the usage of the modus ponens in 651

their reasoning tasks, which only captures a small 652

subset of all logical reasoning tasks. 653

Lastly, when moving to bigger, more complex 654

problems in the reasoning datasets, additional chal- 655

lenges will occur that (might) prevent the usage of 656

symbolic solvers. Evidently, efficient neurosym- 657

bolic LLM reasoning must take this into account; 658

therefore, LLMs are not only required to translate 659

the problem correctly w.r.t. syntax and semantic, 660

but also in a way that facilitates efficient, w.r.t time, 661

solving by symbolic solvers. 662

Additional Baselines. Additional baselines 663

such as tree of thoughts (Yao et al., 2023) have the 664

potential to improve upon traditional CoT prompt- 665

ing, thereby elevating the baseline scores. 666

References 667

Dirk Abels, Julian Jordi, Max Ostrowski, Torsten 668
Schaub, Ambra Toletti, and Philipp Wanko. 2021. 669

9



Train Scheduling with Hybrid Answer Set Program-670
ming. TPLP, 21(3):317–347.671

Samy Badreddine, Artur d’Avila Garcez, Luciano Ser-672
afini, and Michael Spranger. 2022. Logic Tensor673
Networks. AI, 303:103649.674

Alexander Beiser, Markus Hecher, Kaan Unalan, and675
Stefan Woltran. 2024. Bypassing the ASP Bottle-676
neck: Hybrid Grounding by Splitting and Rewriting.677
In IJCAI24, pages 3250–3258.678

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-679
ural Language Processing with Python. O’Reilly680
Media Inc.681

Erica Coppolillo, Francesco Calimeri, Giuseppe Manco,682
Simona Perri, and Francesco Ricca. 2024. LLASP:683
Fine-tuning Large Language Models for Answer Set684
Programming. In KR24, pages 834–844.685

Leonardo de Moura and Nikolaj Bjorner. 2008. Z3: An686
Efficient SMT Solver. TACAS08, pages 337–340.687

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine688
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter689
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.690
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-691
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith692
and Fate: Limits of Transformers on Compositional-693
ity. In NeurIPS23, pages 70293–70332.694

Thomas Eiter, Tobias Geibinger, Nelson Higuera, and695
Johannes Oetsch. 2023. A logic-based approach to696
contrastive explainability for neurosymbolic visual697
question answering. In IJCAI23, pages 3668–3676.698

Thomas Eiter, Giovambattista Ianni, and Thomas Kren-699
nwallner. 2009. Answer Set Programming: A Primer.700
In LNCS, volume 5689, pages 40–110.701

Torsten Fahle, Stefan Schamberger, and Meinolf Sell-702
mann. 2001. Symmetry breaking. In CP01, pages703
93–107.704

Bruce Frederiksen. 2008. Applying Expert System705
Technology to Code Reuse with Pyke.706

Artur d’Avila Garcez and Luís C. Lamb. 2023. Neu-707
rosymbolic AI: the 3rd wave. Artif Intell Rev,708
56(11):12387–12406.709

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,710
Max Ostrowski, Torsten Schaub, and Philipp Wanko.711
2016. Theory Solving Made Easy with Clingo 5.712
ICLP16, 52:1–15.713

Michael Gelfond and Nicola Leone. 2002. Logic pro-714
gramming and knowledge representation—The A-715
Prolog perspective. AI, 138(1):3–38.716

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.717
Injecting Numerical Reasoning Skills into Language718
Models. In ACL20, pages 946–958.719

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent- 720
ing Qi, Martin Riddell, Wenfei Zhou, James Coady, 721
David Peng, Yujie Qiao, Luke Benson, and et. al. 722
2024. FOLIO: Natural Language Reasoning with 723
First-Order Logic. In EMNLP24, pages 22017– 724
22031. 725

Roland Kaminski and Torsten Schaub. 2023. On the 726
Foundations of Grounding in Answer Set Program- 727
ming. TPLP23, 23(6):1138–1197. 728

Shashank Kirtania, Priyanshu Gupta, and Arjun Rad- 729
hakrishna. 2024. LOGIC-LM++: Multi-Step Refine- 730
ment for Symbolic Formulations. In ACL24, pages 731
56–63. 732

Long Hei Matthew Lam, Ramya Keerthy Thatikonda, 733
and Ehsan Shareghi. 2024. A Closer Look at Logical 734
Reasoning with LLMs: The Choice of Tool Matters. 735
In ALTW/ALTA24. 736

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y 737
Chan, Hannah R Sheahan, Antonia Creswell, Dhar- 738
shan Kumaran, James L McClelland, and Felix Hill. 739
2024. Language models, like humans, show content 740
effects on reasoning tasks. PNAS Nexus, 3(7). 741

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xi- 742
ang Ren. 2020. Birds have four legs?! NumerSense: 743
Probing Numerical Commonsense Knowledge of Pre- 744
Trained Language Models. In EMNLP20, pages 745
6862–6868. 746

Jinxi Liu, Shulin Cao, Jiaxin Shi, Tingjian Zhang, Lei 747
Hou, and Juanzi Li. 2024. How Proficient Are Large 748
Language Models in Formal Languages? An In- 749
Depth Insight for Knowledge Base Question Answer- 750
ing. In ACL24. 751

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 752
Delip Rao, Eric Wong, Marianna Apidianaki, and 753
Chris Callison-Burch. 2023. Faithful Chain-of- 754
Thought Reasoning. In IJCNLP23, pages 305–329. 755

William McCune. 2010. Prover9 and Mace4. 756

Gustavo Niemeyer, Sebastien Celles, and Floris-Jan 757
Willemsen. 2024. python-constraint. 758

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, 759
Armando Solar-Lezama, Joshua Tenenbaum, and 760
Roger Levy. 2023. LINC: A Neurosymbolic Ap- 761
proach for Logical Reasoning by Combining Lan- 762
guage Models with First-Order Logic Provers. In 763
EMNLP23, pages 5153–5176. 764

Liangming Pan, Alon Albalak, Xinyi Wang, and 765
William Wang. 2023. Logic-LM: Empowering Large 766
Language Models with Symbolic Solvers for Faithful 767
Logical Reasoning. In EMNLP23, pages 3806–3824. 768

Dagmara Panas, Sohan Seth, and Vaishak Belle. 2024. 769
Can Large Language Models Put 2 and 2 Together? 770
Probing for Entailed Arithmetical Relationships. In 771
NeSy24, pages 258–276. 772

10

https://doi.org/10.1017/S1471068420000046
https://doi.org/10.1017/S1471068420000046
https://doi.org/10.1017/S1471068420000046
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.24963/ijcai.2024/360
https://doi.org/10.24963/ijcai.2024/360
https://doi.org/10.24963/ijcai.2024/360
https://doi.org/10.24963/kr.2024/78
https://doi.org/10.24963/kr.2024/78
https://doi.org/10.24963/kr.2024/78
https://doi.org/10.24963/kr.2024/78
https://doi.org/10.24963/kr.2024/78
https://doi.org/doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.1007/978-3-642-03754-2_2
https://pyke.sourceforge.net/PyCon2008-paper.html
https://pyke.sourceforge.net/PyCon2008-paper.html
https://pyke.sourceforge.net/PyCon2008-paper.html
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.1017/S1471068422000308
https://doi.org/10.1017/S1471068422000308
https://doi.org/10.1017/S1471068422000308
https://doi.org/10.1017/S1471068422000308
https://doi.org/10.1017/S1471068422000308
https://doi.org/10.18653/v1/2024.nlrse-1.6
https://doi.org/10.18653/v1/2024.nlrse-1.6
https://doi.org/10.18653/v1/2024.nlrse-1.6
https://aclanthology.org/2024.alta-1.4/
https://aclanthology.org/2024.alta-1.4/
https://aclanthology.org/2024.alta-1.4/
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
http://www.cs.unm.edu/~mccune/Prover9
https://github.com/python-constraint/python-constraint
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.1007/978-3-031-71170-1_21
https://doi.org/10.1007/978-3-031-71170-1_21
https://doi.org/10.1007/978-3-031-71170-1_21


Abulhair Saparov and He He. 2023. Language Models773
Are Greedy Reasoners: A Systematic Formal Analy-774
sis of Chain-of-Thought. ICLR23.775

Torsten Schaub and Stefan Woltran. 2018. Special Is-776
sue on Answer Set Programming. Künstliche Intell.,777
32(2):101–103.778

Murray Shanahan. 2024. Talking about Large Language779
Models. Com. ACM, 67(2):68–79.780

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.781
ProofWriter: Generating Implications, Proofs, and782
Abductive Statements over Natural Language. In783
IJCNLP21, pages 3621–3634.784

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten785
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and786
Denny Zhou. 2022. Chain-of-Thought Prompting787
Elicits Reasoning in Large Language Models. In788
NeurIPS22, pages 24824–24837.789

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N.790
Rabe, Charles Staats, Mateja Jamnik, and Christian791
Szegedy. 2022. Autoformalization with Large Lan-792
guage Models. arXiv preprint.793

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie794
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs795
Express Their Uncertainty? An Empirical Evaluation796
of Confidence Elicitation in LLMs. In ICLR24.797

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,798
Thomas L. Griffiths, Yuan Cao, and Karthik799
Narasimhan. 2023. Tree of Thoughts: Deliber-800
ate Problem Solving with Large Language Models.801
arXiv preprint.802

11

https://doi.org/10.1007/s13218-018-0554-8
https://doi.org/10.1007/s13218-018-0554-8
https://doi.org/10.1007/s13218-018-0554-8
https://doi.org/10.1145/3624724
https://doi.org/10.1145/3624724
https://doi.org/10.1145/3624724
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.48550/arXiv.2205.12615
https://doi.org/10.48550/arXiv.2205.12615
https://doi.org/10.48550/arXiv.2205.12615
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601


A Appendix803

In Section A.1, we show additional details of our804

quantitative analysis. In Section A.2 we show the805

details of the qualitative error analysis, including806

occurrences and examples. In Sections A.3–A.14807

we show example prompts. Finally, in Section A.15808

we discuss the licenses of the used scientific arti-809

facts, and in Section A.16 we close with a brief810

discussion on the usage of AI assistants.811

We show in the Tables 5–9 additional experimen-812

tal details and in Figures 7 and 8 distributions relat-813

ing to the averages of Figure 4. Further, we show814

sample prompts on the ProntoQA dataset. All de-815

picted prompts were prompted in user-mode, with-816

out additional information to ensure comparability817

between the approaches. Besides the four base-818

lines, we depict the 8 scenarios s.t. two scenarios819

are shown per formal language s.t. for each formal820

language one example contains No-C., while the821

other Text, and additionally, at least one example822

contains comments.823

A.1 Quantitative Analysis (Details)824

We show the results of the Wilcoxon signed825

rank test. Consider the data used for Figure 4826

and Table 1, where we show its distributions827

in Figures 7 and 8. The data is not normally828

distributed and it is independent per group (e.g.,829

context, ASP, ..), however, it is paired between830

ablation study groups (e.g., context and no-context)831

and formal languages (Pyke, ASP, NLTK, FOL).832

Therefore, we use non-parametric tests. We833

choose a significance value of α = 0.01 for834

few false positives. We use the Python Scipy835

package for the tests: The function wilcoxon836

with parameters alternative=“greater” and837

zero_methods=“zsplit” and the function838

friedmannchisquare with default parameters.839

Ablation study. For our ablation study, we840

perform the Wilcoxon signed rank test on841

the data tuples (feature enabled, feature dis-842

abled): (Context, No-Context), (Comment,843

No-Comment), (Markdown, No-Markdown).844

Recall n = 200 for each ablation study l ∈845

{Context,No-Context,Comment,No-Comment,846

Markdown,No-Markdown}. We perform a847

1-sided test with H0 being there is no difference848

and H1 being feature enabled > feature disabled.849

We report the following p-values in Table 3.850

Therefore, we conclude that context helps, how-851

ever, the results of comment and markdown are852

Comparison p Decision

Context vs. No-Context 0.000 Reject H0

Comment vs. No-Comment 0.032 Fail to reject H0

Markdown vs. No-Markdown 0.054 Fail to reject H0

Table 3: Wilcoxon signed-rank test results (α = 0.01) -
p-values rounded to 3-decimals.

inconclusive, as we do not find statistical evidence 853

to reject the respective H0. 854

Formal Languages. Recall n = 80 for each for- 855

mal language l ∈ {Pyke,ASP,NLTK,FOL}. For 856

comparing the formal languages, we perform a 857

two-step approach: First, we perform the Fried- 858

man test to determine whether there is a differ- 859

ence between (Pyke,ASP,NLTK,FOL), with H0 860

that there is no difference. If we reject Fried- 861

man’s H0, we perform 6 pairwise Wilcoxon signed 862

rank tests: (FOL,NLTK), (FOL,ASP), (FOL,Pyke), 863

(NLTK,ASP), (NLTK,Pyke), (ASP,Pyke). For the 864

Friedman test we obtain a p-value of p = 0.00, 865

therefore we reject H0. We go on to perform the 866

pairwise tests, with the Wilcoxon signed rank test 867

- H0 being there is no difference and H1 being 868

language-1 > language-2. We report the p-value 869

and the Holm corrected p-value in Table 4. 870

Comparison Raw p Holm-adj. p Decision

FOL vs. NLTK 0.011 0.022 Fail to reject H0

FOL vs. ASP 0.000 0.000 Reject H0

FOL vs. Pyke 0.000 0.000 Reject H0

NLTK vs. ASP 0.012 0.022 Fail to reject H0

NLTK vs. Pyke 0.000 0.000 Reject H0

ASP vs. Pyke 0.000 0.000 Reject H0

Table 4: Wilcoxon signed-rank test results (α = 0.01) -
p-values rounded to 3-decimals.

We conclude that FOL performs better than ASP 871

and Pyke. NLTK and ASP perform better than 872

Pyke. However, the results between FOL and 873

NLTK, and NLTK and ASP, are inconclusive, as 874

we cannot reject the respective H0. 875

A.2 Qualitative Error Analysis Details 876

Here, we provide details and additional com- 877

mon errors we found, including where they 878

occurred. We structure their place of occurrence as 879

(⟨LLM⟩,⟨Text/No-Context (No-C.)⟩, 880

⟨comment/no comment⟩,⟨markdown/no markdown⟩, 881

ID: ⟨Example ID⟩). 882

Pyke 1: Semantically incorrect, but syntactically 883

correct translation: Stella is a yumpus is translated 884

as Tumpus(Stella, True) (GPT-4o-mini, text, no 885

12



0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 45.49
mean ± SEM

(a) Histogram: No-C.

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 58.42
mean ± SEM

(b) Histogram: Context

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 50.67
mean ± SEM

(c) Histogram: No-Comment

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 53.23
mean ± SEM

(d) Histogram: Comment

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 51.49
mean ± SEM

(e) Histogram: No-Markdown

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 52.42
mean ± SEM

(f) Histogram: Markdown

Figure 7: Histograms of the ablation study scenarios, underlying the means and standard error of the means (SEM)
of Figure 4 (left). For all histograms, moving from the disabled feature to the enabled feature results in a slight shift
of the histogram frequencies further to the right.

13



0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 44.55
mean ± SEM

(a) Histogram: Pyke

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 56.40
mean ± SEM

(b) Histogram: ASP

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 61.44
mean ± SEM

(c) Histogram: NLTK

0 20 40 60 80 100
Overall-Accuracy [%]

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
[%

 o
f t

ria
ls

]

mean = 63.92
mean ± SEM

(d) Histogram: FOL

Figure 8: Histograms of the formal languages underlying the means and standard error of the means (SEM) of
Figure 4 (right). Pyke’s mode is between 0 and 10%, while a second, lower, mode is located between roughly 40 and
70%. ASP’s mode is located between 60 and 70% and generally shifted to the right compared to Pyke’s. NLTK’s
mode is between 90 and 100%, however all other values are approximately evenly distributed. On the other hand,
FOL’s mode is between 80 and 90%, while most values are shifted to the right compared to NLTK’s.

14



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc

Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 70.20 100.00 70.20 53.50 100.00 53.50 63.24 100.00 63.24
CoT 84.00 100.00 84.00 49.33 100.00 49.33 66.18 100.00 66.18
Logic-LM 74.40 100.00 74.40 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 43.60 43.60 100.00 36.67 39.33 93.22 21.57 33.33 64.71

Pyke

No-C. 41.60 82.00 50.73 38.67 74.00 52.25 / / /
Text 75.40 99.00 76.16 45.83 62.83 72.94 / / /
Comm.-No-C. 54.00 97.20 55.56 47.50 89.00 53.37 / / /
Comm.-Text 86.00 99.20 86.69 41.17 58.33 70.57 / / /
MD-No-C. 49.80 97.60 51.02 49.83 83.50 59.68 / / /
MD-Text 93.80 99.80 93.99 56.33 75.67 74.45 / / /
MD-Comm.-No-C. 71.40 100.00 71.40 52.83 71.67 73.72 / / /
MD-Comm.-Text 91.60 99.00 92.53 60.33 78.83 76.53 / / /

ASP

No-C. 42.40 86.00 49.30 49.17 95.33 51.57 / / /
Text 70.40 90.40 77.88 54.83 82.17 66.73 / / /
Comm.-No-C. 61.20 100.00 61.20 70.00 98.67 70.95 / / /
Comm.-Text 50.00 100.00 50.00 33.33 100.00 33.33 / / /
MD-No-C. 43.60 90.20 48.34 49.67 99.67 49.83 / / /
MD-Text 81.40 92.20 88.29 59.83 92.33 64.80 / / /
MD-Comm.-No-C. 62.80 100.00 62.80 79.67 100.00 79.67 / / /
MD-Comm.-Text 97.20 97.40 99.79 70.50 91.00 77.47 / / /

NLTK

No-C. 48.80 99.80 48.90 56.17 97.17 57.80 40.43 84.04 48.10
Text 95.20 100.00 95.20 81.33 88.33 92.08 48.33 78.33 61.70
Comm.-No-C. 48.80 99.80 48.90 56.17 97.17 57.80 58.82 94.61 62.18
Comm.-Text 99.80 100.00 99.80 95.67 98.67 96.96 63.33 83.33 76.00
MD-No-C. 48.80 99.80 48.90 56.17 97.17 57.80 44.12 92.65 47.62
MD-Text 95.20 100.00 95.20 81.33 88.33 92.08 48.53 77.94 62.26
MD-Comm.-No-C. 48.80 99.80 48.90 56.17 97.17 57.80 59.80 90.69 65.95
MD-Comm.-Text 99.80 100.00 99.80 95.67 98.67 96.96 54.90 85.29 64.37

FOL

No-C. 49.60 99.60 49.80 62.33 94.33 66.08 40.38 86.54 46.67
Text 90.00 100.00 90.00 79.83 85.67 93.19 52.38 77.38 67.69
Comm.-No-C. 49.60 99.60 49.80 62.33 94.33 66.08 60.29 91.67 65.78
Comm.-Text 100.00 100.00 100.00 97.00 99.83 97.16 50.00 70.00 71.43
MD-No-C. 49.60 99.60 49.80 62.33 94.33 66.08 0.00 0.00 0.00
MD-Text 90.00 100.00 90.00 79.83 85.67 93.19 48.04 81.37 59.04
MD-Comm.-No-C. 49.60 99.60 49.80 62.33 94.33 66.08 61.76 93.63 65.97
MD-Comm.-Text 100.00 100.00 100.00 81.17 86.50 93.83 55.88 79.90 69.94

Table 5: Detailed results for the GPT-4o-mini model, depicting overall-accuracy, execution-rate, and execution-
accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

comment, no markdown, ID: ProntoQA_2).886

Pyke 2: Endless output generation, which was887

capped at 2048 output tokens (Ministral-8b, text,888

no comment, markdown, ID: ProofWriter_AttNeg-889

OWA-D5-1220_Q6).890

Pyke 3: Syntactically incorrect output: Line breaks891

and tabs were missed as foreach facts.P1(x, True)892

assert facts.P9(x, True) (DeepSeek-8B, No-C.,893

comment, no markdown, ID: ProntoQA_1).894

ASP 1: Syntactically incorrect output: Not adher-895

ing to task description, by producing a CoT rea-896

soning chain (DeepSeek-32B, text, comment, no897

markdown, ID: ProntoQA_3).898

ASP 2: Syntactically incorrect output: Unable to899

capture negation, such as the query -not p1(wren)900

(Llama-8b, No-C., no comment, no markdown, ID:901

ProntoQA_9).902

NLTK 1: Syntactically incorrect output: For-903

got keyword introducing an NLTK formula904

(DeepSeek-V3, text, comment, markdown, ID: FO-905

LIO_dev_1).906

NLTK 2: Syntactically incorrect output: Mis-907

placed parentheses, such as attend(x) & engage(x)908

| -attend(x) & -engage(x)) (DeepSeek-8b, text, no 909

comment, markdown, ID: FOLIO_dev_0). 910

FOL 1: Syntactically incorrect output: Multiple 911

arities for one predicate, such as predicate p14 for 912

arities 1 and 2 (GPT-4o-mini, No-C., no comment, 913

no markdown, ID: ProofWriter_RelNeg-OWA-D5- 914

1029_Q2). 915

Baselines: The neurosymbolic baselines were par- 916

ticularly prone to small syntax errors, like wrap- 917

ping lines or predicates in markdown bold faced let- 918

ters, or enumerating lines, such as enumerating and 919

wrapping a predicate: 1. **Cold($x, bool)** (GPT- 920

4o-mini, Logic-LM*, ID: ProofWriter_AttNoneg- 921

OWA-D5-1041_Q1). 922

A.3 Standard Prompt 923

We show the full standard prompt, including 924

macros which are not shown in the subsequently 925

shown examples. 926

1 Given a problem statement as contexts , 927
the task is to answer a logical 928
reasoning question. 929

2 ------ 930
3 Context: 931

15



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc

Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 52.00 100.00 52.00 43.50 100.00 43.50 52.94 100.00 52.94
CoT 68.80 100.00 68.80 46.67 100.00 46.67 57.35 100.00 57.35
Logic-LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 15.00 15.00 100.00 21.67 24.50 88.44 0.00 0.00 0.00

Pyke

No-C. 31.80 56.40 56.38 5.50 11.83 46.48 / / /
Text 55.40 73.60 75.27 0.00 0.33 0.00 / / /
Comm.-No-C. 27.00 53.00 50.94 3.67 6.50 56.41 / / /
Comm.-Text 0.00 0.00 0.00 7.50 11.00 68.18 / / /
MD-No-C. 24.20 45.80 52.84 3.17 10.67 29.69 / / /
MD-Text 61.00 76.00 80.26 0.17 0.17 100.00 / / /
MD-Comm.-No-C. 36.00 66.60 54.05 10.00 19.33 51.72 / / /
MD-Comm.-Text 57.00 64.80 87.96 9.83 12.83 76.62 / / /

ASP

No-C. 9.60 21.80 44.04 1.83 5.33 34.38 0.00 0.00 0.00
Text 7.00 11.40 61.40 12.33 29.33 42.05 2.94 6.86 42.86
Comm.-No-C. 6.00 13.20 45.45 0.67 2.67 25.00 0.49 1.47 33.33
Comm.-Text 7.00 10.60 66.04 4.33 8.33 52.00 0.98 2.45 40.00
MD-No-C. 9.80 18.80 52.13 2.17 5.33 40.62 0.98 3.92 25.00
MD-Text 5.40 9.40 57.45 19.33 38.00 50.88 7.35 22.55 32.61
MD-Comm.-No-C. 7.40 13.60 54.41 3.83 8.17 46.94 0.49 2.45 20.00
MD-Comm.-Text 8.20 12.00 68.33 3.67 7.83 46.81 0.00 0.00 0.00

NLTK

No-C. 12.80 25.40 50.39 22.67 40.50 55.97 2.94 7.35 40.00
Text 32.00 34.80 91.95 35.67 41.50 85.94 4.41 10.29 42.86
Comm.-No-C. 32.80 46.00 71.30 28.00 33.33 84.00 34.80 65.69 52.99
Comm.-Text 34.80 36.60 95.08 38.67 41.67 92.80 27.45 50.98 53.85
MD-No-C. 11.60 23.20 50.00 25.33 49.50 51.18 7.84 17.16 45.71
MD-Text 61.40 66.20 92.75 45.50 53.83 84.52 17.65 39.71 44.44
MD-Comm.-No-C. 48.80 69.20 70.52 33.67 42.67 78.91 40.20 70.10 57.34
MD-Comm.-Text 55.20 60.00 92.00 40.83 45.83 89.09 41.67 57.35 72.65

FOL

No-C. 26.40 50.00 52.80 28.17 57.33 49.13 0.00 1.47 0.00
Text 70.20 80.60 87.10 64.33 80.83 79.59 6.37 9.31 68.42
Comm.-No-C. 59.00 67.80 87.02 45.33 57.00 79.53 23.53 42.16 55.81
Comm.-Text 42.60 52.00 81.92 66.33 85.33 77.73 32.84 51.96 63.21
MD-No-C. 19.80 36.80 53.80 29.00 61.00 47.54 0.49 0.98 50.00
MD-Text 77.00 83.40 92.33 63.17 79.50 79.45 16.67 32.84 50.75
MD-Comm.-No-C. 73.40 80.40 91.29 40.83 52.50 77.78 26.96 46.08 58.51
MD-Comm.-Text 72.20 77.40 93.28 53.83 61.33 87.77 38.24 55.88 68.42

Table 6: Detailed results for the Llama 3.1 8B Instruct model, depicting overall-accuracy, execution-rate, and
execution-accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

4 Each jompus is fruity. Every jompus is a932
wumpus. Every wumpus is not933

transparent. Wumpuses are tumpuses.934
Tumpuses are mean. Tumpuses are935
vumpuses. Every vumpus is cold. Each936
vumpus is a yumpus. Yumpuses are937

orange. Yumpuses are numpuses.938
Numpuses are dull. Each numpus is a939
dumpus. Every dumpus is not shy.940
Impuses are shy. Dumpuses are941
rompuses. Each rompus is liquid.942
Rompuses are zumpuses. Alex is a943
tumpus.944

5 Question:945
6 Question: Is the following statement946

true or false? Alex is not shy.947
7948
8 Options:949
9 A) True950

10 B) False951
11952
12 The correct option is: A953
13 ------954
14 Context:955
15 [[ CONTEXT ]]956
16957
17 Question: [[ QUESTION ]]958
18959
19 Options:960
20 [[ OPTIONS ]]961
21962

22 The correct option is: 963

A.4 Chain-of-Thought (CoT) Prompt 964

We show a full CoT prompt without macros. 965

1 Given a problem statement as contexts , 966
the task is to answer a logical 967
reasoning question. 968

2 ------ 969
3 Context: 970
4 Each jompus is fruity. Every jompus is a 971

wumpus. Every wumpus is not 972
transparent. Wumpuses are tumpuses. 973
Tumpuses are mean. Tumpuses are 974
vumpuses. Every vumpus is cold. Each 975
vumpus is a yumpus. Yumpuses are 976

orange. Yumpuses are numpuses. 977
Numpuses are dull. Each numpus is a 978
dumpus. Every dumpus is not shy. 979
Impuses are shy. Dumpuses are 980
rompuses. Each rompus is liquid. 981
Rompuses are zumpuses. Alex is a 982
tumpus. 983

5 Question: 984
6 Question: Is the following statement 985

true or false? Alex is not shy. 986
7 987
8 Options: 988
9 A) True 989

10 B) False 990

16



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc

Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 52.00 100.00 52.00 43.50 100.00 43.50 52.94 100.00 52.94
CoT 68.80 100.00 68.80 46.67 100.00 46.67 57.35 100.00 57.35
Logic-LM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 15.00 15.00 100.00 21.67 24.50 88.44 0.00 0.00 0.00

Pyke

No-C. 4.20 8.00 52.50 0.33 0.83 40.00 / / /
Text 5.80 13.40 43.28 0.50 0.67 75.00 / / /
Comm.-No-C. 0.40 1.20 33.33 0.17 0.33 50.00 / / /
Comm.-Text 0.20 0.80 25.00 0.00 0.00 0.00 / / /
MD-No-C. 2.00 4.60 43.48 0.17 0.33 50.00 / / /
MD-Text 5.00 9.80 51.02 0.67 1.17 57.14 / / /
MD-Comm.-No-C. 1.80 3.00 60.00 0.00 0.00 0.00 / / /
MD-Comm.-Text 1.60 2.20 72.73 0.00 0.00 0.00 / / /

ASP

No-C. 9.60 21.80 44.04 1.83 5.33 34.38 / / /
Text 7.00 11.40 61.40 12.33 29.33 42.05 / / /
Comm.-No-C. 6.00 13.20 45.45 0.67 2.67 25.00 / / /
Comm.-Text 7.00 10.60 66.04 4.33 8.33 52.00 / / /
MD-No-C. 9.80 18.80 52.13 2.17 5.33 40.62 / / /
MD-Text 5.40 9.40 57.45 19.33 38.00 50.88 / / /
MD-Comm.-No-C. 7.40 13.60 54.41 3.83 8.17 46.94 / / /
MD-Comm.-Text 8.20 12.00 68.33 3.67 7.83 46.81 / / /

NLTK

No-C. 19.60 40.00 49.00 18.67 33.50 55.72 3.43 14.71 23.33
Text 18.60 30.40 61.18 23.17 35.83 64.65 1.96 5.39 36.36
Comm.-No-C. 15.60 26.20 59.54 7.17 11.67 61.43 1.96 3.43 57.14
Comm.-Text 24.00 32.20 74.53 9.67 11.00 87.88 0.00 0.49 0.00
MD-No-C. 17.00 30.60 55.56 3.67 7.17 51.16 10.78 29.90 36.07
MD-Text 22.80 39.20 58.16 4.33 7.17 60.47 8.82 25.98 33.96
MD-Comm.-No-C. 29.00 49.80 58.23 9.67 13.67 70.73 1.96 4.90 40.00
MD-Comm.-Text 26.60 38.40 69.27 2.83 3.67 77.27 5.88 12.25 48.00

FOL

No-C. 23.60 44.20 53.39 24.67 58.17 42.41 1.96 6.37 30.77
Text 35.20 56.80 61.97 22.83 56.67 40.29 1.96 6.37 30.77
Comm.-No-C. 56.00 83.60 66.99 29.83 40.50 73.66 2.45 7.35 33.33
Comm.-Text 69.80 93.40 74.73 22.50 57.67 39.02 1.96 6.37 30.77
MD-No-C. 16.60 32.20 51.55 17.00 48.00 35.42 2.94 2.94 100.00
MD-Text 39.80 63.40 62.78 20.33 47.83 42.51 2.94 4.90 60.00
MD-Comm.-No-C. 54.20 81.40 66.58 22.67 33.17 68.34 5.39 8.33 64.71
MD-Comm.-Text 64.40 86.60 74.36 11.00 15.33 71.74 6.37 10.78 59.09

Table 7: Detailed results for the DeepSeek-8b model, depicting overall-accuracy, execution-rate, and execution-
accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

11991
12 Reasoning:992
13 Alex is a tumpus. Tumpuses are vumpuses993

. So Alex is a vumpus. Each vumpus994
is a yumpus. So Alex is a yumpus.995
Yumpuses are numpuses. So Alex is a996
numpus. Each numpus is a dumpus. So997
Alex is a dumpus. Every dumpus is998
not shy. So Alex is not shy.999

141000
15 The correct option is: A1001
16 ------1002
17 [...]1003

A.5 Logic-LM*: Example Prompt1004

The following shows the Logic-LM* prompt with-1005

out macros. “[...]” indicates that we skipped rules1006

for brevity.1007

1 Task Description: You are given a1008
problem description and a question.1009

2 In general , the task is to parse the1010
problem description and question1011
into a a Pyke (Python Knowledge1012
Engine) readable format.1013

3 In more detail:1014
4 1.) Define the predicates.1015
5 2) Define the facts.1016
6 3) Define the rules.1017

7 4) Define the "query". The query has to 1018
be defined according to the 1019
following example: Given the 1020
question: "True or false: Alex is 1021
not shy". 1022

8 Then you should define this as "Shy(alex 1023
, false)". 1024

9 The program must by syntactically 1025
correct. A correctly parsed example 1026
is given below. The output should be 1027
given in a Pyke readable format. 1028

Therefore , be sure not to use any " 1029
bullet points", or "numberings" when 1030
printing the output. Further , no 1031

special characters like ("#") must 1032
occur. 1033

10 ------ 1034
11 Problem: 1035
12 Each jompus is fruity. Every jompus is a 1036

wumpus. Every wumpus is not 1037
transparent. Wumpuses are tumpuses. 1038
Tumpuses are mean. Tumpuses are 1039
vumpuses. Every vumpus is cold. Each 1040
vumpus is a yumpus. Yumpuses are 1041

orange. Yumpuses are numpuses. 1042
13 Numpuses are dull. Each numpus is a 1043

dumpus. Every dumpus is not shy. 1044
Impuses are shy. Dumpuses are 1045
rompuses. Each rompus is liquid. 1046
Rompuses are zumpuses. Alex is a 1047
tumpus. 1048

17



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc

Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 99.20 100.00 99.20 64.17 100.00 64.17 67.16 100.00 67.16
CoT 98.80 100.00 98.80 66.67 100.00 66.67 71.57 100.00 71.57
Logic-LM 74.20 88.00 84.32 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00

Pyke

No-C. 42.40 64.60 65.63 56.17 80.83 69.48 / / /
Text 74.60 89.00 83.82 46.67 54.17 86.15 / / /
Comm.-No-C. 43.00 62.60 68.69 38.17 56.17 67.95 / / /
Comm.-Text 66.40 81.60 81.37 37.33 44.83 83.27 / / /
MD-No-C. 43.00 70.00 61.43 54.50 68.00 80.15 / / /
MD-Text 68.80 83.20 82.69 45.67 51.67 88.39 / / /
MD-Comm.-No-C. 68.80 83.00 82.89 50.83 71.50 71.10 / / /
MD-Comm.-Text 79.40 89.80 88.42 39.33 46.83 83.99 / / /

ASP

No-C. 63.60 87.00 73.10 50.50 74.00 68.24 / / /
Text 72.00 90.00 80.00 66.00 85.17 77.50 / / /
Comm.-No-C. 72.00 95.20 75.63 62.83 80.67 77.89 / / /
Comm.-Text 67.80 94.40 71.82 60.33 75.67 79.74 / / /
MD-No-C. 73.20 94.60 77.38 54.17 76.67 70.65 / / /
MD-Text 77.60 92.40 83.98 65.33 84.33 77.47 / / /
MD-Comm.-No-C. 52.20 93.00 56.13 64.83 80.67 80.37 / / /
MD-Comm.-Text 58.60 95.80 61.17 58.83 74.67 78.79 / / /

NLTK

No-C. 35.60 50.40 70.63 67.00 79.67 84.10 42.16 57.35 73.50
Text 96.00 97.80 98.16 74.50 83.00 89.76 51.96 68.63 75.71
Comm.-No-C. 56.20 60.20 93.36 54.33 64.00 84.90 4.41 7.84 56.25
Comm.-Text 67.60 68.00 99.41 45.67 50.83 89.84 6.37 7.84 81.25
MD-No-C. 40.40 66.40 60.84 68.33 79.17 86.32 26.96 36.76 73.33
MD-Text 95.00 96.80 98.14 72.83 83.00 87.75 48.04 64.71 74.24
MD-Comm.-No-C. 59.60 66.20 90.03 23.33 31.67 73.68 2.94 6.37 46.15
MD-Comm.-Text 74.80 76.40 97.91 19.83 27.17 73.01 1.96 4.41 44.44

FOL

No-C. 49.20 57.80 85.12 75.67 85.50 88.50 49.02 65.20 75.19
Text 85.00 89.40 95.08 74.83 83.00 90.16 43.63 60.78 71.77
Comm.-No-C. 61.60 67.00 91.94 50.83 61.67 82.43 12.75 16.67 76.47
Comm.-Text 55.20 56.80 97.18 80.00 87.33 91.60 4.90 11.76 41.67
MD-No-C. 48.60 58.80 82.65 78.67 87.17 90.25 43.63 54.90 79.46
MD-Text 87.00 90.40 96.24 75.67 83.50 90.62 45.10 59.80 75.41
MD-Comm.-No-C. 52.20 60.00 87.00 14.00 28.00 50.00 5.88 8.33 70.59
MD-Comm.-Text 75.60 79.40 95.21 13.67 30.17 45.30 3.92 8.82 44.44

Table 8: Detailed results for the DeepSeek-32b model, depicting overall-accuracy, execution-rate, and execution-
accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

14 Question:1049
15 True or false: Alex is not shy.1050
16 ###1051
17 Predicates:1052
18 Jompus($x, bool) ::: Does x belong to1053

Jompus?1054
19 [...]1055
20 Facts:1056
21 Tumpuses(Alex , True)1057
22 Rules:1058
23 Jompus($x, True) >>> Fruity($x, True)1059
24 [...]1060
25 Query:1061
26 Shy(Alex , False)1062
27 ------1063
28 [...]1064

A.6 LINC*1065

The following shows the Logic-LM* prompt with-1066

out macros. “[...]” indicates that we skipped rules1067

for brevity.1068

1 The following is a first -order logic (1069
FOL) problem.1070

2 The problem is to determine whether the1071
conclusion follows from the premises1072
.1073

3 The premises are given in the form of a1074
set of first -order logic sentences.1075

4 The conclusion is given in the form of a 1076
single first -order logic sentence. 1077

5 The task is to translate each of the 1078
premises and conclusions into FOL 1079
expressions , so that the expressions 1080
can be evaluated by a theorem 1081

solver to determine whether the 1082
conclusion follows from the premises 1083
. 1084

6 Expressions should be adhere to the 1085
format of the Python NLTK package 1086
logic module. 1087

7 1088
8 1089
9 <PREMISES > 1090

10 All dispensable things are environment - 1091
friendly. 1092

11 [...] 1093
12 </PREMISES > 1094
13 <CONCLUSION > 1095
14 A worksheet is not dispensable. 1096
15 </CONCLUSION > 1097
16 <EVALUATE > 1098
17 TEXT: All dispensable things are 1099

environment -friendly. 1100
18 FOL: all x. (Dispensable(x) -> 1101

EnvironmentFriendly(x)) 1102
19 [...] 1103
20 </EVALUATE > 1104
21 [...] 1105

18



Method ProntoQA ProofWriter FOLIO

Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc Overall-Acc Exec-Rate Exec-Acc
Chance 50.00 / / 33.33 / / 33.33 / /

Baseline

Standard 98.00 100.00 98.00 76.00 100.00 76.00 68.63 100.00 68.63
CoT 99.80 100.00 99.80 79.67 100.00 79.67 71.57 100.00 71.57
Logic-LM 73.60 99.60 73.90 0.00 0.00 0.00 0.00 0.00 0.00
LINC* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pyke

No-C. 49.60 83.00 59.76 49.00 67.67 72.41 / / /
Text 78.20 100.00 78.20 77.00 96.67 79.66 / / /
Comm.-No-C. 56.80 86.20 65.89 66.50 93.83 70.87 / / /
Comm.-Text 74.00 99.40 74.45 72.33 87.67 82.51 / / /
MD-No-C. 47.00 83.60 56.22 73.17 94.17 77.70 / / /
MD-Text 78.40 100.00 78.40 77.83 96.83 80.38 / / /
MD-Comm.-No-C. 78.60 95.40 82.39 64.67 81.00 79.84 / / /
MD-Comm.-Text 82.40 99.80 82.57 65.67 81.00 81.07 / / /

ASP

No-C. 30.60 55.80 54.84 74.67 98.83 75.55 / / /
Text 92.60 100.00 92.60 78.83 100.00 78.83 / / /
Comm.-No-C. 95.60 100.00 95.60 79.83 100.00 79.83 / / /
Comm.-Text 98.80 100.00 98.80 79.83 100.00 79.83 / / /
MD-No-C. 17.40 32.40 53.70 74.00 99.17 74.62 / / /
MD-Text 99.00 100.00 99.00 78.67 99.67 78.93 / / /
MD-Comm.-No-C. 94.60 100.00 94.60 79.83 100.00 79.83 / / /
MD-Comm.-Text 99.00 100.00 99.00 79.83 100.00 79.83 / / /

NLTK

No-C. 34.80 61.80 56.31 93.17 96.83 96.21 63.73 85.29 74.71
Text 99.20 100.00 99.20 91.33 94.00 97.16 57.84 80.88 71.52
Comm.-No-C. 99.40 99.60 99.80 79.67 82.83 96.18 57.35 75.49 75.97
Comm.-Text 96.40 96.40 100.00 71.33 73.17 97.49 49.51 67.16 73.72
MD-No-C. 32.20 58.20 55.33 94.17 97.67 96.42 64.71 87.25 74.16
MD-Text 100.00 100.00 100.00 92.17 94.83 97.19 61.76 80.88 76.36
MD-Comm.-No-C. 99.40 100.00 99.40 82.67 85.67 96.50 61.27 77.94 78.62
MD-Comm.-Text 100.00 100.00 100.00 79.17 81.67 96.94 33.33 40.69 81.93

FOL

No-C. 46.20 76.80 60.16 94.33 97.00 97.25 57.84 82.84 69.82
Text 99.20 100.00 99.20 90.00 92.83 96.95 60.29 77.45 77.85
Comm.-No-C. 50.80 50.80 100.00 80.50 83.00 96.99 63.73 84.80 75.14
Comm.-Text 4.00 4.00 100.00 89.33 92.33 96.75 40.20 48.53 82.83
MD-No-C. 47.20 80.20 58.85 91.33 94.17 96.99 59.80 79.90 74.85
MD-Text 98.80 100.00 98.80 85.50 88.50 96.61 56.37 75.00 75.16
MD-Comm.-No-C. 100.00 100.00 100.00 84.33 87.17 96.75 41.18 54.41 75.68
MD-Comm.-Text 83.40 83.40 100.00 79.67 81.67 97.55 50.98 67.65 75.36

Table 9: DeepSeek-V3 Detailed results for the DeepSeek-V3 model, depicting overall-accuracy, execution-rate, and
execution-accuracy for the ProntoQA, ProofWriter, and FOLIO datasets. All values shown in percent [%].

A.7 Pyke (No-C., comment, no markdown)1106

Prompt1107

The following shows the Pyke (No-C., comment,1108

no markdown) prompt without macros. “[...]” indi-1109

cates that we skipped rules for brevity.1110

1 Task Description: You are given a1111
problem description and a question.1112

2 In general , the task is to parse the1113
problem description and question1114
into a a Pyke (Python Knowledge1115
Engine) readable format.1116

3 In more detail:1117
4 1) Define the facts.1118
5 2) Define the rules.1119
6 3) Define the "query". The query has to1120

be defined according to the1121
following example: Given the1122
question: "True or false: Alex is1123
not shy".1124

7 Then you should define this as "P13(alex1125
, false)".1126

8 The program must by syntactically1127
correct. A correctly parsed example1128
is given below. The output should be1129
given in a Pyke readable format.1130

Therefore , be sure not to use any "1131
bullet points", or "numberings" when1132
printing the output. Further , no1133

special characters like ("#") must1134

occur. 1135
9 ------ 1136

10 Problem: 1137
11 Each jompus is fruity. Every jompus is a 1138

wumpus. Every wumpus is not 1139
transparent. Wumpuses are tumpuses. 1140
Tumpuses are mean. Tumpuses are 1141
vumpuses. Every vumpus is cold. Each 1142
vumpus is a yumpus. Yumpuses are 1143

orange. Yumpuses are numpuses. 1144
12 Numpuses are dull. Each numpus is a 1145

dumpus. Every dumpus is not shy. 1146
Impuses are shy. Dumpuses are 1147
rompuses. Each rompus is liquid. 1148
Rompuses are zumpuses. Alex is a 1149
tumpus. 1150

13 Question: 1151
14 True or false: Alex is not shy. 1152
15 ### 1153
16 Facts: 1154
17 # Alex is a tumpus. 1155
18 P1(Alex , True) 1156
19 Rules: 1157
20 # Each jompus is fruity. 1158
21 fact1 1159
22 foreach 1160
23 facts.P2($x, True) 1161
24 assert 1162
25 facts.P3($x, True) 1163
26 [...] 1164
27 Query: 1165

19



28 # True or false: Alex is not shy.1166
29 P13(Alex ,False)1167
30 [...]1168

A.8 Pyke (Text, no comment, no markdown)1169

Prompt1170

The following shows the Pyke (Text, no comment,1171

no markdown) prompt without macros. “[...]” indi-1172

cates that we skipped rules for brevity.1173

1 [...]1174
2 ###1175
3 Facts:1176
4 Tumpus(Alex , True)1177
5 Rules:1178
6 fact11179
7 foreach1180
8 facts.Jompus($x, True)1181
9 assert1182

10 facts.Fruity($x, True)1183
11 [...]1184
12 Query:1185
13 Shy(Alex ,False)1186
14 [...]1187

A.9 ASP (No-C., no comment, markdown)1188

Prompt1189

The following shows the ASP (No-C., no comment,1190

markdown) prompt without macros. “[...]” indi-1191

cates that we skipped rules for brevity.1192

1 Task Description: You are given a1193
problem description and a question.1194

2 In general , the task is to parse the1195
problem description and question1196
into an Answer Set Programming (ASP)1197
program.1198

3 In more detail:1199
4 1) Define the facts.1200
5 2) Define the rules.1201
6 3) Define the "query". The query has to1202

be defined as a (or several) literal1203
(s).1204

7 For example: Given the question: "True1205
or false: Alex is not shy".1206

8 Then you should define this as "-p15(1207
alex)".1208

9 The program must by syntactically1209
correct. A correctly parsed example1210
is given below. The output should be1211
given as an ASP program (logic1212

programming). Therefore , be sure not1213
to use any "bullet points", or "1214

numberings" when printing the output1215
. Further , no special characters1216
like ("#") must occur.1217

10 ------1218
11 Problem:1219
12 Each jompus is fruity. Every jompus is a1220

wumpus. Every wumpus is not1221
transparent. Wumpuses are tumpuses.1222
Tumpuses are mean. Tumpuses are1223
vumpuses. Every vumpus is cold. Each1224
vumpus is a yumpus. Yumpuses are1225

orange. Yumpuses are numpuses.1226
Numpuses are dull. Each numpus is a1227

dumpus. Every dumpus is not shy. 1228
Impuses are shy. Dumpuses are 1229
rompuses. Each rompus is liquid. 1230
Rompuses are zumpuses. Alex is a 1231
tumpus. 1232

13 Question: 1233
14 True or false: Alex is not shy. 1234
15 ### 1235
16 Facts: 1236
17 ``` 1237
18 p1(alex). 1238
19 ``` 1239
20 Rules: 1240
21 ``` 1241
22 p2(X) :- p3(X). 1242
23 [...] 1243
24 ``` 1244
25 Query: 1245
26 ``` 1246
27 -p15(alex). 1247
28 ``` 1248
29 ------ 1249
30 [...] 1250

A.10 ASP (Text, comment, markdown) 1251

Prompt 1252

The following shows the ASP (Text, comment, 1253

markdown) prompt without macros. “[...]” indi- 1254

cates that we skipped rules for brevity. 1255

1 [...] 1256
2 Facts: 1257
3 ``` 1258
4 % Alex is a tumpus. 1259
5 tumpus(alex). 1260
6 ``` 1261
7 Rules: 1262
8 ``` 1263
9 % Each jompus is fruity. 1264

10 fruity(X) :- jompus(X). 1265
11 [...] 1266
12 ``` 1267
13 Query: 1268
14 ``` 1269
15 % True or false: Alex is not shy. 1270
16 -shy(alex). 1271
17 ``` 1272
18 ------ 1273
19 [...] 1274

A.11 NLTK (No-C., no comment, no 1275

markdown) Prompt 1276

The following shows the NLTK (No-C., no com- 1277

ment, no markdown) prompt without macros. “[...]” 1278

indicates that we skipped rules for brevity. 1279

1 [...] 1280
2 Task Description: You are given a 1281

problem description and a question. 1282
3 In general , the task is to parse the 1283

problem description and question 1284
into a a NLTK (Natural Language 1285
Toolkit) Logic format. The NLTK 1286
library is a python library. 1287

4 In more detail: 1288
5 1) Define the facts. 1289

20



6 2) Define the rules.1290
7 3) Define the "query". The query has to1291

be defined as a (or several) literal1292
(s).1293

8 For example: Given the question: "True1294
or false: Alex is not shy".1295

9 Then you should define this as "-p14(1296
alex)".1297

10 The program must by syntactically1298
correct. A correctly parsed example1299
is given below. The output should be1300
given in the NLTK format. Therefore1301

, be sure not to use any "bullet1302
points", or "numberings" when1303
printing the output. Further , no1304
special characters like ("#") must1305
occur.1306

11 ------1307
12 Problem:1308
13 Each jompus is fruity. Every jompus is a1309

wumpus. Every wumpus is not1310
transparent. Wumpuses are tumpuses.1311
Tumpuses are mean. Tumpuses are1312
vumpuses. Every vumpus is cold. Each1313
vumpus is a yumpus. Yumpuses are1314

orange. Yumpuses are numpuses.1315
Numpuses are dull. Each numpus is a1316
dumpus. Every dumpus is not shy.1317
Impuses are shy. Dumpuses are1318
rompuses. Each rompus is liquid.1319
Rompuses are zumpuses. Alex is a1320
tumpus.1321

14 Question:1322
15 True or false: Alex is not shy.1323
16 ###1324
17 Facts:1325
18 NLTK: p1(alex)1326
191327
20 Rules:1328
21 NLTK: all x. (p2(x) -> p3(x))1329
22 [...]1330
231331
24 Query:1332
25 NLTK: -p14(alex)1333
26 ------1334
27 [...]1335

A.12 NLTK (Text, comment, no markdown)1336

Prompt1337

The following shows the NLTK (Text, comment,1338

no markdown) prompt without macros. “[...]” indi-1339

cates that we skipped rules for brevity.1340

1 [...]1341
2 Facts:1342
3 TEXT: Alex is a tumpus.1343
4 NLTK: tumpus(alex)1344
51345
6 Rules:1346
7 TEXT: Each jompus is fruity.1347
8 NLTK: all x. (jompus(x) -> fruity(x))1348
9 [...]1349

10 Query:1350
11 TEXT: Alex is not shy.1351
12 NLTK: -shy(alex)1352
13 ------1353
14 [...]1354

A.13 FOL (No-C., comment, markdown) 1355

Prompt 1356

The following shows the FOL (No-C., comment, 1357

markdown) prompt without macros. “[...]” indi- 1358

cates that we skipped lines for brevity. 1359

1 Task Description: You are given a 1360
problem description and a question. 1361

2 In general , the task is to parse the 1362
problem description and question 1363
into a a FOL (First Order Logic) 1364
format. 1365

3 In more detail: 1366
4 1) Define the facts. 1367
5 2) Define the rules. 1368
6 3) Define the "query". The query has to 1369

be defined as a (or several) literal 1370
(s). 1371

7 For example: Given the question: "True 1372
or false: Alex is not shy". 1373

8 Then you should define this as "-p14( 1374
alex)". 1375

9 The program must by syntactically 1376
correct. A correctly parsed example 1377
is given below. The output should be 1378
given in the FOL format. Therefore , 1379
be sure not to use any "bullet 1380

points", or "numberings" when 1381
printing the output. Further , no 1382
special characters like ("#") must 1383
occur. 1384

10 ------ 1385
11 Problem: 1386
12 Each jompus is fruity. Every jompus is a 1387

wumpus. Every wumpus is not 1388
transparent. Wumpuses are tumpuses. 1389
Tumpuses are mean. Tumpuses are 1390
vumpuses. Every vumpus is cold. Each 1391
vumpus is a yumpus. Yumpuses are 1392

orange. Yumpuses are numpuses. 1393
Numpuses are dull. Each numpus is a 1394
dumpus. Every dumpus is not shy. 1395
Impuses are shy. Dumpuses are 1396
rompuses. Each rompus is liquid. 1397
Rompuses are zumpuses. Alex is a 1398
tumpus. 1399

13 Question: 1400
14 True or false: Alex is not shy. 1401
15 ### 1402
16 Facts: 1403
17 ``` 1404
18 TEXT: Alex is a tumpus. 1405
19 FOL: p1(alex) 1406
20 ``` 1407
21 1408
22 Rules: 1409
23 ``` 1410
24 TEXT: Each jompus is fruity. 1411
25 FOL: ∀x. (p2(x) → p3(x)) 1412
26 [...] 1413
27 ``` 1414
28 1415
29 Query: 1416
30 ``` 1417
31 TEXT: Alex is not shy. 1418
32 FOL: -p14(alex) 1419
33 ``` 1420
34 ------ 1421
35 [...] 1422

21



A.14 FOL (Text, no comment, markdown)1423

Prompt1424

The following shows the FOL (Text, no comment,1425

markdown) prompt without macros. “[...]” indi-1426

cates that we skipped lines for brevity.1427

1 [...]1428
2 Facts:1429
3 ```1430
4 FOL: tumpus(alex)1431
5 ```1432
61433
7 Rules:1434
8 ```1435
9 FOL: ∀x. (jompus(x) → fruity(x))1436

10 [...]1437
11 ```1438
121439
13 Query:1440
14 ```1441
15 FOL: -shy(alex)1442
16 ```1443
17 ------1444
18 [...]1445

A.15 Licenses of Scientific Artifacts1446

Logic-LM uses an MIT license, which grants us1447

the free usage and the rights to use, copy, mod-1448

ify, merge, publish, distribute, sublicense the soft-1449

ware 8. ProntoQA is licensed under the Apache1450

License 2.0 9 and FOLIO under the Creative Com-1451

mons Attribution Share Alike 4.0 International 10,1452

which permits the usage of the data. No specific1453

license is given for LINC 11 and ProofWriter 12.1454

However, for ProofWriter they state in the pa-1455

per that “Datasets available at https://allenai.1456

org/data/proofwriter” (Tafjord et al., 2021)1457

and for LINC “Code is provided to reproduce all1458

experiments and figures” 13. While we did not use1459

any LINC code (just the prompting methodology),1460

we interpret the license of ProofWriter to grant us1461

permission to use it as a benchmark dataset. The1462

used LLMs and software are suitable for scientific1463

use.1464

A.16 Usage of AI Assistants1465

This paper discusses the logical reasoning ability1466

of AI assistants (LLMs). Evidently, we performed1467

experiments upon them - see also our experiment1468

8https://github.com/teacherpeterpan/Logic-LLM
9https://github.com/asaparov/prontoqa/blob/

main/LICENSE
10https://github.com/Yale-LILY/FOLIO/blob/main/

LICENSE
11https://github.com/benlipkin/linc
12https://allenai.org/data/proofwriter
13https://github.com/benlipkin/linc

setup in Section 4. Besides that, we used spell- 1469

checking tools, such as Grammarly. 1470

22

https://allenai.org/data/proofwriter
https://allenai.org/data/proofwriter
https://allenai.org/data/proofwriter
https://github.com/teacherpeterpan/Logic-LLM
https://github.com/asaparov/prontoqa/blob/main/LICENSE
https://github.com/asaparov/prontoqa/blob/main/LICENSE
https://github.com/Yale-LILY/FOLIO/blob/main/LICENSE
https://github.com/Yale-LILY/FOLIO/blob/main/LICENSE
https://github.com/benlipkin/linc
https://allenai.org/data/proofwriter
https://github.com/benlipkin/linc

	Introduction
	Preliminaries
	Chain-of-Thought (CoT) prompting
	Neurosymbolic LLM Reasoning

	The Intermediate Language Challenge for Logical Reasoning
	Experiment Setup
	Formal Languages
	Datasets
	Large Language Models
	Baselines
	Ablation Study Design
	Experimental Evaluation

	Results
	Qualitative Error Analysis

	Related Work
	Conclusion
	Appendix
	Quantitative Analysis (Details)
	Qualitative Error Analysis Details
	Standard Prompt
	Chain-of-Thought (CoT) Prompt
	Logic-LM*: Example Prompt
	LINC*
	Pyke (No-C., comment, no markdown) Prompt
	Pyke (Text, no comment, no markdown) Prompt
	ASP (No-C., no comment, markdown) Prompt
	ASP (Text, comment, markdown) Prompt
	NLTK (No-C., no comment, no markdown) Prompt
	NLTK (Text, comment, no markdown) Prompt
	FOL (No-C., comment, markdown) Prompt
	FOL (Text, no comment, markdown) Prompt
	Licenses of Scientific Artifacts
	Usage of AI Assistants


